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Abstract

Mean-reverting portfolios with few assets, but high variance, are of great interest for investors
in financial markets. Such portfolios are straightforwardly profitable because they include a small
number of assets whose prices not only oscillate predictably around a long-term mean but also possess
enough volatility. Roughly speaking, sparsity minimizes trading costs, volatility provides arbitrage
opportunities, and mean-reversion property equips investors with ideal investment strategies. Finding
such favorable portfolios can be formulated as a nonconvex quadratic optimization problem with an
additional sparsity constraint. To the best of our knowledge, there is no method for solving this
problem and enjoying favorable theoretical properties yet. In this paper, we develop an effective two-
stage algorithm for this problem. In the first stage, we apply a tailored penalty decomposition method
for finding a stationary point of this nonconvex problem. For a fixed penalty parameter, the block
coordinate descent method is utilized to find a stationary point of the associated penalty subproblem.
In the second stage, we improve the result from the first stage via a greedy scheme that solves restricted
nonconvex quadratically constrained quadratic programs (QCQPs). We show that the optimal value
of such a QCQP can be obtained by solving their semidefinite relaxations. Numerical experiments on
S&P 500 are conducted to demonstrate the effectiveness of the proposed algorithm.

1 Introduction

Mean-reversion property plays a significant role in mathematical finance [7, 9, 34]. In constructing trading

portfolios/baskets, this profitable property is traditionally pursued using classical tools in cointegration

theory, which often detect a linear combination of assets that are stationary, and consequently, mean-

reverting [13]. However, such baskets are not practically favorable because they turn out to own many

assets that suffer from low volatility. This implies that when the incurred trading costs are not negligible,

an investor does not benefit from trading such baskets, that is, sufficient variance provides arbitrage

opportunities. Thus, finding mean-reverting portfolios with enough variance has recently attracted much

attention; see [36, 34, 6]. Another favorable property for a portfolio is sparsity that helps to minimize

trading costs. Consequently, sparse mean-reverting portfolios have been studied [32, 28, 8, 12, 11, 15, 29].

Sparsity has also shown to be advantageous in numerous applications [26, 22, 21, 23, 27, 18, 19, 20].

While a realistic and practical portfolio should enjoy mean-reversion, volatility, and sparsity properties

simultaneously, there is no method that can effectively solve this problem and capture realistic portfolios,

to the best of our knowledge.
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Recently, several statistical proxies have been introduced to capture mean-reversion property [7, 9].

In this paper, we consider the following optimization problem that aims to minimize the predictability

notion introduced by Box and Tiao [4] while ensuring sparsity and volatility:

(P ) : min
x∈RN

xTMx subject to xTAx ≥ φ, xTx = 1, and ‖x‖0 ≤ k, (1)

where M,A ∈ RN×N are symmetric and positive definite, φ is a positive number, ‖ · ‖0 denotes the

number of nonzero entries of a vector, and k ∈ N with k � N . As mentioned before, the only method

proposed for solving this problem based on the following semidefinite program (SDP) relaxation [7]:

min
Y ∈SN

Tr(MY ) + ρ‖Y ‖1 subject to Tr(AY ) ≥ φ, Tr(Y ) = 1, and Y � 0, (2)

where ρ > 0 is a penalty parameter, and ‖Y ‖1 :=
∑

i,j |Yij |. The `1 norm promotes the sparsity of the

decision variable Y . After solving the convex SDP (2) and obtaining a solution Y ∗, the authors in [9]

apply sparse PCA to Y ∗ for recovering a solution y∗ of (1). The major drawbacks of this method are as

follows. A solution of (2) may not be of low-rank in general. This hinders one from obtaining a rank-one

solution of (2) to recover a solution for the original problem (1). Hence, in general, the SDP relaxation

formulation (2) may give rise to a solution quite different from that of (1). In [7], the authors suggest to

solve the following sparse PCA if a rank-one solution is available:

(s− PCA) : min
y∈RN

yTHy subject to yT y = 1, and ‖y‖0 ≤ k. (3)

We emphasize again that obtaining a rank-one solution of (2) is not guaranteed even though it could be

the case in practice. Further, no theoretical results are established for the qualitative properties of an

output of the sparse PCA with respect to (1). In summary, the SDP relaxation formulation (2) does not

necessarily yield a solution, or a related solution such as a stationary point, to (1) in general.

In view of the drawbacks of (2), we propose an effective two-stage algorithm for solving (1) that

not only attains favorable theoretical properties but also achieves satisfactory numerical performance.

In the first stage, we apply a tailored penalty decomposition method that finds a stationary point of

(1). When applying this method, each penalty subproblem is nonconvex but decomposed such that we

apply block coordinate minimization to find a stationary point of a penalty subproblem. The restricted

subproblems for the block coordinate minimization are tractable since one subproblem attains a closed-

form solution, and the other subproblem can be handled via its SDP relaxation that provably achieves

the exact optimal value and further finds a rank-one solution corresponding to a solution of the original

subproblem efficiently. In the second stage, we propose a greedy scheme that starts from the stationary

point obtained from the first stage and then improves upon it via solving sparsity-sized semidefinite

programs. This greedy scheme stops once an index set cannot be further improved. We show that the

SDP used in this step indeed achieves the exact optimal value as its original nonconvex QCQP. We carry

out numerical testes and compare the proposed algorithm with the method in [7] on the S&P 500 assets.

The numerical results show that our algorithm outperforms the latter method.

