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1 Abstract

This paper aims to overcome a fundamental problem in the theory and application of deep neural

networks (DNNs). We propose a method to solve the local minimum problem in training DNNs

directly. Our method is based on the cross-entropy loss criterion’s convexification by transforming

the cross-entropy loss into a risk averting error (RAE) criterion. To alleviate numerical difficulties,

a normalized RAE (NRAE) is employed. The convexity region of the cross-entropy loss expands as

its risk sensitivity index (RSI) increases. Making the best use of the convexity region, our method

starts training with an extensive RSI, gradually reduces it, and switches to the RAE as soon as

the RAE is numerically feasible. After training converges, the resultant deep learning machine is

expected to be inside the attraction basin of a global minimum of the cross-entropy loss. Numerical

results are provided to show the effectiveness of the proposed method.

2 Introduction

The problem, called the local minimum problem in training DNNs, has plagued the DNN commu-

nity since the 1980s1, 2. DNNs trained with backpropagation are extensively utilized to solve vari-

ous tasks in artificial intelligence fields for decades3–7. The computing power of DNNs is derived

through its particularly distributed structure and the capability to learn and generalize. However,

the application and further development of DNNs have been impeded by the local minimum prob-

lem and have attracted much attention for a very long time. DNNs has recently been extensively

studied to represent high-level abstractions. Training DNNs involves significantly intricate diffi-

culties, prompting the development of unsupervised layer-wise pre-training and many ingenious

heuristic techniques. Although such methods and techniques have produced impressive results in

solving famous machine learning tasks, more serious problems originated from the essence of local

minimum in high-dimensional non-convex optimization remain8–11.

A primary difficulty of solving the local minimum problem lies in the intrinsic nonconvexity of

the training criteria of the DNNs12–16, which usually contain a large number of non-global local

minima in the weight space of the DNNs. As the standard optimization methods perform a lo-

cal search in the parameter (e.g., weight) space, they cannot consistently guarantee the resultant

DNN’s satisfactory performance even with many training sessions. Although an enormous amount

of solutions have been developed to optimize the free parameters of the objective function for con-

sistently achieving a better optimum, these methods or algorithms cannot solve the local minimum

problem essentially with the intricate presence of the non-convex function17–22.
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The most standard approach to optimize DNNs is Stochastic Gradient Descent (SGD). There are

many variants of SGD, and researchers and practitioners typically choose a particular variant em-

pirically. While nearly all DNNs optimization algorithms in popular use are gradient-based, recent

work has shown that more advanced second-order methods such as L-BFGS and Saddle-Free New-

ton (SFN) approaches can yield better results for DNN tasks2315. Second-order derivatives can be

addressed by GPUs or batch methods when dealing with massive data, SGD still provides a robust

default choice for optimizing DNNs. Instead of modifying the network structure or optimization

techniques for DNNs, we focused on designing a new error function to convexify the error space.

The convexification approach has been studied in the optimization community for decades but

has never been seriously applied within deep learning. A well-known methods is the LiuFloudas

convexification method1, 24. LiuFloudas convexification can be applied to optimization problems

where the error criterion is twice continuously differentiable, although determining the weight α of

the added quadratic function for convexifying the error criterion involves significant computation

when dealing with massive data and parameters. Following the same name employed for deriving

robust controllers and filters24–26.

To alleviate the local minimum problem’s fundamental difficulty in training DNNs, this paper

proposes a series of methodologies by applying convexification and deconvexification to avoid

non-global local minima and achieve the global or near-global minima with satisfactory optimiza-

tion and generalization performances. These methodologies are developed based on a normalized

risk-averting error (NRAE) criterion. The use of this criterion removes the practical difficulty of

computational overflow and ill-initialization that existed in the risk-averting error criterion, which

was the predecessor of the NRAE criterion Furthermore, it has benefits to effectively handle non-

global local minima by convexifying the non-convex error space. The method’s effectiveness based

on the NRAE criterion is evaluated in training multilayer perceptrons (MLPs) for function approx-

imation tasks, demonstrating the optimization advantage compared to training with the standard

mean squared error criterion. Moreover, numerical experiments also illustrate that the NRAE-

based training methods applied to train DNNs, such as convolutional neural networks and deep

MLPs, to recognize handwritten digits in the MNIST dataset achieve better optimization general-

ization results than many benchmark performances. Finally, to enhance the generalization of the

DNNS obtained with the NRAE-based training, a statistical pruning method that prunes redundant

connections of the DNNS is implemented and confirmed for further improving the generalization

ability of the DNNs trained by the NRAE criterion.

