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ABSTRACT 
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This research focuses on developing computational models for human behavior from multi 

scale temporal data to detect anomalous behavior, evaluating car driving behavior as a case study. 

Human behavioral patterns capture frequent or repeated behaviors of users in the data. Here the 

usage data can be multi-scale from devices, computer networks or even vehicle driving data. We 

define novel computational models that represent these patterns in data in order to associate them 

with the human behaviors for the detection of the anomalous situations. Such behavioral patterns 

can be associated with identifying anomalies which we believe are precursors or even indicators 

of impending or ongoing unexpected behavior.  Current state of the art in driving behavior has not 

focused on assessing behavioral models from multiple streams of temporal data which might be 

complex. This is an important problem in the domain of driving pattern detection at large because 

human behavior is impacted by the environment in and around the car. Thus, it is important to 

study any type of this usage data in combination across multiple data streams to understand a 

human behavioral perspective. 

Through our research we aim to address the discovery of anomalous human behavioral 

patterns in the driving domain. We present time series based anomaly detection utilizing car 



 
 

 

telematics data, eye gaze distraction data and health vital statistics data to provide a comprehensive 

view of the driver behavioral patterns. We analyze different scales and resolutions of time from 

seconds to minutes and the anomalous variations and their intensities in the data 

streams also impacted accordingly from minor fluctuations to major spikes.   

We identify anomalies, which might be precursors or even indicators of impending or 

ongoing unexpected behavior and detect anomalous activities in different settings to 

understand behaviors in reactive environments such as automobiles. We attribute the anomalous 

behavior to distraction, driver health, vehicular state or other external factors. Our results indicate 

that each of the heterogeneous temporal data streams of Telematics data, Eye tracking data, Driver 

vital health data individually detect anomalies in driving states. However, gaze data is more 

representative of the anomalies than Health and Telematics data in individual streams. In general, 

we also found that all data stream combinations are useful, however, presence of anomalies in eye 

gaze data is more indicative of  anomalous behavior. We are also able to supplement the anomalous 

state information through the combination and overlap of anomalies in the three data streams. 

We compare results from our methodology with traditional data mining methods and found that 

some of these overlapping anomalies across the three data streams and unique anomalies in gaze 

data are missed. 

Auto industry and the auto insurance companies gather and analyze mostly Telematics data 

to gage driver’s driving behavior and categorize the safety of the driver according to their driving 

speed, abrupt acceleration, abrupt deceleration, sharp turns, etc. Our research helps provide a more 

comprehensive view of the driving behavior by incorporating multiple heterogeneous data streams. 
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CHAPTER 1 
 

INTRODUCTION 
 

In this research we propose novel methods for anomaly detection across multi-scale 

temporal data streams.  We utilize the automobile-based data streams as a primary domain to 

establish this research and its major contributions. 

The safety of a vehicle depends on the mechanical state of the vehicle as well as the 

operator’s driving pattern for a given time period. Driver behavior can make the driving conditions 

anomalous by speeding, accelerating, irregular breaking, distracting, poor physical health, etc. 

along with mechanical failures. Therefore, it is critical to study human behavioral aspects to detect 

anomalous activities in different settings to understand anomalies in more reactive environments 

such as automobiles. Our research problem is to identify the anomalous driving behavior and the 

driving states which are indicators of a variety of unsafe driving conditions. Consequently, the 

question to this research problem is how we measure the anomalies in driving behavior. The 

answer to this research question is the measures and analysis of driver behavior data from multiple 

data streams are predictors of unsafe driving. Moreover, the scale of anomaly from certain domains 

may change the driving state significantly from safe to unsafe.    

This research aims to address the discovery of computational models for human behavioral 

patterns in automobile driver data. We capture the following three different data streams for the 

overall driver behavior analysis: 

(1) Telematics data with driving patterns    

(2) Driver distraction data  

(3) Driver vital health data while driving 
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Three data streams as time series are collected. Anomalies are identified on each data stream. 

These heterogeneous but related data streams are analyzed to present a holistic approach to detect 

anomalies in the driver behavior. We study  anomaly detection in smart cars to provide driver 

behavioral patterns. Specifically, we deal with different scales and resolutions of time where 

computational models for human behavior appear in a heterogeneous manner. These 

computational models for human behavior would help us identify driver performance.   

Data in such system represents humans and their behaviors. We discover anomalies by 

analyzing the data generated by users in different types of environments to study these behaviors. 

Thus, the goal of our research is anomaly detection in varying time scales with key focus on human 

behavior. This human behavior could be “slow online behavior” or “real time behavior” or a hybrid 

scenario with “slow online and real time behavior”. The scope of this research is focused on the 

3rd category, which is the driver behavior on a slow online and real time behavior.  The hybrid 

between the slow online and real time behavior is a driving pattern that includes driver behavior 

on distraction, vital health and automobile’s mechanical state. In order to capture such behaviors, 

we analyze time-based anomaly detection of a smart car and detect any anomalous state of the car 

that includes driver distraction, driver’s anomalous health condition and/or an unusual mechanical 

state of the car. We explore an example of this time-based human behavior next in the Motivation 

section.  

1.1 Motivation 
 

Data is people, meaning human behavior is portrayed in the data collected in systems in use 

by humans. We are always alarmed with road safety while we are driving. Driver behavior would 

be anomalous if there is any kind of cyber threat, mechanical failure, driver’s reckless driving, 
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driver’s distraction or driver’s degraded health condition. Therefore, monitoring driver behavior 

in real time and raising alerts would alleviate unsafe environments in automobiles and on the road 

as well. A majority of road accidents happen in the U.S. because of speeding and other driver 

behavior related activities [10]. Consequently, it is critical to monitor driver behavior on the road 

at all times.  

This research aims to help organizations take a proactive approach to study driver behavior in 

near real time. Vehicles (car, bus, fleet) are an absolute necessity in our lives to go to places and/or 

move goods from one place to the other. We are also making our vehicles smart, fully connected 

with the Internet to view real time traffic and weather, talk on the phone with Bluetooth, listen to 

the radio, watch video as well as getting real time status of an automobile’s mechanical functions. 

However, this smart interface comes with a price, which are the vulnerability to threats, 

distractions, driver’s health degradation as well as malfunctions to mechanical parts of the vehicle. 

We like to exploit the power of the connectivity within the vehicle with machine learning to 

analyze, alert and secure the vehicle from all sorts of accidents and dangerous situations.  

So far, we see the focus on the driving behavior is mainly based on the driver’s speed, sharp 

turns, abrupt acceleration, abrupt deceleration as well as the mechanical state of the automobile 

through the Telematics data stream. However, telematics by itself does not provide a 

comprehensive view of driver behavior and the driving state unless we analyze other key data 

streams like distraction data and driver’s vital health data while driving. Consequently our research 

includes all three data streams of Telematics, Distraction data and vital health data. Each sub 

stream individually may not give us a comprehensive view of the overall driving behavior and 

driving state. Anomaly detection on an individual stream will only provide with one aspect of the 

anomalous driving. In order to have a clear picture of the driver behavior and to safeguard the 
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driver from getting into an accident, we evaluate not only the full set of key attributes from each 

domain, but also study multi-domain heterogeneous data streams and identify the relationships 

among each other.      

1.2 Contribution of Thesis 
 

We study multi-scale temporal data in this research to detect both individual and overlapping 

anomalies across these data streams. We focus on driver behavior along with telematics data, Eye 

Gaze distraction data, health vital data and loosely the environmental data (weather conditions) to 

detect anomalous behavior. We also flag the anomalous behavior against baseline data generated 

from multiple data captures from the driver. Our methodology focuses on discovering driving 

patterns and finding anomalies from telematics, gaze and health data to determine the safety of the 

driving state.  

The research problems we are solving here are to understand the human behavior and their 

motive that may cause anomalous behavior, discover computational models for human behavior 

from usage data to detect anomalous behavior, identify and predict anomalies which might be 

precursors or even indicators of impending or ongoing unexpected behavior, detect anomalous 

activities in different settings to understand anomalies in more reactive environments such as 

automobiles and analyze driver behavior to predict and safeguard from getting into accidents. 

Therefore, the objectives of this thesis are to develop a methodology to discover driving 

patterns using vehicular data, detect anomalous driving states, utilize telematics data, Eye Gaze 

distraction data, and health vital data to detect anomalies, discover deviations from baseline driver 

behavior to detect anomalies, and attribute the anomalous behavior to distraction, driver health, 

vehicular state.  
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In order to achieve the above objectives, we evaluate Telematics data stream (T), Eye tracking 

data stream (D), and Driver vital health (H) individually to help detect anomalies in driving states. 

We then combine Telematics data stream (T), Eye tracking data stream (D), Driver vital health (H) 

to help detect anomalies and find the relationships among different data streams. As anomalies are 

indicative of unsafe driving conditions, we find that Distraction (D) and Telematics data (T) are 

related to each other in detecting anomalies, and Distraction (D) and Health data (H) are also 

related to each other. We also find that Distraction (D) data is the most prominent indicator of 

anomalous driving state. Therefore, the measures of driver behavior from multiple data streams 

are predictors of unsafe driving. The scale of anomaly is important here and even a single domain 

can influence the safety of a driving condition.   
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CHAPTER 2 
 

RELATED WORK 
 

Extensive research has been done on APT, Social Engineering as well as Smart Car safety 

in general, however, we lack the security aspect as well as the real time anomaly detection on the 

human interaction as time progresses for the above areas. Driver behavior and safety depend on 

the driver’s attention to driving, his/her health as well as the automobile’s mechanical state. 

Vehicle’s mechanical state may change significantly from safe state to unsafe anomalous state if 

there is mechanical failure or driver’s high speed driving or cyber-attack on the automobile. What 

happens if I lose control of the car while driving because of the engine being taken over by a cyber 

intruder? Therefore, along with our research on driver behavior, it is also important to study cyber 

threats to the smart cars. Our research provides a good foundation on cyber threats to automobiles 

for further research. Following is the synopsis of related work in these areas.   

2.1 Persistent Threat Patterns 
 

Slow online behavior could be persistent and very slow online activities. For instance, 

Advanced Persistent Threat (APT) on a smart car is a slow online persistent threat to penetrate into 

the network. A group of cyber hackers were able to get into Tesla’s ECU (Electronic Control Unit) 

of an S model after trying to hack into the system for a while and literally hijacked the brake and 

steering wheel [33].  

Detecting persistent threats and finding the related patterns are complex. Mandiant [75] 

has investigated cyber-attacks since 2004 and finally came to the conclusion that a large 

organization from China including the Chinese government was involved in massive advanced 

persistent threats on hundreds of organizations including the US military. Mandiant uncovered that 
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97% of 1905 APT incidents were coming from Shanghai IP’s. The report however does not show 

specific patterns by which we can predict and identify possible persistent threats. 

Binde et al. [12] have provided various APT detection strategies including Open Source 

Tools (such as Snort, Scapy, Splunk, Sguil and Squert), Rule Sets, Statistical and Correlation 

Methods. However, these approaches do not identify consistently repetitive unusual threats.  

Finally, Namayanja and Janeja [84] study the discovery of persistent threat structure 

through temporal and geo-spatial characterization by monitoring central nodes to determine 

consistency and inconsistency in their availability across time periods. However, this approach 

does not address repeated threat patterns over time but primarily focuses on shifts in network 

communication over time.  

2.2 Social Engineering  
 

The real time behavior could be social engineering like attack that is an act of psychological 

persuasion of gaining access to their system by getting their trust. This can very well happen to an 

intelligent connected automobile and its RSU (Road Side Unit) within its vehicular network by 

malicious nodes that would impersonate RSUs in an attempt to trick users into divulging their 

authentication details [91, 92, 14]. 

Social engineering is defined as a mechanism of getting people to comply in order to gain 

access with computer systems and the information that resides there in an unauthorized manner. 

The goal of social engineering is to obtain information that will allow the hacker to gain 

unauthorized access to a system in order to commit fraud, identity theft, disrupt or compromise a 

network, or to commit industrial espionage [91]. Types of social engineering are categorized as 

Human based and Computer Mediated methods [91, 92]. Human Based methods include 
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impersonation, the overly helpful helpdesk, third-party authorization, tech support, roaming the 

halls, repairman, trusted authority figure, snail mail, etc.  

As mobile, cloud computing and social media technologies as well as smart cars continue 

to grow, the security concerns associated with them also grow significantly due to lot of users not 

complying with the security policies that makes it easy for hackers to target the key stakeholders 

[102]. Bloomberg et al. [14] highlighted the fact that social engineering can turn into a cyber-war 

where it involves multiple countries. The attacks on Google and other companies in China in 2009 

were initiated through phishing – the underlying technical exploit is often trivial but social 

engineering is always the entry strategy [59]. Information security is more than an engineering 

challenge as people are essential part of the critical infrastructure. Therefore, understanding and 

addressing human behavior is essential to building a genuine security culture. Bad actors purposely 

build trust to enable their actions [128]. The insider threat like espionage and data leakage 

involving computer networks is among the most pressing cybersecurity challenges within 

government and private sectors. Greitzer, et al. has implemented a psychological reasoning for 

human behavior in cyber-attacks and categorized the attackers with disgruntlement, difficulty 

accepting feedback, anger management issues, disengagement, and disregard for authority [47, 

48]. Greitzer, et al. also revealed that current or former employees and contractors are the second 

greatest cybersecurity threat, exceeded only by hackers, and that the number of security incidents 

is continuing to increase [48]. Yang et al. showed models to detect possible human cyber threats 

by virtue of building behavioral profiles. Any anomaly deviates from the baseline would raise the 

security risk [129]. Finally, Anderson et al. emphasized the fact that the user base for home 

computers is exponentially increasing. As a result, the system is becoming vulnerable and 

susceptible to all kinds of cyber-attacks. They hypothesized that psychological ownership of one’s 
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computer is positively related to behavioral intentions to protect one’s own computer [9]. Likewise, 

the technological advancements of the automobile industry and connectivity through the Internet 

inside the car can make the automobile susceptible to social engineering attacks where intruders 

can hack into the known vehicles.  

However, we believe that all these studies have neglected one crucial element: how do we 

detect one of the most common social engineering attacks in the network using a computational 

model? Our study here would build the foundation to help detect the anomaly in driving condition 

which could be the effect of the social engineering attack and/or any other cybersecurity threat.   

2.3 Anomaly Detection in Smart Cars 
 

Anomaly detection of smart cars is a common phenomenon these days and quite a bit of 

research has been done to alert drivers for mechanical malfunctions of the engine. For instance, 

Foster et al. [40] talks about collecting telematics data from OBD2 (On-board Diagnostic) device 

that reads mechanical condition of the car and alerts telematic failure as it happens. Dr. Miller and 

Chris Valasek showed how to simulate a cyber threat to the automobile remotely and take over the 

control of mechanical engine with break and acceleration [81]. Koscher et al. [68] demonstrate 

that an attacker who is able to infiltrate virtually any Electronic Control Unit (ECU) can leverage 

the ability to completely circumvent a broad array of safety-critical systems. This helps the car 

manufacturer taking care of those vulnerabilities for future models. Research shows that an 

automobile using a GPS based system can be vulnerable to different kinds of attack, including 

blocking, jamming, spoofing, and physical attacks [57]. New car manufacturers are taking these 

findings and making sure the new automobiles are less susceptible to all these cyber threats. In 

spite of these precautions and mitigations to vulnerabilities, the hackers are smart enough to 

infiltrate to the system and cause damages.  
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Telematics is just one of the many aspects to derive the overall anomalies in driving state 

of a driver. For instance, distraction is another major impact that cause unsafe driving state at any 

point of time. According to a WHO (World Health Organization) report, more than a million deaths 

are caused by the road accidents in the world because of some sort of distraction [24]. Among 

these casualties, majority of them are distraction related [73]. Moreover, the health condition of 

the driver may impact the driver behavior [98, 49]. For example, if the blood pressure or blood 

sugar goes outside of normal range while driving, that may not be a safe environment for the driver 

as well as the surrounding traffic. Our research analyzes the temporal driver behavior that includes 

both distraction and vital health and detects anomalous state of the driving state as well as the 

anomaly from automobile’s basic mechanical functions. We alert the driver in near real time, so 

the driver can take immediate action to avoid adverse effects of accidents. We bring in human 

behavioral aspects of the driver and predict the anomalous behavior looking at the pattern on a 

time series.      

2.4 Survey of Cyber Attacks and Leading Factors 
 

We performed a comprehensive survey of cyber threats that includes cyber-attacks on 

automobiles. Our background research focuses on understanding the characteristics and causes of 

multiple types of cyber-attacks through a comprehensive evaluation of case studies of real-world 

cyber-attacks. For each type of attack, we studied attack type, their characteristics and disclose the 

causes of that attack. Key characteristics included in our study are: type of industry, financial 

intensity of the attack, non-financial intensity impacts, volume of impacted customers, users’ trust 

& loyalty impacted. In addition, key causes included are: human behavioral aspects leading to 

attacks, cultural factors at play, security policies adapted, technology adoption and investment by 
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the business, training & awareness of all stakeholders including users, customers, employees and 

investments in cybersecurity.  

This study can help take a proactive approach to analyze relevant cyber threats and educate 

the organizations to become more knowledgeable and sophisticated on how to minimize damage 

caused by such relevant cyber-attacks. Our findings indicate that human behavioral aspects leading 

to attacks are the weakest link to successful prevention of cyber threats. We focus on human 

behavior that is responsible for major cyber-attacks and concentrate on the mitigation strategy. So 

far, we see discoveries on specific cyber threats and its mitigation plan. However, we perform a 

comprehensive study of most of the cyber threats in the industry and study them with human 

behavior that relates to the persistent threats, social engineering and predictive driver behavior. 

Extensive research has been conducted to identify cyber threats to the network and the computer 

systems of an organization. We also see extensive study pertaining to the security of self-driven 

car. However minimal research has been done to mitigate cyber threats targeted toward a smart 

automobile that are driver operated [72]. Consequently, we provide a foundation of studying driver 

behavior that would assist doing further research on the cyber threat related anomalous driver 

behavior.       

2.5 Temporal Anomaly Detection 
 

Our research focuses on anomaly detection across multi scale temporal data streams for 

human behavior as it relates to the driving behavior. Temporal anomaly detection is a classical way 

to detect anomalies in a time series. We analyze signal data from multi-data streams on a time scale 

and compare the anomalies from different data streams. In order to validate the anomalies, we 

apply matrix profile (MP) to visualize the distance (variance) on the subsequent data attributes that 

shows the significant changes in the data stream and hence shows the anomalies.   
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If we experience anomalies in automobile data, study shows various ways to detect unusual 

behavior on the automotive network via temporal anomaly detection. When we experience 

statistically significant deviation from the training set for CAN (Controller Area Network) bus 

attributes, we detect anomalous state in the automotive network [106]. We can also reduce high 

dimensionality on a time series by Piecewise Aggregation Approximation (PAA). The PAA applies 

to the distribution of the points of each equal sized segment on a time series to provide focused 

data attributes [50]. We see a similar Multi-Domain Anomalous Temporal Association (Multi-

DATA) to our proposed anomaly detection strategy where Shukla et. al compare the anomalies in 

a single domain with other domains on a time scale [104]. If the anomalies do not match on the 

exact time series, this paper considers the anomaly on the closed proximity of the time windows. 