The rest of the paper is organized as follows. In Section 2, we discuss optimality conditions and give

an overview of the proposed two-stage algorithm. Section 3 studies the first stage in detail and establishes

theoretical properties. In Section 4, a greedy scheme is proposed to improve a stationary point obtained

from stage one. Numerical experiments and results are shown and discussed in Section 5.

Notation. For a set S, we denote its complement as either Sc or S̄ and its cardinality as |S|. For a

natural number N , let [N ] be{1, 2, . . . , N}. For S = {i1, i2 . . . , i|S|} ⊆ [N ], let xS ∈ R|S| is the coordinate

projection of x with respect to indices in S. For vectors xi ∈ RNi with i ∈ [N ], we denote their column

concatenation vector in R
∑N

i=1Ni using Matlab notation as [x1;x2; . . . ;xN ]. Consequently, a k-sparse
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vector x ∈ RN supported on S ⊆ [N ] with |S| = k is written as x = [xS ; 0]. Similarly, if Ni = m for all

i ∈ [N ], we denote the row concatenation matrix of vectors xi ∈ Rm as [x1 x2 . . . xN ] ∈ Rm×N . These

notations are also used for matrices of suitable sizes. The space of N ×N symmetric matrices is denoted

by SN . We write A � 0 and A � 0 for positive definiteness and semi-definiteness of A, respectively. The

smallest and largest eigenvalues of a symmetric matrix A are denoted by λmin(A) and λmax(A). The

identity matrix of size m is denoted by Im. A diagonal matrix D with diagonal entries d1, d2, . . . , dm is

denoted by D = diag(d1, d2, . . . , dm). The trace of a square matrix A is denoted by Tr(A).

2 Penalty Decomposition Algorithm with Greedy Improvements

2.1 Optimality Condition of the Mean Reverting Problem

The problem (P ) in (1) attains an optimal solution if it is feasible. Let x∗ ∈ RN be a local minimizer of

the problem (P ), and I be an index subset of {1, . . . , N} such that |I| = k, and x∗Ic = 0. Note that I
may not be the support of x∗. It is easy to show that x∗ is also a local minimizer of the problem

(P ′) : min
x∈RN

xTMx, subject to xTAx ≥ φ, xTx = 1, and xIc = 0,

Hence, the Robinson’s condition for a local minimizer x∗ of (P ′) with the index set Ic with x∗Ic = 0 is

[25, Eqn.(3.11)]

(i) (x∗)TAx∗ > φ.


−2dTAx∗ − v

2dTx∗

dIc

 ∣∣∣ d ∈ RN , v ∈ R

 = R× R× R|Ic|;

(ii) (x∗)TAx∗ = φ.


−2dTAx∗ − v

2dTx∗

dIc

 ∣∣∣ d ∈ RN , v ∈ R−

 = R× R× R|Ic|.

Since ‖x∗‖2 = 1 and x∗Ic = 0, we have x∗I 6= 0. Hence, the Robinson’s condition for case (i) always holds.

For case (ii), the necessary and sufficient condition for Robinson’s condition is given below.

Lemma 2.1. Suppose a local minimizer x∗ of (P ) is such that (x∗)TAx∗ = φ and x∗Ic = 0. Then

Robinson’s condition holds if and only if {(Ax∗)I , x∗I} is linearly independent.

Proof. “If”: suppose {(Ax∗)I , x∗I} is linearly independent. Then
{

(dTI (Ax∗)I , d
T
I x
∗
I) ∈ R2 | dI ∈ R|I|

}
=

R2. Clearly, this yields Robinson’s condition for case (ii). To see “Only If”, suppose Robinson’s condition

holds but {(Ax∗)I , x∗I} is linearly dependent. Since x∗Ic = 0, x∗I 6= 0, and A is PD, we have (Ax∗)I =

AII · x∗I = ν · x∗I for some positive constant ν > 0. Let dIc = 0. By Robinson’s condition, we must have

that the set S := {(−2zT (Ax∗)I − v, 2zTx∗I) | z ∈ R|I|, v ≤ 0} = R2. On the other hand, for any z with

zTx∗I ≤ 0 and v ≤ 0, we have −2zT (Ax∗)I − v = −2ν · (zTx∗I)− v ≥ 0. Therefore, S does not contain the

interior of R− × R−, yielding a contradiction to S = R2. This shows that {(Ax∗)I , x∗I} must be linearly

independent.

Under the Robinson’s condition, the first-order optimality condition (i.e., the KKT condition) for a

local minimizer x∗ of (P ) (or (P ′)) is: there exist λ, µ ∈ R and w = (wI , wIc) ∈ RN such that

Mx∗ − λAx∗ + µx∗ + w = 0, 0 ≤ λ ⊥ (x∗)TAx∗ − φ ≥ 0, ‖x∗‖2 = 1, wI = 0, x∗Ic = 0. (4)
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2.2 Overview of Penalty Decomposition Algorithm with Greedy Improvement

This paper develops a penalty decomposition scheme [16] along with a greedy algorithm to solve the

mean-reverting problem (P ) in (1). We provide an overview of the proposed algorithm in this subsection.

The entire algorithm consists of two stages. In the first stage, the penalty decomposition scheme [16]

is exploited to obtain a stationary point of the problem (P ). The penalty decomposition scheme solves a

sequence of simpler penalty subproblems using the block coordinate decent (BCD) method at each step.

