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Abstract

I use data on site selection decisions for a subset of U.S. colleges to identify “runner-up”
locations that were strongly considered to become the sites of new colleges but were
ultimately not chosen for as-good-as-random reasons. When using runner-up counties
as counterfactuals, establishing a college causes 48% more patents per year. Linking
patents to novel college yearbook data reveal that only 5% of patents in a college’s
county came from alumni or faculty of that college. I find no difference in patenting
between establishing colleges and establishing other types of institutions, nor between
colleges with different focuses on technical fields.
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How do institutions of higher education affect local invention?1 The literature proposes

many possible channels, including both direct and indirect channels. In direct channels,

activities that are unique to colleges, namely students obtaining human capital and faculty

conducting research, directly push forward the frontier of practical knowledge.2 In indirect

channels, colleges instead affect the local innovation ecosystem in more subtle ways, with

individuals who are not directly affiliated with a college benefiting from the presence of the

institution to produce inventions. These indirect channels can take many forms; for example,

the college may drive migration that in turn generates agglomeration externalities (Carlino

and Kerr, 2015; Ciccone and Hall, 1996; Glaeser and Gottlieb, 2009). Attempts to estimate

the causal effect of colleges on local invention (Aghion, Boustan, Hoxby, and Vandenbussche,

2009; Furman and MacGarvie, 2007; Hausman, 2017; Kantor and Whalley, 2014; Kim, 2020)

typically shed little light on the channels through which colleges operate. In this study, I

exploit historical natural experiments to more cleanly identify the causal effect of colleges on

local invention than is possible in prior work. To investigate the channels through which this

effect operates, I then link patent data from these natural experiments to a novel dataset of

historical college yearbooks and to U.S. decennial population censuses. I find that most of

the effect of colleges operates through indirect channels: the groups who are directly affected

by a college, the college’s alumni and faculty, account for only a small share of the patents

in that college’s county. Finally, I present a number of additional comparisons to provide

suggestive evidence on the nature of these indirect channels.

Understanding which channels drive local invention is a topic of substantial practical

importance. Academics and policymakers have reached a near-consensus that proximity to

a college is a necessary condition to create a local invention hub. For example, Florida (2002b,

p. 291-292) argues that “the presence of a major research university is a basic infrastructure

component” of creative hubs, even more important than physical infrastructure like bridges

and railroads. O’Mara (2005, p. 6) refers to colleges and universities as “the economic

development engine” at the heart of innovative cities. And Moretti (2012, p. 186) concludes

that “[a] research university was necessary but far from sufficient for the birth and coming-

1Throughout this paper, I refer to all institutions of higher education as “colleges.”
2See, for example, Moretti (2004) and Zucker, Darby, and Brewer (1998) for classic papers on the impor-

tance of college graduates and faculty in innovative communities, respectively.
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of-age of [Silicon] Valley.” But if most of the local effect of colleges is driven by indirect

channels not specific to the presence of a college, then other types of investments may be

able to deliver similar local effects, calling into question the necessity of a college for invention

hubs. I present evidence to this effect in this paper.

I begin by estimating the local causal effect of establishing a college. Studying the causal

effect of colleges is difficult because, as Hausman puts it: “To understand local industry

effects of universities, one would ideally like to randomly allocate universities to locations and

measure related industry activity in those locations after the universities arrived relative to

before” (Hausman, 2017, p. 11). Conducting such an experiment is infeasible today. In this

paper, I approximate this ideal experiment using historical data on the establishment of U.S.

colleges from 1839 to 1954. By exploring the narrative record, I am able to identify “runner-

up” sites that were strongly considered to become the site of a new college. The methodology

is similar to that in Greenstone, Hornbeck, and Moretti (2010) to study the site selection

decisions of large manufacturing plants.3 The key idea behind this “runner-up” methodology

is that, when selecting where to locate a new college, dozens of possible candidate locations

are considered and iteratively eliminated; by the time only a few finalists sites are left they are

likely similar along both observable and unobservable dimensions. While this methodology

works well in the context of Greenstone et al. (2010), the identifying assumption can fail if

only a small number of locations were ever considered, especially if these finalist locations are

very dissimilar to one another. To account for this, I refine the methodology by restricting

the sample to cases in which I can verify that the site selection decision is as good as random

assignment.

A concrete example of a college site selection process is useful to fix ideas. In 1882, the

state of North Dakota drew lots to determine where to locate the University of North Dakota

and North Dakota State University; locations were literally randomly assigned (Geiger, 1958,

p. 13-27). Not surprisingly, literal random assignment is rare, but many cases are approx-

imately random. As an example of as-good-as-random assignment, in 1886 the citizens of

Georgia wanted a technical college, but there was no consensus about where to put it. The

3Helmers and Overman (2017) and Watzinger, Treber, and Schnitzer (2018) apply similar methodologies
in other contexts.
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two main rival sites were Atlanta and Macon. Both were known primarily as railway depots

located in the interior of the state and were similar along a number of observable dimensions.

A site selection committee assembled to vote on the location of the college. For the first

23 ballots, neither Atlanta nor Macon obtained the requisite majority. Finally, on the 24th

ballot, Atlanta won over Macon by one vote (McMath Jr., Bayor, Brittain, Foster, Giebel-

haus, and Reed, 1985, p. 24-32). It is thus easy to believe that Georgia Tech could have

been located in Macon instead of Atlanta. The cases of the North Dakota universities and

Georgia Tech were not isolated incidents: while the decisions were often less dramatic, these

kinds of college site selection experiments occurred all across the United States during the

second half of the nineteenth century and first half of the twentieth.4

The winning counties and the as-good-as-randomly-assigned runner-up counties are sim-

ilar along observable dimensions. In contrast to my approach in this paper, most previous

studies that focus on the establishment of new colleges assume that colleges are located at

random (Andersson, Quigley, and Wilhelmsson, 2004,0; Cowan and Zinovyeva, 2013; Cur-

rie and Moretti, 2003; Frenette, 2009; Lehnert, Pfister, and Backes-Gellner, 2020; Moretti,

2004; Toivanen and Väänänen, 2016).5 I show that assuming the random location of colleges

overstates the effect of colleges on local invention.

I use patent data, assembled from a number of sources to fully cover the years 1836

to 2010, to proxy for local invention.6 Using the runners-up as counterfactuals for the

winning college counties in a differences-in-differences framework, I find that establishing a

new college causes a sizable increase in local patenting. In the preferred specification, the

college counties have about 48% more patents per year than the runner-up counties after

4See the historical appendix (Andrews, 2019c) for many more examples.
5Moretti (2004, p. 190-191), focusing exclusively on land grant colleges, writes that, “Land-grant colleges

were often established in rural areas, and their location was not dependent on natural resources or other
factors that could make an area wealthier. In fact, judged from today’s point of view, the geographical
location of land-grant colleges seems close to random.”

6Of course, patent data are not a perfect proxy: not all inventions are patented, and not all patents are
for meaningful inventions; see Griliches (1990) and Nagaoka, Motohashi, and Goto (2010) for a discussion
of these issues. But patents have a number of attractive features as well. The patent data are available for
the entire U.S. over a long time period and a wide range of technology fields, allowing me to estimate the
long-run effects of establishing a diverse set of institutions. An additional benefit of patent data is that each
patent document records the name of its inventor. By linking this to other datasets such as the population
censuses, it is possible to discover the identity of the inventive individuals living in an area. I discuss this
benefit in more detail below.
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the college is established. I argue that, if anything, this estimate likely understates the true

local effect of establishing a college. I show that establishing a college also causes a roughly

49% increase in county population relative to the runner-up counties, providing the first

suggestive evidence of the importance of indirect channels like population growth.

To explore the relative importance of different channels more directly, I match the names

of patentees in college counties to other datasets to reveal inventors’ identities. In particular,

I match by inventor name to a novel dataset of historical college yearbooks and to U.S.

population census data for the years 1940 and earlier to see if a patentee is an alumnus or

faculty member of a particular college. By linking individuals across censuses, I can observe

whether an individual was present in a college county at the time the college was established

or appeared in the college county’s census records after the fact. Through 1940, alumni and

faculty of a particular college account for only about 5% of the patents in that college’s

county. More than 75% of patents are by individuals who were unaffiliated with their local

college and did not live in the college county at the time the college was established. While

the data on alumni and faculty can be linked to U.S. census data only through 1940, the

decades I observe contain dramatic changes in technological development, urbanization, and

migration. I therefore shed light on the role of colleges in driving these trends at the local

level during an important period of both American economic history and the history of U.S.

higher education. To get a rough sense of the extent to which the role of alumni and faculty

have changed in recent years, I use data from Bell, Chetty, Jaravel, Petkova, and Reenen

(2019) and Zolas, Goldschlag, Jarmin, Stephan, Owen-Smith, Rosen, Allen, Weinberg, and

Lane (2015) to conduct a similar analysis for recent decades. I find that since 1996, in spite

massive changes in the scale and scope of U.S. colleges, alumni and faculty of a particular

college still account for less than 20% of patents in that college’s county. It thus appears that

indirect channels account for the vast majority of patents in a college’s county, regardless of

the time period investigated.

In the remainder of the paper, I conduct several additional analyses to provide sug-

gestive evidence about the types of indirect channels that are most important. I test for

the importance of positively selected migration using individuals’ recorded occupations in

the decennial censuses to determine if the migrants to college counties appear more skilled

5
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than the migrants to the runner-up counties. I find no difference in occupational income.

Hence, positive selection does not appear to be the primary channel through which colleges

indirectly affect local invention.

It may be the case that, even though the population in college and runner-up coun-

ties appear similar, non-college affiliated individuals near colleges benefit more from local

knowledge spillovers than do individuals in runner-up counties because they can interact

with educated faculty and alumni. To test this, I examine what I call “consolation prize”

cases: instances in which the runner-up counties receive another type of state institution,

such as a prison or insane asylum, instead of a college. The increase in patenting is statis-

tically indistinguishable between the college and consolation prize counties. I also compare

across different types of colleges.7 Colleges that are focused on more technical fields might

be expected to both produce larger direct effects and large spillovers to non-college affili-

ated individuals. I find no statistically significant difference across types of colleges, and if

anything more technically focused colleges see smaller increases in local patenting. I view

these results as further suggestive evidence that increasing population is the most important

driver of local invention; spillovers resulting from this larger population do not depend on

the activities going on at the college.

This paper is organized as follows. Section I describes the data, including an in depth

explanation of the college site selection experiments. Section II presents the baseline results

for the effect of the establishment of a new college on local patenting. In Section III I use the

yearbooks and census data to show that only a small share of patents come from individuals

directly affected by the college. Section IV further investigates the indirect channels through

which colleges affect local invention. Section V concludes.

7Many studies of the effects of college focus only on one type of institution. For instance, Currie and
Moretti (2003), Moretti (2004), and Kantor and Whalley (2019) all focus exclusively on land grant colleges.
The ability to investigate various sorts of colleges is an additional strength of the analysis in this paper.
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I Data and Empirical Model

I.A The College Site Selection Experiments

U.S. history provides an ideal laboratory to study the establishment of new colleges. As

Goldin and Katz (1999) and Xiong and Zhao (2019) point out, the mid-19th to mid-20th

centuries saw an explosion in the number of colleges and universities in the U.S., providing

many potential college site selection experiments. In addition, because most colleges were

built more than a century ago, it is possible to trace the long-term effects of colleges on

invention. Moreover, many of these colleges were built at the beginning of what Goldin and

Katz (2008) call the “human capital century” and Gordon (2016) refers to as “the golden

age” of America’s technological leadership.

To estimate the causal effect of establishing a college, the first step is to identify valid

counterfactuals to college sites. I modify a methodology used by Greenstone et al. (2010) to

estimate the agglomeration externalities from building large manufacturing plants, who use

“runner-up” plant locations as counterfactuals for winning sites. I likewise use the historical

record to find runner-up locations for colleges.8

A great deal of thought went into each college site selection decision throughout U.S.

history. Horace Bushnell, a theologian who played a central role in locating both the Uni-

versity of California and the University of Illinois, articulated the weight of these decisions:

“The site of a university is to be chosen but once. Once planted, it can never be removed;

and if any mistake is made, that mistake rests on the institution as a burden to the end of

time” (quoted in Ferrier (1930, p. 162)). Many localities wanted to secure a new college,

and any economic benefits that went along with it, for themselves. This ensured that site

selection decisions often became quite contentious. Further complicating the site selection

decision is the fact that new colleges often had particular infrastructure needs. In the case

of land grant universities, for example, the Morrill Act of 1862 explicitly prohibited states

8Patrick (2016) raises several challenges to the identification strategy employed by Greenstone et al.
(2010). These critiques are unlikely to be valid in my context for a number of reasons. First, in contrast
to for-profit firms, there is little strategic reason for colleges to hide their list of finalist locations from
competitors. Second, I provide a great deal of institutional detail that shows that the site selection decision
was indeed close to random. Finally, in Section I.F I show that college and runner-up sites are similar in
terms of observables; in Appendix A.B I show that the colleges and runners-up evolved similarly as well.
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from using their land grant fund to construct buildings. This often forced states to locate

land grant colleges in towns with unused buildings large enough for a college or in localities

willing to raise the funds for construction. Thus, the set of potential candidate locations

may be quite different from the average site within the same state.

To find runner-up sites, I consult detailed institutional histories, what Washburn (1979)

calls “the driest of dry forms of historiography”, for information on the college site selection

process. I do this for 451 colleges, comprising almost 15% of the 3,039 degree-granting post-

secondary schools currently in the U.S.9 While it is not feasible to find and consult detailed

histories for every college in the U.S. given the large number of small colleges, I attempt to

find data on every prominent or influential U.S. school. More specifically, I investigate every

national university ranked by the 2018 U.S. News and World Report Best Colleges ranking

(https://www.usnews.com/best-colleges/rankings/national-universities), as well

as the 25 best liberal arts colleges in the corresponding ranking (https://www.usnews.com/

best-colleges/rankings/national-liberal-arts-colleges); every land grant college;

the first public university founded in each state; the flagship university of a each state’s

public university system if this is different from either the land grant or first public univer-

sity; every state technical school and mining college; every federal military academy; and

every university belonging to a Power Five athletic conference. When data was available, I

also investigated historically black colleges and universities (HBCUs) and private colleges,

with a focus on the private colleges that have been historically noteworthy or are currently

considered prestigious. For a handful of states, I also investigated each normal school es-

tablished in that state. Over time, normal schools typically evolved to become “directional”

state universities (for example, the Michigan State Normal College became Eastern Michigan

University).