In our case, data coming from three different domains are binned on a specific time scale to 

compare the similarities and correlations on anomalies from all three domains. Usually anomalies 

on one data stream correspond to the other data streams to some extent. We apply different data 

analytics mechanisms to validate the results for high levels of accuracy.  

2.6 Overall Discussion on Related Work 
 

We have discussed five different aspects of anomaly detection for smart cars that are related 

to the analysis of driving behavior. Cybersecurity and cyber threats may not be directly related to 

driver behavior; however, the driving state of a driver, his/her driving behavior as well as the safety 

of the driver are impacted by cyber-attacks. We talk about Advanced Persistent Threats (APT) 

hacking into the systems on an automobile and taking over control by an outsider while driving. 

Likewise, Social Engineering is another form of cyber intrusion in an automobile and having 

access to the Road Side Unit (RSU) of a smart car and changes the safety features of the car to 

make the driving state very unsafe. We see extensive research on cyber threats and its survey for 
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autonomous cars, however, we do not see much research on the security of a smart car that is not 

self-driven. Consequently, our research will help identify the state of the driver and its safety by 

looking at the telematics data along with driver behavior to accurately find the anomalies of a 

driver. Cybersecurity attack mostly will show up through mechanical engine issues as captured 

through telematics anomalies. For instance, if an intruder attacks on the brake system of a vehicle 

and takes over the brake system and speeds up the vehicle abnormally, then our model will detect 

the anomaly the same way as if the driver speeds up the vehicle intentionally. Hence, it would be 

difficult to pinpoint the reason for telematics anomaly whether it happens because of the engine 

malfunction by the driver or by the engine wear and tear or by the cyber attacker. We can 

potentially indicate cyber threats in an engine if the telematics reading is extremely anomalous in 

a very short period of time. However, that has to be further investigated as future research. 

Therefore, our research provides a good foundation for cyber threats related anomalies for future 

work. Telematics by itself would not give us the full picture of the driver behavior, rather we have 

added two more key attributes – distraction and the vital health of the driver to identify the 

anomalies for a driver behavior. We study multi-dimensional data attributes related to the driver 

behavior to present an accurate measure of anomalous driving behavior. Anomaly detection on 

drivers was done on specific single threaded attribute like telematics only. However, we do not see 

a comprehensive study on multi-threaded attributes like gaze data and driver’s vital health data 

along with telematics to present an accurate driving state and its dependencies. Finding the 

relationships between different driving data attributes on a time scale to detect the anomalous 

behavior of a driver is the main objective of our study.                 
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CHAPTER 3 
 
 

METHODOLOGY  
 

In our study, we have identified a thematic focus corresponding to time variations on 

human behavior for anomaly detection. We study driver behavior on a defined time series and 

predict the driver’s driving behavior to ensure driver’s safety. Consequently, time and human 

behavior are the common themes for anomaly detection in this research.  

Studying driver behavior for potential cyber threats and malfunction on the automobile 

engine and detecting driver’s anomalous driving behavior because of this along with distraction 

and health issues are very important aspects for driver’s safety. We baseline safe driving patterns 

and any deviation from that would be considered anomaly. 

3.1 Overall Research & Methodology Approach 
 

In our research, we have a common theme of detecting human behavior and anomalous 

behavior on multiple time scales. In order to accomplish that, we gather real time driver data from 

three main data streams: Telematics data from OBD2 device, eye gaze data (as a measure of 

distraction) from Tobii Eye Glass 2 and vital health data from E4 Empatica. (1) The driver wears 

the Tobii Eye glass that is connected to the data collection laptop as shown in Figure 1. (2) The 

driver also wears a wrist band E4 watch-like device to capture health related data stream. (3) The 

automobile is also connected to the OBD2 device to read telematics data in real time.  
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Figure 1: Driver & Automobile Setup for Data Collection 

We categorize the driving behavior into the following four driving states: 

• Safest: Most safe condition 

Ø All Telematics data attributes are within the normal range, and 

Ø Eye gaze is exclusively to the target (on the road), and 

Ø Health data is within the normal range (standard)  

Normal range is determined by the attributes close to the mean. Any value outside of 1 level of 

standard deviation is considered out of normal range and anomalous. Since the scale of anomaly 

is very important here especially for gaze data, a small deviation from the mean can be unsafe. 

Therefore, one standard deviation is the benchmark for detecting an anomaly. For the Safest 

driving condition, all Telematics, Eye Gaze and Health data attributes are close to the normal range 

(mean).  

• Safer: Relatively safer condition 

Ø Almost all the Telematics data attributes are within the normal range, and  
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Ø Eye Gaze is mostly to the target (on the road), and 

Ø Health data is almost within the normal range   

Safer condition signifies almost all the data attributes from all three data streams to be close to the 

mean with very few exceptions. For instance, the driver is very attentive and focused on driving 

with very slight distraction, the health of the driver is within the normal range with minor deviation 

on the vitals like heart rate being little higher than normal and above all the speed, acceleration, 

auto engine measures are mostly in the normal range.  

• Safe: Within the safe condition 

Ø Most of the Telematics data attributes are within the normal range, and 

Ø Eye Gaze is to the target (on the road) except occasional distractions, and  

Ø Health data is mostly within the normal range   

Safe condition signifies most of the data attributes from all three data streams to be close to the 

mean with very few exceptions. For instance, the driver is attentive and focused on driving with a 

few occasional distractions, the health of the driver is within the normal range with minor deviation 

on the vitals like heart rate being higher than normal at times and above all, the speed, acceleration, 

auto engine measures are mostly in the normal range.  

• Unsafe: Not in a safe condition 

Ø Several Telematics data attributes are not within the normal range and/or 

Ø Eye Gaze is not to the target (on the road) several times and/or 

Ø Health data is not within the normal range 

Unsafe driving condition occurs when several data attributes from all three data streams are outside 

the mean that cause the driver to be in a very insecure condition. For instance, the driver is speeding 
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and doing several abrupt accelerations, abrupt decelerations, distracted with phone, texting, 

adjusting the navigation and radio, health vitals may be outside the range of a normal driver.        

Therefore, the baseline of a safe driving state as shown in table 1 should be as follows: 

Table 1: Safe Driving Condition 

Safe Driving Condition 

Telematics data attributes are within the normal range (close to the Mean value) and  

Eye gaze is to the target (on the road) and 

Health data is within the normal range (standard) and 

After normalizing the data attributes, the data points are close to the mean value 

 

Unsafe: Not in a safe driving state away from the baseline. We have a well-defined set of the 

ranges for normal Telematics and vital health data. As part of the normalization strategy for the 

data attributes, we normalize the attributes between 0 to 1 where the mean is the baseline for 

normal (safe) data attributes. Table 2 depicts the unsafe driving condition. 

Table 2: Unsafe Driving Condition 

Unsafe Driving Condition 

Several Telematics data attributes are not within the normal range and/or 

Eye Gaze is not to the target (on the road) several times and/or 

(For Eye Gaze data, a small variation from the mean for a very short period of time may change 

the driving state from safe to unsafe. As a rule of thumb, data attributes outside of 1 standard 

deviation are considered anomalous) 

Health data is not within the normal range  and 

After normalizing the data attributes, the data points are not close to the mean value 
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3.2 Data Analytics Rules & Collective Anomaly Assessment 
 

Based on our driving conditions, we have come up with specific rules that establish the validity 

of our theory. We are focusing on Collective Anomaly as we are analyzing multi-scale anomalies 

among Telematics, Health and Distraction data streams that can be interrelated. Following is the 

set of definitions and the respective rules for our driving conditions: 

(a) Data Stream:  

Data stream is the set of data attributes coming from different heterogeneous multi-scale domains. 

Definition: 

Data Stream D, such that each data stream i in D is di where i = {1,2,3,…,n} data streams such 

that |D| = n, i.e. number of data streams is n. 

Example:  

D = {dM, dG, dH}, n = 3, dM is Telematics, dG is Gaze data stream (Distraction) and dH is Health 

data. 

(b) Anomaly: 

Anomaly is the data attributes from the data stream that are deviated from the norm. 

 Definition: 

Anomaly A, such that for each data stream di, anomalies generated are represented as ai where i 

= {1,2,3,…,n} data streams such that |A| = n, i.e. number of anomaly sets is n corresponding to 

each data stream 

Example:  

A= {aM, aD, aH}, n = 3 
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where for any data stream i, ai ={dij | dij occurs at time tj  && dij > +s || dij < -s } where s 

(standard deviation) varies from 1 to 3s and atdi represents anomaly for the corresponding time 

period t in the data stream i 

The data attributes - Telematics (M), Distractions (D) and Health (H) are anomalous if they are 

between 1 and 3 standard deviation from the mean.  

(c) Collective Anomaly: 

Collective anomaly is the anomalous data attributes across data streams that are deviated from 

the norm comparing to the other data streams.  

Definition: 

Collective Anomaly CA spans across data streams such that CA = {atd1Ç  atd2 Ç atd3 Ç ….atdn}  

such that atd  Ì ad1 and atd2 Ì ad2….. atdi Ì adi 

Example:  

CA = {atM Ç atG Ç atH} for Telematics, Gaze and Health data streams 

such that atM Ì aM, atG  Ì aG and atH Ì aH 

(d) Measuring the Anomaly Spread: 
 
We measure the anomaly spread across multi domains for overlapping anomalies. 

Definition: 

𝐷𝐴Ω	=
!"#$%!('	)"

!#	*	∅	'	∩	'	)"
!$	*	∅	'	∩……|	)"

!%	*	∅	|)
$

  

d is the number of overlapping data streams 

𝑖𝑓	𝐷𝐴0 == 1, 𝑡ℎ𝑒𝑛	𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒	𝑆𝑝𝑟𝑒𝑎𝑑	𝐼𝑚𝑝𝑎𝑐𝑡 

𝑖𝑓	𝐷𝐴0 < 1	&& > 0, 𝑡ℎ𝑒𝑛	𝐿𝑖𝑚𝑖𝑡𝑒𝑑	𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒	𝑆𝑝𝑟𝑒𝑎𝑑	𝐼𝑚𝑝𝑎𝑐𝑡 

𝑖𝑓	𝐷𝐴0 == 0, 𝑡ℎ𝑒𝑛	𝑁𝑜𝑛 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑆𝑝𝑟𝑒𝑎𝑑	𝐼𝑚𝑝𝑎𝑐𝑡 

𝑖𝑓	𝐷𝐴0 == 0, 𝑎%12 == 0, 𝑡ℎ𝑒𝑛	𝑁𝑜𝑟𝑚𝑎𝑙	𝑆𝑡𝑎𝑡𝑒	 



 
 

 20 

Collective Anomaly Spread Impact usually makes the driving state to be unsafe. 

Limited Collective Spread Impact usually makes the driving state to be somewhat safe.  

Non-overlapping Stream Impact usually makes the driving state safer. 

Normal State with no overlap and no anomaly makes the driving state the safest.   

Example:  

atM = 15, atG = 12, atH = 10 

All three data streams have at least one overlapping anomaly, then D𝐴Ω = 3/3 = 1 => this is a 

collective spread impact (Unsafe).  

The more comprehensive data points with real world examples will be furnished in Chapter 4 - 

Experimental Results section. 

(e) Measuring the Temporal Overlaps: 
 

We measure the anomaly overlaps on a time series for multi domain data streams.  

Definition: 

𝑂𝐴0 =
𝐶𝑜𝑢𝑛𝑡)|(𝑎%13 	≠ 	∅) ∩	(𝑎%14 	≠ 	∅) ∩ ……(𝑎%12 	≠ 	∅)|

𝑛  

a is the anomaly on the overlapping data streams 

𝑖𝑓	𝑂𝐴0 ≥ 1, 𝑂𝐴0 	𝑖𝑛	 K1,
|𝑡|
𝑛 L 𝑡ℎ𝑒𝑛	𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒	𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙	𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠	 

𝑖𝑓	𝑂𝐴0 < 1	&& > 0, 𝑡ℎ𝑒𝑛	𝐿𝑖𝑚𝑖𝑡𝑒𝑑	𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒	𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙	𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠 

𝑖𝑓	𝑂𝐴0 == 0, 𝑡ℎ𝑒𝑛	𝑁𝑜𝑛 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝐴𝑛𝑜𝑚𝑎𝑙𝑦	 

𝑖𝑓	𝐴𝑙𝑙	|𝑎%12| == 0, 𝑡ℎ𝑒𝑛	𝑁𝑜𝑟𝑚𝑎𝑙	𝑆𝑡𝑎𝑡𝑒	 

Collective Temporal Overlaps usually make the driving state to be unsafe. 

Limited Collective Temporal Overlaps usually make the driving state to be somewhat safe.  

Non-overlapping Anomaly usually makes the driving state safer. 
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Normal State with no overlap and no anomaly makes the driving state the safest.   

Example:  

atM = 15, atG = 12, atH = 10  

Intersect with 10 anomalies, then 𝑂𝐴Ω = 10/3 = 3.3 => Collective Temporal overlaps (Unsafe) 

(f) Measuring the Intensity of Anomalies 
 

Intensity of anomaly depends on either high # of anomalies in one domain or high overlaps 

across multiple domains. Higher the number, the more intense the single stream impact is. 

Definition: 

𝐼𝐴Ω	=
5)67'	)"

!#	*	∅	',			'	)"
!$	*	∅	',……'	)"

!%	*	∅	'9
|%|

 

Max is the anomaly in every t instance 

𝑖𝑓	𝐼𝐴0 ≥ 0.05, 𝑡ℎ𝑒𝑛	𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦, 𝐼𝐴0 	in(0.05,1) 

𝑖𝑓	𝐼𝐴0 < 0.05	&& > 0, 𝑡ℎ𝑒𝑛	𝐿𝑖𝑚𝑖𝑡𝑒𝑑	𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 

𝑖𝑓	𝐴𝑙𝑙	|𝑎%12| == 0, 𝑡ℎ𝑒𝑛	𝑛𝑜𝑟𝑚𝑎𝑙	𝑠𝑡𝑎𝑡𝑒	 

Collective Intensity usually makes the driving state to be unsafe. 

Limited Collective Intensity usually make the driving state to be somewhat safe.  

Normal State with no overlap and no anomaly makes the driving state the safest.   

Example:  

atM = 200, atG = 150, atH = 100, t = 600 seconds  

Then I𝐴Ω = 200/600 = 0.33 => Collective Intensity (Unsafe) 

(g) Measuring Weighted Anomaly Spread 
 

This rule measures the weighted anomaly spread that drives the safety of the driving behavior. 

We combine the anomaly spread with the intensity of anomalies by multiplying them to find the 

weighted anomaly spread as shown in figure 2. 
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Figure 2: Collective Anomaly Assessment (Weighted Anomaly Spread) 

 
Definition: 

𝑊𝐷𝐴0 = 𝐷𝐴0 × 𝐼𝐴0 

𝑖𝑓	𝑊𝐷𝐴0 ≥ 0.05, 𝑡ℎ𝑒𝑛	𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒	𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑆𝑝𝑟𝑒𝑎𝑑,𝑊𝐷𝐴0 	in(0.05,1) 

𝑖𝑓	𝑊𝐷𝐴0 < 0.05	&& > 0, 𝑡ℎ𝑒𝑛	𝐿𝑖𝑚𝑖𝑡𝑒𝑑	𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒	𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑆𝑝𝑟𝑒𝑎𝑑 

𝑖𝑓		𝑊𝐷𝐴0 == 0, 𝑡ℎ𝑒𝑛	𝑛𝑜𝑛 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑠𝑡𝑟𝑒𝑎𝑚	 

𝑤ℎ𝑒𝑛	𝐷𝐴0 	ℎ𝑎𝑠	𝑛𝑜𝑛 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑎𝑛𝑜𝑚𝑎𝑙𝑦 

𝑖𝑓		𝑊𝐷𝐴0 == 0, 𝑡ℎ𝑒𝑛	𝑛𝑜𝑟𝑚𝑎𝑙	𝑠𝑡𝑎𝑡𝑒	𝑤ℎ𝑒𝑛	𝑏𝑜𝑡ℎ	𝐷𝐴0 	&	𝐼𝐴0 	𝑎𝑟𝑒	0 

Collective Weighted Spread usually makes the driving state to be unsafe. 

Limited Collective Weighted Spread usually makes the driving state to be somewhat safe.  

Non-overlapping Anomaly usually makes the driving state safer. 

Normal State with no overlap and no anomaly makes the driving state the safest.   

Example:  

atM = 15, atG = 12, atH = 10, t = 600 seconds 

All three data streams have at least one overlapping anomaly  

Then D𝐴Ω = 3/3 = 1 => this is a collective spread impact 

I𝐴Ω = 15/600 = 0.025  

Anomaly 
Spread

Intensity of 
Anomalies

Weighted 
Anomaly Spread

Anomaly spread 
across multi domain

Max intensity on a time series Intensity of Anomaly Spread

X =
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𝑊𝐷𝐴0 = 1 x .025 = .025 => Limited Collective Weighted spread (somewhat Safe) 

(h) Measuring Weighted Temporal Overlaps 
 

This rule measures the relative overlaps for anomalous states across different domains. We 

combine the anomaly overlaps on a time series with the intensity of anomalies by multiplying 

them to find the weighted temporal overlaps as shown in figure 3. 

 

Figure 3: Collective Anomaly Assessment (Weighted Temporal Overlaps) 

Definition: 

𝑊𝑂𝐴0 = 𝑂𝐴0 × 𝐼𝐴0 

𝑖𝑓	𝑊𝑂𝐴0 ≥ 0.05, 𝑡ℎ𝑒𝑛	𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒	𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙	𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠 

𝑖𝑓	𝑊𝑂𝐴0 < 0.05	&& > 0, 𝑡ℎ𝑒𝑛	𝐿𝑖𝑚𝑖𝑡𝑒𝑑	𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒	𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙	 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑠 

𝑖𝑓		𝑊𝑂𝐴0 == 0, 𝑡ℎ𝑒𝑛	𝑛𝑜𝑛 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙	𝐴𝑛𝑜𝑚𝑎𝑙𝑦	 

𝑤ℎ𝑒𝑛	𝑂𝐴0 	ℎ𝑎𝑠	𝑛𝑜𝑛 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙	𝐴𝑛𝑜𝑚𝑎𝑙𝑦 

𝑖𝑓		𝑊𝑂𝐴0 == 0, 𝑡ℎ𝑒𝑛	𝑛𝑜𝑟𝑚𝑎𝑙	𝑠𝑡𝑎𝑡𝑒	𝑤ℎ𝑒𝑛	𝑏𝑜𝑡ℎ	𝑂𝐴0 	&	𝐼𝐴0 	𝑎𝑟𝑒	0 

𝑖𝑓	𝐴𝑙𝑙	|𝑎%12| == 0, 𝑡ℎ𝑒𝑛	𝑛𝑜𝑟𝑚𝑎𝑙	𝑠𝑡𝑎𝑡𝑒	 

Collective Weighted Temporal Overlaps make the driving state to be unsafe. 

Limited Collective Weighted Temporal Overlaps usually make the driving state to be somewhat 

safe.  

Temporal 
Overlaps

Weighted 
Temporal 
Overlaps

Anomaly overlaps 
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Intensity of Temporal Overlaps
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Max intensity on a time series
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Non-overlapping Weighted Temporal Overlaps usually make the driving state safer. 