Under some mild assumptions, a subsequence of the iterations yielded by the penalty decomposition

scheme converges to a stationary point of (P ). In the second stage, a greedy algorithm is applied to

improve the result found from stage one. This greedy algorithm updates the associated support set of

the current iterates by solving a sequence of restricted nonconvex QCQPs. Further, such a restricted

nonconvex QCQP can be efficiently solved via SDP relaxation which achieves the exact optimal value of

the nonconvex QCQP. The greedy algorithm stops once the support set cannot be improved. The entire

algorithm is summarized in Algorithm 1.

Algorithm 1 Penalty Decomposition Method with Greedy Improvement for Solving Problem (1)

1: Inputs: N ×N positive definite matrices M and A, φ > 0, and k ∈ N.

2: Stage 1: run penalty decomposition scheme (cf. Algorithm 3). Take its output as the index set L
with |L| = k associated with a stationary point x∗.

3: Stage 2: run a greedy algorithm (cf. Algorithm 4) using L

3 Stage One: Penalty Decomposition Scheme

We show how to find a stationary point of the nonconvex problem (1) via a penalty decomposition scheme

[16]. By introducing a new variable y ∈ RN , we reformulate (1) as:

min
(x,y)∈RN×RN

xTMx subject to xTAx ≥ φ, yT y = 1, ‖y‖0 ≤ k, and x− y = 0. (5)

Define the sets

X := {x ∈ RN |xTAx ≥ φ} and Y := {y ∈ RN | yT y = 1 and ‖y‖0 ≤ k},

and the quadratic penalty function qρ(x, y) := xTMx+ρ‖x−y‖22 for a given positive constant ρ. Consider

the following problem:

(Px,y) : min
(x,y)∈RN×RN

qρ(x, y), subject to x ∈ X , y ∈ Y. (6)

Clearly, its solution exists. Given a (local) minimizer (x∗, y∗) of (Px,y), define the index set L ⊆ {1, . . . , N}
such that |L| = k and y∗Lc = 0. It is easy to show that (x∗, y∗) is a local minimizer of the problem (Px,y)

when Y is replaced by Y ′ := {y ∈ RN | ‖y‖2 = 1, yLc = 0}. We denote the latter problem (with Y ′
instead of Y) by (P ′x,y). It is easy to show that the Robinson’s condition holds for (P ′x,y) at any feasible

(x, y) ∈ RN × RN . Hence, the KKT condition for a local minimizer (x∗, y∗) of (Px,y) (or equivalently

(P ′x,y)) is: there exists λ, µ ∈ R such that

Mx∗−λAx∗+ρ(x∗−y∗) = 0, (ρ+µ)(y∗)L = ρ(x∗)L, 0 ≤ λ ⊥ xT∗Ax∗−φ ≥ 0, ‖y∗‖2 = 1, (y∗)Lc = 0. (7)

The paper [16] develops a block coordinate decent (BCD) scheme given in Algorithm 2 to compute a

saddle point of (Px,y), i.e., (x∗, y∗) ∈ X × Y such that

x∗ ∈ Argminx∈X qρ(x, y∗), y∗ ∈ Argminy∈Y qρ(x∗, y). (8)
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We discuss the two subproblems in the above formulation as follows.

Given y ∈ RN and ρ > 0, consider the problem

(Px) : min
x∈RN

xTMx+ ρ‖x− y‖22, subject to xTAx ≥ φ. (9)

Clearly, its optimal solution exists and the constraint qualification holds. Hence, the KKT condition for

a (local) minimizer x∗ of (Px) is given by: there exists λ ∈ R such that

Mx∗ + ρ(x∗ − y)− λAx∗ = 0, 0 ≤ λ ⊥ xT∗Ax∗ − φ ≥ 0.

The following result shows that for any given y, an optimal solution x∗ to (Px) is bounded.

Lemma 3.1. Given ρ > 0 and y ∈ RN , a local minimizer x∗ of (Px) satisfies

‖x∗‖2 ≤ max

(√
φ

λmin(A)
, ‖y‖2

)
.

Proof. A local minimizer x∗ satisfies either xT∗Ax∗ = φ or xT∗Ax∗ > φ. For the former case, we have

‖x‖22 ≤ φ/λmin(A). For the latter, the multiplier λ = 0 such that Mx∗ + ρ(x∗ − y) = 0. Hence,

(M + ρI)x∗ = ρy, leading to x∗ = (M + ρI)−1ρy. This shows that ‖x∗‖ ≤ ‖(M + ρI)−1‖2 · ρ · ‖y‖2 ≤
ρ

λmin(M)+ρ‖y‖2 ≤ ‖y‖2.

Given 0 6= x ∈ RN , consider the problem

(Py) : min
y∈RN

‖y − x‖22, subject to yT y = 1, and ‖y‖0 ≤ k. (10)

To solve this problem in a closed form, let J (x, k) ⊆ {1, . . . , N} be the index set corresponding to the

first k largest elements of x in absolute values.

Lemma 3.2. Given 0 6= x ∈ RN , let J := J (x, k). Then an optimal solution to (Py) is given by

y∗ = (y∗J , y
∗
J c), where y∗J = xJ

‖xJ ‖2 , and y∗J c = 0.