Of these 451 colleges, in 204 cases I am able to find information on the candidate locations

that were considered.10 Andrews (2019c) describes each of these 204 cases in much more

9The count of U.S. colleges as of 2013 comes from https://nces.ed.gov/fastfacts/display.asp?id=

84.
10For the other 247 colleges, I do not have any information on other candidate locations for the campus,

either because histories are insufficiently detailed about the site selection process or, more commonly, because
only one candidate location (the winner) was ever considered. The former occurs most often for private
colleges when only a small number of decision makers were involved in picking a site, and hence the site
selection process is often not transparent, as in the case of Johns Hopkins University. The latter occurs
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detail. In Appendix A.A I provide additional comparisons of the sample of 204 colleges to the

universe of U.S. colleges. In general, the colleges in my sample are larger than the average

U.S. college in terms of number of students, faculty, library volumes, and other measures,

and are thus also likely to have a larger than average effect on local invention and the local

economy more generally, although they are similar on average to the typical “Carnegie R1

or R2” research university.11

One drawback to this approach is that it identifies all finalists, regardless of how similar

the winning and losing sites are or how close the site selection process was to random assign-

ment. For instance, three different counties submitted bids to the Ohio State legislature to

receive the new Ohio State University, but there does not appear to be any serious discus-

sion in the legislature: the college was always intended to be located at the state capital in

Columbus. Moreover, Columbus is very different from these other localities along observable

dimensions. To mitigate this problem, I further restrict the sample to only include cases in

which, conditional on being a finalist, the site selection decision is as good as random; I refer

to these as “high quality” college selection experiments. I consider 75 of the college cases to

be high quality experiments. Eight of these high quality experiments take place prior to the

start of the patent data in 1836, so I exclude them. The remaining 67 high quality college

site selection experiments form the baseline sample.

While each of the high quality site selection experiments is unique, they can broadly be

grouped into four categories. First, a vote among candidate locations may be exceptionally

close; the case of Georgia Tech described in the Introduction is one example of this. Second,

candidate locations frequently submitted bids to boards of trustees or state legislatures to

receive a new college. When two bids are similar, this is evidence that the localities valued

receiving the school roughly equally, and the decision makers were largely indifferent between

frequently for universities located in large cities; cities often decided to establish their own colleges once
they reached a threshold size, with no consideration of other places to locate the school. This occurred,
for instance, in the cases of the University of Louisville, Wichita State University, and Loyola University
Chicago.

11I emphasize that while the sample colleges are larger and more prestigious than average, it is not possible
to identify runner-up sites for the extreme right tail of U.S. colleges, such as Harvard, MIT, and Cal Tech.
For policymakers looking to use a college as a tool to promote local invention, the “average” U.S. college
is arguably a more realistic treatment than one of the world’s most elite institutions. In Appendix F.C, I
discuss heterogeneity by the quality of a college.
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the two sites. Third, in some instances a new college had specific infrastructure needs, such

as existing vacant buildings of a suitable size, and only two or three such sites within the

state possessed the required infrastructure. Finally, some site selection experiments involve

quirky random events that are difficult to otherwise classify. The random assignment of

the University of North Dakota and North Dakota State University is an example of this.

Cornell University provides another example. Ezra Cornell and Andrew White, the fathers

of Cornell, wanted to establish the college in one of their home towns but could not decide on

which. Ezra Cornell was from Ithaca, while Andrew White was from Syracuse. But Cornell

had been cheated of his wages as a young man in Syracuse and refused to locate the college

there. Consequently, Cornell University is located in Ithaca.12 In Appendix D, I show that

the results are insensitive to discarding any of these groups of high quality experiments. The

results are also not sensitive to reclassifying marginal cases as either high or low quality.

Augmenting the runner-up methodology by using narrative history to exclude cases in

which selection is not as good as random assignment is, as far as I know, novel in the

literature.13 In a paper studying agricultural experiment stations, Kantor and Whalley

(2019) compare a subset of land grant colleges to all contending locations as a robustness

check. They do not, however, restrict attention to those cases in which the winning site is

as good as randomly assigned; for instance, Ohio State is one of the colleges in their sample.

In the analysis below, I show that failing to exclude these low quality experiments overstates

the effect of establishing a college.

12I have been unable to find any evidence that Syracuse tended to have citizens of a lower moral character
than did Ithaca. Syracuse and Ithaca were furthermore similar along observable dimensions before the
establishment of Cornell University. Syracuse would, of course, get its own university several years later. In
Appendix D.B, I discuss several different strategies to handle runner-up sites like Syracuse. In general, to
the extent runner-up counties are likely to receive a college of their own in the future, the results in this
paper should be interpreted as a lower bound on the local effects of college.

13Liu (2015), Bonander, Jakobsson, Podestà, and Svensson (2016), and Lee (2019) use synthetic control
methodologies to study the economic impact of establishing or expanding colleges. A synthetic control
methodology is less appropriate in a historical context because data for several desired predictors are not
available for most locations in most pre-treatment years. For instance, Lee (2019) argues that real estate
prices are an important predictor to understand the demand for land in winning and losing locations. In
addition, in most cases unobservable factors, such as the enthusiasm of the local population for education
or the presence of specific pieces of infrastructure, were crucial both in becoming a finalist site as well as
in the production of innovations. These factors are taken into account in the current methodology but are
neglected in any methodology that matches on observables.
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I.B Patent Data

Patent data extend from the first year for which U.S. patent records are complete, 1836, to

2010. The patent data come from four sources, with different sources available for different

years. For the years 1836-1870, I use patent data collected in the Subject-Matter Index of

Patents for Inventions Issued by the United States Patent Office from 1790 to 1873 (Leggett,

1874), compiled by Dr. Jim Shaw of Hutchinson, KS. I use the Annual Reports of the Com-

missioner of Patents for the years 1870 to 1942. See Sarada, Andrews, and Ziebarth (2019)

for details on cleaning, parsing, and preparing this dataset. The years 1942 to 1975 come

from the HistPat dataset compiled by Petralia, Balland, and Rigby (2016a); see Petralia,

Balland, and Rigby (2016b) for details on the construction of this data. Finally, for the

years 1975 to 2010, I use the patent data created by Li, Lai, D’Amour, Doolin, Sun, Torvik,

Yu, and Fleming (2014) which contains cleaned inventor names. Because all analyses include

year effects, there is no concern with the fact that different years make use of different patent

data sources.14 Each of these datasets contains, for every granted U.S. patent, the names

and residence of all inventors. I aggregate patenting to the county level.

I merge by patent number and/or inventor name to other datasets that include addi-

tional patent information. The U.S. Patent and Trademark Office’s Historical Patent Data

Files (Marco, Carley, Jackson, and Myers, 2015) contain information on patent classes for

historical patents. Enrico Berkes graciously provided data on patent citations and patent

claims; see Berkes (2018) for details. Andrews (2019a) contains a detailed discussion of all

of these patent datasets.

I.C Yearbook Data

College yearbooks are available from ancestry.com. The college yearbooks include full

student names, which can be used to match students from yearbooks to other data sources

such as the patent record or the US decennial censuses. The yearbooks usually include names

of faculty members as well. I collect yearbooks from 20 different colleges, roughly 30% of the

14The use of different patent datasets in different years could still bias the results if, for instance, one
dataset systematically recorded more patents from college counties than runner-up counties. Because the
college and runner-up counties are so similar to one another as described in Section I.F below, this concern
is minimal.

11

Electronic copy available at: https://ssrn.com/abstract=3072565



colleges in my sample, covering 305 yearbooks from 1879 to 1940 and including records for

83,448 undergraduate seniors and 30,541 faculty members.15 The yearbook data, including a

discussion of how representative the yearbook colleges are relative to the rest of the sample,

are described in more detail in Appendix C.A.

I.D Matching Patent and Yearbook Data to the U.S. Census Data

I use the names of individuals in the patent and yearbook data, along with the 100% U.S.

federal decennial population censuses, to determine which patents in a college’s county were

granted to alumni and faculty of that college. The census data for the years 1850-1940

are transcribed by ancestry.com and the Minnesota Population Center and hosted by the

NBER.16

The yearbook data provide the flow of students passing through each college, while I am

interested in the stock of each college’s alumni. For each year, I therefore compile names of

college seniors from the previous yearbook years to assemble a stock of known alumni names.

Once I have data on the stock of alumni for each year, I fuzzy match the names of alumni,

faculty, and patent records for each county i and year t to the census records for county i

in the nearest census year.17 For the non-alumni, non-faculty patents, I am interested in

determining whether these individuals were present in county i at the time college i was

established, or whether they first appear in county i later. To do this, I link records from

county i in a given census year to county i’s records in the previous census; by doing this for

all censuses, I can document the earliest census for which each individual appears in county

i.18 If an individual is neither an alumnus nor faculty and first appears in county i before

15These need not be unique faculty members; in most cases the same faculty member is listed in multiple
yearbook years. In rare cases, yearbooks do not record names of college seniors but do list names of juniors.
In these cases, I record the names of juniors instead.

16No individual-level census data exists for the 1890 census, which was destroyed in a fire. Aggregate
county-level data from the censuses are available for 1840 and 1890, as well as for later census years, but
individual-level data are not available.

17So, for example, I match patent records from Grand Forks County, ND, and yearbook records for the
University of North Dakota (located in Grand Forks) from 1935-1940 to the 1940 census records for Grand
Forks County, and 1930-1934 patent and yearbook records to the 1930 census records for Grand Forks County.
Throughout, I only use census records for males because name changes by females produce artificially low
match rates.

18More specifically, I link records across censuses following the procedure in Ferrie (1996). I consider an
individual j in census year t to match to an individual k in the prior census year t−10 if the two individuals
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college i is established, I refer to the individual as a “pre-college other,” while if he first

appears after college i is established I refer to him as a “post-college other.”

An adjustment to the stock of college alumni is necessitated by the fact that, for a given

college, yearbooks may not be available for all consecutive years. When this occurs for college

i, the calculated stock of alumni will provide an undercount of the true number of college

i’s alumni; when yearbooks are missing for many years, this undercount can be substantial.

To overcome this, for each college i I calculate a patenting rate for college i’s alumni by

dividing the number of alumni matched to patents in the census for county i and year t by

the number of alumni matched to the census for county i and year t, averaged over all years.

Next, I interpolate the number of college seniors for the missing yearbook years and use these

interpolated counts to reconstruct the stock of alumni as above. I apply the patenting rate

for college i’s matched alumni to the adjusted stock of college i’s alumni to get the adjusted

number of patents belonging to alumni of college i. I correspondingly scale down the number

of pre-college others and post-college others in county i by the number of additional alumni

patents resulting from this interpolation procedure, keeping the relative sizes of the pre- and

post-college others the same.

This procedure gives me the number of patents in county i belonging to the alumni and

faculty of college i, along with the number of patents by individuals who were first in county

i before and after college i was established. Appendix C.B describes this procedure in more

detail. Appendix E.A discusses the sensitivity of the final alumni and faculty patenting

shares to alternative interpolation assumptions and matching criteria. The alumni, faculty,

pre-college others, and post-college others categories are constructed to be exhaustive and

mutually exclusive. As Bailey, Cole, Henderson, and Massey (2018) show, a simple fuzzy

matching procedure of individuals’ names across datasets, as I use here, can produce a large

number of false positive matches. Thus, because I count as a match any name that is similar

across the patents, yearbooks, and census records, these results likely overstate the share

of patents belonging to alumni and faculty. I use this sample of matched patent-yearbook-

have a sufficiently similar name, if the race and gender are the same (Racej = Racek, Genderj = Genderk),
if the birthplace is the same (Birthplacej = Birthplacek), if mother and father birthplace are the same
(MotherBirthplacej = MotherBirthplacek, FatherBirthplacej = FatherBirthplacek), and if agekt + 2 ≥
agejt − 10 ≥ agekt − 2.
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census data for the results in Section III.

I.E County Data

County-level data comes from the National Historic Geographic Information System (NHGIS)

(Manson, Schroeder, Riper, and Ruggles, 2017). The NHGIS data allows me to compare

counties along a number of useful dimensions including population; composition of the county

population along racial, gender, immigration, and age dimensions; urbanization; and average

wages and production in both agricultural and manufacturing sectors. I also use data on the

total number of accredited colleges at the county level. These are found in Reports of the

Commissioner of Education, several years of which have been transcribed: 1870, 1875, 1880,

1885, 1890, 1895, 1900, 1905, 1910, and 1914 by Heyu Xiong and Yiling Zhao; and 1897,

1924, and 1934 by Claudia Goldin.

I.F The College and Runner-Up Counties

Appendix Table A1 lists each of the 64 high quality college site selection experiments in

the final sample as well as the year in which the experiment took place. Table 1 further

summarizes the college experiment data. Each college site had on average 2 runner-up sites.

The runner-up sites are on average about 140 km (≈87 miles) away from the college towns,

with the median runner-up about 90 km (≈56 miles) away, using geodetic distances. This is

far enough that the college and runner-up sites are typically in different labor markets, but

close enough to be affected similarly by region-wide shocks. Figure 1 is a map of the college

and runner-up counties throughout the U.S., providing visual verification that the college

and runner-up counties vary in their distance from one another. The map also shows that

the entire continental U.S. is represented in the sample and that colleges were not simply

built near existing major population centers. Row 3 of Table 1 shows that colleges were

established throughout the entire period from 1839 to 1954, with the mean and median

college established in the mid-1880s. The median college began admitting students four

years after determining where the school would be located. To give a sense of the type

of colleges involved in the study, I classify colleges into one of seven mutually exclusive
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groups: land grant colleges, technical colleges, normal schools, historically black colleges and

universities (HBCUs), military academies, other public colleges, and other private colleges.19

A plurality of the college experiments involve land grant colleges. 10% of the experiments

involve technical colleges, 17% involve normal schools, 4% involve HBCUs, and 4% involve

military academies. 17% of the colleges are classified as “other” public colleges, while 7%

are classified as “other” private colleges.

Figure 2 compares the college and runner-up counties and shows that the runners-up

are a better match for the college counties than are the “non-experimental” counties, which

are all other counties in a college’s state that are neither college nor runner-up counties.