Normal State with no overlap and no anomaly makes the driving state the safest.   

Example:  

atM = 15, atG = 12, atH = 10, t = 600 seconds 

Intersect with 10 anomalies  

Then OAΩ = 10/3 = 3.3 

I𝐴Ω = 15/600 = 0.025  

𝑊𝑂𝐴0 = 3.3 x 0.025 = .0825 => Collective Weighted Temporal Overlaps (Unsafe) 

Intensity and the impact of distraction like behavior are very high with low scale of anomaly. 

Therefore, the threshold for both the Collective Intensity of Anomaly, Collective Weighted 

Anomaly Spread and Collective Weighted Temporal Overlaps are set to only 5% to capture most 

of the high impact anomalous driving behavior. We will misclassify the collective anomaly if we 

make the threshold higher and mistakenly categorize the high impact anomalous behavior to mid 

to low impact anomalies. 

(i) Measuring the relative presence of certain domain anomaly across data streams 
 

This rule provides the relative (%) presence of anomaly for each domain across different data 

streams shown in figure 4. The higher the percentage the more dominating presence the domain 

has. The relative presence of a domain anomaly is an independent percentage for a given time 

series that may have a ceiling values of 1 {bounded by 1 => 600 anomalies (a) in 600 seconds (t)}  
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Figure 4: Collective Anomaly Assessment (Relative Presence of Certain Domain) 

Definition: 

	δ2 =
)"
!%

|%|
, 	δ2 is the relative anomaly for a data stream i 

 
Example:  	δ: = )"

&

|%|
, where M=Telematics(400) , 	δ; =

)"
'

|%|
, where H=Health(200) ,		δ< =

)"
(

|%|
, 

where G=Gaze (Distraction) (300), t = 600 seconds 

	δ:=400/600 = 0.67 => 67% 

	δ;=200/600 = 0.33 => 33% 

	δ<=300/600 = 0.50 => 50% 

Most prevalent (67%) anomaly is coming from Telematics data stream 
 
(j) Measuring the weighted intensity of Anomalies across data streams 
 
Here we measure the intensity of a certain anomaly as in figure 5. This measure provides the 

influence of one anomalous data attribute over others in collective data streams. This rule depicts 

which data stream has the most prominent indicator of anomalous driving state. 
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Figure 5: Collective Anomaly Assessment (Weighted Intensity of a Domain) 

Definition: 

𝑊𝐴𝐼012 = 	𝛿2 	 ∗ ∂2 

	𝛿2 	is the relative presence of the domain i among different domains 

∂ i is relative weight of anomalies for domain i among different domains 

Relative weight is determined by the landscape of different domains that can influence anomalous 

driving behavior based on the literature and domain expertise.  

Example:  

Based on the domain expertise and extensive literature, ∂<  > ∂; > ∂:, meaning the influence of 

Gaze anomalies is higher than the influence of Health anomalies that has higher influence than 

Telematics anomalies. From our extensive research and domain knowledge, we see almost 50% of 

the accidents happen because of some sort of distraction, about 30% of the accidents happen for 

driver’s health related issues, and about 20% of the accidents happen for Telematics related 

anomalies.  

Therefore, we set 	∂<  = 0.5, 	∂; = 	0.3, 	∂: = 0.2  

atM = 400, atG = 200, atH = 300, t = 600 seconds 

	δ:=400/600 = 0.67 => 67% 

	δ;=200/600 = 0.33 => 33% 

	δ<=300/600 = 0.50 => 50% 

Weighted 
Intensity of a 

Domain

Intensity of Certain Domain Anomaly 
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𝑊𝐼𝐴012 = 𝑊𝐼𝐴0: = 0.67 × 0.20	 = 0.13	 

𝑊𝐼𝐴012 = 𝑊𝐼𝐴0; = 0.33 × 0.30 = 0.10	 

𝑊𝐼𝐴012 = 𝑊𝐼𝐴0< = 0.50 × 0.50 = 0.25	 

Weighted Intensity for Gaze is 25%,  Weighted Intensity for Health is 10%, and Weighted Intensity 

for Telematics is 13% on a time series t (600). Even though Gaze has a smaller number of 

anomalies than that of Telematics, the intensity of Gaze is higher (25%) than the intensity of 

Telematics (13%). Therefore, Gaze anomaly (25%) creates more unsafe driving state than Health 

(10%) anomaly and Telematics (13%) anomaly.    

3.3 Data Capture and Analysis 
 

We have divided our data capture and analysis into two parts. First, we captured only the 

OBD2 data and analyzed the data streams individually. Afterwards, we added Tobii eye glass and 

the E4 wristband to include both distraction data and vital health data to have a comprehensive 

driver behavior analysis.  

We have utilized the following process as shown on the figure 6 when we perform a 

standalone telematics data analysis: First we collect data, then preprocess the data. After that, we 

apply feature selection to extract and focus on the key attributes. Next, we perform temporal 

binning to segment the datasets by time series and we apply clusters and clustering & classification 

based association rule mining to get to the final result of anomaly detection.   
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 Figure 6: Overall Methodology Approach 

 

Following is the overall methodology for driver behavior as shown in Figure 7, where we 

capture and preprocess data from four different data streams from four subjects (drivers) and 

identify the key attributes using Feature Selection methodology. We baseline the driver behavior 

via clustering and compare the driver attributes with the baseline to identify anomalous behavior. 

We then validate the result by applying the Association Rule Mining (ARM) with Classification 

based Association.    
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Figure 7: Driver Behavior Anomaly Detection: Real Time Behavior 

 

In figure 8 below, we are showing 4 drivers from whom we collect the driving data.  For 

every driver, we create the baseline cluster for each data stream. For anomaly detection on just 

telematics data stream, baseline cluster refers to the K-means clustering based on well-defined 

industry wide telematics attributes that are within the normal range. We also create a baseline for 

the combined data streams as the second part of the experiment with multi-scale data.  The baseline 

in this part refers to the centroid (data attributes close to the mean 0.5) of the normalized data 

streams between 0 and 1 for all three data streams. Any deviation from the baseline is categorized 

as unsafe driving. 
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Figure 8: Baseline for Data Streams 

 

In addition to the anomalies from the baseline, there can be direct relationship/correlation 

between the attributes of one data stream to the attributes of other data streams as shown in Figure 

9. For instance, both visual and cognitive distractions (attributes of distraction data stream D1, D2, 

etc.) can cause sharp turns and/or abrupt acceleration/deceleration (Telematics data attributes T1, 

T2, etc.). Likewise, fast heartbeat (V4) and distraction (D4) can be correlated. Moreover, the adverse 

weather condition (W2) can cause tension (V2) and distraction (D2) to the drivers. We have not 

studied weather impact closely in this research and leave this attribute for future work.   
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Figure 9: Direct Correlation & Overlaps 

 

Our research would assist the drivers to see their driving patterns and take appropriate 

actions to become safe drivers. For instance, our children’s safety depends on the school bus 

drivers’ safe driving practice. The school transportation can utilize our dissertation to distinguish 

the unsafe drivers from the safe drivers and initiate mandatory safety training for their unsafe 

driving behavior.  

3.4 Study Design: 
 
Following are the overall design of the study:  

As described above, we initially conduct anomaly detection on Telematics data only and then we 

combine all three data streams as the second part of the experimentation.  
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(1) Part One: Analyze driver behavior based on Telematics Data only 

Data Analytics on Telematics (T) only  

For Anomaly Detection on just Telematics data, (1) we first collect telematics data using the OBD2 

device connected to the automobile. (2) We then preprocess the raw data by cleaning up the dataset 

for Feature Extraction. (3) Apply Feature Selection methodology to extract extraneous data 

attributes and focus on the key attributes. (4) We perform Temporal binning to segment the datasets 

by time series. (5) We then apply clusters and K-mean clustering. (6) Finally, we apply 

Classification based Association Rule Mining to derive the final result of anomaly detection. 

(2) Part Two: Combined Distraction data and Vital Health data with Telematics data to detect 

anomalies in driver behavior  

Data Analytics on Eye Tracking (D), Health (H) & Telematics (T) data combined 
 

For anomaly detection on a combined data stream, (1) we first collect Eye Tracking data from 

Tobii eye gaze device, collect health data with E4 Empatica wrist band and collect Telematics data 

OBD2 device. (2) We preprocess data by cleaning the noise data and taking care of the missing 

data. (3) We then apply feature selection to extract and focus on the key attributes. (4) We 

normalize all three data streams. (5) We perform matrix profile (MP) on the combined data sets to 

identify the drastic changes in the data attributes. (6) We then compare the signal data among 

different datasets on a given time scale (Bin). (7) We compare the MP data among different 

datasets on a given time scale (Bin). (8) We then find the correlation/similarities from the signal 

data and the MP data. (9) We also compare the multi-scale data on the same time span to detect 

the relationships. (10) We also validate the relationships using ARM and identify the key rules for 

among different data streams (11) Finally we identify anomalous driving states. Different domains 
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have different ranges and scales, and hence we normalize all the heterogenous data attributes under 

the same range so we can compare and run data analytics models effectively. 

3.5 Driver Behavior based on Telematics Data only  
 

The automobile industry has come a long way to introduce new technology along with self-

driven capabilities, Forward-Collision Warning (FCW), Automatic Emergency Braking (AEB), A 

backup camera, Blind-spot monitoring, Bluetooth connectivity, voice controls, to name a few [83]. 

All these sophistications come with vulnerabilities and we need to ensure that we overcome these 

vulnerabilities and we can secure our vehicles. The moment we are connected to the Internet in 

our vehicles, we are susceptible to intrusions and threats from outside. Therefore, we need to make 

sure we have proper anomaly detection mechanism in place in real time to take immediate action 

to avoid any accidents. Driver behavioral patterns over a long period of time create a training set 

and any deviation to the norm would impose a threat to the safety of the driver. 

Therefore, we are focusing on anomaly detection of a smart car data and detect any 

anomalous state of the car to alert and protect the drivers and the riders in near real time. We will 

study several critical scenarios of risks, perform behavioral analytics on a time series, and derive 

health check of the vehicle in real time to ensure the safety of the drivers and the riders. Driver 

Behavior analysis is driven by the following key questions:  

• Can we identify the features that capture driver’s behavior? 

• Can we differentiate driver behavior vs. intrusion? 

• Can we extract driver behavior? 

• Can we detect anomalies in driver behavior?  

• Is it natural driver behavior or is it something outside of driver behavior? 

Following is the set of steps taken to derive answers to the above questions as shown in figure 10. 
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Figure 10:Block diagram for Anomaly Detection of Vehicle and Driver Behavior 

 
3.5.1 Data Collection 
 

Driver behavior analysis along with capturing the mechanical state of the engine is done 

through a data collection mechanism from our automobiles as shown in figure 11 below. We collect 

data using an OBD2 based mobile application called Torque that collects telematics data in real 

time. OBD2 device is connected to the automobile and the telematics data is collected from the 

device to the Android based mobile app via Bluetooth connection.  

 
 

Figure 11: Telematics data Collection Mechanism 
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Through an android based custom application developed at Technuf LLC we capture raw 

OBD data attributes from the vehicle in real time and computes “derived” data like Sharp Turns, 

Sudden Acceleration, etc. as indicators of key driver behavior as shown in figure 12.  

  
 

Figure 12: Custom Mobile App to Capture "derived" Driver data 

 
3.5.2 Feature Selection 
 

We captured numerous attributes from the vehicle to study driver behavior on a time series. 

The sources are Telematics data through OBD2 device and derived data like sharp turns, abrupt 

acceleration, abrupt deceleration, Engine RPM, etc. We applied feature extraction to shortlist the 

key number of attributes. The objective of variable selection is three-fold:  

• Improving the prediction performance of the predictors  

• Providing faster and more cost-effective predictors  

• Providing a better understanding of the underlying process that generated the data. [51] 



 
 

 36 

Therefore, in our research on driver behavior, feature extraction helps us narrowing down the key 

attributes among several data points captured from the vehicle and helps us identify the anomalies 

in an efficient way.   

Automatic feature selection methods can be used to build many models with different 

subsets of a dataset and identify those attributes that are and are not required to build an accurate 

model. A popular automatic method for feature selection provided by the caret R package is 

called Recursive Feature Elimination or RFE. We use RFE method with Random Forest algorithm 

on each iteration to evaluate our model. The algorithm is configured to explore all possible subsets 

of the attributes. The root-mean-square deviation (RMSD) or root-mean-square error (RMSE) is a 

frequently used method that measures the differences between values (sample and population 

values) predicted by a model or an estimator and the values actually observed. We apply RMSE 

(Root Mean Square Error) as the Y-axis and the Variables in the x-axis. All 49 telematics attributes 

are selected here, although as an example, the plot in figure 13 shows the accuracy of the different 

attribute subset, and we can see that 9 attributes like 2, 11, 19, 24, 29, 31, 32, 38, 40 give almost 

comparable results for a subset. Therefore, we can pick either one of these 9 attributes and 

eliminate the rest.  

[2] "Longitude"  

[11] "G.calibrated."  

[19] "Distance.to.empty..Estimated..miles."  

[24] "Fuel.flow.rate.minute.gal.min."  

[29] "GPS.Latitude..."  

[31] "GPS.Satellites"  

[32] "Horsepower..At.the.wheels..hp."  
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[38] "Percentage.of.Highway.driving..."  

[40] "Speed..GPS..mph."  

 
 

Figure 13: Plot for Estimating of Variable Importance 

 
3.5.2.1 Correlation Matrix: 
 

 Data may contain attributes that are highly correlated with each other. Many methods 

perform better if highly correlated attributes are removed. Generally, we want to remove attributes 

with an absolute correlation of 0.75 or higher. We conduct correlation matrix to perform feature 

selection and reduce the number of attributes. We do not remove any key attribute that is a 

deterministic data attribute for anomaly detection. For instance, the variables according to the 

column number which are highly correlated are: 

[17] “Average.trip.speed.whilst.moving.only..mph.” 

[38] “Percentage.of.Highway.driving... “ 

2 11 19 24 29 31 32 38 40
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They have a correlation of 0.98349208. So one of the variables can be removed. 

Figure 14 shows a matrix depicting the correlations between all pairs of attributes. 

Interpretation of the Diagram and Ellipses are as follows: 

# The narrow Ellipses have high correlation. 

# The positive slope and blue are for positive correlations. 

# The bar in the right side represent the correlation values according to the color. 

# The other plot in figure 15 represents the correlation with numeric values for the 

attributes.  

 

  

Figure 14:Correlation Matrix for All 49 Attributes 
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Figure 15: Correlation Matrix with Numeric Values 

 
Likewise, we can eliminate similar attributes as an attribute reduction strategy. For 

instance, we analyze the attributes from the OBD2 data (file: ‘trackLog-2017-Jun-11_16-57-

43.csv’) and find the [1]acceleration related attributes to be [12] "Acceleration.Sensor.Total..g.", 

[13] "Acceleration.Sensor.X.axis..g.”, [14]"Acceleration.Sensor.Y.axis..g.", 

[15]"Acceleration.Sensor.Z.axis..g." 

Similarly, [4]"GPS.Speed..Meters.second." and [40]"Speed..GPS..mph." are similar to 

[16]Speed (OBD).  

Lastly, [33]Trip speed is related to [43]"Trip.average.KPL.kpl.", 

[44]"Trip.average.Litres.100.KM.l.100km.", [45]”Trip.average.MPG.mpg.", 

[46] ”Trip.time.whilst.moving..s." and [47]"Trip.time.whilst.stationary..s."  
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3.5.2.2 Telematics and derived data attributes analysis by cars: 
 

We compared telematics and derived data attributes from 4 (Mercedes, BMW, Toyota and 

Honda) cars and highlighted the data attributes with common denominator. Based on our analysis 

and the data coverage from all 4 cars, we are focusing on the following key attributes in Table 3: 

Table 3: Focused Key Attributes 

Acceleration Sensor 
Actual Engine % Torque – Engine RPM 
Air Fuel Ratio 
Avg Trip Speed 
Engine Coolant Temperature 
Engine RPM 
Fuel Flow Rate/min 
Fuel Remaining 
Fuel Used 
Speed (OBD) 
Driver Behavior (Sharp Turn/Acceleration/Brake) 
Engine speed / threshold violation – Engine Coolant Temperature 
Low Battery – Voltage Adapter 
Live weather and traffic updates 
Real time Heart Rate Monitor - Future 

 
3.5.3 Baseline of Driver Data 
 

We need to first baseline the driver behavior and the vehicle’s normal condition. We are 

doing clustering to get a good baseline. We use the elbow method to find the number of clusters. 

After identifying the K value, we perform K means clustering on the data and present a good set 

of baseline data for each subject. We use K-means clustering because it is relatively simple to 

implement and works well for large data sets like a large number of telematics data records. 

Moreover, we do not have any hierarchical nature of the data. K-means clustering is also fast and 

efficient in terms of computational cost.  
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We categorize the baseline clusters into the following 4 different types of safety condition, 

such as:  

• Safest: Most safe condition 

• Safer: Relatively safer condition  

• Safe: Within the safe condition 

• Unsafe: Not in a safe condition 

We categorize the baseline clusters into the following 4 different types of  

safety conditions, such as: 

 

3.5.4 Anomaly Detection of the Driver Behavior 
 

We compare new driver data with their baseline clusters and categorize to the appropriate 

safe condition. If we find clusters outside of these conditions, then we trigger them as anomalous 

situations. As we perform single stream anomaly detection on each subject, we find the baseline 

for that subject. Then we also compare the baselines from each to see the similarities and 

differences. We can also combine all the subjects and perform anomaly detection on the combined 

data streams. Finally, we applied ARM (Association Rule Mining) capability on our vehicle data. 

We first converted the numeric data to categorical data. We introduced different ranges of data 

applicable to the numeric dataset. These ARM rules along with the Classification Based 

Association (CBA) rules imply specific driving behavior based on certain parameters on the 

vehicle.  

 

• Safest: 
• Safer:                                     (deviation from mean)
• Safe:                                      (more deviation from mean) 
• Unsafe:                                 (Significant deviation from mean) 

≅"B"CS - 0

#2"B"CS - =
#3"B"CS - =

#1"B"CS - =



 
 

 42 

3.6 Driver Behavior based on Combined Data Streams - Distraction, Health & Telematics 
 

To address the emerging phenomenon of autonomous vehicles that perform the task of 

driving at a level comparable to the most capable driver, the quantifiable and repeatable process 

of driving must be closely examined. Achieving proficiency as a human driver requires intuition 

built by the awareness of every sensory component used in the process. The model that replaces 

this intuition must be built to consider as many minute changes in both the human driver and 

mechanical vehicle as can be observed. This research study employs technology to observe and 

quantify the behavior of the test subject and vehicle, and with conduct time-series analysis using 

Matrix Profile subsequence detection to identify how to a standard of safety for autonomous 

vehicles can be defined. 

Along with Telematics data, we need to add 2 or 3 more key factors that can influence 

driver behavior: they are Distraction data stream, vital Health data stream and weather data. We 

use Tobii Eye Glass to measure distraction of the driver. The attributes selected in the Tobii Glasses 

2 data stream represent the change in distance from fixation on a given point in three-dimensional 

space (Figure 16). In addition, the amount of time spent with fixation on this point and the 

measured size of the subject’s pupil represent the level of attention focused on this point. 
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Figure 16: Anomaly Detection for Combined Data Stream 

We use the E4 wristband to measure vital health attributes of a driver while he/she is 

driving. The health data attributes would determine whether the driver is fit to drive with no issue. 