Proof. Note that for any y satisfying ‖y‖0 ≤ k, it can be written yI = 0 for some index set I ⊆ {1, . . . , N}
with |I| = N − k. Hence, for any index set I with |I| = N − k, (Py) can be written as miny∈RN ‖y− x‖22
subject to yT y = 1 and yI = 0, which is equivalent to minz∈R|Ic| ‖z − xIc‖22 subject to zT z = 1. Clearly,

constraint qualification holds and its KKT condition for a local minimizer z∗ is: z∗ − xIc + µz∗ = 0 and

‖z∗‖2 = 1 for some µ ∈ R. This shows that (1 + µ)z∗ = xIc . Without loss of generality, we assume

that xIc 6= 0 (otherwise, z∗ is arbitrary on the sphere ‖z‖2 = 1). Then we must have 1 + µ 6= 0 such

that z∗ = 1
1+µxIc or equivalently z∗ is parallel to xIc . Hence, it is easy to show that z∗ = xIc

‖xIc‖2
for

any index I specified above. Finally, for any index I specified above, the optimal value is given by

‖xIc − xIc
‖xIc‖2

‖22 + ‖xI‖22 = (‖xIc‖2 − 1)2 + ‖xI‖22 = ‖x‖22 + 1 − 2‖xIc‖2. Consequently, the minimal

value of (Py) is achieved when ‖xIc‖2 is maximal or equivalently when Ic = J (x, k) = J . Therefore, a

minimizer y∗ satisfies y∗J = xJ
‖xJ ‖2 , and y∗J c = 0.

Returning to the problem given by (8), we see that x∗ is a solution to (Px) when y = y∗, and y∗ is a

solution to (Py) when x = x∗. (Note that such a saddle point exists.) The first order necessary conditions

for a saddle point (x∗, y∗) is: (i) there exists λ ∈ R such that

Mx∗ + ρ(x∗ − y∗)− λAx∗ = 0, 0 ≤ λ ⊥ xT∗Ax∗ − φ ≥ 0,

5



Algorithm 2 Block Coordinate Decent Scheme for (Px,y) in (6)

1: Initialization with a given constant ρ > 0, s = 0 and ys ∈ Y
2: repeat

3: Compute xs+1 ∈ Argminx∈X qρ(x, y
s)

4: Compute ys+1 ∈ Argminy∈Y qρ(x
s+1, y) using the operator T

5: s← s+ 1

6: until Stopping criterion is met

and (ii) y∗ = T (x∗), where T is the operator for the closed form solution to (Py). Particularly, let

L = J (x∗, k). Then (y∗)L = (x∗)L
‖(x∗)L‖2 . Since y∗ satisfies ‖y∗‖2 = 1, it follows from Lemma 3.1 that

‖x∗‖2 ≤ max
(√

φ
λmin(A) , 1

)
for any ρ > 0. It is easy to verify that a saddle point must be a stationary

point of (Px,y) satisfying the first order optimality conditions in (7) with µ = ρ(‖(x∗)L‖2 − 1).

The following lemma shows that the sequence (qρ(x
s, ys)) is either strictly decreasing or reaches an

equality at a finite step, which yields a saddle point.

Lemma 3.3. Given a constant ρ > 0, let
(
xs, ys)) be a numerical sequence generated by the BCD

scheme in Algorithm 2. Then (qρ(x
s, ys)) is non-increasing. Further, if qρ(x

r, yr) = qρ(x
r+1, yr+1) for

some r ∈ N, then (xr, yr) is a saddle point of (Px,y).

Proof. It follows from the proof for [16, Theorem 4.2] that qρ(x
s+1, ys+1) ≤ qρ(x

s+1, ys) ≤ qρ(x
s, ys) for

all s. Hence, (qρ(x
s, ys)) is non-increasing. Now suppose qρ(x

r, yr) = qρ(x
r+1, yr+1) for some r ∈ N. Then

by the above result, qρ(x
r+1, yr) = qρ(x

r, yr). Furthermore, since xr+1 ∈ Argminx∈X qρ(x, y
r), we have

qρ(x
r+1, yr) = minx∈X qρ(x, y

r). In view of qρ(x
r+1, yr) = qρ(x

r, yr) and xr ∈ X , we have qρ(x
r, yr) =

minx∈X qρ(x, y
r) such that xr ∈ Argminx∈X qρ(x, y

r). Further, yr ∈ Y satisfies yr ∈ Argminy∈Y qρ(x
r, y).

This shows that (xr, yr) is a saddle point of (Px,y).

We comment on two computational issues when running Algorithm 2 to solve (Px,y).

Remark 3.1. In view of Lemma 3.3, a stopping criterion for Algorithm 2 can be based on the relative

error of qρ(x
s, ys), namely,

qρ(x
s, ys)− qρ(xs+1, ys+1)

qρ(xs, ys)
≤ ε for a sufficiently small ε > 0. Another stopping

criterion suggested in [16] is: for a sufficiently small ε > 0,

max

{
‖xs − xs−1‖∞

max (‖xs‖∞, 1)
,
‖ys − ys−1‖∞

max (‖ys‖∞, 1)

}
≤ ε.

Remark 3.2. The problem (Py) given in Line 4 of Algorithm 2 has a closed form solution defined by

the operator T shown in Lemma 3.2. To solve the problem (Px) in Line 3 for a given y, we exploit SDP

relaxation. Note that the SDP relaxation of a quadratic program with exactly one quadratic constraint

obtains the same optimal value provided that it is strictly feasible [5]. It is easy to see (9) is strictly

feasible because A � 0. Hence, we can find the optimal value of this nonconvex problem exactly via

solving its convex SDP relaxation below:

min
X∈SN+1

Tr

([
ρ‖y‖22 −ρyT
−ρy M + ρIN

]
X

)
subject to Tr

([
−φ 0

0 A

]
X

)
≥ 0, X11 = 1, and X � 0.

