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Abstract. Recognizing that two Semantic Web documents or graphs
are similar, and characterizing their differences is useful in many tasks,
including retrieval, updating, version control and knowledge base editing.
We describe a number of text based similarity metrics that characterize
the relation between Semantic Web graphs and evaluate these metrics
for three specific cases of similarity that we have identified: similarity in
classes and properties used while differing only in literal content, differ-
ence only in base-URI, and versioning relationship. When one graph is
judged to be a version of another, we generate a “delta” consisting of of
triples to be added or removed from one graph to make them equivalent.
This method takes into account the text of the RDF graph’s serializa-
tion as a document, rather than relying solely on the document URI. We
have prototyped these techniques in a system that we call Similis and
evaluated its performance on several tasks using a collection of graphs
from the archive of the Swoogle Semantic Web search engine.
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1 Introduction and Motivation

It is desirable for a web crawler to be able to detect duplicates so that we can
avoid crawling such pages. Duplicate and near duplicate pages increase the size
of search engine indexes and reduce the quality of search results. The problem
of near duplicate detection is well known in the field of information retrieval.
Manku et al. [18] present a good survey.

The same problem is faced by Semantic Web search engines. Effective tech-
niques are needed to determine similar Semantic Web documents on the web.
Our work was motivated by the near duplicate detection studies in information
retrieval. Everyday web search engines benefit from these techniques by being
able to provide features like ”similar” results for every result generated in re-
sponse to a search query.

We sought to use the techniques from this body of work, in the Semantic
Web, thereby being able to provide similar functions for a Semantic Web search
engine. These techniques could also be used to compare the graphs returned by
a SPARQL query run against a knowledge base on two different days.



The domain of Semantic Web documents, and more generally, that of Se-
mantic Web graphs, is more complicated than that of plain text documents. In
a text document, the order of the statements is essential to conveying mean-
ing, whereas in a Semantic Web document, the statement ordering does not
dictate the meaning of the content. As a result, equivalent Semantic Web doc-
uments may have completely different statement ordering. Also, in text based
near-duplicate detection, the meaning of the content is not a part of the problem,
whereas in case of Semantic Web documents, the meaning plays a part in the
problem. It is possible to have two different Semantic Web documents, which
may become identical once we compute their deductive closure. In addition to
statement ordering, we also need to contend with blank nodes in Semantic Web
graphs.

We explore three different ways in which a pair of Semantic Web graphs can
be similar to each other (identified in section 2). We define text-based similarity
metrics to characterize the relation between them. As a part of this, we identify
whether they may be different versions of the same graph. Furthermore, if we
determine a versioning relationship between a candidate pair, then we generate
a delta between them.

These methods will enable a Semantic Web search engine to return links
to documents that are similar to each search result, in response to a query. In
addition, it will be able to generate in real time, a delta between the two results
if there is a versioning relationship between them. We explain the meaning of
“similarity” and “versioning” of Semantic Web graphs shortly.

Consider another use case: there have been a lot of discussions on how linked
data consumers could keep track of changes on a Linked Open Data (LOD)
dataset1. A service like pingthesemanticweb2 allows publishers to register a newly
created or modified document. The service then pushes a notification to inter-
ested consumers.

The problem with this model is that all publishers will have to register their
changes with the service, but the advantage is that the updates are near real
time. Imagine a Semantic Web search engine that can push updates to its con-
sumers. The updates will be sent out when a new version of a document is
discovered, along with a representation of the change between the two versions.
These updates are not real time, but the advantage is that the changes will be
discovered automatically by the search engine crawler instead of having each
publisher register with the service. Updates can also be sent when a document
similar to the one in which a consumer is interested in, is discovered. We use
a collection of Semantic Web graphs from the archive of the Swoogle Semantic
Web search engine to evaluate our approach on several tasks. In the following
description, we use the terms ’Semantic Web document’ (SWD) and ’Semantic
Web graph’ (SWG) interchangeably.