On the contrary, the driver behavior could be influenced by the state of health of the driver. For 

instance, if a driver is having a fever or tensed with high heart palpitation or high/low blood 

pressure than normal, that may make the driver drive in an anomalous way. Lastly, the weather 

conditions like rain, snow, cloudy, dark, sunny situation may influence the driver to some extent 

although we are leaving the weather condition as an attribute to study as a future work. We perform 

the following steps as laid out in figure 17 to capture different data streams from different devices, 

extract the key attributes, preprocess the baseline data and detect anomalies.   
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Figure 17: Anomaly Detection for Combined Data Stream 

 
3.6.1 Data Collection 

Following 4 data streams shown in table 4 are being captured simultaneously while driving 

from 2 vehicles of luxury and non-luxury class: BMW and Toyota Corolla 

Table 4:Four Key Data Streams 

Data Stream Data Attributes Measurable & 
Accessible 

Data Stream 1: State of 
the Vehicle & Driving 
Pattern while driving 

Telematics Data (Air Fuel, CO, Engine 
Temp, RPM, etc.)  
Sudden Acceleration 
Sharp Turns 

Telematics + Custom 
App 

Data Stream 2: 
Distraction 

Eye Gaze (Looking away from the road – 
How many times on a specific time span) 
Lane deviation (How many times on a 
specific time span) 
Steering smoothness (How many times on a 
specific time span) 
Texting with driving (How many times on a 
specific time span) 

Tobii Pro Glasses 2 
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Data Stream 3: Driver 
Health 

Heartbeat 
Blood Pressure 
Pulse 
Fast Breathing 

E4 Wristband from 
Empatica 

Data Stream 4: Weather Sunny (Map to 1) 
Cloudy (Map to 2) 
Rain (Map to 3) 
Snow (Map to 4) 

Smart Phones 

 

 
 

Figure 18: Driver wearing Tobii Eye Glass 2 for Distraction data attributes 

The subject in figure 18 is wearing the Eye Glass that is connected to the laptop inside the 

car to capture the gaze data of the driver. At the same time, the driver is wearing the E4 Empatica 

Wristband to retrieve health condition related data from the driver while driving as shown in figure 

19. At the same token, as described above, we would still have the Telematics OBD2 device 

plugged in to the automobile to capture automobile data on our android mobile app – Torque and 

our custom mobile app. We capture the data streams at the same time of the day with similar 

weather so we can defer the weather related influence for future research.   
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Figure 19: Driver wearing E4 Wristband for vital health data attributes 

 
3.6.2 Feature Selection 
 
From the raw data coming out of all three data streams, we discarded the noise data, took care of 

the missing data, and feature extracted the key attributes. We show the data reduction strategy in 

figure 20. We want to focus on the high impact health data attributes related to driver behavior. 

Hence, we feature selected HR, EDA and BVP from our health data stream. We receive some 

noise data in our reading which are completely out of the norm. We record every reading and 

replay the recordings to find the mis-match with the noise data and discard them. Noise data 

occurs because of the wristband not making proper contact with the skin while turning the 

steering wheel repeatedly. We have had to calibrate and adjusted a few times while doing trial 

driving. Even though the EDA reading had delays by couple seconds, it does not impact the 

overall rules and the anomaly detection results and the driving behavior on a large time series. 

We also clean and replace the missing data with the average value of the data stream. 

Consequently, as a smoothing strategy, we use similar to low pass filtering which is replacing the 
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missing records with average value. Also we discard the irregular, out of range data outside of 

the possible range using a python script. Moreover, depending on the sun light and/or darkness 

on the road, the pupil diameter reacts differently. Therefore, in order to keep the data reading 

consistent, we choose to do the driving with all the subjects at the same time of the day during 

the same season. 

 

 
Figure 20: Data Reduction Strategy 

Following is the list of features extracted key attributes from all three data streams: 
 

• Distraction data source – Tobii Gaze Data 

o Accelerometer – Acceleration measure 

o Gyroscope – Measure angular velocity 

o Gaze Direction - Eye Tracker (Attention)  

o Pupil Position - Eye Tracker (Fixation) 

o Pupil Diameter - Eye Tracker (Fixation) 
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• Health Vital data source – E4 Data  

o HR - Heart Rate 

o EDA - Electrodermal activity sensor expressed as microsiemens (μS) 

o BVP - Data from photoplethysmography (Blood Volume Pulse)  

• Telematics Data – OBD2 Data 

o Acceleration – Automobile acceleration 

o AirFuelRatio – Measure the oxygen content in the exhaust 

o Engine RPM – Engine Revolutions per Minute 

o Speed – Speed of a car 

 
3.6.3 Baseline of Driving Data 
 

We normalize the data attributes using Pandas and Scikit-Learn machine learning library 

and set the values from 0.0000 to 1.0000. Values close to mean (𝝻) are the centroid and they are 

considered normal. The values away from the center (𝝻) are considered anomalous as shown in 

figure 21.  
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Figure 21: Normalization of Key Data Attributes 

 
3.6.4 Anomaly Detection of the Driver Behavior 
 

When we combine anomalies coming from different data streams, we can validate driver 

behavior more accurately. The anomaly can happen for various reasons. Following is a list of few 

common reasons for driver behavioral anomalies. High engine temperature, brake malfunction, 

reckless driving like abrupt acceleration, abrupt deceleration, making sharp turns and any other 

engine malfunction for cyber-attacks may adversely impact the safety for the driver. Likewise, 

running high or low blood pressure, having major hypertension while driving may also impact the 

driving behavior. Lastly, a distracted driver who is talking or texting on the phone while driving 

could be very damaging to the safety of the driver and the neighboring cars on the road.    
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• Telematics 

• Engine malfunction 

• Cyber attack 

• Reckless Driving  

• Vital Health 

• Health problem  

• Tensed Mind  

• Eye Gaze 

• Distraction with texting  

• Talking on the phone 

• Adjusting the music  

• Setting up the navigation  

• Eating while driving  

Among these three data streams, the scale of anomaly is not the same for all. For example, a very 

small deviation from focusing on the road could be devastating if not paying attention on the road. 

On the contrary, driver could be more tolerant to moderate deviation from the normal pulse rate, 

heartbeat and/or blood pressure. Moreover, high speed may or may not be as bad if the surrounding 

traffic is very less. However, if the brake malfunctions in the rainy and icy road, that could be 

catastrophic. Following list depicts the scale of anomaly for different data streams.  

• Distraction data source – Tobii Gaze Data 

• Scale of Anomaly is very small & impactful 

• Little deviation from the norm could be devastated 

• Very short period of anomaly is also devastating  
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• Health Vital data source – E4 Data 

• Scale of Anomaly is moderate  

• Little deviation is not catastrophic 

• Telematics Data - OBD2 Data 

• Scale of Anomaly is moderate to small  

• Little deviation may not be catastrophic, but could be risky 

Based on our observation and research, tolerance level (scale) of anomaly on Telematics is much 

higher than Health anomaly which is much higher than distraction anomaly. In other words, very 

minimal scale of anomaly on Gaze data could be dangerous than both health and telematics data 

as depicted in the following equations. Therefore, the intensity of distraction is much higher than 

that of Health anomaly and Telematics anomaly.   

• Tolerance of (Anomalous Telematics > Anomalous Health > Anomalous Gaze) 

• Tolerance of (AT > AH > AG)       

• Impact on (Change of Anomaly for Gaze > Change of Anomaly for Health > Change of 

Anomaly for Telematics) 

• Impact	on	(𝝏G > 𝝏H > 𝝏T)   

We first perform anomaly detection on just Telematics data stream by itself and identify the driver 

behavior as safe vs. unsafe using clustering and association rule mining. In order to bring in a more 

holistic approach for studying driver behavior with other contributing factors, we add two more 

key data attributes – Distraction data stream and Vital Health data stream. We study all three 

heterogeneous data streams and find the relationships between the three data attributes and detect 

anomalies for driver behavior. We study the driver behavior with OBD2 connected to the 

automobile, Tobii eye glass and E4 vital health monitoring watch connected to the driver’s eye and 
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wrist respectively. We record the driving data and identify the anomalies on a video. We apply the 

real numbers on our derived formulas to identify the anomalies, the weighted intensity. We then 

identify the anomalous time span and study them closely by analyzing the signal (raw) data and 

compare the deviations on the Matrix Profile data streams and match the subsequent distance on a 

time series. We also use K-means clustering on the data streams to identify safe vs. unsafe driving 

clusters. We then analyze and validate our rules with machine learning techniques on heterogenous 

data streams using Association Rule Mining with Classification based Association. We calculate 

the mean as the norm and label anomalous data that are outside of +-1 standard deviation. The 

scale of anomaly is so low and impactful that even 1 degree of standard deviation gives good result 

of anomaly even though it is rather simplistic. We do not have to set two or three standard deviation 

here as the scale of anomaly for distraction data is low and therefore outside of only 1 standard 

deviation would give us anomalous driver behavior that includes both two or three standard 

deviation. We then label data based on the anomalies for each domain as shown in figure 22. We 

use J48 pruned tree as well as the decision tree to identify the path to anomalous driving states. We 

run and compare the Random Forrest and ROC curve to validate the precision of our results. 

Finally, we apply our Segmented Overlap and Collective Anomaly models on multi-stream 

heterogenous data and validate our results.    
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Figure 22: Anomaly Detection on Multi Stream Data Sets      

Apply ARM 
With Classification 
based Association

Apply Our Collective 
Anomaly Models in this 
Multi-Stream & Multi-

Scale Environment

J48 Decision Tree
Random Forest

ROC 
For classification, 

Prediction & Accuracy

Validate the Results

Label the Data



 
 

 54 

CHAPTER 4 
 

 

EXPERIMENTAL RESULTS 
 

We will discuss the nature of the experiments, the datasets, the results and the Analysis & 

Observations in this section. Like the methodology section, we are showing the telematics 

experimental results by itself first and then we will show the combined experiments and the results 

from both Gaze data, Health Data and Telematics data. In our experimental study with different 

subjects (drivers) and their vehicles, we utilize the vehicles that the driver is used to and is their 

own, not with an unknown and unfamiliar automobile. Otherwise, we would introduce new 

variables on the drivers' driving patterns with the vehicles that are new to them. Consequently, the 

mode of Human Machine Teaming (HMT) between the driver and the vehicle is important here.     

4.1 Driver Behavior from Telematics Data Stream 
 

We have collected data on 3 different vehicles with 3 different drivers. Initially we collect 

only Telematics data from OBD2 device and from our custom application for derived data 

attributes like Sharp Turn, Abrupt Acceleration, Abrupt Deceleration, etc. We show data analytics 

and anomaly detection on the first subject based on more datasets and more realistic scenario like 

on the main road along with couple of highway rides as oppose to the other subjects being on the 

local roads and parking lots for safety.  

In general, the data collection process is little challenging as the subjects are not usually 

comfortable being recorded, wearing different data collection devices and above all driving on the 

road while we sit next to the subject monitoring his/her driving behavior. Couple subjects deny 



 
 

 55 

continuing with the runs as they start to feel uncomfortable. We somehow manage to collect good 

amount of data from one subject that we are showing here in Table 5.    

Table 5: Data Collection Details for Telematics 

Subject Age Gender Vehicle # of 
Excursions 

Time # of 
Readings 

Data 
Stream 

Driver 1 42 Female Toyota 

Corolla 

4 4 PM – 6 

PM 

5,000 

(9 Runs: 7 

to 9 min 

each run) 

Telematics 

& Custom 

App 

Driver 2 22 Male BMW 

528i 

2 4 PM – 6 

PM 

4,000 

(7 Runs: 5 

to 8 min 

each run) 

Telematics 

& Custom 

App 

Driver 3 56 Male Honda 

Odyssey 

2 4 PM – 6 

PM 

4,500 

(9 Runs: 8 

to 9 min 

each run) 

Telematics 

& Custom 

App 

 

We highlight on 1 vehicle and its baseline here as follows: 

Vehicle: Toyota Corolla 

Subject: 42 year old female 

We collect data for a few days on similar time (between 4 PM & 6 PM) and append data in 

one dataset. Then we preprocess the dataset using Feature Selection methods. After that, we cluster 

the data set on Telematics data and driver behavior data. We picked 4 clusters as the most efficient 

number from the following elbow outcome as shown in figure 23. We then cluster the dataset with 
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4 clusters and create a baseline. We categorize the baseline according to the safety measures of the 

telematics attributes and driver behavior attributes. We finally compare the subject with this 

baseline for further comparison and analysis. We perform clustering on individual drivers’ data 

related to his/her own driver behavior. Therefore, the clusters on one driver may vary from the 

clusters on others.   

 
 

 
Figure 23: Elbow method to determine the optimal number of clusters(4) for k-means clustering 

 
Following are the 4 clusters from the vehicle data:  

We take the feature extracted Telematics data and run K means clustering with 4 clusters based on 

the above Elbow method. We analyze each cluster and locate the unsafe situations in each cluster. 

For instance, in the first cluster in Table 6, we see high emission of carbon monoxide (CO), high 

intake air temperature, low volumetric efficiency, high frequency of sharp turns and sudden 

acceleration. Therefore, this cluster (cluster 0) is labeled as UNSAFE cluster. On the contrary, the 
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second cluster (cluster 1) has no anomalous situation and hence this cluster is the SAFEST cluster. 

Third cluster (cluster 3) has high percentage of engine load as well as high speed. Lastly, the 4th 

cluster (cluster 3) has little high average trip speed. Therefore, cluster 2 & 3 have been labeled as 

SAFER and SAFE clusters respectively. Consequently, we have labeled the clusters according to 

their relative anomalous states.   

Table 6: Clusters from Vehicle Data (Time of the day: between 4 PM & 6 PM) 

 
 
We also applied Association Rules on this dataset to derive the correlation between the attributes 

and identify the key rules to predict driver activities. 

4.1.1 Results based on solely Telematics data stream 
 
This section depicts the final outcome of our research for Driver Behavior based on Telematics 
data only.  
 
We baseline Vehicle data and categorize the clusters by Safe, Safer, Safest and Unsafe types.  

Cluster 0: This cluster is categorized as “UNSAFE” because of high CO emission, high air 

temperature, low volumetric efficiency, high frequency of sharp turns and high frequency of 

Attributes
Full Data

(3217)
Cluster 0

(716)
Cluster 1

(536)
Cluster 2

(994)
Cluster 3

(971) Comment
Safety Categorization Overall UNSAFE SAFEST SAFER SAFE
Acceleration Sensor(Total)(g) -0.0014 0 -0.0027 -0.0038 0.0006
Air Fuel Ratio(Measured)(:1)                            14.9527 14.7175 15.0472 14.8252 15.2044
CO_ in g/km (Average)(g/km)                           262.1087 319.812 294.1554 245.0225 219.3601 High emmision in cluster 0
Average trip speed(whilst moving only)(mph)             37.7857 13.194 31.7344 46.804 50.0275 Trip speed is high in cluser 3
Distance to empty (Estimated)(miles)                    98.3274 110.6275 105.3646 96.6266 87.1139
Engine Coolant Temperature(F)                         193.5647 195.0961 192.4284 193.674 192.9508
Engine Load(%)                                          34.0744 27.1301 38.7013 41.3587 29.184 High engine load in cluster 2
Engine RPM(rpm)                                       1840.6632 1109.2685 2146.6852 2315.1491 1725.3303
Fuel flow rate/minute(gal/min)                 0.0202 0.0115 0.0231 0.0288 0.0161
Fuel Remaining (Calculated from vehicle profile)(%)   21.7179 24.5172 23.3882 21.3146 19.1447
Fuel used (trip)(gal)                                    0.4984 0.0504 0.2312 0.5629 0.9103
Intake Air Temperature(F)                             101.0379 118.2668 96.7664 95.4111 96.4515 High temperature in cluster 0
Kilometers Per Litre(Long Term Average)(kpl)            14.4527 14.3978 14.3766 14.4662 14.5214
Percentage of City driving(%)                           43.0016 53.2712 51.0463 36.6352 37.5053
Percentage of Highway driving(%)                        32.9031 0 17.9611 46.6256 51.3661
Speed (OBD)(mph)                                        43.6867 11.6151 57.4801 59.889 43.1357 High speed in cluster 2
Trip average MPG(mpg)                                   31.3372 25.7464 29.3618 33.4055 34.4329
Voltage (OBD Adapter)(V)                                12.6947 12.5162 12.7886 12.7728 12.6943
Volumetric Efficiency (Calculated)(%)                   43.0454 38.0922 44.8078 49.5563 39.0597 Low efficiency in cluster 0
Sharp Turns                                              0.0103 0.0377 0.0056 0 0.0031 High frequency in cluster 0
Sudden Acceleration                                      0.0096 0.0321 0 0.003 0.0051 High frequency in cluster 0 
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sudden accelerations. All these parameters are way outside of the normal threshold and hence this 

cluster in UNSAFE.  

Cluster 1: This cluster is categorized as “SAFEST” because of high efficiency driving patterns 

and very low to no incident of adverse driver behavior as well as the engine condition.   

Cluster 2: This cluster is categorized as “SAFER” because of the majority of the attributes being 

in the safe range except occasional speeding and high engine load because of the speed.  

Cluster 3: This cluster is categorized as “SAFE” because of most of the attributes being in the 

efficient range with the exception of occasional speeding as well as sharp turns and abrupt 

acceleration.  

We compare this baseline of SAFE vs. UNSAFE clusters of data attributes with our subject 

(driver and the similar car – Toyota) for another instance of driving behavior and we notice the 

following anomalous behavior in table 7: 

Table 7: New Instance of Driver & Engine Behavior 

 

Regarding this subject (driver and the automobile), we notice unusually high CO emission, 

unusually high Engine coolant temperature, several sharp turns as well as many sudden 

accelerations. This is very anomalous to the same driver’s baseline clusters. Therefore, there could 

be a potential cyber threat taken place on the automobile along with the driver’s unusual driving 

patters. We also run association rule mining that discovers the following important rules shown in 

Table 9: 

 

Attributes
Full Data

(1938)
Cluster 0

(1088)
Cluster 1

(147)
Cluster 2

(414)
Cluster 3

(289) Comment
Safety Categorization Overall UNSAFE UNSAFE UNSAFE UNSAFE ANOMALY
CO_ in g/km (Average)(g/km)                           243.5672 260.3344 70.0431 253.3363 254.7126 High emmision in cluster 0
Engine Coolant Temperature(F)                         211.3373 213.5893 182.8844 210.2362 218.9094 Very high temperature in every cluster 
Sharp Turns                                              0.2389 0.2243 0.3946 0.2802 0.1557 High frequency in every cluster
Sudden Acceleration                                      0.1615 0 0.1633 0 1 High frequency in cluster 3 
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Sample converted dataset: 

We take the raw data from vehicles and classify them with three different buckets with 

appropriate ranges. For classification rules, we need to convert the numeric data to categorical data 

so we can properly categorize the driving state in the right bucket. We classify the data attribute 

range in three equal segments to classify them by Low, Medium and High. For instance, Engine 

Coolant Temperature fluctuates between 185 to 200 degrees. Therefore, we divide the data 

attributes in 3 equal buckets as shown in table 8: 

Table 8:Numeric to Categorical Data Mapping 

Engine Coolant Temperature(F) 
(Numeric) 

Engine Coolant Temperature(F) 
(Categorical) 

185 ECT 185 to 189.9 
190.4 ECT 190 to 194.9 
195.8 ECT 195 to 200 

 

We have classified the remaining data attributes the same way. We sort each data attribute from 

low to high and put them on Histogram to identify the proper range for categorical data.  