3 Risk-Averting Error

Given training samples X, y = (x1, y1), (x2, y2), ..., (xm, ym), the function f(xi,W ) is the learning

model with parameters W. The cross-entropy loss function J(W ) is defined as:

J
(

f (xi,W ) , yi
)

=
1

m

m
∑

i=1

[

yi log f (xi,W ) + (1− yi) log
(

1− f(xi,W )
)

]

(1)
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The Risk-Averting Error criterion (RAE) corresponding to the L(W ) is defined by

RAEp

(

f (xi,W ) , yi
)

=
1

m

m
∑

i=1

e
λp

[

yi log f(xi,W )+(1−yi) log(1−f(xi,W ))
]

(2)

=
1

m

m
∑

i=1

[

f (xi,W )yi
(

1− f(xi,W )
)(1−yi)

]λp

(3)

λ is the convexity index. It controls the size of the convexity region.

Because RAE has the sum-exponential form, its Hessian matrix is tuned exactly by the convexity

index λp. Given the Risk-Averting Error criterion RAEp(p ∈ N+, which is twice continuous

differentiable. Jp(W ) and Hp(W ) are the corresponding Jacobian and Hessian matrix. As λ → ∞,

the convexity region monotonically expands to the entire parameter space except for the subregion

S := {W ∈ Rn|rank(Hp(W )) < n,Hp(W < 0)}.

Intuitively, the use of the RAE was motivated by its emphasizing large individual deviations in

approximating functions and exponentially optimizing parameters, thereby avoiding such large

individual deviations and achieving robust performances. When the convexity index λ increases to

infinity, the convexity region in the parameter space of RAE expands monotonically to the entire

space except for the intersection of a the finite number of lower-dimensional sets. The number of

sets increases rapidly as the number m of training samples increases. Roughly speaking, larger

λ and m cause the size of the convexity region to grow larger respectively in the error space of

RAE27.

When λ → ∞, the error space can be perfectly stretched to be strictly convex, thus avoid the local

optimum to guarantee a global optimum. Although RAE works well in theory, it is not bounded

and suffers from the exponential magnitude and arithmetic overflow when using gradient descent

in implementations.

4 Normalized Risk-Averting Error

NRAEp

(

f (xi,W ) , yi
)

=
1

λp
logRAEp

(

f (xi,W ) , yi
)

=
1

λp
log

1

m

m
∑

i=1

[

f (xi,W )yi
(

1− f(xi,W )
)(1−yi)

]λp

(4)

If RAEp(f(xi,W ), yi) is convex, it is quasiconvex. log function is monotonically increasing,

so the composition logRAEp(f(xi,W ), yi) is quasi-convex. log is a strictly monotone function

and NRAEp(f(xi,W ), yi) is quasi-convex, so it shares the same local and global minimizer with

RAEp(f(xi,W ), yi)
27.
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The convexity region of NRAE is consistent with RAE. To interpret this statement in another

perspective, the log function is a strictly monotone function. Even if RAE is not strictly convex,

NRAE still shares the same local and global optimum with RAE. If we define the mapping func-

tion f : RAE → NRAE, it is easy to see that f is bijective and continuous. Its inverse map f−1 is

also continuous, so that f is an open mapping. Thus, it is easy to prove that the mapping function f

is a homeomorphism to preserve all the topological properties of the given space. The above the-

orems state the consistent relations among NRAE, RAE and cross-entropy loss. It is proven that

the greater the convexity index λ, the larger is the convex region is. Intuitively, increasing λ cre-

ates tunnels for a local-search minimization procedure to travel through to a good local optimum.

However, we care about the justification on the advantage of NRAE.

Given training samples {X, y} =
{

(x1, y1), (x2, y2), ..., (xm, ym)
}

and the model f(xi,W ) with

parameters W . If λp ≥ 1, p ∈ N+, then both RAEp(f(xi,W ), yi) and NRAEp(f(xi,W ), yi)
always have the higher chance to find a better local optimum than the cross-entropy error due to

the expansion of the convexity region.

Because NRAEp(f(xi,W ), yi) is quasi-convex, sharing the same local and global optimum with

RAEp(f(xi,W ), yi), the above conclusions are still valid.

Roughly speaking, NRAE always has a larger convexity region than the cross-entropy error in

terms of their Hessian matrix when λ ≥ 1. This property guarantees the higher probability to

escape poor local optima using NRAE. In the worst case, NRAE will perform as good as standard

cross-entropy error if the convexity region shrinks as λ decreases or the local search deviates from

the ?tunnel? of convex regions. More specifically, NRAEp(f(xi,W ), yi) approaches the standard

Lp-norm error as λp → 0 and approaches the minimax error criterion in fWαmax(W ) as λp → ∞.