The black diamonds display the difference in the mean between the college and runner-up

counties in the last U.S. census year before the college was established on a number of eco-

nomic, demographic, and educational variables, expressed as a fraction of the mean value

in the college county. The black lines show 95% confidence intervals of a simple t-test of

the difference in means. I use census years because most of the demographic and economic

variables are collected with the decennial census. The means of the college and runner-up

counties are statistically indistinguishable and remarkably similar in magnitude. For read-

ability, I winsorize the top 1% for all variables; the magnitude and statistical significance

of the differences in means are nearly identical when using non-winsorized data. The green

circles show the difference in the mean between the college and the non-experimental coun-

ties, which are the counties in each state that are not classified as either college or runner-up

counties. The green dashed lines show 95% confidence intervals for the t-test. The col-

lege and non-experimental counties also tend to be similar along several dimensions, making

Moretti’s (2004) claim that colleges were located “close to random” understandable. But

relative to the non-experimental counties, the college counties tend to have a statistically

19Technical colleges include schools focused on engineering, mining, and industrial arts. Normal schools
are colleges focused on teacher training; many of these have evolved to become directional state universities.
Other public and private universities include all public and private, respectively, schools that do not fit into
any of the other classifications. For instance, the University of Texas is classified as an “other public” college
in the sample; Texas also has two other state-wide (that is, not “directional states” targeted to a particular
region within Texas) public universities, a land grant college (Texas A&M) and a technical college (Texas
Tech), both of which are also in my sample. In some cases, a college may fall into multiple categories. For
example, many HBCUs are also state land grant colleges. For clarity, in Appendix Table A1, I place each
college into its “best” category. All results are insensitive to reclassifying colleges.
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larger population and a larger share of the population living in urban areas; the differences

in means between the non-experimental and college counties is typically larger than the dif-

ferences between runner-up and college counties for other characteristics as well, although

not statistically different from zero. Appendix A.B provides even more evidence that the

college and runner-up counties are similar to one another prior to the establishment of a new

college.

I.G Empirical Model

I estimate straightforward differences-in-differences model. In county i at time t, the number

of patents is given by

PatentMeasureit = δ1Collegei ∗ PostCollegeit + δ2PostCollegeit + Countyi + Y eart + εit,

(1)

where Collegei is an indicator variable equal to one if county i receives a college, PostCollegeit

is an indicator variable equal to one in years t after i’s college has been established, Countyi

is a county fixed effect, Y eart is a year effect, and εit is a county-year varying error term.

With only a single college site selection experiment, the term PostCollegeit would be re-

dundant because the post-college dummy is perfectly co-linear with the year effects. There

are multiple experiments in the dataset, however, with each college being established in

different years, and so each set of counties will be in the post-college period in different

years. The year effects therefore control for nationwide time-variant changes in patenting,

while PostCollegeit controls for changes that occur within all counties affiliated with a given

college experiment after that experiment occurs.

II Baseline Results

Figure 3 plots smoothed residualized logged patenting for college, runner-up, and non-

experimental counties separately.20 The year in which a new college is established is nor-

20Figure 3 is constructed by regressing log(NumPatit + 1) on year effects Y eart and then plotting the
residuals using local mean smoothing with an Epanechnikov kernel function. Removing time effects is useful

16

Electronic copy available at: https://ssrn.com/abstract=3072565



malized to be year 0 for all experiments. Three results are immediately clear. First, new

colleges do not appear to be randomly located; there is a large difference between the college

and runner-up counties on one hand and the non-experimental counties on the other, both in

the level and growth rate of patenting. Second, the college and runner-up counties patented

similarly in pre-college years, providing suggestive evidence that the experimental design is

valid. Third, after the establishment of a new college, the college and runner-up counties

diverge, with college counties patenting more. This divergence is especially pronounced after

about half a century.

Table 2 formalizes the intuition in Figure 3.21 The columns show different regression

specifications. The coefficient of interest is displayed in the first row and shows the estimated

proportional change in the number of patents generated in the college county relative to the

runner-up county after establishing the new college. For all columns, standard errors are

clustered at the county level.22

Column 1 shows the results of estimating Equation (1) where the dependent variable is

log(Num.Patit +1). College counties have about 48% more patents per year than runner-up

counties. The average county had about 4.8 patents in 1880, around the time the median

new college is established. This translates to just over two additional patents in 1880. By

2010, the average county had about 37.5 patents per year, so the college causes almost 17

additional patents per year in 2010. This result is statistically significant at the 1% level.

In Column 2, I use the inverse hyperbolic sin of patents as the dependent variable.23 The

benefit of the inverse hyperbolic sin is that it can take on zero values, yet still has the same

simple interpretation as in Column 1. Here, establishing a new college causes 57% more

because, as Griliches (1990) shows, there has been a secular increase in patenting over time as well as country-
wide cyclical fluctuations in patenting that coincide with business cycles and changes in the administration of
the Patent Office; failure to control for these factors makes interpreting the graph more difficult. The figure
contains a balanced set of college experiments, including only counties with at least 20 years of pre-college
and 80 years of post-college data available. The graph is similar when using an unbalanced panel instead.

21Appendix D.A explores the dynamics observed in Figure 3 in much more detail.
22I also cluster at the state, experiment, state×year, and experiment×year levels. I additionally cluster at

multiple levels as proposed in Cameron, Gelbach, and Miller (2011): I cluster at the county and year; state
and year; experiment and year; and county, state, experiment, and year levels. Clustering at the county level
produces the largest standard errors, but the standard errors are virtually identical at every level and none
of the inferences change.

23The inverse hyperbolic sin of patents is given by arcsinh(NumPatit) = log(NumPatit + (NumPat2it +

1)
1
2 ).
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patents per year in the college counties relative to the runners-up, similar in magnitude to

the results in Column 1.

Column 3 shows results using an alternative calculation of logged patents as proposed by

Blundell, Griffith, and Van Reenen (1995). Rather than adding a positive constant before

taking the log of patents, this alternative method uses log(NumPatit) as the dependent

variable. Whenever NumPatit = 0, a dummy variable is set to one and log(0) is replaced

with 0. In this specification, establishing a new college leads to a roughly 27% more patents

per year.

Column 4 uses the fact that the number of patents takes on integer values and presents

estimates of a Poisson regression, expressed as incident rate ratios. Because of the strong

influence of outliers when raw counts of patents are used, I Winsorize the top 5% of counties

by yearly patenting. In this specification, establishing a new college leads to an 89% increase

in patenting, about twice as large as the baseline estimate in Column 1.

In all specifications, establishing a new college causes a sizable increase in local patenting.

How to interpret these estimates? First, I stress that the design used in this paper does not

estimate the effect of establishing a college at a random location. Rather, I estimate the local

effect of establishing a college in a county conditional on that county being considered a good

location for a college; in essence this is a local average treatment effect for the subset of U.S.

counties suitable for a college. For that subset of counties, the sizable estimated magnitude

may actually be an underestimate if runner-up counties are themselves likely to get a college

of their own at a later date. I explore this possibility in more detail in Appendix D.B and find

that 60-75% of runner-up counties receive a college of their own at some point, depending

on how one defines a college. Excluding these cases can result in estimates about 50% larger

than the baseline estimates, and so the results in Table 2 should be interpreted as a lower

bound of the local effects of establishing a college for the set of suitable counties.

In Section III below, I document the importance of indirect effects by matching patents

to yearbook records for a subsample of college experiments for which yearbooks are available.

To better understand this yearbook this sample of “yearbook colleges,” in Column 5 I re-

peat the baseline specification from Column 1 but use only the sample of yearbook colleges.

Establishing a yearbook college causes 81% more patents per year in the yearbook college
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counties relative to their runner-up counties, so the yearbook colleges appear to have a some-

what larger effect than the full sample of colleges. I present several additional specifications

using only the yearbook data in Appendix C.D.

II.A Robustness Checks and Extensions

Appendix D presents numerous robustness checks. In particular, I show that the baseline

results are robust to a battery of additional specifications (Appendix D.C), to alternative

ways of handling counties with other local colleges at the time of treatment (Appendix D.D),

to aggregating the data at different geographic levels (Appendix D.E), and to using different

subsets of the college site selection experiments (Appendix D.F). I also present results from

placebo tests that use other years as the “experiment date” and find no effect on patenting

(Appendix D.G). I further verify that the results are not driven by a shift in the types of

inventions patented (Appendix D.H) or by patent quality (Appendix D.I) after establishing

a new college.

In Appendix D.J, I repeat the baseline results in Table 2 but instead of using only the

high quality college site selection experiments, I use all runner-up sites, including the cases

in which the winning site was not as-good-as-randomly assigned. While qualitatively similar,

the magnitude of the estimated effects are larger, suggesting that there was positive selection

of the college sites when the location was not decided essentially at random.

Finally, Andrews (2019b) uses the same college site selection experiments to show that

the results are not driven by migration from the runner-up counties to the college counties.

II.B Colleges and Population

One simple channel through which colleges may mechanically increase local patenting is by

increasing the local population. Indeed, several studies highlight the role of colleges in at-

tracting individuals and firms to an area and inducing urbanization (Cantoni and Yuchtman,

2014; Drucker and Goldstein, 2007; Florida, 2002b; Holley and Harris, 2016).

In Column 6 of Table 2, I show that establishing a new college does indeed cause an

increase in county population relative to the runner-up counties. Because county population
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is only collected from the decennial U.S. population censuses, the sample in Column 6 is

restricted to census years. Population exhibits a nearly identical percentage increase to

patenting: establishing a new college increases population by about 49% in the college

counties relative to the runners-up, and patenting by 48%. This finding is the first, albeit

highly speculative, evidence that indirect channels in general and population increases in

particular are one of the most important ways through which colleges affect local patenting.24

In the following sections, I present further evidence that indirect effects account for the

majority of patenting in college counties. Appendix D.K presents additional results on

colleges and population.

III Who Do the Patents Come From?

To more directly analyze the channels through which colleges affect local invention, I set aside

the runner-up sites for now and instead examine the identities of patentees within college

counties. The prior literature has struggled to convincingly establish the channels through

which colleges promote local patenting. Dating to Jaffe (1989), the literature typically

observes how patenting by firms co-located with a university co-vary with university activity;

if any change in firm patenting is observed, this is counted as a “knowledge spillover” from

the university to these firms, implicitly attributing to indirect channels inventions that may

be the result of direct channels. The issue, as noted by Zucker, Darby, and Armstrong

(1998), Almeida and Kogut (1999), Breschi and Lissoni (2001), Breschi and Lissoni (2009),

and Leten, Landoni, and Looy (2014), is that nearby patents may be coming from individuals

who are directly affiliated with the college as either alumni or faculty. Data issues usually

prevent researchers from discovering which individuals have a direct affiliation with a college

and which do not.25

To overcome this problem, I use the linked yearbook-patent-census data described in

24Of course, there are other ways to interpret this result. For instance, increases in patenting may induce
more migration to a county. Alternatively, the fact that the magnitudes of the estimated effect on patenting
and population are similar may be purely coincidental.

25Several recent papers document that college-educated individuals are more likely to invent (Aghion,
Akcigit, Hyytinen, and Toivanen, 2017; Akcigit, Grigsby, and Nicholas, 2017b; Bell et al., 2019; Jung and
Ejermo, 2014). Maloney and Caicedo (2017) argue that the skilled engineers trained at U.S. colleges are a
key source of local innovation. None of these studies can link a college graduate to a particular college.
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Section I.D to show the share of patents in college counties coming from individuals who

are directly affiliated with a college and the share who are only indirectly affected. As these

results only rely on the composition of inventors within college counties, they do not depend

on the choice of runner-up counties used in the baseline analysis in Section II.

Table 3 shows population and patenting for a college’s alumni, a college’s faculty, and non-

college-affiliated individuals who were first present in the college county before and after a

college is established (“pre-college others” and “post-college others,” respectively) for the 20

college counties for which yearbook data is available. In Columns 1 and 2, I list the number of

linked male individuals and the share of the male county population belonging to each group

in the yearbook college counties. In Columns 3 and 4, I list the number of patents and share

of census-matched county patents belonging to each group. Finally, in Column 5, I show the

average patenting rate of each group, calculated as Num.Patentsg∗10, 000/Num.Membersg

for members of group g that match to the census in the college county.

On average, a college’s alumni account for only about 5.3% of all patents in the college

county. Faculty account for a negligible share of all patents, so together the two groups

directly affiliated with the college account for about 5% of all patents in the yearbook college

county. As mentioned in Section I.D, these results likely overstate patenting by alumni and

faculty; I show in Appendix E.A that alternative approaches to attributing patents to alumni

and faculty result in an even smaller share of patents belonging to those groups.

I stress that these results do not show that alumni are unlikely to patent, but rather that

alumni do not account for many patents in the counties where they obtained their degrees.

Even if alumni patented at very high rates (Column 5 suggests this is unlikely), there are

simply too few to meaningfully change overall patenting in the college’s county, likely due to

out-migration after graduation.26 Several studies emphasize that college graduates tend to

be highly mobile (Bound, Groen, Gézdi, and Turner, 2004; Groen, 2004; Sumell, Stephan,

and Adams, 2008; Zolas et al., 2015), so it may be difficult for a college’s county to retain

26I also caution that these results do not suggest that college attendance caused the alumni inventors to
patent; the alumni patentees may have been likely to invent even in the absence of a college. The causal
relationship between college attendance and patenting is ambiguous; for instance, Bianchi and Giorcelli
(2019) argue that in some cases attending college may even cause talented individuals to go into careers
like public administration that patent at low rates. Understanding the causal effect of college attendance on
individuals’ propensity to patent is an important topic for future work.
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its highly inventive alumni.

III.A Is the Role of Alumni and Faculty Similar Today?

It is possible that patenting and migration behavior for alumni and faculty are very different

today than they were in the decades immediately after colleges were established. In partic-

ular, several studies show that the number of patents assigned to colleges began increasing

in the post-World War II era, and then increased dramatically following the passage of the

Bayh-Dole Act in 1980 (Arora, Belenzon, and Lee, 2019; Mowery and Sampat, 2001; Mowery

and Ziedonis, 2002; Sampat, 2006). Likewise, Figure 3 suggests that colleges have a much

larger effect on local invention after the college has been established for several decades. The

transcribed yearbook data used in Table 3 only cover years through 1940, making it difficult

to assess the external validity of these results for current innovation policy.

In this section, I present suggestive evidence that alumni and faculty account for a modest

share of patents in college counties in recent years, and hence the conclusions from Table 3

likely remain largely valid today. To do this, I create proxies for alumni and faculty patenting.