1 http://esw.w3.org/DatasetDynamics
2 http://pingthesemanticweb.com



2 Semantic Web Graph Similarity

The archive of the Swoogle search engine [8] shows several examples of how on-
tologies and RDF documents evolve over time. For example, there are several
copies of the wine ontology [22] found on the web (developed by the W3C’s OWL
Working Group, and used in the OWL Web Ontology Language Guide). Search-
ing for “wine” on Swoogle returns several results including fourteen different
near-duplicate copies of the wine ontology. Amongst themselves, they represent,
two different versions of the ontology. We observed three different base-URIs
amongst these, distributed into groups of three, three and eight results.

We could also have Semantic Web documents (SWDs) that use the same
classes and properties, but contain different instance data in terms of literals
e.g. online chat logs from forums or web services that generate FOAF[2] profiles
from user entered information. We could have RDF documents that differ only
in their serialization formats e.g. n-triples, N3, RDF/XML etc. Thus the same
RDF document expressed in a different serialization format, looks very different
in text. We specifically deal with three types of similarity: similarity in classes
and properties used while differing only in literal content, difference only in
base-URI, and versioning relationship.

3 Related Work

We attempt to identify near duplicate Semantic Web documents that have been
created due to revisions, modifications, splitting, copying and merging of doc-
uments. Manku et al.[18] present a survey of other near duplicate detection
studies. They also describe the design of a near duplicate detection system on a
multi-billion page repository. Paes Leme et al. [15] use Semantic Web technolo-
gies like the RDF serialization to perform schema matching for databases. They
describe the schemas in RDF, containing only class and property definitions us-
ing simple XML schema types. Then the two schemas are matched by matching
the classes and properties defined for both the schemas. Traditional similarity
metrics from the literature are used for this purpose.

There has been some work on the problem of detecting or calculating similar-
ity between Semantic Web graphs, but the applications and use-cases have been
different from ours. Radoslaw et al. [21] describe a framework for computing the
similarity between two arbitrary objects specified as RDF graphs based on simi-
larities of specified object properties. This method requires human configuration
for every pair of graphs to be compared. Hau et al. [11] describe a semantic
similarity measure for web service descriptions in OWL-S. This method is based
on measuring the common information between two objects. This method is spe-
cific to particular ontologies. The authors describe it with respect to OWL Lite
constructs.

Bunke and Shearer [3] present a graph based distance measure that is based
on the maximal common subgraph of two graphs. This method may be suit-
able for computing the similarity between two RDF graphs, but in general, the



algorithms for computing the maximal common subgraph of two graphs are
computationally very expensive [16]. These methods are not suitable for our use
cases. Maedche and Staab [17] present a concept similarity model based on on-
tology terminology and other structural aspects of the ontology. However, this
paper does not evaluate the ontology similarity process. Ehring et al. [9] describe
a framework that aims at comparing concepts across ontologies, and not ontolo-
gies themselves. David and Euzenat [7] present a number of distance measures
for ontology matching and state that simple measures like cosine similarity on a
term-frequency vector give accurate results. This is one of the measures we use
in our study. Carroll [4] explores the equality of two RDF graphs in the light of
the graph isomorphism literature.

There are theoretical and experimental studies which deal with ontology
versioning. Heflin et al. [12] describe a theoretical model for managing multiple
versions of ontologies in a distributed environment. Allocca et al. [1] describe
an approach to identify ontology versioning relations by looking for common
patterns in the URIs, but ignore the content of the ontology. Such heuristic based
methods cannot identify a version of the ontology that may have a different base
URI, because it may be on a different server.

With respect to determining the change between two Semantic Web doc-
uments, Papavassiliou et al [20] propose a change detection language, frame-
work and algorithm. They define a mathematical model for change between two
RDF/S KBs. They enlist the low level changes between the two KBs and map
these to higher level conceptual changes based on detailed rules that they have
proposed. There are no experimental results related to this work. Zeginis et al.
[23] define the type of change operations that are normally used while com-
paring two RDF models, in addition to the semantics of application of these
change operations. They propose the use of a new change operation. This is also
a theoretical work without any experimental results.