4.1.2 Analysis & Validation 
 
We run the categorical data on Apriori based association rule mining using Weka to identify the 

best suited rules with its associated attributes. For instance, following is a list of few key rules. 

These rules assist us identifying anomalies in driving behavior based on the Telematics data 

stream. This helps us understand the human behavior and their motive that may cause anomalous 

behavior. This cluster based single stream anomaly detection discovers computational models for 

human behavior from usage data to detect anomalous behavior. It identifies and predicts anomalies 

which might be precursors or even indicators of impending or ongoing unexpected behavior. 
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Table 9:Few Key Rules as Sample 

Rules Confidence Result 

Acceleration Sensor(Total)(g)=AS -0.07 to 0.2 ==>  

Sharp Turns=NO Sudden Acceleration =NO     

0.97 Low Acceleration 

Sensor implies no 

sharp turn and no 

sudden acceleration 

Average trip speed(mph)=ATS 34 to 51  

Percentage of City driving(%)=PCD 33 to 65.9 ==> 

Sudden Acceleration =NO 1940     

1.00 Low average trip 

speed with a low city 

driving implies no 

abrupt acceleration  

Air Fuel Ratio=AFR 16.1 to 19.0  

Average trip speed (mph)=ATS 34 to 51  

Engine Coolant Temperature (F)=ECT 195 to 200.0  

Percentage of Highway driving(%)=PHD 0 to 32.9  

Speed (OBD)(mph)=Speed 50 to 75 ==>  

Sudden Acceleration =YES    

0.93 High Air Fuel with 

relatively high speed 

with high Engine 

Coolant temperature 

would definitely 

imply Sudden 

Acceleration (Yes) 

Average trip speed(mph)=ATS 34 to 51  

Engine Coolant Temperature(F)=ECT 190 to 194.9  

Percentage of Highway driving(%)=PHD 0 to 32.9 203 

==> Sudden Acceleration =YES     

0.93 High trip speed with 

moderately high 

Engine temperature 

would imply sudden 

acceleration (Yes) 
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Air Fuel Ratio=AFR 16.1 to 19.0  

CO_ in g/km (Average)(g/km)=CO 245 to 285.9  

Percentage of Highway driving(%)=PHD 0 to 32.9 ==> 

Sudden Acceleration =YES 

0.92 High Air Fuel with a 

very high CO 

emission imply abrupt 

acceleration (Yes)  

Air Fuel Ratio=AFR 16.1 to 19.0  

CO_ in g/km (Average)(g/km)=CO 245 to 285.9  

Percentage of Highway driving(%)=PHD 0 to 32.9 ==> 

Sharp Turns =YES 

0.92 High Air Fuel with a 

very high CO 

emission imply Sharp 

Turns (Yes)  

 

The above rules that are anomalous (high measures) from normal driver behavior fall under the 

“Unsafe” cluster as discovered from the baseline cluster in Table 6. Likewise, the safe driving rules 

show low number of intensity which rightfully fall under the “Safe” cluster of the baseline.   

4.2 Driver Behavior from Multi Source Data Stream 
 

We have collected data on 2 different vehicles with 2 different drivers. We connect OBD2 

device for Telematics data, custom mobile app on Android connected to the OBD2 by Bluetooth 

for derived Telematics data, Tobii for Eye Gaze Distraction data and E4 for vital Health data with 

the subject drivers. It was little intimidating to the subject drivers to be driving with all 4 data 

retrieval gadgets around them. Since both subjects’ driving patterns are similar and the roads used 

for data collection are identical, we compile both data streams into one and apply anomaly 

detection on them to present results for general population. Following table 10 shows the two 

subjects we used to collects real world driving data. 
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Table 10: Data Collection Details for Telematics, Distraction and Health  

Subject Age Gender Vehicle # of 
Excursions 

Time # of 
Readings 

Data 
Stream 

Driver 1 47 Male BMW 

528i 

 

3 6 PM – 8 

PM 

5,000 

(9 Runs: 7 

to 9 min 

each run) 

 

Telematics 

& Custom 

App, 

Distraction 

Data and 

Health Data 

Driver 2 38 Male Toyota 

Corolla 

3 6 PM – 8 

PM 

4,000 

(7 Runs: 5 

to 7 min 

each run) 

 

Telematics 

& Custom 

App, 

Distraction 

Data and 

Health Data 

 

We combined the data streams from both drivers and the baselines are here as follows: 

Vehicle: BMW 528i 

Subject: 45 year old male 

Vehicle: Toyota Corolla 

Subject: 38 year old male 

We collect data for a few days on similar time (between 6 PM & 8 PM) and append data in one 

dataset. We normalize the combined data stream and we preprocess the dataset using Feature 

Selection methods. After that, we look at the dataset and the video recording to see which pockets 

of time series the driver is distracted at. From the video, it is pretty apparent that the driver is 
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looking up and down, left and right and is pre-occupied with other things during the following 

time frames. From the observation in the data for Health and Telematics, we notice the following 

variations for the given distraction as shown in Table 11. 

Table 11: Anomaly Comparison 

 

We graph the signal data from the three data streams and perform matrix profile on the data stream 

to visualize the subsequent changes in the value as a result of the distraction.  

4.2.1 Results based on multi-scale datastream 
 

Following is a comprehensive result set for multi-scale data streams. We compare the 

signal/sensor data streams from all three data sources with the Matrix Profile (MP) data streams 

for specific time series and compare  the anomalous driver behavior. We also compare the attributes 

of one data stream to the attributes of another data stream to locate the similarities and the 

dependencies for a specific state of the driver. 

We use matrix profile to find the gradual change of the attributes over time. We first look 

at the driving record (signal data) and identify the timespan when we notice the anomalies. We run 

Time Eye Gaze Health Telematics
2:04 – 2:30 Looking down at 

stereo, adjusting 
the navigation

Medium-High BVP, 
High EDA 

Low Speed, 
medium 
Acceleration

4:38 – 5:00 Looking down at 
the phone, texting, 
looking at the text

BVP – Mid-high 
EDA - High
HR – Mid-High

High Speed, mid 
acceleration

6:17 – 6:30 Looking around, 
not focused on the 
wheel and the 
road

BVP – Mid-high 
EDA - High
HR – High

High Speed, mid 
acceleration

9:05 – 9:30 Highly distracted, 
talking, looking to 
the passenger seat

BVP – High 
EDA - High
HR – Mid

Mid-high Speed, 
Mid acceleration
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matrix profile on the same dataset and identify the change of the driving behavior over time. Matrix 

profile helps us identifying the gradual shift of the driving pattern for gaze data, health data as well 

as the telematics data stream. We locate the subsequent changes over time and find the respective 

relationships between distraction, vital health and telematics data.  

4.2.1.1 Anomaly Comparison with Gaze Data 
 
We first graph the Eye Gaze (ACCZ) signal data and then we draw the graph for Matrix Profile 

data for the same time series. Then we identify the distracted timespan on the signal data to validate 

the distraction. Likewise, we notice the drastic changes in the subsequent dataset on matrix profile 

(MP) data for the same timespan that validate the distraction anomalies. For instance, the subject 

was looking down at the stereo and adjusting the navigation between 2 minute 4 second and 2 

minute 30 second. On the signal graph, we notice high and low values of gaze data and a major 

change in the MP value on that duration. Similar anomalies are observed from 4 min 38 sec to 5 

min, from 6 min 17 sec to 6 min 30 sec and 9 min5 sec to 9 min 30 sec as shown in figure 24 

below.    
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Figure 24: Anomaly Comparison for Gaze Data 

 
Visually, signal data gives us some indication of anomalies, however, it is rather difficult and 

complex to derive specific anomalous behavior with so much data. Matrix Profile (MP) helps us 

comparing the subsequent distance for different attributes on a time series. We compute matrix 

profile on a slide window of a time series to locate the discords (long distance) which are 

anomalies. As we see the similarities on anomalous time span between the signal and MP data sets 

from the observation above, we like to validate the anomalies statistically by calculating the mean 

to identify the norm and the standard deviation to identify the anomalies on the MP data. We 

perform (+/-)1 level standard deviation based outlier detection on the matrix profile (MP) data and 

identify the anomalous timeseries that are less than (mean - 1 Std Dev) and greater than (mean + 

1 Std Dev). We map that back to the actual distracted time frames and validate. These pockets of 

anomalies on the MP data for Eye Gaze shows in figure 25 below. For example, we see a drastic 
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change in distraction (ACCZ) value from 9 min 8 sec to 9 min 21 sec because of the driver’s high 

distraction, which is also reflected on the graph 24.   

Similar result is prevalent for other gaze data attributes like PupilDiameter.  
 

 
Figure 25: Anomaly outside of 1 STD DEV 

 
 
4.2.1.2 Anomaly Comparison on Health Data 
 
Next, we graph the Health (BVD) signal data and then we draw the graph for Matrix Profile data 

for the same time series. Then we identify the anomalous BVD data timespan on the signal data to 

validate the irregular state of health. Likewise, we notice the drastic changes in the subsequent 

dataset on matrix profile (MP) data for the same timespan that validate the health anomalies. For 

instance, the subject’s blood pressure was mid to low between 9 minute 5 second and 9 minute 30 

second. On the signal graph, we notice mid and low values of BVD (Blood pressure) data and a 

major change in the MP value on that duration. Similar anomalies are observed from 2 min 4 sec 

Time Eye Gaze
2:04 – 2:30 Looking down at 

stereo, adjusting 
the navigation

4:38 – 5:00 Looking down at 
the phone, 
texting, looking 
at the text

6:17 – 6:30 Looking around, 
not focused on 
the wheel and 
the road

9:05 – 9:30 Highly distracted, 
talking, looking 
to the passenger 
seat

Time ACCZ ACCZ - 1 SD
02:04.0 0.3033Anomaly-L
02:05.0 0.3185Anomaly-L
02:06.0 0.1945Anomaly-L
02:07.0 0.343Anomaly-L
02:08.0 0.3502Anomaly-L
02:09.0 0.3616Normal
02:10.0 0.3628Normal
02:11.0 0.6972Normal
02:12.0 0.6934Normal
02:13.0 0.7458Normal
02:14.0 0.8592Anomaly-H
02:15.0 0.8352Anomaly-H
02:16.0 0.812Anomaly-H
02:17.0 0.8503Anomaly-H
02:18.0 0.6846Normal
02:19.0 0.5771Normal
02:20.0 0.7829Anomaly-H
02:21.0 0.8062Anomaly-H

Time ACCZ ACCZ - 1 SD
09:05.0 0.5903Normal
09:06.0 0.5472Normal
09:07.0 0.6706Normal
09:08.0 0.7917Anomaly-H
09:09.0 0.8446Anomaly-H
09:10.0 0.8563Anomaly-H
09:11.0 0.9177Anomaly-H
09:12.0 0.9023Anomaly-H
09:13.0 0.9043Anomaly-H
09:14.0 0.8917Anomaly-H
09:15.0 0.5372Normal
09:16.0 0.7689Anomaly-H
09:17.0 0.737Normal
09:18.0 0.7794Anomaly-H
09:19.0 0.7326Normal
09:20.0 0.7621Anomaly-H
09:21.0 0.7562Anomaly-H

Mean 0.55248737
Std Dev 0.1973742
1-Lower 0.35511317
1-Upper 0.74986157
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to 2 min 30 sec, from 4 min 38 sec to 5 min and from 6 min 17 sec to 6 min 30 sec as shown in 

figure 26.    

 

 

Figure 26: Anomaly Comparison for Gaze Data 

 
Now similarly we perform (+/-)1 standard deviation based anomaly detection  on the matrix profile 

(MP) data and identify the anomalous timeseries that are less than (mean - 1 Std Dev) and greater 

than (mean + 1 Std Dev). We map that back to the actual health (BVD) related anomalous time 

frames and validate. These pockets of anomalies on the MP data on BVD shows in figure 27. For 

instance, between 9 min 11 sec and 9 min 29 sec, we see a drastic change in the BVD measure as 

the blood pressure went down significantly that is related to the anomalous distraction.    

Similar result is prevalent for other Health data attributes like EDA and HR.  

Time Health

2:04 – 2:30 Medium-High 
BVP, High EDA 

4:38 – 5:00 BVP – Mid-high 
EDA - High
HR – Mid-High

6:17 – 6:30 BVP – Mid-high 
EDA - High
HR – High

9:05 – 9:30 BVP – Mid-Low 
EDA - High
HR – Mid
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Figure 27: Anomaly outside of 1 STD DEV 

 
 
4.2.1.3 Anomaly Comparison on Telematics Data 
 
Next we analyze the Telematics (Speed) signal data by plotting them on a two dimensional graph 

and then draw the same for Matrix Profile data for the same time series as shown in figure 28. 

Then we identify the high-speed timespan on the signal data to validate the telematics anomalies. 

Likewise, we notice the drastic changes in the subsequent dataset on matrix profile (MP) data for 

the same timespan that validate the speed anomalies. For instance, the subject was driving with a 

high speed between 4 minute 38 second and 5 minutes. On the signal graph, we notice high values 

of Telematics (Speed) data and a major change in the MP value on that duration. Similar anomalies 

are observed from 2 min 4 sec to 2 min 30 sec, from 6 min 17 sec to 6 min 30 sec and 9 min 5 sec 

and 9 min 30 sec.    

Time Health

2:04 – 2:30 Medium-High 
BVP, High EDA 

4:38 – 5:00 BVP – Mid-high 
EDA - High
HR – Mid-High

6:17 – 6:30 BVP – Mid-high 
EDA - High
HR – High

9:05 – 9:30 BVP – Mid-Low 
EDA - High
HR – Mid

Time BVP BVP - 1 SD
06:17.0 0.0339Anomaly-L
06:18.0 0.0116Anomaly-L
06:19.0 0.0107Anomaly-L
06:20.0 0.011Anomaly-L
06:21.0 0.0064Anomaly-L
06:22.0 0.0499Anomaly-L
06:23.0 0.1522Anomaly-L
06:24.0 0.3963Normal
06:25.0 0.4659Normal
06:26.0 0.5869Normal
06:27.0 0.7538Anomaly-H
06:28.0 0.8345Anomaly-H
06:29.0 0.6895Anomaly-H
06:30.0 0.6548Normal
06:31.0 0.6783Anomaly-H
06:32.0 0.6676Anomaly-H
06:33.0 0.6713Anomaly-H
06:34.0 0.6709Anomaly-H
06:35.0 0.6184Normal
06:36.0 0.6689Anomaly-H
06:37.0 0.7135Anomaly-H

Time BVP BVP - 1 SD
09:11.0 0.2089Anomaly-L
09:12.0 0.0397Anomaly-L
09:13.0 0.0358Anomaly-L
09:14.0 0.0372Anomaly-L
09:15.0 0.0969Anomaly-L
09:16.0 0.1976Anomaly-L
09:17.0 0.2744Normal
09:18.0 0.3038Normal
09:19.0 0.5545Normal
09:20.0 0.8708Anomaly-H
09:21.0 0.1092Anomaly-L
09:22.0 0.0957Anomaly-L
09:23.0 0.0935Anomaly-L
09:24.0 0.187Anomaly-L
09:25.0 0.1893Anomaly-L
09:26.0 0.1932Anomaly-L
09:27.0 0.1933Anomaly-L
09:28.0 0.195Anomaly-L
09:29.0 0.2009Anomaly-L

Mean 0.44758807
Std Dev 0.2099233
1-Lower 0.23766477
1-Upper 0.65751137
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Figure 28: Anomaly Comparison for Gaze Data 

 
Next we perform (+/-)1 standard deviation based anomaly detection  on the matrix profile (MP) 

data and identify the anomalous timeseries that are less than (mean - 1 Std Dev) and greater than 

(mean + 1 Std Dev). We map that back to the actual Telematics (Speed) related anomalous time 

frames and validate. These pockets of anomalies on the MP data on Speed shows in figure 29 

below. For instance, between 2 min 8 sec and 2 min 12 sec, we see a drastic change in the Speed 

as that is related to the anomalous Telematics state which could be related to the high level of 

distraction.    

Similar result is prevalent for other Telematics data attributes like Acceleration and Air Fuel Ratio.  

Time Telematics

2:04 – 2:30 Low Speed, 
medium 
Acceleration

4:38 – 5:00 High Speed, 
mid 
acceleration

6:17 – 6:30 High Speed, 
mid 
acceleration

9:05 – 9:30 Mid-high 
Speed, 
Mid 
acceleration
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Figure 29: Anomaly outside of 1 STD DEV 

 
4.2.1.4 Anomaly Comparison on Three Diferent Data Sreams 
 
We compare the matrix profile data streams from Gaze data, Health data and Telematics data on a 

specific time scale to see the similar changes on the distance and hence the relationships among 

the three multi scale data streams. For instance, on a time scale between 9:05 and 9:30 in table 12, 

we notice a highly distracted state of a driver who has a high blood flow and relatively high speed. 

Similarly, we compare the subsequent changes on the matrix profile data sets for gaze data (Figure 

30), Health data (Figure 31) and Telematics data (Figure 32) between the same time scale of 9:05 

to 9:30 and we notice very similar trends among the three as derived above. We see high change 

of distraction on ACCZ MP data during that time along with high change of BVD MP data and 

mid to high change of speed. High change means the data fluctuates close to the lowest limit to 

the highest limit. Mid to high change in speed means the speed fluctuates from mid-range to 

Time Telematics

2:04 – 2:30 Low Speed, 
medium 
Acceleration

4:38 – 5:00 High Speed, 
mid 
acceleration

6:17 – 6:30 High Speed, 
mid 
acceleration

9:05 – 9:30 Mid-high 
Speed, 
Mid 
acceleration

Time Speed Speed - 1 SD
02:05.0 0.2929Normal
02:06.0 0.1982Normal
02:07.0 0.1904Normal
02:08.0 0.0655Anomaly-L
02:09.0 0.065Anomaly-L
02:10.0 0.0528Anomaly-L
02:11.0 0.0459Anomaly-L
02:12.0 0.0454Anomaly-L
02:13.0 0.0878Normal
02:14.0 0.1297Normal
02:15.0 0.1425Normal
02:16.0 0.1901Normal
02:17.0 0.3108Normal
02:18.0 0.3464Normal
02:19.0 0.3326Normal
02:20.0 0.2728Normal

Time Speed Speed - 1 SD
04:37.0 0.2757Normal
04:38.0 0.2814Normal
04:39.0 0.301Normal
04:40.0 0.388Normal
04:41.0 0.4779Anomaly-H
04:42.0 0.563Anomaly-H
04:43.0 0.5302Anomaly-H
04:44.0 0.4436Anomaly-H
04:45.0 0.3537Normal
04:46.0 0.2673Normal
04:47.0 0.2382Normal
04:48.0 0.2203Normal
04:49.0 0.2031Normal
04:50.0 0.1986Normal
04:51.0 0.2173Normal

Mean 0.2546
Std Dev 0.18759
1-Lower 0.06701
1-Upper 0.44219
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highest data point. Looking at the recorded video starting the 9th minute through 9 minute 30 

second, we see the driver talking on the phone and looking at the passenger seat instead of looking 

on the road. The data reflects that same behavior as we see a significant subsequent distance change 

on ACCX distraction data during that time in figure 30. We see a very similar overlap on health 

data in figure 31 where the subsequent distance changes on health data. Lastly, the 3rd data stream 

from Telematics data shows minimal Acceleration change in figure 32 as the distraction and 

impactful health did not have a big impact on the telematics data.  