I describe the construction of these proxies and the results in more detail in Appendix E.C.

Bell et al. (2019) match college graduate inventors to their alma maters and compute

the number of patents granted from 1996-2014 to alumni of cohorts born from 1980-1984.

Because I am interested in the number of patents belonging to all alumni of a particular

college (rather than just the patents from a particular birth cohort), I use data from the

Integrated Postsecondary Education Data System (IPEDS) to construct alumni counts for

each of the yearbook colleges.27 I then multiply this stock of alumni by the patenting rate

for the 1980-1984 birth cohort.28 This gives the number of patents produced by the alumni

of the yearbook colleges while residing anywhere in the U.S.; the results in Table 3, on the

other hand, document the share of patents belonging to the alumni who are residing in the

27See https://nces.ed.gov/ipeds/ for the IPEDS data.
28If the alumni patenting rate is increasing over cohorts, then applying the alumni patenting rate for the

1980-1984 birth cohort, which would have attended college between 1998 and 2006, to earlier birth cohorts
will overstate the number of patents attributed to alumni. The lifetime patenting behavior of the 1980-1984
birth cohort is also necessarily truncated; members of this cohort are at most 35 years old during the study
period, which is below the average age of all inventors calculated by Bell et al. (2019) for the 1996-2014 time
period. It is unclear how this will bias the empirical patenting rate.
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college county. To determine the role of alumni on local invention in recent years, I scale the

number of alumni patents by the probability that college alumni reside close to their alma

maters calculated in Zolas et al. (2015). After making these adjustments, I find that alumni

can explain 14.5% of the patents in the college county over the period 1996-2014.

I likewise do not have a direct measure of faculty patenting in recent decades, so I

construct counts of university-assigned patents. This is the same measure used in the work

on the Bayh-Dole Act. The number of university-cited patents grows dramatically in recent

decades for the sample of yearbook colleges, consistent with patterns others document. But

overall patenting in these college counties also grows rapidly, so that the share of university-

assigned patents is only about 4.5% of all patents over the period 1996-2014.

Together, alumni and faculty therefore account for about 19% of all patents in a college’s

county.29 From these back-of-the-envelop calculations, patenting by alumni and faculty

appears to have increased over time; today the share of alumni and faculty patents is about

3.5 times larger than in the pre-1940 years. But even for recent decades, alumni and faculty

still likely account for less than one in five patents in their college counties.

IV Further Investigating the Indirect Channels

IV.A Are Migrants More Positively Selected in College Counties?

By far the largest share of patents in Table 3 comes from individuals who were not living

in the college county at the time the college was established. This group accounts for

more than 75% of county patenting on average, and just under 65% of county population.

One possibility, as argued in, for instance, Florida (2002a) and Florida (2002b), is that

colleges are extremely attractive local amenities that may attract particularly skilled and

inventive individuals. This sounds especially plausible in light of findings that inventors are

particularly geographically mobile and often migrate to be close to other inventors (Aghion

et al., 2009; Akcigit, Baslandze, and Stantcheva, 2016; Akcigit, Grigsby, and Nicholas, 2017a;

29Note that this double counts some alumni and faculty patenting if alumni assign their patents to the
college for any reason, for instance if the patent is based on work completed in a university lab while they
were a student.
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Kerr and Lincoln, 2010; Moretti and Wilson, 2014,1; Waldinger, 2016). These “post-college

others” patent at a higher rate than any other group, lending prima facie evidence that

positively selected mobility may be at work.

To test whether colleges are driving the migration of particularly skilled individuals, it is

necessary to see whether these post-college others are more positively selected in the college

counties than in the runner-up counties. While information about each individuals’ wages

and education level are not recorded or transcribed in most historical censuses, occupations

are recorded for the census years 1900-1940. I follow the literature and use the average

income of each occupation in 1950 to create an average occupational income score.30 Since

most colleges were already established by the time the individual-level occupation data comes

available, a differences-in-differences approach is not applicable. Given that the college and

runner-up counties are similar to one another in the pre-college years for all observable

variables, there is no reason to expect occupational income to differ in a systematic way

between them prior to establishing a new college. In Table 4 I therefore show first differences,

comparing average logged occupational income in the college to runner-up counties, including

year and experiment fixed effects and clustering standard errors at the county level.

Column 1 compares average income for all individuals in the college counties compared

to the runner-up counties. Column 2 compares all individuals who were not present in the

college or runner-up counties at the time the college was established, linking all individuals to

prior censuses as described in Section I.D for the yearbook counties. Columns 3 and 4 repeat

Columns 1 and 2 but restrict attention to the patentees. In all cases, the average income

in college counties is statistically indistinguishable from that in runner-up counties, and if

anything individuals in the runner-up counties perhaps have higher occupational incomes.31

Looking at average occupational incomes may be missing changes in the composition of

occupations in college counties relative to runner-up counties. In particular, college counties

may be relatively more successful at creating an environment suitable for innovative sectors.

To check this, I compile a list of the most common inventor occupations for the decades

30See, for instance, Feigenbaum (2018) for a discussion of the strengths and weaknesses of the commonly-
used occupational income scores.

31Results in all columns are calculated conditional on having non-missing occupation data for individuals
in these groups. Because some counties have no patents in a given year, and in some counties occupational
data is missing for all individuals of a given type, the number of observations varies across regressions.
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1900-1940 based on all inventors matched to the U.S. censuses in Sarada et al. (2019);

Appendix F.A provides more details on these common inventor occupations. In Column 5,

I show that the share of individuals belonging to a common inventor occupation is similar

in the college and runner-up counties.

In sum, while establishing a college increases population and hence patenting, they do not

appear to be attracting individuals who have observably greater skills than the individuals

in the runner-up counties or creating relatively larger innovative sectors, at least for the

counties and years for which occupation data is available.

IV.B “Consolation Prizes”

Many indirect channels, such as attracting population or inducing agglomeration economies,

may not be unique to colleges. On the other hand, if living close to faculty members or

students induces large knowledge spillovers, then colleges may be playing an essential role

for local invention even if alumni and faculty do not account for many patents. In this

section, I test the null hypothesis that these college-specific indirect channels are negligible.

In particular, I compare counties that receive colleges to counties that receive what I refer to

as “consolation prize” institutions at the same time. In these cases, states typically allocated

several institutions at the same time, including the state capital, the state prison, or the state

insane asylum. While numerous localities may have been lobbying to get a state institution,

which locality ended up with which institution was as good as random. These consolation

prize cases are especially common in western states that were largely unsettled and achieved

statehood after the passage of the Morrill Act in 1862. In one famous example, the Tucson

delegation set out for Prescott for the Arizona territorial legislature in 1885 intent on getting

the state mental hospital. But flooding on the Salt River delayed the delegation. By the

time they reached Prescott, the mental hospital had already been spoken for; Tucson was

stuck with the state university.32

Because a consolation prize experiment is only possible when a state (rather than a private

32For the purposes of this exercise, it does not matter which institution was the “consolation” and which
was the “prize.” For more details on the site selection decision of the University of Arizona, see Martin
(1960, p. 21-25), Wagoner (1970, p. 194-222), and Cline (1983, p. 2-4).
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organization or regional group) is deciding the location of several institutions at once, in

Column 1 of Table 5, I repeat the baseline estimates from Table 2 but include only the subset

of experiments that are “potential consolation prize” experiments, namely any experiments

in which a land grant, technical, or other public college was established and designed to serve

the needs of the entire state; in other words, I exclude private colleges and regional public

colleges. The estimated coefficient is similar to, although a bit larger than, the baseline

estimate with the entire sample. Column 2 shows results that compare college counties to

only the consolation prize runner-up counties. I am unable to reject the null hypothesis

that patenting in college and consolation prize counties is identical after establishing the

new college and, moreover, the coefficient is close to zero in magnitude: college counties do

not appear to cause more patenting than counties that receive prisons, hospitals, or insane

asylums. Panel (a) in Figure 4 presents these results graphically, analogously to Figure 3,

and shows that the college and consolation prize counties evolve remarkably similarly over

many decades. Panel (b) suggests why this may be the case: population in the consolation

prize counties grows nearly identically to population in the college counties. Instead of

repelling highly mobile workers, as prisons or asylums might today, the consolation prizes

gave small towns an identity and attracted people and firms to the area. Column 3 repeats

Column 1 but excludes the runner-up counties that receive a consolation prize.33 Now, a

new college increases patenting by about 61%, larger than the 50% baseline estimate. None

of these results are qualitatively changed by excluding any particular type of consolation

prize county, in particular those that might attract high human capital individuals such as

state capitals, nor by excluding consolation prize counties that later establish a college of

their own; see Appendix F.B.

IV.C College Types

I next examine variation across types of colleges. If spillovers from university-affiliated indi-

viduals with advanced technically educations are especially large, or if the direct channels of

alumni human capital and faculty research are the primary ways by which colleges promote

33Because in some experiments all of the runner-up counties received a consolation prize, the number of
experiments is smaller in Column 3 than in Column 1.
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invention, then colleges that focus on technical skills should cause much larger increases

in local invention than other types of colleges. To test this, I classify colleges by type as

described in Section I.F. From these college types, I further classify each college as either

a “practical” or a “classical” college. Practical colleges are land grant colleges or technical

schools. Classical colleges are normal schools and other private and public colleges. Land

grant colleges were required by law to provide instruction on “agricultural and mechanical

arts”, and technical colleges explicitly focused on skills such as engineering, mining, or in-

dustry. At the same time, normal schools trained public school teachers, and so typically

devoted less, if any, attention to technical skills. Other public and private colleges tended to

have a less practical focus, providing instruction in classes like law, religion, or languages.34

I interact a dummy for classical and practical colleges with the College ∗ PostCollege
and PostCollege terms. The results are presented in Column 4 of Table 5. For read-

ability, I only display the coefficients for the PracticalCollege ∗ College ∗ PostCollege and

ClassicalCollege∗College∗PostCollege interaction terms. If anything, the classical colleges

cause a larger increase in local patenting than do the practical colleges (68% more patents

per year in the classical college counties relative to their runners-up compared 31% more

for the practical college counties), although after splitting the sample neither coefficient is

individually statistically different from zero, nor is the difference between the two. Consis-

tent with the comparison of college to consolation prize counties, I find no evidence that

colleges that actively promoted technical skills induced larger increases in local invention.

Appendix F.C presents several additional results for heterogeneous treatment effects across

different types of colleges.35

34For some types of colleges, there is much more ambiguity regarding whether or not the college should
be classified as practical or classical. Results are similar when using alternative classifications of practical
and classical colleges; see Appendix F.C.

35Appendix F.D presents results of heterogeneous treatment effects based on several non-college-type
county characteristics. I typically find either little heterogeneity or, if anything, larger effects when a college
is established in a less-developed county. I interpret this as additional suggestive, although fairly weak,
evidence that an important channel through which colleges affect local invention is by driving population
and general economic development.
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V Conclusion

In this paper, I document that establishing a new college causes at least 48% more patents

per year in counties that receive a new college. Population increases in college counties at

a similar rate to patenting. When matching patentees to college yearbooks and the U.S.

census, I find that, through 1940, only about 5% of patents in a college’s county come

from individuals who are directly affiliated with a particular college; the majority of patents

are from individuals who are affected by a new college only through indirect channels. To

the extent I can observe ability in the census data, college counties do not appear to be

attracting more skilled migrants than the runner-up counties. I further show that other

institutions cause increases in patenting statistically indistinguishable from a college, and

that colleges that focus on technical skills increase patenting indistinguishably from those

that do not. Together, these suggestive results point to increasing population as the most

important channel through which colleges affect local invention.

Two final caveats to this study are important. First, while alumni of a particular college

played only a small role in the patenting in that college’s county, this does not imply that

alumni were not active inventors. Because educated individuals are highly geographically

mobile, it is possible, even likely, that alumni left the counties of their alma maters to create

innovations in other locations. In future work, I plan to track college alumni across time and

space to determine where alumni move after they graduate and where, and if, they invent.

Finally, it is important to note that promoting innovation is clearly not the only, nor even

perhaps the primary, purpose of colleges and universities. Nevertheless, to the extent that

policymakers wish to create inventive hubs, the results in this paper suggest that pursuing

policies that drive population growth, rather than building colleges per se, can achieve the

desired results.
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Figures

Figure 1: Map of College and Runner-Up Sites

Notes: Colleges are represented by diamonds. The runner-up sites are represented by circles.
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Figure 2: Balance Checks
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Notes: Differences in means between college counties and runner-up and non-experimental counties, scaled
as a percentage of the mean in the college counties. The diamonds display the difference in the mean between
the college and runner-up counties in the last U.S. census year before the college was established on a number
of economic, demographic, and educational variables. The circles display the difference in the mean between
the college and non-experiment counties in the last U.S. census year before the college was established. The
green lines show 95% confidence intervals. The lines show 95% confidence intervals of a simple t-test of the
difference in means. For readability, all values are winsorized at the 99th percentile.

35

Electronic copy available at: https://ssrn.com/abstract=3072565



Figure 3: Patenting in College, Runner-Up, and Non-Experimental Counties
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Notes: Residual mean patenting in college and runner-up counties after controlling for year effects. The
x-axis shows the number of years since the college experiment. The year of the college experiment is
normalized to year 0. Everything left of year 0 shows pre-college means; everything to the right shows
post-college means. The y-axis shows smoothed log(Patents + 1). The smoothed patenting is constructed
by regressing log(Patents + 1) on year effects and then plotting the residuals using local mean smoothing
with an Epanechnikov kernel function. The college counties are represented by the solid line. The runner-up
counties are represented by the long-dashed line. The non-experimental counties are represented by the
short-dashed line. Data are for high quality experiments only.
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Figure 4: Patenting and Population in College and Consolation Prize Counties
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Notes: The x-axis shows the number of years since the college experiment. The year of the establishment
of the new college is normalized to 0. Everything left of 0 shows pre-college results; everything to the right
shows post-college results. In Panel (a), the y-axis shows log(Num. Patents + 1). In Panel (b), the y-axis
shows log(TotalPopulation). The college counties are represented by the solid line. The consolation prize
counties are represented by the dashed line. Data are for high quality experiments only.
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Tables

Table 1: Summary Statistics of College Site Selection Experiments

N Mean S.D. Min Median Max

# Finalist Counties 64 2.02 1.29 1.00 2.00 6.00
Distance to Finalists 127 136.09 181.08 11.92 89.05 1,443.16
Experiment Year 64 1883.73 22.33 1839.00 1884.00 1954.00
Year of First Class 59 1885.36 25.72 1795.00 1887.00 1955.00
Land Grant Colleges 64 0.45 0.50 0.00 0.00 1.00
Technical Schools 64 0.09 0.29 0.00 0.00 1.00
Normal Schools 64 0.17 0.38 0.00 0.00 1.00
HBCUs 64 0.05 0.21 0.00 0.00 1.00
Military Academies 64 0.03 0.18 0.00 0.00 1.00
Other Public Colleges 64 0.17 0.38 0.00 0.00 1.00
Other Private Colleges 64 0.03 0.18 0.00 0.00 1.00

Notes: Column 1 lists the count of experiments or counties. Column 2 lists mean values, Column 3 the
standard deviation, Column 4 the minimum value, Column 5 the median value, and Column 6 the maximum
value. Row 1 lists the number of runner-up counties for each experiment. Row 2 lists the distance between
college and runner-up sites. Row 3 lists the experiment year. Row 4 lists the year in which students began
attending the college. Row 5 lists the year when the college became racially desegregated. Row 6 lists the
year the college became coeducational. Rows 7-13 list the fraction of colleges that are of each college type.
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Table 2: Baseline Regression Results

log(Pat. +1) arcsinh(Pat.) Alt. log(Pat.) Poisson log(Pat. +1) log(Total Pop.)