Tools like PromptDiff [19] generate the differences between two versions of
the same ontology. It uses a variety of heuristic matchers along with a fixed
point algorithm to apply all of the matchers. Klein et al. [14] describe the kind
of changes possible between two ontology versions and describe a system that
provides support for the versioning of online ontologies. The Graph Update
Ontology [10] is an ongoing effort at creating an ontology to describe an RDF
based diff for RDF graphs.

Thus a lot of past work has focused on comparing ontology versions. We need
methods that could be applied to any Semantic Web document in general. Our
goal is to develop a system that would be able to characterize the relationship
between two SWDs and automatically generate the diffs between them if they
are versions of the same Semantic Web graph. This would require both automatic
detection of similarity, and generation of diff. Such a functionality would enable a
Semantic Web search engine to provide related documents for each search result
generated. Each related document would also be associated with a description
of how this document is related to the one in the result.



document1.nt (input) canonicalized document1.nt (output)

<person:John> <a:livesIn> :x . :g2 <a:hasCapital> :g1 .
:x <a:IsPartOf> ”USA” . :g2 <a:IsPartOf> ”USA” .
<person:John> <a:likes> ”cheese” . <person:John> <a:likes> ”cheese” .
:x <a:hasCapital> :y . <person:John> <a:livesIn> :g2 .

document2.nt (input) canonicalized document2.nt (output)

:a <a:hasCapital> :b . :g2 <a:hasCapital> :g1 .
<person:John> <a:livesIn> :a . :g2 <a:IsPartOf> ”USA” .
:a <a:IsPartOf> ”USA” . <person:John> <a:likes> ”cheese” .
<person:John> <a:likes> ”cheese” . <person:John> <a:livesIn> :g2 .

Table 1. Two Semantic Web documents before and after canonicalization.

4 Problem Statement and Approach

Allocca et al. [1] define versioning as “ontology versioning means that there
are multiple variants of an ontology around and that these variants should be
managed and monitored.” Similarly, we extend this definition to Semantic Web
documents in general. We define two Semantic Web documents as having a
versioning relationship if they are variants of the same Semantic Web graph.
These variants are created due to the dynamic nature of the web.

Problem Definition: Given a collection of Semantic Web graphs in the
form of RDF documents, identify all pairs of documents that are similar to each
other. Characterize the similarity into one or more of the three cases: similarity
in classes and properties used while differing only in literal content, difference
only in base-URI, and versioning relationship. Further, generate a delta between
pairs that have a versioning relationship.

Our input corpus is in the form of a set of RDF documents. Our approach
involves the following steps:

4.1 Convert to n-triples

Two semantically identical RDF graphs can be textually different if their serial-
ization format is different (RDF/XML, n-triples, n3 etc.). Text based similarity
functions are sensitive to the serialization format. Hence we convert all the doc-
uments into a uniform serialization format before comparing them.

4.2 Canonical Representation

Text based comparison methods for SW graphs are affected by blank node iden-
tifiers and statement ordering in a document. Semantic Web graphs may contain
any number of blank nodes. A blank node has an ID whose scope is within the
particular graph; and it can be differentiated from another blank node within
the same graph, but not another graph.

Consider two equivalent Semantic Web graphs (serialized as documents) that
use different blank node IDs (see Table 1). Both the graphs are semantically



equivalent, but have different representations in text. We use the following algo-
rithm that assigns consistent IDs to blank nodes and orders the statements lex-
icographically. It removes non-determinism such as random blank-node IDs and
variable statement ordering and transforms two semantically equivalent graphs
into the same canonical representation. This algorithm is based on Jeremy Car-
roll’s one-step deterministic labelling algorithm [5].