Table 12: Anomaly Comparison among three data streams 

Time Eye Gaze Health Telematics 
9:05 – 9:30 Highly distracted, talking, 

looking to the passenger 
seat 

BVP – High 
EDA - High 
HR – Mid 

Mid-high Speed, 
Mid Acceleration 

 
 

  
 

Figure 30: Anomaly for Gaze Data 

 
 
 

Highly  
Distracted 
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Figure 31:Anomaly for Health Data 

 
 
 

 
 

Figure 32: Anomaly for Telematics Data 

 
4.2.1.5 Clusters on Hetergenious Data Stream 
 
We perform K-means clustering on three combined data streams to identify the “Unsafe” driving 

state from the “Safe” driving state. Unfortunately, the result shows very similar clusters and hence 

it is rather difficult to distinguish Safe driver cluster to Unsafe driver cluster unlike the clusters 

identified in just Telematics data shown earlier.  

For instance, as shown in Table 13 & 14, the safe driving conditions usually center around the mid 

points (mean 0.5) and the unsafe driving conditions move away from the center. Among the 4 

High  
Health  
Anomaly 

Moderate  
Speed 
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clusters, the number of anomalous attributes are very similar. Therefore, clustering on 

heterogenous data streams is not a good identifier for safe vs. unsafe driving condition. Relatively 

speaking, the clusters 1 & 3 are slightly safer than clusters 2 & 4.   

Table 13: Clusters from Distraction, E4 & Telematics - Signal Data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Attributes
Full Data 
(581)

Cluster 1 
(338)

Cluster 2
(85)

Cluster 3
(79)

Cluster 4
(79)2

ACCX 0.569511 0.547082 0.556056 0.565019 0.582967
ACCY  0.364915  0.379246 0.469763 0.384775 0
ACCZ 0.389225 0.431127 0.426679 0.25612 0.038952
GYRX 0.376564 0.376564 0.316837 0.337884 0.365188
GYRY 0.567408 0 0.175523 0.248322 0.405647
GYRZ 0.592333 0.083277 0 0.304727 0.415905
GazeDirectionLeftX 0.404098 0.404098 0 0.130994 0.059294
GazeDirectionLeftY 0.455748 0.455748 0.092083 0.129543 0.263466
GazeDirectionLeftZ 0.984243 0.987197 0.930345 0.947766 0.938367
GazeDirectionRightX 0.499914 0.499914 0.124601 0.316964 0.28132
GazeDirectionRightY 0.563498 0.563498 0.371474 0.014592 0
GazeDirectionRightZ 0.99574 0.975688 0.903038 0.916402 0.916402
GazePoint3DX 0.757604 0.757604 0.740785 0.720581 0.640343
GazePoint3DY 0.043078 0.043078 0.044435 0.033601 0.032421
GazePoint3DZ 0.006397 0.006539 0.005777 0.005269 0.005137
GazePointX 0.537313 0.537313 0.399057 0.507463 0.4674
GazePointY 0.311159 0.461373 0.47103 0.287554 0.374464
PupilPositionLeftX 0.505495 0.452119 0.430141 0.516484 0.365777
PupilPositionLeftY 0.55106 0.473988 0.472062 0.44894 0.539499
PupilPositionLeftZ 0.220026 0.220026 0.205534 0.221344 0.216074
PupilPositionRightX 0.532995 0.51269 0.475127 0.527919 0.44264
PupilPositionRightY 0.410372 0.420519 0.413754 0.435175 0.401353
PupilPositionRightZ 0.616346 0.598077 0.629808 0.592308 0.624038
PupilDiameterLeft 0.525424 0.502825 0.536723 0.525424 0.553672
PupilDiameterRight 0.475728 0.402913 0.451456 0.34466 0.470874
X 0.439655 0.439655 0.517241 0.439655 0.474138
Y 0.752809 0.730337 0.752809 0.719101 0.775281
Z 0.796748 0.747967 0.796748 0.796748 0.764228
BVP 0.710757 0.710757 0.713907 0.706348 0.713862
EDA 0.848739 0.848739 0.890758 0.823529 0.840338
HR 0.275893 0.275893 0.415816 0.326913 0.240051
AccelerationSensor 0.47619 0.47619 0.444444 0.531746 0.539683
AirFuelRatio 1 1 1 1 1
EngineRPM 0.241031 0.136287 0.241031 0.413436 0.01517
Speed 0.767926 0.794654 0.750108 0.866073 0.821526

Observations:

1. Rather difficult to identify 
safe driving cluster vs. unsafe 
driving cluster

2. Mid point close to 0.5 is the 
safe driving condition

3. Attributes away from 0.5 is 
Anomalous

• Cluster 1: 
• Anomalous attributes = 13 

• Cluster 2: 
• Anomalous attributes = 15 

• Cluster 3:
• Anomalous attributes = 13 

• Cluster 4:
• Anomalous attributes = 15

• Safer clusters are 1 & 3 



 
 

 74 

Table 14: Clusters from Distraction, E4 & Telematics – Signal Nominal Data 

 
 
Contrary to the single stream clusters, the multidomain clusters do not work very well with 

multi-scale heterogenous data sets as the data attributes are so different from each domain. 

 
4.2.2 Analysis & Validation 
 
We validate our hypothesis and results by applying specific machine learning methodologies on 

our heterogeneous data streams as follows: 

• Association Rule Mining (ARM) with Classification based Association 

• ARM with Normalized Signal Data 

• ARM on Signal Data with (+-)1 Standard Deviation as Anomaly 

• ARM on Normalized Matrix Profile Data 

• ARM on Matrix Profile Data with (+-)1 Standard Deviation as Anomaly 

Attributes
Full Data 
(581)

Cluster 0 
(192)

Cluster 1
(123)

Cluster 2
(155)

Cluster 3
(111)

ACCX Mid Mid (1) Mid (1) Mid (1) Mid (1)
ACCY Mid-Low Mid-Low (1) Mid-Low (1) Mid (2) Mid-Low (1)
ACCZ Mid Mid (2) Mid (2) Mid-Low (1) Mid (2)
GYRX Mid-Low Mid-Low (2) Mid-Low (2) Mid (3) Mid-Low (2)
GYRY Mid Mid (3) Mid (3) Mid (4) Mid (3)
GYRZ Mid Mid-High (1) Mid (4) Mid (5) Mid (4)
GazeDirectionLeftX Mid Mid (4) Mid-High (1) Mid (6) Mid-Low (3)
GazeDirectionLeftY Mid Mid (5) Mid (5) Mid (7) Mid-High (1)
GazeDirectionLeftZ High High (1) High (1) High (1) High (1)
GazeDirectionRightX Mid Mid (6) Mid-High (2) Mid-High (1) Mid (5)
GazeDirectionRightY Mid-High Mid-High (2) Mid-High (3) Mid-High (2) Mid-High (2)
GazeDirectionRightZ High High (2) High (2) High (2)  High (2)
GazePoint3DX Mid-High Mid-High (3) Mid-High (4) Mid-High (3) Mid-High (3)
GazePoint3DY Low Low (1) Low (1) Low (1) Low (1)
GazePoint3DZ Low Low (2) Low (2) Low (2) Low (2)
GazePointX Mid Mid (7) Mid-Low (3) Mid (8) Mid-High (4)
GazePointY Mid Mid (8) Mid (5) Mid (9) Mid-Low (4)
PupilPositionLeftX Mid Mid (9) Mid (7) Mid (10) Mid-Low (5)
PupilPositionLeftY Mid Mid (10) Mid (8) Mid (11) Mid (6)
PupilPositionLeftZ Mid-Low Mid-Low (3) Mid-Low (4) Mid-Low (2) Mid-Low (6)
PupilPositionRightX Mid Mid (11) Mid (9) Mid (12) Mid (7)
PupilPositionRightY Mid Mid (12) Mid (10) Mid (13) Mid-Low (7)
PupilPositionRightZ Mid-High Mid-High (4) Mid-High (5) Mid-High (4) Mid-High (5)
PupilDiameterLeft Mid Mid (13) Mid (11) Mid (14) Mid (8)
PupilDiameterRight Mid Mid (14) Mid (12) Mid (15) Mid (9)
X Mid Mid (15) Mid (13) Mid (16) Mid (10)
Y Mid-High Mid-High (5) Mid-High (6) Mid-High (5) Mid-High (6)
Z Mid-High Mid-High (6) Mid-High (7) Mid-High (6) Mid-High (7)
BVP Mid-High Mid-High (7) Mid-High (8) Mid-High (7) Mid-High (8)
EDA High High (3) High (3) High (3) High (3)
HR Mid-Low Mid-Low (4) Mid (14) Mid-Low (3) Mid-Low (8)
AccelerationSensor Mid Mid (16) Mid (15) Mid (17) Mid (11)
AirFuelRatio Low Low (3) Low (3) Low (3) Low (3)
EngineRPM Mid-Low Mid-Low (5) Mid (16) Mid-Low (4) Mid-Low (9)
Speed High High (4) High (4) High (4) High (4)

Observations:

1. Rather difficult to identify 
safe driving cluster vs. unsafe 
driving cluster

2. Mid point close to 0.5 is the 
safe driving condition

3. Attributes away from 0.5 is 
Anomalous

• Cluster 1: 
• Mid = 16, High = 4, Low = 3 

• Cluster 2: 
• Mid = 16, High = 4, Low = 3 

• Cluster 3:
• Mid = 17, High = 4, Low = 3 

• Cluster 4:
• Mid = 11, High = 4, Low = 3 

• Safer clusters are 1, 2 & 3 
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We analyze and validate the results from ARM with classification based analytics as follows: 

• J48 to generate decision tree to depict key rules from heterogeneous data streams 

• Decision Tree to validate the key rules  

• Random Forrest for classification and prediction 

We evaluate the classification accuracy with ROC Curve.  

4.2.2.1 ARM on Normalized Signal Data 
 
We run Association Rule Mining (ARM) with Classification based Association on the 

heterogeneous signal data stream to validate the relationships between the data attributes from 

three different data streams. For instance, as depicted in Table 15 and Figure 33, we validate the 

following rules: 

• Distraction may imply Tension (Anomalous Blood Pressure) [Distraction to Health] 

• Distraction may or may not have an impact on Acceleration [Distraction to Telematics] 

• Distraction may impact Speed [Distraction to Telematics]   

Table 15: ARM on Normalized Signal Data 

Index  Rules  Confidence  Result  
1 GazeDirectionLeftZ=High  

GazeDirectionRightZ=High     
GazePoint3DY=Low ==> 
BVP=Mid-High 

0.92 High Distraction 
implies mid to high 
blood pressure  

2 GazeDirectionLeftZ=High  
GazeDirectionRightZ=High  
GazePoint3DX=Mid-High  
GazePoint3DZ=Low ==> 
BVP=Mid-High  

0.92 High Distraction 
implies mid to high 
blood pressure  
  

3 GYRX=Mid-Low  
GazeDirectionLeftZ=High  
GazePointX=Mid 
Z=Mid-High ==> 
AccelerationSensor=Mid 

0.90 
 

Mid to high 
Distraction implies 
normal acceleration 

4 GazeDirectionLeftZ=High  
GazeDirectionRightZ=High  
GazePoint3DX=Mid-High  

0.98 High Distraction 
and high Heart Beat 
implies high Speed 
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GazePoint3DY=Low  
X=Mid  
Y=Mid-High  
HR=High ==> 
Speed=High 

5 GazeDirectionLeftZ=High  
GazeDirectionRightZ=High  
GazePoint3DY=Low  
X=Mid  
Y=Mid-High  
HR=High ==> 
Speed=High 

0.98 High Distraction 
and high Heart Beat 
implies high Speed 

 
 

 

 

 

Figure 33: ARM on Normalized Signal Data 

 
4.2.2.2 ARM on Normalized Signal Data with (+-)1 Standard Deviation as Anomaly 
 
We run Association Rule Mining (ARM) with Classification based Association on the 

heterogeneous signal data stream with labeled anomalies that are one standard deviation away and 

validate the relationships between the data attributes from three different data streams. For 

instance, as depicted in Table 16 and Figure 34, we validate the following rules: 

• Distraction may imply Tension (High Heartbeat) [Distraction to Health] 

• Distraction may imply Tension (Abnormal  Blood Pressure) [Distraction to Health] 
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Table 16: ARM on Normalized Signal Data with (+-)1 Standard Deviation 

Index  Rules  Confidence  Result  
1 PupilPositionRightZ-

SD=Normal  
PupilDiameterLeft-
SD=Anomaly-H HR-
SD=Normal ==> 
Speed-SD=Anomaly-
L 

0.91 Distraction may 
imply Tension with 
impact on Telematics 
(High Heartbeat) 
[Distraction to 
Health]  
  

2 ACCZ-
SD=Anomaly-H  
EDA-SD=Normal  
EngineRPM-
SD=Normal  
Speed-SD=Normal 
==> 
HR-SD=Anomaly-H 

0.91 Distraction may 
imply Tension (High 
Heartbeat) 
[Distraction to 
Health]  
  
  

3 ACCZ-
SD=Anomaly-H  
BVP-SD=Normal  
EDA-SD=Normal  
Speed-SD=Normal 
==> 
HR-SD=Anomaly-H 

0.91 
 

Distraction may 
imply Tension (High 
Heartbeat) 
[Distraction to 
Health]  
  

4 PupilDiameterLeft-
SD=Anomaly-H ==> 
BVP-SD=Anomaly-L 

0.91 Distraction may 
imply Tension 
(Abnormal Blood 
Pressure) [Distraction 
to Health]  

 

 
 

 

 
 

Figure 34: ARM on Signal Data with +- STD DEV 
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4.2.2.3 ARM on Normalized Matrix Profile (MP) Data  
 
We run Association Rule Mining (ARM) with Classification based Association on the 

heterogeneous Matrix Profile (MP) data stream to validate the relationships between the data 

attributes from three different data streams. For instance, as depicted in Table 17 and Figure 35, 

we validate the following rules: 

• Distraction may imply Tension (High Blood Pressure) [Distraction to Health] 

• Distraction may imply Emotion (Anomalous EDA) [Distraction to Health]   

Table 17: ARM on Normalized Matrix Profile (MP) Data 

Index  Rules  Confidence  Result  
1 GazePoint3DY=Low  

Z=Mid-High  
Speed=Mid ==> 
HR=Mid-Low 

0.90 Distraction may 
imply Tension 
(High Blood 
Pressure) 
[Distraction to 
Health]  

2 GazePoint3DZ=Low  
Z=Mid-High  
Speed=Mid ==> 
HR=Mid-Low  

0.90 Distraction may 
imply Tension 
(High Blood 
Pressure) 
[Distraction to 
Health]  

3 GazeDirectionLeftZ=High 
==> 
BVP=Mid-High 

0.92 
  

Distraction may 
imply Tension 
(High Blood 
Pressure) 
[Distraction to 
Health] 

4 GazeDirectionRightZ=High 
==> 
BVP=Mid-High 

0.92 Distraction may 
imply Tension 
(High Blood 
Pressure) 
[Distraction to 
Health]  

5 GazeDirectionLeftZ=High  
GazePointY=Mid  
PupilPositionRightZ=Mid-
High ==> 
EDA=High 

0.91 Distraction may 
imply Emotion 
(Anomalous EDA) 
[Distraction to 
Health]  
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6 GazeDirectionRightZ=High  

GazePointY=Mid  
PupilPositionRightZ=Mid-
High ==> 
EDA=High  

0.91 Distraction may 
imply Emotion 
(Anomalous EDA) 
[Distraction to 
Health]  
  

7 GazePoint3DY=Low  
GazePointY=Mid  
PupilPositionRightZ=Mid-
High 179 ==> 
EDA=High  

0.91 Distraction may 
imply Emotion 
(Anomalous EDA) 
[Distraction to 
Health]  

 
 
 

 
 
 

 
 

 
 

Figure 35: ARM on Normalized Matrix (MP) Profile Data 

 
Likewise, we see the following rule on MP data on heterogeneous data stream as shown in Table 

18 and Figure 36: 

• Distraction & Tension may or may not have impact on Acceleration [Distraction & Health 

to Telematics] 

• Distraction & Tension may impact Speed [Distraction & Health to Telematics] 
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Table 18: ARM on Normalized Matrix Profile (MP) Data 

Index  Rules  Confidence  Result  
1 GYRX=Mid-Low  

GazeDirectionLeftZ=High  
GazeDirectionRightZ=High  
GazePointX=Mid  
Z=Mid-High ==> 
AccelerationSensor=Mid 

0.91 Distraction & 
Tension may or may 
not have impact on 
Acceleration 
[Distraction & 
Health to 
Telematics]  

2 GYRX=Mid-Low  
GazeDirectionLeftZ=High  
GazePoint3DY=Low  
GazePointX=Mid  
Z=Mid-High ==> 
AccelerationSensor=Mid 

0.90 Distraction & 
Tension may or may 
not have impact on 
Acceleration 
[Distraction & 
Health to 
Telematics]  

3 GYRX=Mid-Low  
GazeDirectionLeftZ=High  
GazePoint3DZ=Low  
GazePointX=Mid  
Z=Mid-High ==> 
AccelerationSensor=Mid 

0.90 
 

Distraction & 
Tension may or may 
not have impact on 
Acceleration 
[Distraction & 
Health to 
Telematics]  

4 GazeDirectionLeftZ=High  
GazePoint3DY=Low  
X=Mid  
Y=Mid-High  
HR=High ==> 
Speed=High  

0.98 Distraction & 
Tension may impact 
Speed [Distraction 
& Health to 
Telematics]  
  

5 GazeDirectionLeftZ=High  
GazePoint3DZ=Low  
X=Mid  
Y=Mid-High  
HR=High ==> 
Speed=High  

0.98 Distraction & 
Tension may impact 
Speed [Distraction 
& Health to 
Telematics]  
  
  

6 GazeDirectionRightZ=High  
GazePoint3DY=Low  
X=Mid  
Y=Mid-High  
HR=High ==> 
Speed=High 

0.98 Distraction & 
Tension may impact 
Speed [Distraction 
& Health to 
Telematics]  
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Figure 36: ARM on Normalized Matrix (MP) Profile Data 

 
 
4.2.2.4 ARM on Matrix Profile (MP) Data with (+-)1 Standard Deviation as Anomaly 
 
We run Association Rule Mining (ARM) with Classification based Association on the 

heterogeneous matric profile (MP) data stream with labeled anomalies that are one standard 

deviation away and validate the relationships between the data attributes from three different data 

streams. We use 1 standard deviation for labeling the data attributes ‘anomalous’ because of the 

small scale of anomaly mainly on distraction data. A small and short span of distraction while 

driving may create a dangerous situation as the driver may lose control and derail on the road. For 

instance, as depicted in Table 19 and Figure 37, we validate the following rules: 