College * PostCollege 0.476** 0.573** 0.277* 0.890** 0.807** 0.486*
(0.213) (0.259) (0.156) (0.436) (0.310) (0.255)

PostCollege -0.056 -0.055 -0.065 6.545*** 0.060 0.214*
(0.079) (0.092) (0.064) (1.532) (0.139) (0.124)

Zero Pat. Dummy -0.747***
(0.012)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010 1836-2010 1836-2010 1840-2000
Cnty-Year Obs. 33,660 33,660 33,660 33,660 9,017 3,062

# Counties 176 176 176 176 52 176
# Experiments 64 64 64 64 64 64

Mean of Dep. Var. 0.498 0.634 0.498 1.104 0.384 9.759
Adj. R-Sqr. 0.520 0.521 0.691 0.529 0.721

Log-Likelihood -386,186.079

Notes: Column 1 estimates the level shift in patenting in college counties relative to runner-up counties
after establishment of a new college when the dependent variable is log(Num.Patents + 1). The depen-
dent variable in Column 2 is the inverse hyperbolic sin of patents. The dependent variable in Column 3 is
log(Num.Patents), with values replaced with 0 if Num.Patents = 0 and a dummy variable for zero patents
included. Column 4 presents results for a negative binomial regression. Column 5 repeats the specifica-
tion in Column 1 but uses only the sample of college experiments for which yearbook data are available.
The dependent variable in Column 6 is log(TotalPopulation). These results use high quality experiments
only. Results are for high quality experiments only. Standard errors are clustered by county and shown in
parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01

Table 3: Patents by Alumni, Faculty, and Others

Num. People Share of Pop. Num. Patents Share Patents Pat. per 10,000 Cap.

Alumni 512.386 0.109 0.119 0.053 2.323

Faculty 19.013 0.004 0.001 0.000 0.474

Pre-College Others 1,159.337 0.248 0.411 0.183 3.541

Post-College Others 2,990.052 0.639 1.717 0.764 5.741

Notes: The first row lists statistics for alumni. The second row lists statistics for faculty. The third row lists
statistics for other (non-alumni, non-faculty) individuals who were present in the college counties at the time
the college was established. The fourth row lists statistics for other individuals who were not present in the
college counties at the time the college was established. The first column lists the average number of people
in each group per county. The second column lists the share of the county’s total population belonging to
each group. The third column lists the number of patents attributable to each group. The fourth column lists
the share of the county’s total patents attributable to each group. The fifth column lists the patenting rate
for individuals in each group (Num.Patentsj ∗ 10, 000/Num.Membersj for members of group j). Results
are for college counties for which yearbook data is available. Standard deviations are shown in parentheses.

39

Electronic copy available at: https://ssrn.com/abstract=3072565



Table 4: Difference in Income Between College and Runner-Up Counties

Share in Top
log(Inc.) log(Mig. Inc.) log(Pat. Inc.) log(Mig. Pat. Inc.) Inventor Occupations

Coll.County -0.014 -0.004 -0.002 -0.213 -0.075
(0.032) (0.043) (0.067) (0.121) (0.077)

Experiment FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

Year Range 1845-1944 1845-1944 1845-1944 1845-1944 1845-1944
Cnty-Year Obs. 2,270 1,536 287 59 2,863

# Counties 60 46 44 11 60
# Experiments 32 32 32 32 32

Mean of Dep. Var. 2.998 2.979 3.219 3.184 0.018
Adj. R-Sqr. 0.701 0.480 0.182 0.441 0.861

Notes: Column 1 estimates the difference in logged income between colleges and runner-up counties for
all individuals in the county. Column 2 estimates the difference in logged income for all non-alumni, non-
faculty individuals who were not present in the college or runner-up counties when the college was established.
Column 3 estimates the difference in logged income for all patentees. Column 4 estimates the difference in
logged income for all individuals in the Column 2 sample who are also patentees. The dependent variable in
all columns is log(OccupationalIncome). Results are for high quality experiments only. Standard errors are
clustered by county and shown in parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05;
*** p < 0.01
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Table 5: Consolation Prize and College Type Results

State Univs. Cons. Prize No Cons. Prize College Types

College * PostCollege 0.528** 0.028 0.614**
(0.213) (0.350) (0.250)

PostCollege -0.023 -0.073 -0.008
(0.100) (0.272) (0.110)

Practical College Interaction 0.306
(0.198)

Classical College Interaction 0.681
(0.522)

County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010 1836-2010
Cnty-Year Obs. 19,317 4,022 15,295 33,660

# Counties 117 27 91 176
# Experiments 43 13 33 64

Mean of Dep. Var. 0.377 0.242 0.415 0.498
Adj. R-Sqr. 0.532 0.504 0.539 0.521

Notes: Column 1 estimates the baseline level shift in patenting in college counties relative to runner-up
counties after establishment of a new college for the subset of experiments that could potentially involve
consolation prizes. Column 2 compares college counties to only runner-up counties that receive a consolation
prize. Column 3 repeats Column 1 but excludes all counties that receives a consolation prize. Column 4
shows results with separate interactions for practical colleges and classical colleges. Results are for high
quality experiments only. Standard errors are clustered by county and shown in parentheses. Stars indicate
statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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Online Appendix to:

How Do Institutions of Higher Education Affect Local

Invention? Evidence from the Establishment of U.S.

Colleges

Michael Andrews*

March 28, 2020

A More Information on the College Site Selection Ex-

periments

Table A1 lists each high quality college site selection experiment, the county and state of the

college, the runner-up counties that were considered as sites for the college, the experiment

year, and the type of college established. The dates listed on this table are the date at

which uncertainty over the college site location was resolved; these need not coincide with

the official date of establishment for each college. In some cases, colleges have changed

*National Bureau of Economic Research. 1050 Massachusetts Ave., Cambridge, MA 02138. Email : mandrews@nber.org.
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location, so the county listed need not be the current location or original location of the

college. For colleges that changed location or were under consideration to change location,

multiple experiments may be listed for the same college. For details on each site selection

experiment, see Andrews (2019b).

Table A2 list the number of patents associated with each college site selection experiment.

In the first column, the table lists the total number of patents granted in the college county

and all runner-up counties over all years. Column 2 lists the total number of patents granted

in the college county over all years. Column 3 lists the total number of patents granted in all

runner-up counties over all years. Columns 4 and 5 list the total number of patents granted

in the college and in all runner-up counties, respectively, in the years before the college is

established. In spite of concerns about the sparseness of patent data for some counties, in

all cases the college and runner-up counties have multiple patents throughout the sample

period. In 40 of the 64 experiments, both the college and runner-up counties have at least

one patent in the years before the college is established. Several of the cases in which either

a college or the runner-up counties do not have a patent before the college is established

were cases in which the college was established in the 1840s or 1850s and hence there were

relatively few years of patent data in the pre-sample period.

A.A Comparing Sample to Non-Sample Colleges

To compare the sample to non-sample colleges, I utilize the Commissioner of Education

reports from various years as described in Section I.E. For each year, these reports list the

number of faculty, number of students, number of graduate students, and number of library

2
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Table A1: List of College Site Selection Experiments

College County State Runner-Up Counties Experiment Year College Type

1 University of Missouri Boone Missouri Saline; Cooper; Callaway; 1839 Other Public
Howard; Cole

2 University of Mississippi Lafayette Mississippi Montgomery; Monroe; Rankin; 1841 Other Public
Winston; Attala; Harrison

3 Eastern Michigan University Washtenaw Michigan Jackson 1849 Normal School
4 Pennsylvania State University Centre Pennsylvania Blair 1855 Land Grant
5 The College of New Jersey Mercer New Jersey Burlington; Essex; Middlesex 1855 Normal School
6 University of California Berkeley Alameda California Napa; Contra Costa 1857 Land Grant
7 Iowa State University Story Iowa Tama; Hardin; Polk; Jefferson; 1859 Land Grant

Marshall
8 University of South Dakota Clay South Dakota Bon Homme; Yankton 1862 Other Public
9 Kansas State University Riley Kansas Shawnee 1863 Land Grant
10 University of Kansas Douglas Kansas Lyon 1863 Other Public
11 Lincoln College (IL) Logan Illinois Edgar; Macon; Warrick 1864 Other Private
12 Cornell University Tompkins New York Seneca; Onondaga; Schuyler 1865 Land Grant
13 University of Maine Penobscot Maine Sagadahoc 1866 Land Grant
14 University of Wisconsin Dane Wisconsin Fond du Lac 1866 Land Grant
15 University of Illinois Champaign Illinois Morgan; McLean 1867 Land Grant
16 West Virginia University Monongalia West Virginia Greenbrier; Kanawha 1867 Land Grant
17 Oregon State University Benton Oregon Marion 1868 Land Grant
18 Purdue University Tippecanoe Indiana Hancock; Marion 1869 Land Grant
19 Southern Illinois University Jackson Illinois Jefferson; Marion; Washington; 1869 Normal School

Clinton; Perry
20 University of Tennessee Knox Tennessee Rutherford 1869 Land Grant
21 Louisiana State University East Baton Rouge Louisiana East Feliciana; Bienville 1870 Land Grant
22 Missouri University of Science and Technology Phelps Missouri Iron 1870 Technical School
23 Texas A and M University Brazos Texas Grimes; Austin 1871 Land Grant
24 University of Arkansas Washington Arkansas Independence 1871 Land Grant
25 Auburn University Lee Alabama Tuscaloosa; Lauderdale 1872 Land Grant
26 University of Oregon Lane Oregon Washington; Polk; Linn 1872 Other Public
27 Virginia Polytechnic Institute Montgomery Virginia Rockbridge; Albemarle 1872 Land Grant
28 University of Colorado Boulder Colorado Fremont 1874 Other Public
29 University of Texas Austin Travis Texas Smith 1881 Other Public
30 University of Texas Medical Branch Galveston Texas Harris 1881 Technical School
31 North Dakota State University Cass North Dakota Stutsman 1883 Land Grant
32 University of North Dakota Grand Forks North Dakota Burleigh 1883 Other Public
33 University of Arizona Pima Arizona Pinal 1885 Land Grant
34 University of Nevada Washoe Nevada Carson City 1885 Land Grant
35 Georgia Institute of Technology Fulton Georgia Clarke; Baldwin; Bibb; Greene 1886 Technical School
36 Kentucky State University Franklin Kentucky Christian; Warren; Fayette; 1886 HBCU

Boyle; Daviess
37 North Carolina State University Wake North Carolina Mecklenburg; Lenoir 1886 Land Grant
38 University of Wyoming Albany Wyoming Laramie; Uinta 1886 Land Grant
39 Utah State University Cache Utah Weber 1888 Land Grant
40 Clemson University Pickens South Carolina Richland 1889 Land Grant
41 University of Idaho Latah Idaho Bonneville 1889 Land Grant
42 University of New Mexico Bernalillo New Mexico San Miguel 1889 Other Public
43 Alabama Agricultural and Mechanical University Madison Alabama Montgomery 1891 HBCU
44 University of New Hampshire Strafford New Hampshire Belknap 1891 Land Grant
45 Washington State University Whitman Washington Yakima 1891 Land Grant
46 North Carolina A and T University Guilford North Carolina Forsyth; Durham; New Hanover; 1892 HBCU

Alamance
47 Northern Illinois University DeKalb Illinois Winnebago 1895 Normal School
48 Western Illinois University McDonough Illinois Mercer; Hancock; Schuyler; 1899 Normal School

Warren; Adams
49 University of Nebraska at Kearney Buffalo Nebraska Custer; Valley 1903 Normal School
50 Western Michigan University Kalamazoo Michigan Allegan; Barry 1903 Normal School
51 University of Florida Alachua Florida Columbia 1905 Land Grant
52 Georgia Southern College Bulloch Georgia Tattnall; Emanuel 1906 Other Public
53 University of California Davis Yolo California Solano 1906 Land Grant
54 East Carolina University Pitt North Carolina Beaufort; Edgecombe 1907 Technical School
55 Western State Colorado University Gunnison Colorado Mesa; Garfield 1909 Normal School
56 Arkansas Tech University Pope Arkansas Franklin; Conway; Sebastian 1910 Technical School
57 Bowling Green State University Wood Ohio Sandusky; Van Wert; Henry 1910 Normal School
58 Kent State University Portage Ohio Trumbull; Medina 1910 Normal School
59 Southern Arkansas University Columbia Arkansas Polk; Ouachita; Hempstead 1910 Other Public
60 Southern Mississippi University Forrest Mississippi Hinds; Jones 1910 Normal School
61 Southern Methodist University Dallas Texas Tarrant 1911 Other Private
62 Texas Tech Lubbock Texas Nolan; Scurry 1923 Technical School
63 US Merchant Marine Academy Nassau New York Bristol 1941 Military Academy
64 US Air Force Academy El Paso Colorado Walworth; Madison 1954 Military Academy

Notes: All high quality college site selection experiments in chronological order by the experiment date. Also
included is the county and state of each college, the runner-up counties considered, the experiment year, and
the college type of each experiment.
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Table A2: Patenting in the College Site Selection Experiments