1. foreach triple in graph:
(a) if triple.subject is a BNode:

i. triple.subject← ” ∼ ”
ii. triple.meta.subjectcomment← triple.subject.nodeID

(b) if triple.object is a BNode:
i. triple.object← ” ∼ ”
ii. triple.meta.objectcomment← triple.object.nodeID

2. Sort all the triples in alphabetical order. (Key for the sort is the text repre-
sentation of the triple. Ignore the metadata comments)

3. bTable← new HashTable
4. newID ← : g1
5. foreach triple in sorted(graph):

(a) if triple.meta.objectcomment is not empty:
i. if bTable not containsKey(triple.meta.objectcomment):

A. bTable[triple.meta.objectcomment]← new BNode(newID)
B. increment newID

ii. triple.meta.object← bTable[triple.meta.objectcomment]
iii. delete triple.meta.objectcomment

(b) if triple.meta.subjectcomment is not empty:
i. if bTable not containsKey(triple.meta.subjectcomment):

A. bTable[triple.meta.subjectcomment]← new BNode(newID)
B. increment newID

ii. triple.meta.subject← bTable[triple.meta.subjectcomment]
iii. delete triple.meta.subjectcomment

6. Sort all the triples in alphabetical order. Ignore metadata comments

In essence, this algorithm first removes all blank node identifiers and replaces
them by a special character (tilde). It next sorts all the triples lexicographically,
which provides a deterministic ordering to all the triples. Finally, when we en-
counter a blank node identifier, we look up our bTable table to see if we have
already created a new identifier for it. If so, we replace it by the new identifier.
Otherwise, we create a new identifier in numerical order and make a new entry
into the table before replacing the old identifier with the new identifier.

As can be seen from Table 1, the two input documents have the same con-
tent, but differ only in the order of the triples and the blank node identifiers
used. After running the canonicalization algorithm, both the documents become
identical. We use this method to convert every input document to its canonical
representation, before we process it further for similarity detection. The graphs
are thus transformed into a deterministic serialization format.



Limitation of the Algorithm: Non-Distinctive Triples. The algorithm is
able to correctly rename blank nodes for only those triples, that can be uniquely
identified in the graph even after all blank nodes are treated as equal. Such
triples are called non-distinctive triples[5]. A group of non-distinctive triples
appears the same regardless of the relative ordering of the triples in the group.

For a group of n non-distinct triples,

Fig. 1. Number of Canonical Forms for
SW Graphs

there are n! relative orderings of the
triples. Hence there are n! ways of re-
naming the blank nodes. Additionally,
there may be several such groups. Thus,
for graphs with non-distinctive triples,
a single unique canonical form does
not exist. In order to compare such
graphs, we would have to compare each
of the possible canonical forms for both
graphs. If we have one graph having
k groups of n non-distinctive triples,
and another graph having l groups of
m non-distinctive triples, then the to-
tal number of graph comparisons would
be Θ(m!n!). Our system avoids having
to deal with this combinatorial explo-
sion by throwing an exception when such a case is encountered. We determined
the number of possible canonical forms for each SW document in a collection of
1200 randomly selected RDF documents from Swoogle. The results (as shown
in Fig 1) indicate that only 13% of the RDF documents in the collection don’t
have a unique canonical form and hence cannot be processed by our system.

If blank nodes are in triples with func-

graph 1 graph 2
:b1 ex:fp ex:o1 :g8 ex:fp ex:o1
:b2 ex:ifp ex:o2 :g7 ex:ifp ex:o2
:b3 ex:ifp1 ex:o3 :g4 ex:ifp1 ex:o4

Fig. 2. Functional and inverseFunctional
properties can be used to deduce that
two blank nodes are owl:sameAs or
owl:differentThan.

tional or inverse function properties it
may be possible to deduce that two blank
nodes must refer to the same object or
distinct objects. For example, assume
that ex:fp is an owl:functionalProperty
and ex:ifp is an owl:inverseFunctional-
Property and we have the two graphs
shown in Figure 2. We can conclude that
:b1 owl:sameAs :g8 and :b2 owl:sameAs
:g7. If we know that a property is func-

tion and its inverse is inverseFunctional, then we can also deduce that two blank
nodes are distinct. A real world example might be an identification number that
is assigned to one and only one person. If ex:ifp1 is such a property and we can
prove that eex:03 and ex:o4 are distinct (e.g., if they are different literals), then
we can conclude that : b3 owl:differentThan :g4.



4.3 Reduced Forms

In order to detect the various aspects of similarity, the original graphs are de-
composed into forms where these can be detected by transforming the graphs
triplesto produce a serializable form. We generate the following four reduced
forms from the canonicalized n-triples form (section 4.2):

1. A document containing only the literals from the canonicalized n-triples file.
This reduced form lets us compare only the textual content within a graph,
separated from the rest of the graph.