6



Its dual problem is given by

max
w1∈R,w2∈R,Z∈SN+1

w2

subject to w1

[
−φ 0

0 A

]
+ w2

[
1 0

0 0

]
+ Z =

[
ρ‖y‖22 −ρyT
−ρy M + ρIN

]
, w1 ≥ 0, and Z � 0.

We first show that both problems are strictly feasible. Clearly, X =

[
1 0

0 γIN

]
with γ > 1/Tr(A) is

a strictly feasible point of the primal problem (recall that A � 0 and thus γ > 0). To see the dual

problem is strictly feasible, it is enough to show that there exist a positive w1 and an arbitrary w2 such

that Z =

[
ρ‖y‖22 + w1φ− w2 −ρyT

−ρy M + ρIN − w1A

]
� 0. This block matrix is positive definite if and only

if (i) M + ρIN − w1A � 0 and (ii) ρ‖y‖22 + w1φ − w2 − ρ2yT (M + ρIN − w1A)−1y > 0. To guarantee

the inequality (i), since M � 0 and ρ > 0, it is enough to choose w1 = ε > 0 small enough such that

λmin(M) + ρ > ελmax(A). The inequality (ii) can be easily guaranteed by choosing w2 appropriately.

Since the primal and dual problems are strictly feasible, both problems obtain their solutions with the

same optimal value. Let X∗ and (w∗1, w
∗
2, Z

∗) be the optimal solutions. If X∗ is rank-one, we trivially

have the solution of (9). Otherwise, by applying the rank-one decomposition procedure in [31, Lemma

2.2], we get X∗ =
∑r

i=1 uiu
T
i with r = rank(X∗), 0 6= ui ∈ RN+1, for all i ∈ [r] such that

ruTi

[
−φ 0

0 A

]
ui = Tr

([
−φ 0

0 A

]
X∗
)
≥ 0, ∀ i ∈ [r].

Since X∗11 = 1, there exists j ∈ [r] such that uj = [α;u] ∈ RN+1 such that α 6= 0. Further, the KKT

conditions imply that 0 = Tr (X∗Z∗) = Tr
(∑r

i=1 uiu
T
i Z
∗) =

∑r
i=1 Tr

(
uTi Z

∗ui
)

and since Z∗ � 0, we

have uTj Z
∗uj = 0. Thus, uju

T
j and (w∗1, w

∗
2, Z

∗) satisfy the KKT conditions and consequently, u/α yields

a solution to (9). For more details, see [31, Section 2.1].

The penalty decomposition scheme developed in [16] is applied to compute a stationary point of (P )

(or P ′); see Algorithm 3. The inner loop of Algorithm 3, which is as same as Algorithm 2, intends to

solve (Px,y) for a given ρj > 0.

Algorithm 3 Penalty Decomposition Scheme for (P ) in (1)

1: Initialization with constants r > 1 and ρ0 > 0, set j = 0, and choose y0,0 ∈ Y
2: repeat

3: Set s = 0

4: repeat

5: Compute xj,s+1 ∈ Argminx∈X qρj (x, y
j,s)

6: Compute yj,s+1 ∈ Argminy∈Y qρj (x
j,s+1, y) using the operator T

7: s← s+ 1

8: until Stopping criterion is met

9: ρj+1 = ρj · r, and yj+1,0 = yj,s

10: j ← j + 1

11: until Stopping criterion is met

In what follows, we show that a numerical sequence of Algorithm 3 attains a convergent subsequence

with the limit (x∗, y∗) and that under a mild assumption on x∗, x∗ is a KKT point of a local minimizer of

(P ) in (1) or (P ′) for a suitable index set L with x∗L = 0. The proof this result mostly follows from that

of [16, Theorem 4.3]. To be self contained, we present it here with emphasis on some (minor) differences.
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Proposition 3.1. Let
(
(xj , yj)

)
be a sequence generated by Algorithm 3. The following hold:

(i)
(
((xj , yj)

)
has a convergent subsequence whose limit is given by (x∗, y∗) satisfying x∗ = y∗, and

there exists an index subset L with |L| = k such that x∗Lc = 0.

(ii) Suppose the Robinson condition given before Lemma 2.1 holds at x∗ with the index subset L indicated

above. Then x∗ is a KKT point satisfying (4) for (P ′) with I = L.

Proof. (i) For each j, (xj , yj) is a saddle point of (Px,y) in (6) with ρ = ρj > 0, namely, xj ∈
Argminx∈X qρj (x, y

j) and yj ∈ Argminy∈Y qρj (x
j , y). By the definition of Y, ‖yj‖2 = 1 for all j.

Further, it follows from Lemma 3.1 that ‖xj‖2 ≤ max
(√

φ
λmin(A) , 1

)
for any ρj > 0. Thus

(
((xj , yj)

)
is

bounded and thus attains a convergent subsequence whose limit is denoted by (x∗, y∗). By the similar

argument in [16, Theorem 4.3], we see that x∗ = y∗. Let Ij be an index subset of [N ] with |Ij | = k and

yj
(Ij)c

= 0 for each j. Then there exist an index subset L with |L| = k and a subsequence
(
(xj` , yj`)

)
of

the above convergent subsequence such that Ij` = L for all large j`. Therefore, x∗Lc = 0.

(ii) Using the above mentioned subsequence, we assume without loss of generality that
(
(xj` , yj`)

)
converges to (x∗, y∗) and yj`Lc = 0 for all i`. Since each (xj` , yj`) is a saddle point of (Px,y) with ρ = ρj` > 0,

it satisfies

Mxj` + ρj`(x
j` − yj`)− λj`Ax

j` = 0, 0 ≤ λj` ⊥ (xj`)TAxj` − φ ≥ 0,

and yj` = T (xj`), where T is the operator for the closed form solution to (Py) such that yj`L = (xj` )L
‖(xj` )L‖2

and yj`Lc = 0. Letting µj` := ρj`(‖x
j`
L ‖2 − 1), it is easy to verify that ρj`(x

j` − yj`)L = µj`y
j`
L for all j`.