College Num. Pat. Num. Pat. Coll. Num. Pat. RunUp Num. Pat. Coll. Pre Num. Pat. RunUp Pre

1 University of Missouri 1509 945 564 0 0
2 University of Mississippi 330 35 295 0 0
3 Eastern Michigan University 4710 2659 2052 3 1
4 Pennsylvania State University 3388 1963 1425 2 5
5 The College of New Jersey 69224 15604 53620 5 144
6 University of California Berkeley 27566 21041 6525 0 0
7 Iowa State University 3469 560 2909 0 1
8 University of South Dakota 137 31 106 0 0
9 Kansas State University 1239 138 1101 0 0
10 University of Kansas 922 579 342 1 0
11 Lincoln College (IL) 3684 383 3300 9 17
12 Cornell University 14684 3170 11514 90 265
13 University of Maine 1055 837 218 91 22
14 University of Wisconsin 10498 8718 1780 36 69
15 University of Illinois 4343 2654 1689 9 78
16 West Virginia University 1798 60 1738 11 0
17 Oregon State University 5005 3710 1295 0 2
18 Purdue University 10749 789 9960 16 274
19 Southern Illinois University 1305 379 926 0 19
20 University of Tennessee 1368 1299 69 16 0
21 Louisiana State University 2810 2736 74 14 0
22 Missouri University of Science and Technology 542 431 111 0 2
23 Texas A and M University 160 105 55 0 0
24 University of Arkansas 305 257 48 0 2
25 Auburn University 1336 577 760 0 5
26 University of Oregon 3980 2478 1502 0 3
27 Virginia Polytechnic Institute 1967 1139 829 0 11
28 University of Colorado 13682 13395 287 0 0
29 University of Texas Austin 1353 1078 275 28 5
30 University of Texas Medical Branch 14812 1003 13809 66 34
31 North Dakota State University 1208 1009 199 0 0
32 University of North Dakota 535 155 381 0 0
33 University of Arizona 932 838 94 6 6
34 University of Nevada 3171 3119 52 9 7
35 Georgia Institute of Technology 10552 9239 1314 124 98
36 Kentucky State University 1546 63 1483 6 137
37 North Carolina State University 17520 11945 5574 28 27
38 University of Wyoming 364 58 306 7 9
39 Utah State University 2087 1206 881 1 7
40 Clemson University 2573 596 1977 3 24
41 University of Idaho 1201 190 1011 0 0
42 University of New Mexico 621 596 26 6 5
43 Alabama Agricultural and Mechanical University 4635 4335 300 30 21
44 University of New Hampshire 2229 1548 681 74 83
45 Washington State University 1389 711 678 1 2
46 North Carolina A and T University 9023 2200 6823 12 80
47 Northern Illinois University 9370 1567 7803 278 454
48 Western Illinois University 3712 394 3318 123 718
49 University of Nebraska at Kearney 381 244 137 24 21
50 Western Michigan University 5139 4342 797 515 122
51 University of Florida 357 268 89 21 8
52 Georgia Southern College 134 91 43 0 17
53 University of California Davis 2105 764 1341 36 65
54 East Carolina University 680 424 256 11 16
55 Western State Colorado University 688 112 576 19 32
56 Arkansas Tech University 471 33 439 9 65
57 Bowling Green State University 2772 1272 1500 90 504
58 Kent State University 6819 2600 4219 181 296
59 Southern Arkansas University 340 158 182 22 41
60 Southern Mississippi University 329 89 240 0 53
61 Southern Methodist University 10410 7997 2413 239 200
62 Texas Tech 426 358 68 2 5
63 US Merchant Marine Academy 20527 14217 6310 858 2178
64 US Air Force Academy 3850 664 3186 354 966

Notes: Patenting counts for each high quality college site selection experiments over all years, for each college
county over all years, for each set of runner-up counties over all years, for each college county in the years
before the college is established, and for each set of runner-up counties in the years before the college is
established. Experiments are listed in chronological order by the experiment date.
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volumes, among other variables such as tuition, for each U.S. college. It should be noted

that there is no guarantee of the reliability of the Office of Education reports in each year.

Indeed, for several years sample colleges are missing from the reports while the narrative

histories indicate that sample colleges were in operation. This also calls into question the

accuracy of the reported information in the reports. Nevertheless, these reports represent

the best data available on the universe of U.S. colleges prior to the 1970s. See the Data

Appendix of Goldin and Katz (1999) for a more detailed description of these data.

In each panel of Figure A1, I plot the distribution of non-experimental colleges for each

variable of interest with green bars. All variables are residualized after controlling for year

effects. A non-experimental college is a college that is in neither a high quality nor low quality

experiment in my sample.1 For each variable, for readability I plot the distribution over ten

equal-sized bins. I then plot the ratio of the share of colleges in high quality experiments

to the share of non-experimental colleges in each bin (solid line) and the share of colleges

in low quality experiments to the share of non-experimental colleges (dashed line). A ratio

value of one (indicated by the dark dotted line) occurs when the share of sample colleges

to non-experimental colleges are equal in a given bin. Panel (a) plots the logged number

of students. Both high and low quality experiment colleges have a much greater share of

colleges in the larger bins, with the colleges in high quality experiments even larger than

those in low quality experiments, although both ratios are close to one for the very largest

student populations. Panel (b) plots the logged number of faculty and obtains the same

general pattern. Panel (c) plots the logged number of graduate students. Colleges in both

1Recall that the low quality experiments are the cases in which I can identify runner-up sites but the
assignment among the runners-up is not as good as random.
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high and low quality experiments are also more likely than the non-experimental colleges to

have a large number of graduate students, which suggests the sample colleges may be more

research active. Panel (d) plots the logged number of library volumes, which proxies the

colleges’ role as a repository of knowledge that may be useful for driving innovation. Again,

the colleges in both high and low quality experiments are over-represented in the larger

bins, with colleges in low quality experiments having an even greater share of colleges in the

largest two bins. While not shown, I also compare the distributions of average tuition, which

is calculated by dividing each college’s total tuition receipts by the number of students. In

this case, the high quality experiment colleges in particular were more likely to have lower

tuition than the non-experimental colleges. Kolmogorov-Smirnov tests decisively reject the

null hypothesis that the distributions of high quality experiment and low quality experiment

colleges are the same as the distribution of non-experimental colleges for the number (and

logged number) of students, faculty, graduate students, and library volumes; these results

are available upon request.

In Figure A2, I conduct the same exercise but instead of comparing the sample colleges to

all non-experimental colleges, I compare them to all colleges with a Carnegie Classification

of R1 or R2, that is, to all institutions rated as having “high” or “very high” research activ-

ity. Data on the Carnegie Classification for each college is obtained from the IPEDS data.

Across all panels, the distribution of the sample colleges is very similar to the distribution of

Carnegie colleges and Kolmogorov-Smirnov tests fail to reject the null that the distributions

are identical.

Together, these results suggest that the colleges in the sample are larger colleges than the

average institution of higher education in the U.S. They are also likely to be more prominent
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than the average college and to be more research-focused. Indeed, on all dimensions examined

the sample college appear very similar to the typical U.S. “research university” according

to the Carnegie classifications. To the extent that college size, library resources, research-

oriented students and faculty are important factors in determining a college’s impact on

the local economy, the estimates in this paper are therefore representative for large research

university but likely to overstate the effects of a college relative to the “typical” college

established in the U.S.

A.B Additional Balance Checks

In Figure 2 in Section I.F, I compare college counties to runner-up counties along a number of

observable dimensions and find that no individual dimension predicts treatment status. Here,

I verify that these dimensions do not jointly predict treatment status either. Unfortunately,

for several of the dimensions considered, missing data is a major concern. This is because the

data come from different censuses and particular data were not necessarily collected every

decade. Comparing only experiments in which data for all dimensions are available for all

college and runner-up counties results in an extremely small sample size. I instead present

results of joint tests with data that are available for most counties in the census year prior

to the establishment of the new college.

Results of the joint tests are presented in Table A3. Column 1 estimates a linear prob-

ability model in which the dependent variable is a dummy variable taking the value of 1

when the county obtains the college and 0 otherwise. The regressors are those most likely

to be correlated with both invention and the presence of a college: patenting, population,
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Figure A1: Compare Colleges In Sample to All Out of the Sample Colleges
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(b) log(Faculty)
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(c) log(Grad. Students)
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Notes: The bars show the distribution of non-experimental colleges across ten equal-sized bins. The solid
line plots the ratio of the share of high quality colleges to the share of non-experimental colleges in each
bin. The dashed line plots the ratio of the share of low quality colleges to the share of non-experimental
colleges in each bin. The dark dotted line plots a ratio of one as a reference. Panel (a) plots these results for
log(Students), Panel (b) for log(Faculty), Panel (c) for log(Graduate Students), and Panel (d) for log(Library
Volumes). All variables are residualized by controlling for year effects.
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Figure A2: Compare Colleges In Sample to Out of the Sample Carnegie Research Institutions
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Notes: The bars show the distribution of Carnegie R1 and R2 non-experimental colleges across ten equal-
sized bins. The solid line plots the ratio of the share of high quality colleges to the share of non-experimental
colleges in each bin. The dashed line plots the ratio of the share of low quality colleges to the share of
non-experimental colleges in each bin. The dark dotted line plots a ratio of one as a reference. Panel (a)
plots these results for log(Students), Panel (b) for log(Faculty), Panel (c) for log(Graduate Students), and
Panel (d) for log(Library Volumes). All variables are residualized by controlling for year effects.
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and urbanization. The F -test statistic for the joint significance of these included regressors

is 1.547, which is insignificant at conventional levels. Column 2 estimates a logit model with

the same regressors. A likelihood ratio χ2-test also concludes that the regressors do not

jointly predict treatment status. Columns 3 and 4 repeat Columns 1 and 2 but include all

of the regressors found in Figure 2, some of which are missing for some counties and some

census years, and hence these tests have much smaller sample sizes; the coefficients are again

not jointly significant.2 Results are similar with other combinations of regressors beyond

those in Figure 2. Namely, I conduct joint and individual balance checks on residential seg-

regation (see Logan and Parman (2017) for the construction of this measure), population

density, manufacturing output, manufacturing establishments, manufacturing employment,

manufacturing wages, farm output, farm wages, value of farms, the share of patents across

patent classes, fraction of the population attending school, and fraction illiterate. I also com-

pare logged transformations of many of these variables. In no cases are the means of these

variables in college and runner-up counties statistically different from one another at the 5%

level of significance. In contrast, the college and non-experimental counties are frequently

statistically different from one another, with college counties appearing on average to be

larger, more industrialized, more inventive, and more educated. These results are available

upon request.

Figure A3 shows that not only are the levels of a number of economic and demographic

variables similar in college and runner-up counties prior to establishing a new college, but

the evolve similarly as well. In Panel (a), I plot logged county population for several decades

2Even in Columns 3 and 4, I omit data on access to railroads and on the fraction of children attending
school because it is only reported in a few counties in the last census before the college is established.
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both before and the establishment of a the new college in the college, runner-up, and non-

experimental counties. Panel (b) plots the fraction of the county population that lives in

an urban area. Panel (c) plots the logged farm output. Finally, Panel (d) plots logged

manufacturing output. Plots for the other variables are similar. Confidence intervals are

omitted in the figure for readability; in all cases the college and runner-up counties are

statistically indistinguishable from one another.

Table A3: Tests for Joint Significance of Covariates Predicting Whether a County Receives a College

Linear Probability Logit Linear Probability Logit

log(Pat. + 1) -0.093* -0.450 -0.038 -0.178
(0.051) (0.251) (0.091) (0.406)

log(Total Pop.) 0.052 0.285 0.073 0.331
(0.038) (0.208) (0.116) (0.508)

Frac. Urban 0.193 0.807 -0.189 -0.990
(0.188) (0.834) (0.321) (1.445)

log(Mean Age) -1.056 -5.458
(1.656) (7.464)

Frac. Interstate Migrants 0.215 1.011
(0.236) (1.051)

log(Value Manuf. Output) 0.058 0.306
(0.036) (0.202)

log(Value Farm Product) -0.079 -0.343
(0.073) (0.321)

# Counties 173 173 83 83
# Experiments 60 60 59 59

Adj. R-Sqr. 0.009 -0.024
F-Stat 1.547 0.720

F-Test p-Value 0.204 0.655
LR Chi-Sqr. Stat 4.874 5.534
LR-Test p-Value 0.181 0.595

Notes: Data are from the last census year before each college site selection experiment. The included
covariates are those that are available for most counties in nearly every census. Columns 1 and 3 present
results from linear probability models. Columns 2 and 4 present results from logit models as odds ratios.
Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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Figure A3: Time Series for Demographic and Economic Variables
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Notes: Time series for various demographic and economic variables in each census year. The year of the
college experiment is normalized to year 0. Everything left of year 0 shows pre-college means; everything to
the right shows post-college means. The college counties are represented by the solid line. The runner-up
counties are represented by the dashed line. The non-experimental counties are represented by the short-
dashed line. In each panel, the y-axis is a demographic or economic variable. Data are for high quality
experiments only.
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B Constructing Patent Data

The data on patents covers the years 1836 to 2010. Patent data from before 1836 is not

useful for analysis, as 1836 marked a major change in the U.S. patent system, essentially

changing from a registration system to an examination system. In addition, a major fire at

the U.S. Patent Office in 1836 destroyed most of the patents from the early United States,

so patent records are only complete from late 1836 onward. The patent data come from four

sources, with different sources available for different years. For the years 1836-1870, I use

patent data collected in the Subject-Matter Index of Patents for Inventions Issued by the

United States Patent Office from 1790 to 1873 (Leggett, 1874), compiled by Dr. Jim Shaw

of Hutchinson, KS.3 I use the Annual Reports of the Commissioner of Patents for the years

1870 to 1942. See Sarada, Andrews, and Ziebarth (2019) for details on cleaning, parsing,

and preparing this dataset. The years 1942 to 1975 come from the HistPat dataset compiled

by Petralia, Balland, and Rigby (2016a); see Petralia, Balland, and Rigby (2016b) for details

on the construction of this data.4 Finally, for the years 1975 to 2010, contemporary digitized

patent data sources can be used. I utilize the data created by Li, Lai, D’Amour, Doolin,

Sun, Torvik, Yu, and Fleming (2014) which contains cleaned inventor names. Because all

analysis include year effects, there is no concern with the fact that different years make use

of different patent data sources. Each of these datasets contains, for every granted U.S.

patent, the names and residence of all inventors.5 The fact that each patent dataset used in

this paper reports the names of individual inventors is important for matching patentees to

3See Miller (2016a) and Miller (2016b) for more information on how this dataset is compiled.
4I also use the HistPat data for 1874. No Annual Report could be located for that year.
5The Jim Shaw, Annual Reports, and Li et al. (2014) data report the town and state of each inventor;

the HistPat data reports the county and state of each inventor.
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other datasets, namely college yearbook data or the U.S. population censuses. Other patent

datasets that are commonly used in the literature, such as the NBER patent data and its

supplements (Hall, Jaffe, and Trajtenberg, 2001), only include patents that are assigned to

firms or other institutional entities and do not include the names of inventors.6

To obtain additional patent-level information, I merge by patent number from the Jim

Shaw, Hist Pat, and Li et al. (2014) data to other datasets that include additional patent

information. In particular, I merge to the U.S. Patent and Trademark Office’s Historical

Patent Data Files (Marco, Carley, Jackson, and Myers, 2015), which contain information

on patent classes, and the Comprehensive U.S. Patent (CUSP) Data compiled by Berkes

(2018), which contain data on patent citations and patent claims. The Annual Reports do

not generally have patent numbers in a usable form, so I merge to the other datasets using

inventor name and town and state of residence.