2. A document with all the literals replaced by the empty string3. This reduced
form lets us compare only the classes and properties used, regardless of the
literal content.

3. A document that has the base-URI of every node replaced by the empty
string. This form lets us compare only the local names of the classes and
properties used in both the graphs. This form includes the literal content of
the graph.

4. A document where all the literals and the base-URI of every node are re-
placed by the empty string. This reduced form is a combination of reduced
forms two and three. It has only the local names of classes and properties
used, and all the literal content is removed. This form is used to do a com-
parison of two Semantic web graphs with respect to their non-literal content.

Thus, each Semantic Web graph has a canonical representation, and four reduced
forms i.e. five forms in all.

In our study, all the Semantic Web graphs are serialized as documents which
are canonicalized and converted into reduced forms. This allows us to use text
based similarity measures that are used in the field of information retrieval. Dif-
ferent kinds of metrics are defined depending on the kind of similarity we are
trying to measure, such as structural similarity with respect to classes and prop-
erties used, or textual content similarity, or both. For a definition of similarity
measures, refer to [15].

We use the following measures:

Jaccard similarity and containment : The well known Jaccard similarity
metric measures the overlap between two sets. The Jaccard similarity between
two sets A and B is defined as:

jaccard(A,B) =
|S(A) ∩ S(B)|
|S(A) ∪ S(B)|

(1)

This quantity ranges between 0 (completely different) and 1 (identical).
Containment of set A in set B is defined as:

containment(A,B) =
|S(A) ∩ S(B)|
|S(A)|

(2)

3 Another viable approach is to replace each literal string by its XSD data type



It should be noted that the containment measures is not a similarity measure,
since it is not symmetric.

We first extract character 4-grams from each document and construct sets
of character n-grams. These sets are then used to compute the measures as
indicated above.

Whereas the Jaccard measure indicates the similarity between two sets of
n-grams, the containment measure indicates whether one set of n-grams is con-
tained within the other: 0 indicating no containment and 1 indicating complete
containment. We use this containment measure to determine whether one Se-
mantic Web graph is an older/newer version of a similar graph. A high value
for both Jaccard and containment metrics indicates a strong possibility of a
versioning or equivalence relation between two.

Cosine Similarity between semantic features : Each Semantic Web docu-
ment is represented as a vector of terms. These terms are the subject, predicate,
and object of the triples appearing in the Semantic Web document. Consider G
is the set of SWDs and Γ is the set of terms appearing in these SWDs, then
a Semantic Web document vector containing the terms Γj = (t1, t2, ..., tn) is

defined as
−→
Vj = (γ1t1, γ2t2, ...γntn) where each γi represents the weight of the

term ti ∈ Γj .
To construct this vector, the non-blank, non-literal nodes from each SWD

are extracted and their term-frequency (TF) in the SWD is used as the feature
weight. Two vectors are generated for each SWD: one using the terms as the
features, and another using only the local-names of the terms (i.e. ignoring the
base-URI). The cosine similarity between two vectors is defined as:

similarity(A,B) = cos(θA,B) =

−→
A.
−→
B

‖
−→
A‖‖
−→
B‖

(3)

The cosine similarity metric indicates similarity in classes and properties used.

Charikar’s Simhash : This fingerprinting technique was developed by Charikar
[6]. It is a Locality Sensitive Hashing [13] method which has a property that
simhash fingerprints of similar documents are mapped close together, i.e. they
differ in a small number of bit positions. Hence in order to find whether two
documents are similar to each other, we simply compute their simhashes and
determine the Hamming distance between them. If the Hamming distance is
smaller than a pre-determined threshold, then we can conclude that the two
documents are similar to each other. Note that the hamming distance measure
is in fact a distance metric (refer to [7]), instead of a similarity metric. The basic
idea behind the method is to compute ‘sketches’ of original documents such that
the similarity between two sketches can provide an indication of the similarity
between the original documents. The method essentially maps an n-dimensional
feature vector into a k-dimensional bit vector, where n >> k.