5 Learning Methods

Under some regularity conditions, the convexity region of J(W ) expands monotonically as λ in-

creases. To make advantage of a larger convexity region of J(W ) at a greater λ and avoid computer

overflow, we are tempted to minimize NRAEp

(

f (xi,W ) , yi
)

at a λ as large as possible. How-

ever, at a very large λ, the training process is extremely slow or grinds to a halt, which phenomenon

is called training stagnancy:

minimizing fWαmax(W ) for λ ≫ 1 minimizes virtually the largest fWαmax(W ). The architecture

of the deep learning machine is therefore redundant for the approximation. When all the weights

are adjusted to achieve the approximation, they tend to become similar or duplicated, thus causing

rank deficiency, violating the regularity conditions required for convexification of J(W ).

In the Adaptive Normalized Risk-Avering Training (ANRAT) approach2, 11, 27, we learn λ adap-

tively in error backpropagation by considering λ as a parameter instead of a hyperparameter. The

learning procedure is standard batch SGD. We show it works quite well in theory and practice. The
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loss function of ANRAT is

l(W , λ) =
1

λp
log

1

m

m
∑

i=1

[

f (xi,W )yi
(

1− f(xi,W )
)(1−yi)

]λp

+ a‖λ‖−q (5)

We also use a penalty term a ‖λ‖−q to control the changing rate of λ. While minimize the NRAE

score, small λ is penalized to regulate the convexity region. a is a hyperparameter to control

the penalty index. αi(W) = f(xi,W)yiλ
p
−1, βi(W) = (1 − f(xi,W))λ

p
−λpyi−1 and γi(W) =

f (xi,W )yi
(

1− f(xi,W )
)(1−yi)

. The first order derivatives on weight and λ are

dl(W,λ)

dW
=

∑m

i=1 αi(W)βi(W)f(xi,W)(1− f(xi,W))λp(yi − f(xi,W))∂f(xi,W )
∂W

∑m

i=1 αi(W)βi(W)

dl(W,λ)

dλ
=

−p

λp+1
log

1

m

m
∑

i=1

[

f (xi,W )yi
(

1− f(xi,W )
)(1−yi)

]λp

+
1

λp

∑m

i=1 pλ
p−1 log γi(W)γi(W)λ

p

∑m

i=1 γi(W)λp

− aqλ−q−1

(6)

dl(W,λ)

dλ
≈

q

λ
(L− cross entropy error −NRAE) (7)

This training approach has more flexibility. The gradient on λ as the weighted difference between

NRAE and the standard cross entropy error, enables NRAE to approach the cross entropy error by

adjusting λ gradually. Intuitively, it keeps searching the error space near the manifold of the cross

entropy error to find better optima in a way of competing with and at the same time relying on the

standard cross entropy error space. The penalty weight a and index q control the convergence speed

by penalizing small λ. Smaller a emphasizes tuning λ to allow faster convergence speed between

NRAE and cross entropy error. Larger a forces larger λ for a better chance to find a better local

optimum but runs the risk of plateaus and deviating far from the stable error space. q regulates the

magnitude of λ and its derivatives in gradient descent.

This loss function is minimized by batch SGD without complex methods, such as momentum,

adaptive/hand tuned learning rates or tangent prop. The learning rate and penalty weight a are

selected in {1, 0.5, 0.1} and {1, 0.1, 0.001} on validation sets respectively. The initial λ is fixed at

10. We use the hold-out validation set to select the best model, which is used to make predictions

on the test set. All experiments are implemented quite easily in Python and Theano to obtain GPU

acceleration22. The MNIST dataset? consists of hand written digits 0 − 9 which are 28 × 28 in

size. There are 60, 000 training images and 10, 000 testing images in total. We use 10000 images

in training set for validation to select the hyperparameters and report the performance on the test

set.We test our method on this dataset without data augmentation.
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6 Results and Discussion

On the MNIST dataset we use the same structure of LeNet5 with two convolutional max-pooling

layers but followed by only one fully connected layer and a densely connected softmax layer. The

first convolutional layer has 20 feature maps of size 5×5 and max-pooled by 2×2 non-overlapping

windows. The second convolutional layer has 50 feature maps. with the same convolutional and

max-pooling size. The fully connected layer has 500 hidden units. An l2 prior was used with the

strength 0.05 in the Softmax layer. Trained by ANRAT, we can obtain a test set error of 0.56%,

which is the best result we are aware of that does not use dropout on the pure ConvNets. We

summarize the best published results on the standard MNIST dataset in Table 1.

Method Error %
ConvNets + ANRAT 0.56

ConvNets + ANRAT + dropout 0.33

Table 1: Test set misclassification rates of the best methods that utilized convolutional networks

on the original MNIST dataset using single model.

7 Conclusion

Six advantages of the proposed method:

• no need for repeated trainings (or consistent performances among different training sessions

with different initialization seeds);

• applicability to virtually any data fitting;

• conceptual simplicity and math-ematical justification;

• possibility of its use jointly with other training methods;

• a smaller DLM with the same or similar performance;

• a same-architecture DLM with a better performance.
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