For the results in this paper, I aggregate all patents to the county level. I do this for a

number of reasons. First, the HistPat data records inventors’ counties of residence, rather

than town, and so analyzing results at a less aggregated level is impossible for this data.

Second, because towns can be very small, in many cases individuals may live in one town but

commute to another, even before the widespread adoption of the automobile. Aggregating

to the county level thus increases the probability that a patent will be recorded in the

geographic area in which the inventor actually made the invention. Moreover, individuals

self report their town, with the Patent Office having no uniform way to record residences. As

6The listed name on the patentee is likely to be an accurate record of the individual who created the
invention. Each patent is legally requird to list the name of the “first and true inventor” of a particular
invention rather than, for instance, the owner of the firm in which the inventor is employed. Failure to
accurately list the inventors on a patent can result in loss of patent rights, providing confidence that recorded
inventor names are accurate up to transcription and character recognition errors; see Khan (2005) for more
details.
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an example of why this is an issue, consider the example of individuals living close to Penn

State University. Some may list their town as “Happy Valley,” which can refer to any of

the boroughs or townships in the immediate vicinity of Penn State, while others may report

“State College,” “College Township,” or one of the other adjacent townships. Aggregating to

the county level avoids these issues. As the above example suggests, there is also much more

variation in the names used to record particular towns. Town names are also much more

likely to change over time, and new towns are incorporated and unincorporated, making it

difficult to create a consistent time series of patents coming from the same geographic area.

Finally, many other supplementary datasets, such as the NHGIS, are available at the county

level for all years, but not at the town level.

Determining the county of each patent is non-trivial because each patent lists the town

and state of each inventor, but not the county.7 To match towns to their counties, I first

standardize all town and county names by converting all characters to have consistent

capitalization; removing all spaces, punctuation, and non-alphabetic characters; and har-

monizing common abbreviations, for instance changing “SAINT” to “ST” and “FORT”

to “FT”. I further manually clean some known spelling mistakes. I then obtain a list

of all towns in each U.S. county in each decennial census year, compiled from the 100%

censuses. I look for exact matches between town names in the patents and town names

in the preceding decennial census. This means that, for instance, town names in 1883

patents are matched to town names in the 1880 decennial census. For 1890, the 100%

decennial census was destroyed by fire, so I match town names to the 1990 census. The

results are insensitive to matching to the closest census rather than the previous census.

7Except for the HistPat data, as described above.
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For all patents granted in 1950 or later, there is no declassified 100% decennial census

from the previous decade to match to. In these cases, I first attempt to match to town

names in the 1940 decennial census. For the remaining towns that are unmatched, I use zip

code data from https://www.unitedstateszipcodes.org/zip-code-database/ to match

to any town name that is affiliated with a current U.S. zip code; the zip code database also

contains the counties in which each town resides.

Roughly 10% of town names appear in multiple counties in the same state in the same

census. While this may sometimes reflect the fact that towns sit on county borders, often

they occur in counties that are not adjacent to one another. When this occurs, it is impossible

to know with certainty to which county the patent should belong. In these cases, I test three

alternative assumptions to create county-level patent counts. Let Pattsy be the number of

patents in town i that appears in multiple counties in state s and year t. Then for each

county c in state s, I calculate the number of patents from the multiple-county towns as

1. Patcst =
∑

i Patist

2. Patcst = 0

3. P̂ atcst =
∑

i
1

NumCountiesist
Patist, where NumCountiesist is the number of counties in

state s in which town i appears in year t

Patcst is an upper bound on the number of patents in each county c in state s and year t,

while Patcst is a lower bound. I use the “mean” number of patents, P̂ atcst for all results in

this paper, but the results are nearly identical when using the upper or lower bounds instead.

P̂ atcst is the same measure constructed by the USPTO to calculate patenting by county (US

Patent and Trademark Office (2000), US Patent and Trademark Office (2018)).
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Errors may also occur if spelling, transcription, or OCR errors occur in town names or

if the patent data use uncommon abbreviations or other slight variations of actual town

names. In the baseline results presented throughout the paper, I require standardized town

names in the patent data to exactly match standardized town names in the town-county

correspondences. I also match towns to counties using “fuzzy” matching techniques. These

are bi-gram string comparators that return a “distance” between the town-state strings in

each dataset; see Andrews (2019a) for more information on the differences between the exact

and fuzzy matching between towns and counties. Standardizing the town and county names

eliminates most differences, and so the fuzzy matching approaches result in similar patent

counts by county.

In cases when the town of a college or runner-up site changes counties over time (due

either to changing county boundaries, the creation of new counties, or the combination of

existing counties), I aggregate these counties over all years to their largest post-1836 historical

boundaries, adopting a method similar to Atack, Jaremski, and Rousseau (2014). Results

are qualitatively similar using other methods to harmonize county borders over time.

I repeat the baseline results using the HistPat or CUSP historical patent data instead

of the Annual Reports, as well as using the alternative methods to match town names to

counties described above. In all cases, the results are similar. These results are available

upon request.
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C Additional Details on Constructing the Yearbook-

Patent-Census Matched Data

C.A Yearbook Data

To determine whether a particular patentee is an alumni or faculty member of a particular

college, I digitize historical college yearbooks to obtain names of individuals affiliated with

each college. Scanned images of a large number of college yearbooks are available on www

.ancestry.com. After obtaining the yearbook images, I transcribe them to obtain relevant

information. Table A4 lists the colleges for which yearbook data has been transcribed,

including the number of yearbooks available for each college, the first and last transcribed

year, and the number of transcribed records for undergraduate alumni, graduate alumni,

and faculty. Due to the fact that students and faculty in the yearbooks are matched to

individuals in the U.S. census and the 1940 census is the most recent that is available, no

yearbooks have been transcribed for years more recent than 1940.

The type of information available and formatting of each yearbook vary enormously

from college to college or even by year within the same college. This makes analysis using

particular types of information difficult, as it may not be available for most years. But

almost all yearbooks include the names of college seniors along with their majors. Many also

include seniors’ hometowns, sports teams or clubs, fraternities or sororities, or professional

organizations, and often this information is available for juniors or underclassmen as well.

Because I am interested in constructing a list of alumni from a particular college, I keep

information only for college seniors. The assumption is that the vast majority of these
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Table A4: Yearbook Data Summary Statistics

College Num. Yearbooks First Yearbook Last Yearbook Num. Undergrads Num. Grad. Studs. Num. Faculty

1 Auburn University 8 1916 1940 2573 7 202
2 Clemson University 5 1915 1940 1187 0 83
3 Cornell University 45 1879 1936 25857 3313 15473
4 Georgia Institute of Technology 17 1917 1940 4309 0 1468
5 Iowa State University 30 1896 1940 8058 0 538
6 Louisiana State University 7 1927 1940 3528 713 83
7 Missouri University of Science and Technology 12 1911 1940 747 0 505
8 North Carolina A and T University 1 1939 1939 97 0 42
9 North Dakota State University 17 1908 1940 2956 0 310
10 Texas Tech 2 1937 1940 710 8 133
11 University of Arizona 9 1913 1940 1583 36 438
12 University of Colorado 27 1893 1939 5743 1 1640
13 University of Maine 32 1900 1940 4851 885 4530
14 University of Missouri 33 1898 1940 9792 574 1547
15 University of Nevada 7 1901 1940 512 0 201
16 University of New Hampshire 13 1909 1940 2673 0 2022
17 University of North Dakota 5 1906 1940 920 0 68
18 Utah State University 5 1911 1939 903 0 27
19 Virginia Polytechnic Institute 18 1898 1939 2313 50 914
20 Washington State University 12 1903 1940 4136 0 317

Notes: List of colleges for which yearbooks are transcribed. For each college, also listed is the total number
of yearbooks transcribed, the earliest and the most recent transcribed yearbook, and the total number of
transcribed records for undergraduate students, graduate students, and faculty.

individuals go on to become alumni in the following year; juniors will become seniors in

the following yearbook, so ignoring them during their pre-graduation years saves on time

and expense during the transcription process and prevents accidentally inflating the number

of graduates from a particular year. Yearbooks often, although not always, also include

data on each faculty member, including the faculty member’s name and occasionally the

highest degree obtained, position and title at the university, academic subject, alma mater,

or previous academic positions held.

The yearbook data are of high quality and nearly complete for the years and schools

for which yearbooks are available. To determine how complete the yearbook record is, I

compare the number of seniors, faculty, and graduate students listed in the yearbooks to

the same schools in the same years in the Commissioner of Education reports, described in

Section I.E and A.A. Table A5 lists the mean and standard deviation of each group in the

yearbooks and the Commissioner of Education reports, as well as listing the ratio of each.
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Because the yearbooks and reports are only available in some years, in square brackets I

list the number of instances in which a yearbook and report provided information on the

same group from the same college in the same year. Obviously, such a comparison is not

possible for the vast majority of yearbooks, and so all conclusions about the completeness

of the yearbook data are tentative. Several features of the reports are worth noting. The

reports do not list the number of college seniors for all years. For these years, I divide

the number of undergraduate students by four to get the number of seniors. If college

populations are growing over time, so that incoming classes are larger than the classes that

came before, then this procedure will overstate the number of college seniors in the reports

relative to the yearbooks. Likewise, if the reports misclassify preparatory or professional

students as undergraduate students, this will also overstate the number of seniors in the

reports. Additionally, as noted in Appendix A.A, it is unclear how reliable the data in the

reports are; for instance, it is possible that colleges might inflate their enrollment or faculty

counts to try and appear more prestigious or successful in their educational mission.

As shown in the first row, on average the yearbooks list about 66% as many seniors as

the Commissioner of Education reports. The faculty, shown in Row 3, appear even more

fully represented in the yearbooks relative to the reports, with the yearbooks having on

average 76% as many faculty as the reports. Given the concerns with the reports data raised

above, I consider these to be surprisingly high fractions and thus tentatively conclude that

the yearbooks provide a fairly complete record of the college senior and faculty populations.

Indeed, in Figure A4 I show that in many instances, the yearbooks record more students

and faculty than do the Commissioner of Education reports.

The yearbooks appear to provide a less complete picture of the graduate students, as
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shown in Row 2, with the yearbooks recording only 24% as many graduate students as

are listed in the reports. Indeed, many of the yearbooks list no graduate students at all.

Graduate students are difficult to handle for other reasons, as well. It is typically impossible

to know what year graduate students are expected to graduate; yearbooks rarely list how

many years a student has been at the college or how long the graduate program lasts.

For instance an individual just beginning their PhD might remain a graduate student for

another five years before becoming an alumnus, while professional students may be in a

program for only a couple of years. This is not a concern for undergraduate seniors, because

the vast majority will become alumni in the following year. Therefore, in all of the results

in Section III, I ignore graduate students.

Table A5: Comparing Yearbooks to Commissioner of Education Reports

Yearbooks Comm. Ed. Rep. YB / Comm.Ed.

Num. Seniors 319.62 486.82 0.657
(274.98) (346.57) (49.616)

[29.00] [29.00] [29.000]

Num. Grad Students 53.04 217.33 0.244
(106.57) (252.65) (56.583)

[24.00] [24.00] [24.000]

Num. Faculty 156.39 205.89 0.760
(151.81) (123.64) (39.783)

[18.00] [18.00] [18.000]

Notes: A comparison of the number of undergraduate seniors, graduate students, and faculty in the college
yearbooks and the Commissioner of Education reports. Column 1 lists the number of individuals in each
group in the yearbooks. Column 2 lists the number of individuals in each group in the Commissioner of
Education reports. Column 3 lists the ratio of Column 1 to Column 2. Row 1 displays results for seniors,
Row 2 the results for graduate students, and Row 3 the results for faculty. Standard deviations are listed
in parentheses. The number of instances in which a yearbook and Commissioner of Education report both
provide information on the same group from the same college in the same year is listed in square brackets.
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Figure A4: Students and Faculty Counts in Yearbooks vs. Commissioner of Education Reports
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Notes: Scatter plots for the number of seniors (Panel (a)) and faculty (Panel (b)) in the yearbooks and
Commissioner of Education reports for all years for which both sets of data are available.

C.B Matching Patent and Yearbook Data to the Census

To determine which patentees are alumni or faculty, I merge both the patent and yearbook

data to the U.S. 100% decennial population census records, transcribed by ancestry.com

and the Minnesota Population Center and hosted by the NBER. I proceed in eight steps.

1. I prepare the census data for each census from 1850, 1860, 1870, 1880, 1900, 1920, 1930,

and 1940. I restrict attention to males.8 For each county in the census, I then link to

records to the same county in the previous census, using a matching procedure that is

a simplified version of Ferrie (1996) and including common names. Doing this for all

censuses allows me to identify the earliest year in which a particular name appears in

a particular county; I am interested in determining whether individuals first appear in

a county before or after the establishment of a new college.