It should be noted that a single similarity measure presents only a part of
the complete picture. Two graphs may be different from each other in more than
one way. Hence it may be necessary to compute multiple metrics between them
to understand the complete nature of the similarity or difference.

4.4 Pairwise Computation of Metrics

Given an input of Semantic Web documents, we need to find all pairs that are
similar to each other. The total number of metrics computed for each pair of
SWDs is 17: two kinds of cosine similarity (as already mentioned) and three other
metrics for each reduced form pair. We adopt the following two-stage procedure
to compare a pair of Semantic Web documents:

4.5 Similarity Metrics

1. Compute the two cosine similarity values between the canonical representa-
tions (already generated) of both the SWDs.

2. If the cosine similarity values are below a pre-determined threshold, then
eliminate this pair from further consideration, else add this pair to a list of
candidate pairs.

3. For all candidate pairs, compute the remaining three pairwise similarity met-
rics for each reduced form.

Thus the cosine similarity metric is used as an initial filter to reduce the remain-
ing computations.

4.6 Classification

We use three different classifiers to detect various kinds of similarity between
candidate pairs. In order to train these classifiers, we need a labeled training
data-set. Such a dataset is annotated with the ground truths about whether the
SWDs in a given pair in the dataset are similar to each other (refer to Section
2). Accordingly, we have three labels for each pair:

1. A binary label identifying whether the candidate SWDs in the pair differ
only in the literal content and are similar in terms of classes and properties
used (structural similarity)

2. A binary label identifying whether the candidate SWDs in the pair differ
only in the base-URI

3. A binary label identifying whether the candidate SWDs in the pair have a
versioning relationship

Pairwise similarity measures are computed for each candidate pair in the
labeled dataset. Three different feature vectors (one for each classifier) are con-
structed for each candidate pair, using the appropriate attributes. The attributes
used are the similarity measures that have been computed. These classifiers are
then used to detect the various forms of similarity that we have defined.



4.7 Computing Delta Between Two Versions

Once it is determined that two SWDs have a versioning relationship between
them, we compute the set of statements that describe the change between suc-
cessive versions of the SWD. As a result, we use the concept of additive and
subtractive deltas. The additive delta is the set of triples that are added to the
older version in order to generate the newer version. The subtractive delta is the
set of triples are deleted from the older version to generate the newer version.
The additive and subtractive deltas together form a graph delta. We use the four
techniques to describe the change.

Raw delta. This method simply computes a raw delta by doing a statement-
by-statement comparison between the two SWDs. If the number of triples in
the two SWDs is m and n respectively, then the total number of comparisons
is O(mn). During the comparison, only the local names of the entities is con-
sidered, i.e. we ignore the base-URI of all entities. It is possible to compute the
delta using this method because the canonicalization process that we apply on
each SWD smooths the disparities between statements in similar documents.
It assigns unique and standard identifiers to blank nodes and deterministically
orders the statements

Delta of deductive closures. This method first computes the deductive closures of
the two, and then the resultant graphs are converted to their canonicalized form
using the canonicalization algorithm. Then a raw delta is generated between
them.

Delta at class level of an ontology. This method applies only to ontology version
pairs that are serialized in the form of XML. Instead of comparing statements in
the overall graph, it compares statements at a more granular level. This kind of
delta is able to pin-point the location of the change at the level of the concepts
defined within an ontology. This approach is a variant of the one followed by
[14]:

1. Split the XML document at the topmost level i.e. extract all the children
of the root node of the XML document. Each child node represents the a
concept in the ontology.

2. Each of these child nodes are then parsed into groups of n-triple statements.

3. Each group of n-triple statements represents a small graph in itself. Each
graph is the definition of a specific concept or property. The graphs can be
identified by the ID of the concept or property being defined.

4. Using this identifier; for each graph in the one version of the ontology, locate
the corresponding graph in the other version of the ontology.