Hence, we write the above optimality condition as

0 = Mxj` − λj`Ax
j` +

[
ρj`(x

j` − yj`)L
0

]
+

[
0

ρj`(x
j` − yj`)Lc

]
︸ ︷︷ ︸

:=wj`

= Mxj` − λj`Ax
j` + µj`

[
yj`L
0

]
+ wj` ,

where wj`L = 0 for all j`, and 0 ≤ λj` ⊥ (xj`)TAxj` − φ ≥ 0.

We claim that the sequence
(
(λj` , µj` , w

j`)
)

is bounded under the Robinson condition at x∗. Suppose

not, consider the normalized sequence

(λ̃j` , µ̃j` , w̃
j`) :=

(λj` , µj` , w
j`)

‖(λj` , µj` , wj`)‖2
, ∀ j`.

Then by working on a suitable convergent subsequence of (λ̃j` , µ̃j` , w̃
j`) whose limit is given by (λ̃∗, µ̃∗, w̃

∗)

with ‖(λ̃∗, µ̃∗, w̃∗)‖2 = 1, we obtain, in view of x∗ = y∗, y∗Lc = 0 and the boundedness of (Mxj`), and

passing the limits, that

− λ̃∗Ax∗ + µ̃∗x
∗ + w̃∗ = 0, (11)

where λ̃∗ ≥ 0, x∗Lc = 0, and w̃∗L = 0. Consider (a): (x∗)TAx∗ = φ, and (b): (x∗)TAx∗ > φ as follows.

(a) Consider (x∗)TAx∗ = φ first. By the Robinson’s conditions at x∗ with the index set I = L, we see

that there exist a vector d ∈ RN and a constant v ∈ R− such that −2dTAx∗− v = −2λ̃∗, 2dTx∗ = −2µ̃∗,

and dLc = −w̃∗Lc . Since dLc = −w̃∗Lc and w̃∗L = 0, we see that dT w̃∗ = −‖w̃∗‖22. Therefore,

0 = −λ̃∗dTAx∗ + µ̃dTx∗ + dT w̃∗ = −(λ̃∗)
2 +

λ̃∗v

2
− (µ̃∗)

2 − ‖w̃∗‖22 = −‖(λ̃∗, µ̃∗, w̃∗)‖22 +
λ̃∗v

2
.

This shows that ‖(λ̃∗, µ̃∗, w̃∗)‖22 = λ̃∗v
2 . Since λ̃∗ ≥ 0 and v ≤ 0, we have ‖(λ̃∗, µ̃∗, w̃∗)‖22 = 0, contradiction.

Therefore, the sequence
(
(λj` , µj` , w

j`)
)

is bounded.
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(b) Suppose (x∗)TAx∗ > φ. In this case, since (xj`) converges to x∗, we have (xj`)TAxj` > φ for all

j` sufficiently large. Hence, λj` = 0 for all large j`. This shows that λ̃∗ = 0. By the Robinson condition

at x∗, there exist a vector d ∈ RN and a constant v ∈ R such that −2dTAx∗− v = −2λ̃∗, 2dTx∗ = −2µ̃∗,

and dLc = −w̃∗Lc . Applying these results to (11) and using λ̃∗ = 0, we obtain via a similar argument for

case (a) that 0 = −λ̃∗dTAx∗ + µ̃dTx∗ + dT w̃∗ = −‖(λ̃∗, µ̃∗, w̃∗)‖22 + λ̃∗v
2 = ‖(λ̃∗, µ̃∗, w̃∗)‖22, contradiction.

Consequently, the sequence
(
(λj` , µj` , w

j`)
)

is bounded and has a convergent subsequence whose limit

is given by (λ∗, µ∗, w
∗) with λ∗ ≥ 0 and w∗L = 0. By passing the limit along this subsequence, we obtain

Mx∗ − λ∗Ax∗ + µ∗x
∗ + w∗ = 0, 0 ≤ λ∗ ⊥ (x∗)TAx∗ − φ ≥ 0, ‖x∗‖2 = 1, w∗L = 0, x∗Lc = 0.

Therefore, x∗, along with (λ∗, µ∗, w
∗), is a KKT point for (P ) satisfying (4) with I = L.

4 Stage Two: Greedy Algorithm for Improvement

A greedy algorithm is proposed to improve the result obtained from the penalty decomposition scheme

(i.e., Algorithm 3) in the second stage. To describe this greedy algorithm, we introduce the following

problem. Given an index set I ⊂ {1, . . . , N}, consider the restricted QCQP problem of (1):

(PI) : min
x∈RN

xTMx subject to xTAx ≥ φ, xTx = 1, and xIc = 0. (12)

Using this subproblem, the proposed greedy algorithm is presented as follows.

Algorithm 4 Greedy Algorithm

1: Input: M and A ∈ RN×N , φ > 0, k ∈ N, s = 2, and the index set L with |L| = k obtained from

Algorithm 3

2: Initialization: set n = 0, and S(n) = L
3: repeat

4: Find J (n) ∈ ArgminJ⊆[S(n)]c, |J |=s (PS(n)∪J ), where each (PS(n)∪J ) is solved via Algorithm 6

5: Find S(n+1) ∈ ArgminK⊂[S(n)∪J (n)], |K|=k(PK), where (PK) is solved via Algorithm 6

6: n← n+ 1

7: until S(n) = S(n−1)

8: Output: an optimal solution x∗ to (PS(n)).