• Distraction may imply Tension (High Heartbeat) [Distraction to Health] 

• Distraction may imply Tension (Anomalous Blood Pressure) [Distraction to Health] 

• Distraction may imply Emotion (Anomalous EDA) [Distraction to Health] 
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Table 19: ARM on Matrix Profile (MP) Data with (+-)1 Standard Deviation 

Index  Rules  Confidence  Result  
1 PupilDiameterLeft=Anomaly-H 

==> 
HR=Anomaly-H   

1.0 Distraction may 
imply Tension 
(High Heartbeat) 
[Distraction to 
Health]  
  
  

2 PupilDiameterLeft=Anomaly-H  
Speed=Normal ==> 
HR=Anomaly-H 

1.0 Distraction may 
imply Tension 
(High Heartbeat) 
[Distraction to 
Health]  
  

3 ACCZ=Anomaly-L  
GazeDirectionRightX=Anomaly-
L ==> 
BVP=Anomaly-L 

1.0 
  

Distraction may 
imply Tension 
(Anomalous Blood 
Pressure) 
[Distraction to 
Health]  
  

4 ACCZ=Anomaly-H  
HR=Anomaly-H ==> 
BVP=Anomaly-H 

1.0 Distraction may 
imply Tension 
(Anomalous Blood 
Pressure) 
[Distraction to 
Health]  

5 GazeDirectionRightX=Anomaly-
L  
HR=Anomaly-H ==> 
BVP=Anomaly-L 

1.0 Distraction may 
imply Tension 
(Anomalous Blood 
Pressure) 
[Distraction to 
Health]  
  

6 ACCZ=Anomaly-L  
PupilDiameterLeft=Anomaly-H  
Speed=Normal ==> 
EDA=Anomaly-L 

1.0 Distraction may 
imply Emotion 
(Anomalous EDA) 
[Distraction to 
Health]  

7 ACCZ=Anomaly-L  
PupilDiameterLeft=Anomaly-H  
HR=Normal Speed=Normal ==> 
EDA=Anomaly-L 

1.0 Distraction may 
imply Emotion 
(Anomalous EDA) 
[Distraction to 
Health]  
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Figure 37: ARM on MP Data with +- STD DEV 

 
Likewise, we validate the following rules as shown in Table 20 and Figure 38: 
 

• Distraction & Tension may impact Acceleration [Distraction & Health to Telematics] 

• Distraction may impact Speed [Distraction to Telematics] 

 
Table 20: ARM on Matrix Profile (MP) Data with (+-)1 Standard Deviation 

Index  Rules  Confidence  Result  
1 PupilDiameterLeft=Anomaly-

H  
EDA=Anomaly-L ==>  
AccelerationSensor=Anomaly-
H 

1.0 Distraction & 
Tension may 
impact Acceleration 
[Distraction & 
Health to 
Telematics]  

2 ACCZ=Anomaly-L  
GazeDirectionLeftZ=Normal  
PupilDiameterLeft=Anomaly-
H ==>  
AccelerationSensor=Anomaly-
H 

1.0 Distraction & 
Tension may 
impact Acceleration 
[Distraction & 
Health to 
Telematics]  

3 PupilDiameterLeft=Anomaly-
H  
HR=Normal ==> 
Speed=Anomaly-H 

1.0 
 

Distraction may 
impact Speed 
[Distraction to 
Telematics]  
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4 ACCZ=Anomaly-L  
GazePointY=Normal  
PupilDiameterLeft=Anomaly-
H  
HR=Normal ==> 
Speed=Anomaly-H 

1.0 Distraction may 
impact Speed 
[Distraction to 
Telematics]  
  

5 GazePoint3DZ=Anomaly-L  
==> 
Speed=Anomaly-H 

1.0 Distraction may 
impact Speed 
[Distraction to 
Telematics]  

6 GazePoint3DZ=Anomaly-L  
PupilDiameterLeft=Anomaly-
H ==> Speed=Anomaly-H 

1.0 Distraction may 
impact Speed 
[Distraction to 
Telematics]  

 
 
 

 
 

 
 

Figure 38: ARM on MP Data with +- 1 STD DEV 

 
So far we have run Association Rule Mining (ARM) with Classification based Association to 

identify and validate the relationships among the key attributes from multi-scale data streams. For 

example, we identify how distraction can impact health and how distraction can impact speed of 

the vehicle. From the subject, we notice there is not much of an impact between health and 

telematics without distraction. We validate the same findings from normalized signal data, 

normalized Matrix Profile data and also with the data that are 1 (one) standard deviation away 

from the mean.    
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4.2.2.5 Classification on  labelled Data  
 
We use the same multi scale data stream to build a tree of rules that identifies anomalies on the 

driving behavior. We first take the normalized datasets and label the data attributes by Normal, 

High (anomalous) and Low (anomalous) based on the close proximity to the mean (centroid), 1 

standard deviation higher and 1 standard deviation lower, respectively. Because of the high impact 

data attributes on the distraction data domain, one standard deviation away from the main is 

anomalous and labeled as A (Anomalous) and data close to the mean is labeled as NA (Not 

Anomalous) We validate the labelling  of the heterogeneous signal data of NA (Not Anomalous) 

and A (Anomalous) based on the actual distraction. We identified the pockets of distractions on a 

time series by looking at the video recording of the subjects (drivers). For instance, the driver was 

preoccupied with other things like looking around, looking at the passenger seat, tuning the radio, 

looking at the phone, etc. during 2 min 4 seconds through 2 minute 31 seconds and again got 

distracted during 4 min 38 seconds through 5 minutes, from 6 minute 17 seconds to 6 minutes 31 

seconds and lastly from 9 min 05 seconds to 9 minute 29 seconds. We perform the same annotated 

labelling to the matrix profile data. As the matrix profile data gives us the change in the 

heterogenous data sets and shows a clear indication of how gradual the changes are happening 

over time, we have better results with MP data than signal (raw) data. We label the datasets based 

on distraction than health and telematics because distraction is found to be more extensive and 

dominant than the other two datasets as discovered in the earlier experiments shown in the above 

sections.   

We run J48 based decision trees on this heterogeneous labeled matrix profile data that 

validates the same results as we have derived from ARM. For example, we see the following results 

from the decision tree with high level of accuracy as shown in Figure 39 & 40: 
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Decision Tree shows that when Eye Gaze is high, and BVD (blood flow) is normal, AirfuelRatio 

and EDA could be both low (anomalous). Basically, distracted drivers may or may not show 

anomalous health situation, however, may show telematics anomaly. 

High Eye Gaze Data -> Normal BVD -> Low AirFuelRatio -> Low EDA 

Likewise, when Eye Gaze is high, BVD (blood flow) is normal and AirFuelRatio is normal, the 

speed could be high (anomalous).   

High Eye Gaze Data -> Normal BVD -> Normal AirFuelRatio -> High Speed 

Similarly, when Eye Gaze is high, BVD (blood flow) is normal and AirFuelRatio is normal, the 

speed could be Low (anomalous).   

High Eye Gaze Data -> Normal BVD -> Normal AirFuelRatio -> Low Speed 

Lastly, when Eye Gaze is high, BVD (blood flow) is normal, AirFuelRatio is normal, and the speed 

is normal, the EAD could be High (anomalous).  

High Eye Gaze Data -> Normal BVD -> Normal AirFuelRatio -> Normal Speed -> High EAD 

We can have numerous rules of different attributes by these decision trees. Looking at the rules 

from the decision tree, it is apparent that distraction is the most prevalent attribute for detecting 

anomalous driving condition. Figure 39 shows a J48 Pruned tree that classifies the rules with 85% 

accuracy. From the Confusion Matrix, we see the Precision (Positive Predictive Value) of 73%, 

which is a good predictor. It is rather difficult to simulate the real-world scenario with the subjects 

that are anomalous with noticeable distractions, reckless driving behavior and anomalous health 

impacts which could be very unsafe situation on the road. Considering the limitations, our result 

shows a good validation on anomalous driving behavior.  
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Figure 39: J48 Pruned Tree on MP Data 

 
Following Decision Tree in Figure 40 shows the paths to different anomalous scenarios. We have 

many other paths corresponds to both anomalous and normal states. We show 5 key anomalous 

scenarios from our subjects.  

 

J48 Pruned Tree

PupilDiameterLeft-SD = Normal: NA (372.0/58.0)
PupilDiameterLeft-SD = Anomaly-L: NA (100.0/3.0)
PupilDiameterLeft-SD = Anomaly-H
|   BVP-SD = Normal
|   |   AirFuelRatio-SD = Normal
|   |   |   Speed-SD = Normal
|   |   |   |   EDA-SD = Anomaly-L: NA (3.0)
|   |   |   |   EDA-SD = Normal: NA (13.0/2.0)
|   |   |   |   EDA-SD = Anomaly-H: A (3.0)
|   |   |   Speed-SD = Anomaly-H: A (4.0/1.0)
|   |   |   Speed-SD = Anomaly-L: A (5.0)
|   |   AirFuelRatio-SD = Anomaly-L
|   |   |   EDA-SD = Anomaly-L: A (6.0)
|   |   |   EDA-SD = Normal: NA (10.0/2.0)
|   |   |   EDA-SD = Anomaly-H: NA (1.0)
|   |   AirFuelRatio-SD = Anomaly-H: NA (13.0/1.0)
|   BVP-SD = Anomaly-L
|   |   ACCX-SD = Normal: NA (14.0/2.0)
|   |   ACCX-SD = Anomaly-H: NA (1.0)
|   |   ACCX-SD = Anomaly-L: A (5.0/1.0)
|   BVP-SD = Anomaly-H: NA (20.0

Correctly Classified Instances         486               85.2632 %
Incorrectly Classified Instances        84               14.7368 %

=== Confusion Matrix ===

a   b   <-- classified as
478   3 |   a = NA
81   8 |   b = A
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Figure 40: Decision Tree on MP Data Stream 

 
4.2.2.6 Random Forrest and ROC Curve on labelled Data  
 

Finally, we run Random Forrest to get the most precise decision trees and the area under the 

curve from ROC (Receiver Operating Characteristic) to validate the precision of the result. As 

mentioned earlier, the result from the matrix profile data is actually more accurate than signal data 

since MP shows a concise gradual change on a subsequent time based data stream. For instance, 

for Telematics attribute Speed, we notice the precision for Normal, Low Anomalous values and 

High Anomalous values are high 78%, 75% and 82% respectively as shown in figure 41. The closer 

the curve gets to the Y axis, the better the result is. Hence, these curves show high precision of our 

results are. In other words, the higher the area under the curve is, the more precise our results are, 

Anomalous navigational path 1: 
• Gaze Data is high

• BVD is low
• ACCX is low

Anomalous navigational path 2: 
• Gaze Data is high

• BVD is normal
• AirFuelRatio is low

• EDA is low

Anomalous navigational path 3: 
• Gaze Data is high

• BVD is normal
• AirFuelRatio is normal

• Speed is high

Anomalous navigational path 4: 
• Gaze Data is high

• BVD is normal
• AirFuelRatio is normal

• Speed is low
Anomalous navigational path 5: 
• Gaze Data is high

• BVD is normal
• AirFuelRatio is normal

• Speed is normal
• EAD is high



 
 

 89 

for example, our labeled data of normal and anomalous speed are showing relatively a high level 

of precision as the area under the curve is high.  

 

 

Figure 41: Random Forrest & ROC Curve for Speed (Signal Data) 

 
Similarly, the following ROC curve in figure 42 depicts that anomalous data attributes on MP 

data that are very close to the Y axis and hence shows high level of precision with 83% True 

Positive.   

Attribute: Normal
Area Under ROC (Precision): 0.7808 (78%)

Attribute: Anomaly-L 
Area Under ROC (Precision): 0.7546 (75%)

X-Axis: False Positive
Y axis: True Positive

Attribute: Anomaly-H 
Area Under ROC (Precision): 0.8247 (82%)
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Figure 42: Random Forrest & ROC Curve for Annotated Label on Speed MP Data 

 
Following ROC curves show the precision for Signal (Raw) data from all three heterogeneous 

data streams. The result is showing less precise than that of matrix profile data. Here the precision  

for True Positive is 72% for signal data as oppose to the matrix profile data where the True 

Positivity is 83% as shown in figure 43.  

 

Attribute: Anomaly
Area Under ROC (Precision): 
0.8264 (83%)

Attribute: Non-Anomaly 
Area Under ROC (Precision): 
0.8264 (83%)

X-Axis: False Positive
Y axis: True Positive

Curve is closer to 
the upper left corner 
which is good
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Figure 43: Random Forrest & ROC Curve for Annotated Label on Signal Data 

 
4.2.2.7 Collective Anomalies from our Experiments  
 

We apply the collected real-world data along with few more examples to plug them into our 

proposed rules to show the collective anomaly. We categorize the heterogeneous multiscale data 

streams into different levels to collective anomalies to visualize the safety of the driving 

conditions.  

Table 21 shows the anomaly spread of our experimental and test data. In our experimental run, 

we have overlapping anomalies across all three data streams.  

 

 

 

 

Attribute: Anomaly
Area Under ROC (Precision): 

0.7181 (72%)

MP data gave us more 

accurate result (83%)

Attribute: Non-Anomaly 
Area Under ROC (Precision): 

0.7181 (72%)

X-Axis: False Positive
Y axis: True Positive

Curve is closer to 
the upper left corner 

which is good
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 Table 21: Anomaly Spread 

 
 
Therefore, we have Collective Spread impact (3/3=1) for our real-world dataset. In other words, 

we have a good spread of anomalies among all three data streams. We cross-check our result 

with recorded video and notice that we have frequent overlapping anomalies across all three 

domains. This means that the driving state for this driver is unsafe.  

Table 22 shows the Temporal overlaps of our experimental and test data. In our experimental 

run, we have 65 common anomalies over time across all three data streams.  

 
Table 22: Temporal Overlaps 

 
 
Therefore, we see Collective Temporal Overlaps (65/3 = 21.67) for our real world dataset. We 

have all three data sets having overlapping anomalies for a given timespan. Therefore the driving 

condition of this driver is unsafe as discovered on the actual reading from the recording. 

atM atH atG Anomaly Spread Comment

15 10 12 1 Collective Spread Impact

all three data streams have at least one overlapping 
anomaly, 10 intersectioned anomalies among the 3 data 
streams

15 10 12 0.67 Limited Collective Spread Impact M intersects with G and not with H, then the Count is 2 
10 0 0 0 Non-overlapping Stream Impact No Anomaly with Health and Gaze data streams

13 4 2 1 Collective Spread Impact

all three data streams have at least one overlapping 
anomaly, 2 intersectioned anomalies among the 3 data 
streams

10 7 5 0 Non-overlapping Stream Impact No intersection
0 0 3 0 Non-overlapping Stream Impact No intersection
0 0 0 0 Normal State No Anomaly

193 65 154 1 Collective Spread Impact Real World

atM atH atG Temporal Overlaps Comment
15 10 12 3.33 Collective Temporal Overlaps 10 intersectioned anomalies among the 3 data streams
15 10 12 4.00 Collective Temporal Overlaps M intersects with G and not with H, then the Count is 12 
10 0 0 0 Non-overlapping anomaly No Anomaly with Health and Gaze data streams
13 4 2 0.67 Limited Collective Temporal Overlaps Common intersection with 2 anomalies
10 7 5 0 Non-overlapping anomaly No intersection

0 0 3 0 Non-overlapping anomaly
Driver distracted multiple times, however, no anomaly on 
Telematics & Health.  

0 0 0 0 Normal State No Anomaly
193 65 154 21.67 Collective Temporal Overlaps Real World
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Table 23 shows the Intensity of anomaly of our experimental and test data. Intensity gives the 

maximum number of anomalies among the three datasets over time. In our experimental run, we 

have 193 Telematics anomalies as the max over time t (600 secs).  

 
Table 23: Intensity of Anomaly 

 

Therefore, we see Collective Intensity of anomaly (193/600 = 0.33) for our real-world dataset. 

We have a high collective intensity (27% & 33%) on our data sets for a given timespan. 

Consequently the driving behavior of this driver is unsafe. This is reflected on the actual 

recorded video.  

Table 24 shows the Weighted Anomaly Spread of our experimental and test data. Weighted 

Anomaly Spread gives us the relative intensity of the anomaly spready across multidomain. In our 

experimental run, we have 1 anomaly spread with 0.32 Intensity of anomaly. 

 
 
 
 
 

 
 
 

 
 

atM atH atG Intensity of Anomaly Comment
15 10 12 0.03 Limited Collective Intensity t=600 sec (10 min)
15 10 12 0.03 Limited Collective Intensity M intersects with G and not with H
10 0 0 0.02 Limited Collective Intensity No Anomaly with Health and Gaze data streams
13 4 2 0.02 Limited Collective Intensity Common intersection with 2 anomalies
10 7 5 0.02 Limited Collective Intensity No intersection

0 0 3 0.005 Limited Collective Intensity
Driver distracted multiple times, however, no 
anomaly on Telematics & Health.  

30 16 100 0.17 Collective Intensity Greater than 0.05
0 0 0 Normal State No Anomaly   

97 120 154 0.27 Collective Intensity Real world 
193 65 154 0.33 Collective Intensity Real world 
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Table 24: Weighted Anomaly Spread 

 

Therefore, we see Collective Weighted Spread for our real-world dataset. We have a high 

weighted spread (26% & 32%) on our data sets for a given timespan. Therefore, the driving 

condition for this driver is unsafe. Our recorded dataset validates the same. 

Table 25 below shows the Weighted Temporal Overlaps of our experimental and test data. 

Weighted Temporal Overlaps measures the relative overlaps for anomalous states across different 

domains. In our experimental run, we have 21.67 Temporal Overlaps with 0.11 Intensity of 

anomaly. 

Table 25: Weighted Temporal Overlaps 

 
 
Therefore, we see Collective Weighted Temporal Overlaps (2.43) for our real-world dataset. We 

have a high weighted Temporal Overlaps on our data sets for a given timespan. Consequently, 

the state of the driver behavior is unsafe, that is reflected on the actual drive run.   

atM atH atG Weighted Anomaly Spread
15 10 12 1 0.03 0.03 Limited Collective Weighted Spread
15 10 12 0.67 0.025 0.02 Limited Collective Weighted Spread
10 0 0 0 0.02 0.00 Limited Collective Weighted Spread
13 4 2 1 0.02 0.02 Limited Collective Weighted Spread
10 7 5 0 0.02 0.00 No spread

0 0 3 0 0.005 0.00 No spread
30 16 100 0.67 0.17 0.11 Collective Weighted Spread

0 0 0 0 0 0.00 Normal State
97 120 154 1.00 0.26 0.26 Collective Weighted Spread

193 65 154 1.00 0.32 0.32 Collective Weighted Spread

atM atH atG Weighted Temporal Overlaps
15 10 12 3.33 0.03 0.08 Collective Weighted Temporal Overlaps
15 10 12 4.00 0.03 0.10 Collective Weighted Temporal Overlaps
10 0 0 0 0.02 0.00 Non-overlapping Weighted Temporal Overlaps
13 4 2 0.67 0.02 0.01 Limited Collective Weighted Spread
10 7 5 0 0.02 0.00 Non-overlapping Weighted Temporal Overlaps

0 0 3 0 0.005 0.00 Non-overlapping Weighted Temporal Overlaps
0 0 0 0 0.00 Normal State

193 65 154 21.67 0.11 2.43 Collective Weighted Temporal Overlaps
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Table 26 below shows the relative presence of a specific domain from our experimental and 

test data. Relative presence measures the dominating anomalous domain among all other domains. 