5. These two graphs can now be compared at a statement level as done before
for the raw delta.



Heuristic methods. Sometimes several statements are generated in a delta as a
result of a relatively simple conceptual change like the renaming of a class. We
detect such a class renaming. Essentially, the algorithm computes the n-gram
overlap between subjects in the additiveDelta and subtractiveDelta using a
Jaccard coefficient calculation. For pairs of subjects where the Jaccard coefficient
value is high (empirically predetermined), the pair of subjects is added to a list
of candidates. A similar computation is done for all objects in the additiveDelta
and subtractiveDelta. Next, for each candidate pair of subject-class-names, all
the occurrences of the old class-name in statements in the subtractiveDelta are
replaced by the new class-name. Then the presence of these statements is checked
in the additiveDelta. If all of the statements are actually present, then it is
confirmed that the candidate tuple is actually an instance of a class renaming.
Similarly we check for renaming of object-classes.

5 Evaluation

Our system is based on particular kinds of similarity that have been observed
manually from Swoogle’s repository, and these are not formally specified. In
addition, there exists no standard labeled dataset of similar Semantic Web doc-
uments that we could use for the purpose of evaluating our system. Hence we
constructed a collection of Semantic Web documents from Swoogle’s Semantic
Web archive and cache services4. Swoogle periodically crawls the Semantic Web
and maintains several snapshots for each indexed SWD. We added such versions
to our data-set and labeled them as having a versioning relationship.

5.1 Detecting Pairs that Differ only in Literal Content

As described in section 2, SWDs can share the same classes and properties
while being different only in the literal content used. To detect this kind of
similarity, we build a feature vector using the following measures: CosineSim,
LocalNameNoLiteralJaccard, and LocalNameNoLiteralSimhash. (refer to 4.4)

We chose these measures because they are the most relevant for measuring
similarity in classes and properties used. For performing this experiment, we used
a set of 402 Semantic Web documents (over 161,000 candidate pairs) downloaded
from the Swoogle archive. We identified 806 pairs where the two candidates used
the same classes and properties, but different only in the literal data. We labeled
such pairs as positive. We also identified an equal number of negative pairs. Next,
we construct feature vectors from the measures mentioned above. Use built a
Naive-Bayes classifier on the 1612 feature vectors (50% positive, 50% negative).
A ten-fold stratified cross-validation on this data-set yielded the results as shown
in Table 2

4 http://swoogle.umbc.edu/index.php?option=com swoogle service&service=archive



TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.973 0 1 0.973 0.986 1 yes

1 0.027 0.973 1 0.987 0.996 no

Weighted Avg. 0.986 0.014 0.987 0.986 0.986 0.998

Table 2. Detailed Accuracy by class (structural similarity), using Naive Bayes.

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

1 0.04 0.962 1 0.98 0.979 yes

0.96 0 1 0.96 0.98 0.99 no

Weighted Avg. 0.98 0.02 0.981 0.98 0.98 0.985

Table 3. Detailed Accuracy by class (pairs different only in base URI), using Naive
Bayes

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.864 0.045 0.95 0.864 0.905 0.909 yes

0.955 0.136 0.875 0.955 0.913 0.909 no

Weighted Avg. 0.909 0.091 0.913 0.909 0.909 0.909

Table 4. Detailed Accuracy by class (versioning relationship), using SVM - linear
kernel

.

5.2 Detecting Pairs that Differ Only in Base-URI

Section 2 described examples of Semantic Web documents that differ only in the
base-URI. In order to detect similarity of this kind between a candidate pair, the
metrics we use are CosineSim, LocalNameCosineSim, LocalNameNoLiteralJac-
card, LocalNameNoLiteralContainment, OnlyLiteralContainment, OnlyLiteral-
Jaccard.

These measures compare the local names of the classes and properties used,
and the textual (literal) content. For performing this experiment, we used the
same set of SWDs as 5.1. We picked 100 random SWDs, and created pairs from
each SWD as follows:

1. Create a copy of the SWD, say c

2. Determine the most frequently occurring base-URI in the SWD, say b1

3. Replace all occurrences of b1 in c

4. Label the original SWD and c as similar

Thus, after this process, we generated 100 positive pairs, and combined them
with a 100 negative pairs to generate a data-set of 200 examples. We then con-
structed feature vectors using the features listed above. We built a Naive-Bayes
classifier on the 200 feature vectors. A ten-fold stratified cross-validation on this
data-set yielded the results shown in Table 3. A Support Vector Machine (linear
kernel) trained using the same set of feature vectors did slightly worse than the
Naive-Bayes classifier.