The proposed greedy algorithm improves an underlying index set S(n) and its associated solution x(n)

in each iteration. We describe its key ideas and steps as follows. For each nth iterate, the algorithm first

selects two additional best local indices by solving
(
N−k

2

)
restricted QCQPs on R(k+2) (cf. Line 4). It then

chooses an optimal index subset S(n+1) of size k from the union of S(n) and the two additional indices

which achieves a minimal value among all the k(k+1)
2 restricted QCQPs on Rk. The greedy algorithm

improves the solution of the PD scheme as shown below.

Lemma 4.1. Let f(x) = xTMx be the objective function of (P ) given in (1), and
(
x(n)

)
be a sequence

generated by Algorithm 4, where x(n) is the solution of PS(n). Then each x(n) is feasible to (P ), and(
f(x(n))

)
is decreasing.

Proof. Note that for each n, |S(n)| = k and x
(n)
i = 0 for all i /∈ S(n). Clearly, x(n) is a feasible point

of (P ). Furthermore, for the index set J (n) obtained from Line 4, S(n) is a subset of S(n) ∪ J (n) with

|S(n)| = k. By Line 5 of Algorithm 4, we see that f(x(n+1)) ≤ f(x(n)) and
(
f(x(n))

)
is decreasing.
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We discuss an algorithm solving the subproblem (12) for a given index set I with |I| = `. Define

Q0 := MII and Q1 := −AII
φ
. (13)

Since A and M are both positive definite, Q0 � 0 � Q1. Clearly, (PI) can be reduced to the following

nonconvex QCQP:

(PΥ) : min
Υ∈R|I|

ΥTQ0Υ subject to ΥTQ1Υ ≤ −1, and ΥTΥ = 1. (14)

To solve (PΥ), consider its SDP relaxation:

(PY ) : min
Y ∈S|I|

Tr (Q0Y ) subject to Tr (Q1Y ) ≤ −1, Tr(Y ) = 1, and Y � 0. (15)

The reason for considering (15) instead of (14) is threefold. First, it is known that the nonconvex problem

(14) and its convex SDP relaxation (15) have the same optimal value. Second, given a solution of (15),

a rank-one solution of (15), which can be constructed in a polynomial time, leading to a global solution

of (14). Lastly, since |I| is usually small, leveraging SDP relaxation is computationally efficient.

Let Y ∗ be a solution of (15). Consider two cases: Tr(Q1Y
∗) < −1, and Tr(Q1Y

∗) = 1. For the former

case, it is easy to see that the optimal value is λmin(Q0), and Y ∗ = vvT , where v is the unit eigenvector

associated with λmin(Q0). For the latter case, the problem becomes

min
Y ∈S|I|

Tr (Q0Y ) subject to Tr (Q1Y ) = −1, Tr(Y ) = 1, and Y � 0. (16)

Its dual problem is:

max
y=(y1,y2)∈R2

−y1 + y2 subject to Z = Q0 − y1Q1 − y2Ik, and Z � 0,

which clearly has a strictly feasible point because Q0 � 0. Hence, the dual problem satisfies the Slater’s

condition such that the strong duality holds, i.e., the primal and dual problems have the same optimal

value. Furthermore, it is known that the standard SDP with m constraints has a solution with rank r

such that r(r + 1) ≤ 2m [3, 24]. We immediately deduce that (16), if feasible, has a rank-one solution.

There are various standard methods to construct a solution of a QCQP from its SDP relaxation in a

polynomial time [1, 2, 30]. However, we avoid describing them here and instead discuss a rank reduction

algorithm for this SDP [14], which is more appropriate for practical purposes. The following algorithm

starts from an arbitrary solution of (16) and returns another solution with rank one.

Algorithm 5 Solution Rank Reduction for (16)

1: Input: A solution Y of (16). Let r = rank(Y ).

2: while r > 1 do

3: Compute a factorization Y = V V T with V ∈ RN×r
4: Find a nonzero ∆ ∈ Sr with Tr(∆) = 0 and Tr(V TQ1V∆) = 0

5: Let Y = V
(
Ir − λ−1

max(∆)∆
)
V T

6: Let r = rank(Y )

7: end while

8: Output: A rank-one solution of (16).

We are now ready to summarize our procedure for solving (12) in the following algorithm.
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Algorithm 6 Solve Problem (PI) given by (12)

1: Input: Q0 and Q1 defined in (13).

2: Compute λmin(Q0) and its associated unit eigenvector v.

3: Solve (16) to get a solution X.

4: Apply Algorithm 5 to obtain a rank-one solution X = uuT of (16)

5: if vTQ1v < 1 and λmin(Q0) < uTQ0u then

6: Υ = v

7: else

8: Υ = u

9: end if

10: Output: xI = Υ, and xIc = 0

5 Numerical Experiments

A standard (statistical) arbitrage strategy has the following four main steps: constructing an initial

appropriate asset pool, designing a mean-reverting portfolio, applying a unit-root test to verify the

mean-reverting property, and finally, trading such a favorable portfolio. For the first step, a method

for constructing an asset pool is explained in [7], which resorts to the smallest eigenvalue of the corre-

sponding covariance matrix. In this paper, we focus on the very critical (second) step of an arbitrage

strategy, namely, proposing a mean-reverting portfolio through minimizing the predictability surrogate.