In our experimental run, we have 32% Telematics, 11% Health and 26% Gaze anomalies. 

Table 26: Relative Presence of Domain Anomaly 

 

Therefore, most prevalent (32%) anomaly as shown in Table 26 is coming from Telematics data 

stream in real world data. 

Table 27 shows the weighted intensity of a specific domain from our experimental and test 

data. Weighted intensity measures the relative intensity of each domain among all other domains. 

In our experimental run, we have 6.43% of relative intensity for Telematics, 3% of relative 

intensity for Health and 13% relative intensity for Gaze anomalies. 

Table 27: Weighted Intensity of Domain 

 

Assuming 	∂<  = 0.5, 	∂; = 	0.3, 	∂: = 0.2 based on literature and domain knowledge, highest 

weighted intensity is gaze (Distraction) data stream, which is in our real-world study 13%. Even 

though the number of Telematics anomaly is higher than that of Gaze anomaly, Gaze (distraction) 

has more intensity as the impact of distraction is higher. Therefore, if we have Gaze anomaly, in 

atM atH atG Comment
15 3% 10 2% 12 2% Most prevakent anomaly is in Telematics
15 3% 10 2% 12 2% Most prevakent anomaly is in Telematics
10 2% 0 0% 0 0% Most prevakent anomaly is in Telematics
13 2% 4 1% 2 0% Most prevakent anomaly is in Telematics
10 2% 7 1% 5 1% Most prevakent anomaly is in Telematics

0 0% 0 0% 3 1% Most prevakent anomaly is in Distraction
0 0% 0 0% 0 0% No Anomaly

193 32% 65 11% 154 26% Most prevakent anomaly is in Telematics

atM atH atG Comment
15 10 12 2.5% 1.7% 2.0% 0.2 0.3 0.50 0.50% 0.50% 1.00% Highest weighted intensity is Gaze
15 10 12 2.5% 1.7% 2.0% 0.2 0.3 0.50 0.50% 0.50% 1.00% Highest weighted intensity is Gaze
10 0 2 1.7% 0.0% 0.3% 0.2 0.3 0.50 0.33% 0.00% 0.17% Highest weighted intensity is Gaze
13 4 2 2.2% 0.7% 0.3% 0.2 0.3 0.50 0.43% 0.20% 0.17% Highest weighted intensity is Gaze
10 7 5 1.7% 1.2% 0.8% 0.2 0.3 0.50 0.33% 0.35% 0.42% Highest weighted intensity is Gaze

0 0 3 0.0% 0.0% 0.5% 0.2 0.3 0.5 0.00% 0.00% 0.25% Highest weighted intensity is Gaze
0 0 0 0.0% 0.0% 0.0% 0.2 0.3 0.5 0.00% 0.00% 0.00% No Anomaly   

193 65 154 32.2% 10.8% 25.7% 0.2 0.3 0.50 6.43% 3% 13%

Highest weighted intensity is Gaze, 
second highest is Health and 
lowest intensity is Telematics
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other words, if the driver is distracted, the intensity of the unsafe situation is worse than having 

Health anomaly and Telematics anomaly.  

In a nutshell, we gather signal data from three data streams – Distraction, Health and 

Telematics. After we feature extract the data sets, we normalize the data. We then run matrix profile 

on the data to identify significant changes to the subsequent data attributes which would signify 

the anomalies. We run Association Rule Mining with Classification based Association to find the 

relationships between the data attributes from heterogeneous scaled datasets. We run ARM on 

Signal data, then compare the overlaps on MP data as well as on labelled data. All the key finding 

and relationships are validated by J48 Decision Trees and its Random Forrest Classifier and ROC 

with labelled data. We then apply the computational models with the collected driver data to map 

the intensity of the anomalies with Safe vs. Unsafe conditions. This is how the ground truth of 

anomalous driving state from the observation and recorded video of subject drivers are fully 

validated by the data analysis.  

4.3 Summary of Results 
 
Following Table 28 summarizes the overall results: 

Table 28: Result Summary 

Index Methods Results 
1 Cluster 

• Telematics data can be distinctly 

clustered as Unsafe, Safer, Safe & 

Safest driving state 

• Heterogeneous data streams – 

Distraction, Health and Telematics may 

not be distinctly clustered as Unsafe, 

Safer, Safe & Safest driving state     
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2 ARM with Normalized Signal Data 
• Distraction may imply Tension 

(Anomalous Blood Pressure) 

[Distraction may cause health anomaly] 

• Distraction may or may not have an 

impact on Acceleration [Distraction 

often cause Telematics to go outside of 

normal range, not always] 

• Distraction may impact Speed 

[Distraction may cause the Telematics 

to go low or high]   
3 ARM with Signal Data with (+-)1 

Standard Deviation as Anomaly • Distraction may imply Tension (High 

Heartbeat) [Distraction may cause 

Health anomaly] 

• Distraction may imply Tension 

(Anomalous Blood Pressure) 

[Distraction to Health] 
4 ARM with Normalized Matrix 

Profile Data • Distraction may imply Tension (High 

Blood Pressure) [Distraction to Health] 

• Distraction may imply Emotion 

(Anomalous EDA) [Distraction to 

Health] 

• Distraction & Tension may or may not 

have impact on Acceleration 

[Distraction & Health may not cause  

Telematics to go out of norm] 
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• Distraction & Tension may impact 

Speed [Distraction & Health to 

Telematics] 
5 ARM with Matrix Profile Data with 

(+-)1 Standard Deviation as 
Anomaly 

• Distraction may imply Tension (High 

Heartbeat) [Distraction to Health] 

• Distraction may imply Tension 

(Anomalous Blood Pressure) 

[Distraction to Health] 

• Distraction may imply Emotion 

(Anomalous EDA) [Distraction to 

Health] 

• Distraction & Tension may impact 

Acceleration [Distraction & Health to 

Telematics] 

• Distraction may impact Speed 

[Distraction to Telematics] 

6 Classification on Labelled Data  
J48 Decision Tree & Random 
Forrest 

• High Eye Gaze Data -> Normal BVD -> 

Low AirFuelRatio -> Low EDA 

High Eye Gaze Data -> Normal BVD -> 

Normal AirFuelRatio -> High Speed 

[Highly distracted driver may drive fast 

which is not safe] 

• High Eye Gaze Data -> Normal BVD -> 

Normal AirFuelRatio -> Low Speed 

[Highly distracted driver may also drive 

very slow which may not be safe either] 
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• High Eye Gaze Data -> Normal BVD -> 

Normal AirFuelRatio -> Normal Speed -

> High EAD 

[High distraction can cause the tension 

to go high] 

7 Random Forrest and ROC • For Telematics attribute Speed, we 

notice the accuracy on MP data for 

Normal, Low Anomalous values and 

High Anomalous values are high 78%, 

75% and 82% respectively 

• For Annotated Label on MP Data, area 

under the curve shows high level of 

accuracy with 83% True Positive 

• On the contrary, the Annotated Label on 

Signal Data, area under the curve shows 

moderate level of accuracy with 72% 

True Positive 

• Therefore, our study shows more 

accurate results on MP data than signal 

data 

8 Heterogeneous Data Streams 

Analysis 

• Combinations of Telematics data stream 

(T), Eye tracking data stream (D), 

Driver vital health (H) help detect 

anomalies  

9 Prevalent Anomalous Data Stream 

Analysis  

• Among three data streams, Distraction 

data stream shows and detects the most 
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prevalent and impactful anomalies that 

indicates the most unsafe driving 

condition 

10 Scale of Anomaly Analysis • Among the three data streams, 

Distraction with minimal and small 

duration may have bigger impact than 

moderate and longer duration of 

anomalies on Health and telematics  
 

In summary, we develop a methodology to discover driving patterns using vehicular data and 

identified anomalous driving states. We utilize telematics data, Eye Gaze distraction data and 

health vital data to detect anomalies. We discover deviations from baseline driver behavior to 

detect anomalies and attribute the anomalous behavior to distraction, driver health, and vehicular 

telematic states. Even though the three data streams may individually help detect anomalous 

driving behavior, distraction data shows the most effective result for anomalies. The scale of 

anomaly is also very critical where a very short span of distracted driving could have a huge impact 

on safety than a moderate anomaly in both health and telematics.  
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CHAPTER 5 
 
 

SUMMARY 
 

Our study shows an anomaly detection mechanism for human behavior on heterogeneous 

temporal data streams. We focus on driver behavior to study anomalies on smart cars to identify 

unsafe circumstances. Following section talks about the conclusion of our research and its open 

challenges, direct impact of this research in real world and finally the future work of this study.    

5.1 Conclusion and Open Challenges 
 

In our research on driver behavior, we have identified a model to detect anomalous condition 

of the vehicle and also detect driver’s anomalous behavior in near real time. We have applied 

clusters to baseline driver’s driving condition as a whole on Telematics data and compared the 

baseline with driver’s new driving data. We have also learned association rules between the key 

attributes of the vehicle and its drivers using Apriori Association Rule mining and done predictive 

analytics based on the rules. We combined few key heterogeneous data streams such as Distraction 

Data, Health Data, and Telematics Data,  and identified the relationships and the similarities among 

them when it comes to driving anomalies. To validate the results, we compared the anomalies 

between signal data and matric profile data. We perform clustering on the heterogeneous data 

streams and found out that Clustering is not the best method of identifying safe and unsafe drivers. 

Then we applied machine learning methodologies like ARM, Decision Trees, ROC Curve to 

validate the key rules among different attributes from different data streams. These rules would 

apply to drivers in near real time to avoid any anomalous situation on the road.    

In our study, we have used a limited number of drivers and their real-world driving data. We 

hoped for more driver population to study the model. We faced several challenges to capture real 
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world driving data. The biggest challenge was to have the subject drivers drive on the real road 

while we monitor and capture the driver data. First of all, it was very intimidating for the drivers 

to wear all the monitoring gadgets like the Tobii eyeglasses with the wire connected to the laptop 

in the back of the car. Moreover, wearing the E4 wristband to monitor health data as well as 

connecting their automobiles with OBD2 device as well as running the mobile application to 

capture speed, turning behavior, break, acceleration, etc. It was rather difficult to capture the real 

driving behavior as all our subject drivers became very cautious within the situation. Few drivers 

backed out with the experiments in the middle of the study. With all these limitations, we still 

wanted to capture the real-world data with very realistic scenarios. Therefore, we did not use any 

kind of simulators which could be very expensive and yet artificial. In the future, we can minimize 

the intimidation of the drivers by using an external camera to monitor the eye movements instead 

of wearing the eyeglasses with wires. Moreover, we have very light weighted fit beats or actual 

smart watches that mostly have the same data capture as E4.       

This research has given us a strong platform to alert drivers from the possibility of harms from 

cyber threats, engine malfunction and/or driver’s reckless and/or distracting driving behavior. The 

timeliness of this alert could be an issue we need to work on. Timing is of essence and it is critical 

to identify anomalous behavior in real time, so we can protect the monitoring driver as well as 

his/her surroundings on the road.  

Our research on driver behavior focuses on a time series of a day. However, we have other 

key attributes that may directly impact the driver behavior on the road, such as age & gender of 

the driver, road condition, types of car, etc. This research gives us a model to identify anomaly on 

human behavior based on few key attributes. Extensive model will be derived based on this base 

model when we add other impactful attributes as mentioned above.  
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We have a common theme of studying human behavior for driver behavior anomaly detection. 

As the weakest link, we need to make sure human can identify the anomaly on time and safeguard 

automobile from any kinds of life-threatening incidents.     

Following Table 29 shows the Summary of our findings: 

Table 29: Summary of Findings & Contribution 

Index Findings & Contribution 
1 Overlapping anomalies across multi-scale heterogeneous data streams lead to a very 

unsafe driving condition 

2 Even a single domain anomaly may also cause unsafe driving condition if the impact 

of the anomalies for that domain is high.   

3 Distraction & Telematics by itself are good indicators of anomalous driving behavior 

4 Vital Health by itself is not a good indicator of anomalous driving behavior 

5 Telematics data can be distinctly clustered as Unsafe, Safer, Safe & Safest driving 

state 

6 Multi-source data streams – Distraction, Health and Telematics together provide good 

indicators of anomalous driving state 

7 Distraction is a key identifier of anomaly 

8 Distraction à Health (Distraction may imply anomalous vital health)  

9 Distraction à Telematics (Distraction may imply anomalous Telematics state) 

10 Distraction + Health  à Telematics (Distraction & Health may imply anomalous 

telematics state of the vehicle)  

11 Health  à Telematics (weak rule - Relationships between Health and Telematics 

could be very weak) 
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12 Scale of anomaly for distraction is very small and yet very impactful 

13 Tolerance of (Anomalous Telematics > Anomalous Health > Anomalous Gaze) 

Tolerance of (AT > AH > AG)       

14 Impact of (Change of Anomaly for Gaze > Change of Anomaly for Health > Change 

of Anomaly for Telematics) 

15 Intensity	of	(𝝏G > 𝝏H > 𝝏T)   

16 Clusters on multi-scale data streams are not good indicators of anomaly detection 

unlike the clusters on Telematics data stream 

 
Our results from the subject drivers show both weak and strong rules that give us a perspective 

of relativity on different anomalous attributes. We notice anomalous vital health impacting 

telematics to be a weak rule as ill-health may not usually impact mechanical state of the 

automobile. On the other hand, Distraction is a dominating factor to impact both telematics and 

vital health and hence shows a strong rule for identifying the driver behavior anomaly.  

 

5.2 Direct Impact of this Research 
 

We would like to show a direct application of our research on Driver Behavior and vehicles. 

We have developed a mobile application called “School Bus Connect” for School buses and 

children who ride the bus. K-12 bus riders’ safety depends on bus drivers’ driving behavior and 

the condition of the bus. We monitor driver’s behavior in real time and any deviation from the 

associated speed limit, sharp turns or abrupt acceleration, attention of the road as well as deviation 

from sound health conditions, we raise alerts to the bus driver on the tablet application as well as 

send messages to the school administrator’s workstation. This mobile platform also connects to 

the OBD2 device via Bluetooth and monitor vehicle’s mechanical state like the tire pressure, 
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Engine temperature, RPM etc. in real time so the system can raise alerts for any anomalous state 

on the vehicle. We monitor driver behavior by focusing on their speed, sharp turns, abrupt 

acceleration, abrupt deceleration, distraction, health status and weather condition that may impact 

driver’s ability to drive safely. We raise alerts to the bus driver and the school transpiration in case 

of anomalous behavior. We raise mechanical alerts for tire pressure, in general, we monitor the 

operator’s behavior and the condition of the vehicle. We are in the process of adding two more 

attributes that we have studied here to make it more comprehensive and safer. We are adding health 

vital monitoring wristbands to the drivers to read their health state in real time and raise alert in 

case we notice anomalous states that are unsafe to continue driving. We are also adding a 

distraction monitoring device (camera) that tracks drivers’ pupil and determine if they are looking 

on the road or distracted with something else. The school transportation authority would monitor 

the drivers in real time from their central workstations in the back office and tackle anomalous 

situations accordingly.   

Another good application of our research would be to install this system to public 

transportation like public busses or even trains to monitor the operator’s behavior and the condition 

of the vehicles to safeguard the citizens from any sort of terrorist activities and communicate to 

the homeland security and the law enforcement authority instantaneously.  

Several auto insurance companies use telematics data to determine the driving behavior of the 

drivers on a regular basis to determine their risk factors for insurance. For instance, they monitor 

drivers’ speed, abrupt acceleration, abrupt deceleration, braking patterns, etc. to determine the 

driver behavior. However, insurance companies are missing two other major factors that impact 

driver behavior which are distraction and health condition that we have added in our study here. 

Driving behavior and driving state depend on driver’s attention and focus on the road as well as 
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his/her health condition. A distracted driver would not drive as smooth as an attentive driver on 

the road. Likewise, a tensed and ill driver would not be able to drive as safe as a healthy driver on 

the road. Consequently, our research brings in a more holistic approach for identifying drivers’ 

anomalous behavior.        

5.3 Future Work 
 

We have proposed a model to detect driver’s adverse behavior along with the vehicle’s 

anomalous condition. This base model considers the time of the day the driver is driving along 

with the driver’s health condition and distractions. Driver behavior also depends on the age, 

gender, mood, the experience of the driver, the road condition as well as the traffic condition, the 

environment like the weather condition and the type of the car. We like to bring in these impactful 

attributes into our model of anomaly detection, and safeguard drivers and the passengers from any 

kind of cyber threat, and/or adverse situation. We, the consumers, love connected smart cars. The 

smart car industry will be worth $43 billion by 2023 [53].  With all the sensors and intelligent 

systems around the car have the computing power of 20 personal computers with 100 million lines 

of computer code and process 25 gigabytes of data per hour. All these sophistications bring in the 

vulnerabilities of car control hacks, smart alarm hacks, as well as insecure apps embedded in our 

cars [53]. If the car becomes a victim of these cyber-attacks, the driving state would automatically 

shift to an anomalous one and our model of identifying anomalies in driver behavior and driver 

state would assist detecting the unsafe state and help take proper actions in a timely manner. We 

will leverage the common theme of time series, binning, Clusters, ARM, Matrix Profile, Decision 

Trees and ROC to correlate the proposed models for automobile related threat detection with the 

addition of driver’s mood, age, weather, road condition and traffic condition. Considering these 

extra attributes will make the anomaly detection complete and driving condition extremely safe. 
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For single stream cluster that works well to find the anomalies for that particular domain only, we 

will utilize Silhouette Coefficient to measure the quality of the cluster.  

We need to make sure the driver data collection tools and sensors are less invasive or less 

intimidating for the drivers. In our study, several drivers were reluctant to wear Tobii Eyeglasses 

with wires connected to the laptop. In our future work, we can capture the same distraction data 

with more sophisticated micro camera installed on the dashboard and/or on the windshield of the 

automobile monitoring the eye movements for the driver for distraction data. Likewise, instead of 

the E4 wristband, the subject can wear the regular iWatch (Apple Watch) that would capture the 

same types of data attributes. OBD2 reading for Telematics data could also be done in the future 

with built-in telematics device connecting to the software with a Bluetooth connection without any 

wire. These seamless data collection strategies would not only make the subjects much more 

accepting to do the actual experiments but will also make it much easier in the real world for the 

drivers to adopt with this technology.           

This human behavioral anomaly detection model can be applied to any heterogeneous data 

streams outside of these attributes we used in our research. We can also bring in the predictive 

analytics aspect for human behavior to predict any potential unusual activity. The result has to be 

quick and almost real time to alert and safeguard the drivers from any kinds of anomalous situation. 

Our model of detecting the anomalous driver behavior and anomalous driving state is not always 

real time and hence, as future work, we need to optimize/enhance and come up a with a real time 

anomaly detection system using our model to immediately take action and safeguard the drivers 

from any sort of unsafe driving condition. This model can also predict and/or protect from any 

kind of cyber-attack on the transportation. Lastly, the research can be modeled for not only the 
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private transportation but also for public transportation like buses, trucks, trains and/or any kinds 

of goods transferring vehicles for both short and long distance.  
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