We tried this classifier on a set of ontologies comprising the wine5, baseball6,
geospecies7 , and dbpedia8 ontologies to ensure that this classifier can identify
cases that occur in the real world. The classifier successfully identified each pair.

5.3 Detecting Pairs with a Versioning Relationship

As mentioned already, we used the Swoogle cache to get snapshots of Semantic
Web documents at different instances of time.

Our system cannot determine a versioning relationship between the snapshots
of SWDs that are highly dynamic over time. But the other pairs that have a
relatively smaller amount of change between them can actually be considered
as having a versioning relationship. Accordingly, we filtered the highly dynamic
pairs from our dataset, and used the remaining pairs to train a Support Vector
Machine (linear kernel). We used all 17 attributes to build the feature vectors for
this purpose. The number of training instances was 124 (50% positive, and 50%
negative). We used this SVM to classify instances from a different test data-set
containing 160 instances, (50% positive, and 50% negative) that was built the
same way as the training data-set. The results of the classification are as shown
in Table 4.

6 Discussion

Zeginis et al. [23] define the following notion of correctness for computing the
delta of two RDF graphs. If ∆x is a comparison function and Πy be a change
operation semantics, then it holds that: A pair (∆x, Πy) is correct if, for any
pair of knowledge bases K and K ′ it holds that

∆x(K→K’)ΠyK ⇔ K ′

We test for correctness of the deltas that we generate by verifying this condi-
tion. We apply the generated delta to the first SWD and compare the resultant,
statement by statement to the second SWD.

Limitations. We currently do not have a principled filtering mechanism that will
reduce the number of comparisons from the current quadratic scale. Hence we
are not able to perform these computations a for large collection of Semantic
Web documents. The computation method is shallow, i.e. at the text level, but
it is suitable for our use cases. The other graph based and relational-instance set
similarity measures mentioned in the related works section are very expensive
for such cases.

5 http://w3.org/2001/sw/WebOnt/guide-src/wine
6 http://www.damn.org/2001/08/baseball/baseball-ont
7 http://rdf.geospecies.org/ont/gsontology
8 http://downloads.dbpedia.org/3.2/en/dbpedia-ontology.owl



7 Conclusion and Future Work

We explored some of the ways in which Semantic Web graphs may be similar to
each other. We developed a system Simils that can recognize when two Semantic
Web graphs are similar and characterizes their difference in three ways. The tool
can be used with the pre-trained classifier, but it is preferable for users to re-train
the classifier on their own datasets. We implement a canonicalization algorithm
for Semantic Web graphs that can deterministically order the statements in a
graph and provide consistent identifiers to blank nodes. We generate reduced
forms for each Semantic Web graph which are then used to compute text based
similarity metrics between candidate pairs. These similarity metrics are then
used to characterized the candidate pair as mentioned above. Further, when
the system detects a versioning relationship between a pair, it generates a delta
in terms of triples to be added or deleted (i.e. additive delta and subtractive
delta). For ontology pairs, in addition to generating a raw delta, the system also
generates a delta at the class/property level. Additionally, we use an n-gram
overlap based heuristic method to detect whether the statements in the delta
between two ontologies can be accounted for by a relatively simple conceptual
change like the renaming of a class.

Currently our system can deal with only a small data-set. This is because we
perform O(n2) comparisons (at-least for initial filtering) between all the pairs of
graphs in the data-set. One of the future directions might be to implement a prin-
cipled filtering mechanism that would reduce the number of comparisons, so that
we can increase scalability. The deltas that we generate are in the form of n3. We
would like to use a canonicalized ontology for representing the comparison be-
tween two candidate Semantic Web documents: including the description of the
type(s) of similarity between them, and the delta between them (if applicable).
Another direction for future work would be to develop a way of guaranteeing a
small-sized delta.
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