Additionally, we include the sparsity and volatility constraints in (1) to ensure the profitability of such

a portfolio; when utilized in practice. For the third step, it is well-known how to employ a unit-root

test such as Dickey-Fuller [10]. For the forth step, we avoid describing a regular mean-reversion trading

strategy and instead, we refer the readers to [33, 34, 35] for a comprehensive discussion on how to benefit

from such a portfolio. However, we briefly explain about three standard performance metrics, often used

in the literature, for the numerical experiments or portfolio investment [33, 34].

• Cumulative profit and loss (P&L): this tool measures the cumulative return of a mean-reverting

portfolio in one trading period from t1 to t2 based on the following formula:

Cum. P&L (t1, t2) =

t2∑
t=t1

P&Lt,

where P&Lt = yT rt(t− to)− yT rt−1(t− 1− to) whenever a long position is opened and P&Lt = yT rt(t−
to)− yT rt−1(t− 1− to) provided that a short position is opened at time to. For a given asset, we have

rt(τ) =
pt − pt−τ
pt−τ

≈ ln(pt)− ln(pt−τ ),

and pt denotes the price of a considered asset at time t. We use Table 1 in [33] with d equal to the

suggested standard deviation of the portfolio.

• Sharpe Ratio: this is another metric to examine the quality of a portfolio for a period of time from

t1 to t2 is defined as SRROI(t1, t2) = µROI/σROI , where µROI = 1/(t2 − t1)
∑t2

t=t1
ROIt and σ2

ROI =

1/(t2 − t1)
∑t2

t=t1
(ROIt − µROI)2. Clearly, a portfolio with a bigger Sharpe ratio is more profitable.

• Return on investment (ROI): this tool measures the investment return of a mean-reverting portfolio is

defined as follows:

ROIt =
P&Lt
‖y‖1

.
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The setup of the numerical experiments is as follows. We first select real data coming from the U.S.

stock market, i.e., the Standard and Poor’s 500 (S&P 500) Index, which is often used in the state-of-the-

art literature. Here, we first combine the asset pools suggested in [7, 33, 35, 32] and then, add several

assets to have an asset pool with 30 assets. The trading time period is considered from February 1st,

2012 to June 30th, 2014. The log-prices of these assets are depicted in Figures 1, 2 and 3. The volatility

threshold φ is chosen based on the idea proposed in [7], namely, we choose this parameter to be larger than

one fifth of the median variance of all assets in the pool. Four different sparsity levels, i.e., k = 4, 5, 6, 7,

are considered. To the best of our knowledge, the only existing method for (indirectly) tackling (1) is

the SDP relaxation method in [7]. Thus, we only compare the proposed scheme denoted by PD-G with

this method. Recall that the SDP relaxation method first solves (2) to get Y ∗ and then solves (3) for

H = Y ∗. The sparse PCA problem (3) is solved via the method given in [17]. For the proposed PD-G

scheme, we use the following stopping criteria:

max

{
‖xj,s − xj,s−1 − ‖∞

max (‖xj,s‖∞, 1)
,
‖yj,s − yj,s‖∞

max (‖yj,s‖∞, 1)

}
≤ 5× 10−3,

max
{
‖xj − yj‖∞

}
≤ 5× 10−4, and ρj =

√
10ρj−1.
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Figure 1: Log-prices for the first 10 assets.
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Figure 2: Log-prices for the second 10 assets.
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Figure 6: Time history for k = 5; Optimal value: SDP=16.17 and PD-G=6.91.

CAT COF BBY USO FDX

0.2

0.0

0.2

0.4

0.6
SDP

AXP IBM COST GDXJ DLTR

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

PD-G

k = 5

Figure 7: Portfolios selected by SDP and PD-G for k = 5
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Figure 11: Portfolios selected by SDP and PD-G for k = 7

We compare the profitability of the proposed PD-G scheme with the SDP relaxation method for each
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sparsity level k. The numerical results are displayed in Figures 4-11 for different k’s, where both the

time history of spreads, return on investment (ROI), and cumulative profit and loss (Cum. P&L) and

the portfolios selected by the two methods are shown for each k. It is seen that for each k, the spread

produced by the PD-G method captures the desired mean-reverting property very well, while the spread

from the SDP relaxation method does not always demonstrate this property over the whole period in

consideration. It is also seen that the portfolios chosen by the PD-G method achieve better Sharpe ratios

compared to those from the SDP method. More precisely, the Sharpe ratio from the PD-G method is

twice larger for k = 4, six times larger for k = 5, much larger for k = 6, and twice bigger for k = 7 to

that of the SDP method, respectively. Further, the figures of cumulative returns for the proposed PD-G

method show a similar increasing trend for each sparsity level whereas the inconsistent trends are shown

from the SDP method. Consequently, the final cumulative returns generated by the PD-G method are

bigger for each k. Besides, the optimal values obtained from the two methods are quite different. In

particular, the PD-G method achieves much smaller optimal values than the SDP method for all the four

sparsity levels. Hence, the proposed PD-G method not only attains favorable theoretical properties but

also outperforms the SDP relaxation scheme on the benchmark data set.

6 Conclusion

This paper proposes a two-stage algorithm to solve the mean-reverting portfolio optimization problem

subject to sparsity and volatility constraints. In the first stage, a penalty decomposition scheme is used,

and in the second, a SDP-relaxation based greedy algorithm is invoked. Theoretical properties of this

algorithm are established, and numerical results demonstrate the efficacy of the proposed scheme.
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