8I restrict attention to males for two reasons. First, women are likely to change their names between the
time they show up in the yearbook data and when they patent later in life. Second, the majority of women
were not a part of the labor force during the sample period, and so occupational scores, used in Section IV.A,
are not informative for them.
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2. I prepare counts of alumni from the yearbook data. To convert the flow of seniors

listed in the yearbook of college in county i to the stock of alumni of college county i

in each year T , I calculate

AlumniiT =
T∑

t=t

Seniorsit ,

where I choose t = T − 60. Under the assumption that college seniors are ≈20 years

old, this means that a particular college senior can plausibly be an alumnus patentee

for the next 60 years. This essentially imposes the assumption that individuals >>80

years old cannot be patentees. Such an assumption appears innocuous, as studies

conclude that very few inventors are older than 80.9

3. I match by first name, last name, state, and county from the patent record to the census

record. This creates a list of all patents in each county for which personal information

about the patentees can be known. See Sarada et al. (2019) for more details on the

patent-census matching procedure. I match individuals to the “closest” census. For

example, for the 1900 census, I match patentees from 1895, 1896, 1897, 1898, 1899,

1900, 1901, 1902, 1903, and 1904.

4. I match the lists of potential alumni and current faculty to the census, again matching

on first name, last name, county, and state. I again match yearbooks to the closest

census.

9For examinations of inventor ages prior to 1940, see Sarada et al. (2019) and Akcigit, Grigsby, and
Nicholas (2017). Papers that document ages of more recent inventors include Jones (2009), Jung and Ejermo
(2014), and Acemoglu, Akcigit, and Celik (2014).
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5. I use the matched census-patent-yearbook data to determine which patentees are

alumni. I calculate an alumnus patenting rate for each college county i,

AlumniPat.Ratei =
1

1940− t0

1940∑

t=t0

Num.AlumniPat.it
Num.Alumniit

Note that both the numerator and denominator are only for those alumni and patents

that I am able to match to the respective census.

6. An adjustment must be made because yearbook data are not available for all years.

Without such an adjustment, the calculated stock of alumni would be too small, and if

many yearbooks are missing, this omission may result in sizable undercounts of alumni

patenting. To correct for this, I interpolate the number of seniors attending the college

in the years in between collected yearbooks.10 I then increase the size of the alumni

stock by that number of students for each successive year,

˜AlumniiT =
T∑

t=t

˜Seniorsit ,

where ˜Seniorsit now includes the years for which the number of seniors is interpolated.

7. I calculate the share of patents belonging to alumni, faculty, and “others” based on

known names from the yearbooks.11 That is, I initially calculate the share of patents

belonging to each group without using the interpolated alumni counts; I discuss this

10I use a linear interpolation for the baseline results, but other interpolation strategies yield similar or
smaller alumni counts results; see Appendix E.A.

11I calculate the patenting rate for each group exactly as I do for AlumniPat.Ratei, with for each group g
the rate given by Pat.Rategi = 1

1940−t0

∑1940
t=t0

Num.Pat.git
Pop.git

, where both the numerator and denominator are

for individuals matched to the census.
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final adjustment in the next step. A patentee is recorded as an alumnus if there is a

positive match between the individual’s name from the alumni list and a name in the

same county in the census and that individual is also linked to a patent. An individual

is recorded as a faculty member if the individual is not recorded as an alumnus and

there is a positive match between his name from the faculty list and a patent-matched

name in the same county in the census. An individual is recorded as “other” if he is

neither an alumnus nor a faculty member. I further split the other group into those

that appear in the census in the college or runner-up county before the year in which

the college was established (“pre-college others”), and those that appear in the college

or runner-up county after the college is established (“post-college others”). To do

this, I use the cross-census linking procedure described in the first step. The post-

college others includes both those who migrate to college or runner-up counties after

the college is established as well as those who are born into those counties after the

college is established, and so is an imperfect proxy for in-migration.

8. Finally, I adjust the number of alumni patents and the share of patents attributed to

each group to reflect the adjustments to the alumni stock. I multiply the size of the

adjusted alumni stock by the calculated alumni patenting rate to get the corrected

number of patents by alumni,

˜Num.AlumniPat .it = ˜Alumniit ∗ AlumniPat.Ratei

I decrease patent counts for the faculty and others by the corresponding increase in

the number of alumni patents, keeping the relative sizes of the faculty and others the
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same. That is, I calculate

Num.Pat.git = (Num.Pat.it − ˜Num.AlumniPat .it) ∗
Num.Pat.git∑
gNum.Pat.git

,

for groups g ∈ {Faculty, Pre− CollegeOthers, Post− CollegeOthers}, Num.Pat.git

are the number of patents by members of group g in college county i and year t, and

Num.Pat.it is the total number of patents in college county i and year t.12

C.C Match Rates

Table A6 displays patent-to-census match rates for the college and runner-up counties in the

entire sample and the yearbook sample, as well as yearbook record-to-census match rates. I

match 21% of the patents to the census in the full sample and 23% in the yearbook sample.

These match rates are roughly double those in Sarada et al. (2019). Several possibilities

exist for this discrepancy. Likely the most important factor is that I use a more liberal

criteria to consider a record a match. Because I argue that the reported alumni and faculty

shares are an upper bound, a more liberal matching criteria, which may include more false

positive matches, is appropriate. In Appendix E.A I show the sensitivity of results to using

the same match rate used in Sarada et al. (2019). Second, in the matching procedure Sarada

et al. (2019) block on state and use each inventor’s town name as a criteria in the matching.

Instead, I block by county but do not attempt to match town names. Third, I only match

to patents to males in the census, whereas Sarada et al. (2019) match to any gender. This

12I impose the additional constraint that Num.Pat.git ≥ 0 for all groups g. In other words, alumni in
county i and year t cannot have more patents than there were total in county i and year t, even if the
adjusted alumni stock and average patenting rate would suggest this to be the case.
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will decrease my match rate relative to that in Sarada et al. (2019), but females account for

only 4-8% of all patents over the years I study, and so this is unlikely to have much of an

effect. Finally, I match to more census years than do Sarada et al. (2019) but match only

select counties; the difference in sample could explain any further discrepancies.

Only about 4% of the yearbook records match to the census. Because I use the same

information and matching criteria to match the yearbook records as I do to match the patent

records, and because the yearbook data are likely cleaner with fewer transcription errors,

I interpret this as evidence that most of the students listed in the yearbooks are likely to

out-migrate after they graduate. The fact that some of the colleges are coeducational during

the yearbook years and I only attempt to match to males in the census may also depress the

yearbook-to-census match rate.

Table A6: Match Rates

Match Rates to Census

Patents 0.210
Patents (Yearbook Colleges) 0.231
Yearbooks 0.037

Notes: Row 1 displays the match rate from the patent records to the census records for all college and
runner-up counties. Row 2 displays the match rate from the patent records to the census records for college
and runner-up counties in the yearbook sample. Row 3 displays the match rate from all yearbook records
to the census records.

C.D Details on the Yearbook Sample

As described above, the yearbook sample was selected with the intention to be representative,

but subject to the constraint that yearbooks were not available for all colleges. To further

explore the representativeness of the yearbook sample, in Table A7, I repeat the baseline
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regressions from Table 2 but using only the 20 colleges for which yearbook data are available.

The coefficients are qualitatively similar, although larger in magnitude, to those in the

baseline sample.

Table A7: Baseline Regression Results with the Yearbook Colleges Sample

log(Pat. +1) arcsinh(Pat.) Alt. log(Pat.) Poisson log(Total Pop.)

College * PostCollege 0.807** 1.013** 0.531** 2.182* 0.318
(0.310) (0.408) (0.220) (1.298) (0.650)

PostCollege 0.060 0.088 -0.015 9.448*** 1.383**
(0.139) (0.174) (0.115) (3.646) (0.550)

Zero Pat. Dummy -0.702***
(0.022)

County FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010 1836-2010 1840-2000
Cnty-Year Obs. 9,017 9,017 9,017 9,017 800

# Counties 52 52 52 52 52
# Experiments 18 18 18 18 18

Mean of Dep. Var. 0.384 0.486 0.384 0.872 9.348
Adj. R-Sqr. 0.529 0.527 0.690 0.672

Log-Likelihood -70,573.173

Notes: Column 1 estimates the level shift in patenting in college counties relative to runner-up counties
after establishment of a new college when the dependent variable is log(Num.Patents+ 1). The dependent
variable in Column 2 is the inverse hyperbolic sin of patents. The dependent variable in Column 3 is
log(Num.Patents), with values replaced with 0 if Num.Patents = 0 and a dummy variable for zero patents
included. Column 4 presents results estimating a Poisson model. Results are for college counties for which
yearbook data is available. Results are for high quality experiments only. Standard errors are clustered by
county and shown in parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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D Robustness Checks and Extensions for Baseline Re-

sults

D.A Dynamics

One concern, highlighted by the fact that the college counties tend to out-patent the runner-

up counties the most many decades after the establishment of a new college, is that the

baseline results are largely driven by relatively recent changes in the patent law that differ-

entially encourage patenting in college counties relative to the runners-up. Indeed, just such

a change occurred in 1980 with the passage of the Bayh-Dole Act. Prior to the passage of

the Bayh-Dole Act, any patent obtained while the inventors were funded by a federal grant

or research contract had to be assigned to the U.S. federal government, disincentivizing uni-

versity patenting. The Act instead gave ownership of these patent rights to the inventors or

their institutions, including universities. As Sampat (2006) and Hausman (2017) show, this

led to a dramatic increase in patents assigned to universities.

In this section, I explore the dynamic effects of establishing a new college in more detail.

In particular, I seek to understand the extent to which the observed result is purely the

result of recent policy changes that give colleges a more prominent role in the U.S. innovation

system, and which are effects of colleges that manifested themselves relatively quickly, prior

to the second half of the twentieth century.
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In Figure A5 I interact the effect of a college by ranges of years. More precisely, I estimate

log(NumPatit + 1) =
∑

τ∈T
[δ1τCollegei ∗ TimeBinτ + δ2τTimeBinτ ]

+ Countyi + Y eart + εit,

where τ ∈ T represent “bins of years” (i.e., 0-10 years after college j is established, 10-20

years after the college is established, etc.) and TimeBinτ is an indicator variable that is

equal to one if t ∈ τ and 0 otherwise. Each plotted coefficient represents δ1τ in the respective

range of years τ since the college establishment. The first decade in which the college is

established is the omitted category. Results are nearly identical using different groupings of

years. There is no significant difference between the college and runner-up counties in the

decades before the establishment of each college and the estimated coefficients are close to

zero in magnitude, suggesting no differential pre-trends. The interactions by decade become

positive and significant after the first decade, although not all coefficients are significant at

the 5% level. Confirming the intuition in Figure 3, the difference between the college and

runner-up counties is largest after several decades.

In Sections III.A and E.C, I confront the possibility that observed results on patenting

by alumni and faculty are due to the fact that changing policies have altered the role of

colleges in the U.S. innovation system, causing patenting by these groups to explode. In-

stead, I present suggestive evidence that recent decades present simply a continuation of

trends documented in the pre-1980 decades. To drive this point home, I repeat the baseline

estimates from Table 2 but excludes all data after 1980. The estimated coefficients are only
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slightly smaller in magnitude. Imposing earlier cutoffs substantially reduces the precision of

the estimates, although in all cases results are qualitatively similar but smaller in magnitude.

For example, when excluding all data after 1940, the last census for which individual-level

data is available, the estimated coefficients are roughly half the size of these results but not

statistically significant at conventional levels. These results are available upon request.

Figure A5: Dynamics of Treatment Effect
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D.B Runner-Up Counties that Receive a College at a Later Date

A related issue is how to interpret the treatment effects in light of follow-on investment

that may occur. In particular, the runner-up counties may eventually receive institutions of

higher education of their own.13 After all, each runner-up site was at one point considered

a nearly ideal locations for a college, so it makes sense that if there were plans to establish

an additional college in the region at a later date, the runner-up counties would once again

be prime candidates. While it is possible to manually check for these occurrences for large,

prominent institutions, and then simply exclude all years after the later college is established

in a runner-up site, the U.S. is unique in having a large number of small institutions, many

of which changed names or locations and started informally, making it extremely difficult

to determine the “start date” for many of these schools without a deep exploration of the

narrative history of each institution. Instead, I take the more extreme step of removing from

the sample any runner-up county that had a college in 2010 according to the Integrated

Postsecondary Education Data System (IPEDS).14

Between 60% and 76% of the runner-up counties have a college in the IPEDS data,

depending on what I consider to be a college. The issue of runner-up counties receiving

post-treatment colleges may therefore plausibly lead to substantial underestimates of the

local effect of establishing a college.

To get a sense of the extent this issue can effect estimated magnitudes, in Column 1 of

Table A8, I exclude all runner-up counties that have a “traditional” college or university,

13While this may affect the interpretation of the magnitude of the baseline results, note that all of the
results in Section III observe the identities of patentees within a college county and therefore do not depend
on the follow-on investment, or the lack thereof, in the runner-up counties.

14See https://nces.ed.gov/ipeds/.
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defined as all institutions of higher education except for trade schools, professional schools,

for-profit colleges, and community colleges. In Column 2, I also exclude runner-up counties

that have a professional school, such as a specialized seminary or medical school. In Column

3 I further exclude all trade schools (e.g., cosmetology schools) and for-profit colleges (e.g.,

University of Phoenix campuses) that are in the IPEDS data. Finally, in Column 4 I addi-

tionally exclude all community colleges. The prevalence of these various types of institutions

can be seen by the declining sample size in each column. In all cases, the results are larger

than the baseline estimates, although qualitatively similar, and the magnitude increases as

more institutions are excluded, until the exclusion of community colleges. This is consistent

with the results in Section IV.B, which finds that excluding runner-up counties that get

other types of institutions increases the estimated effect of establishing a new college. Care

must be taken in attributing this interpretation to these results, as it may also be driven by

heterogeneity in the types of colleges that remain in the sample after excluding runner-up

counties that eventually get a college of their own. For instance, establishing a large and

prominent college may decrease the need for another college in the same region at a later

date.

In some cases, a particular county may be under consideration to receive multiple colleges

that are in my site selection experiment sample. I exclude these counties from the results

in the body of the paper. In Column 5, I include these counties. I estimate the following
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specification:

PatentMeasureijt =δ1Collegeij ∗ PostCollegejt + δ2PostCollegejt

+ Countyi + Experimentj + Countyi ∗ Experimentj

+ Y eart + εijt. (1)

The difference between this specification and the baseline specification in Equation (1) is

the inclusion of county-by-experiment fixed effects to account for the fact that the same

county can now appear in multiple site selection experiments. While it is less intuitive to

interpret the variation in this specification, the results are qualitatively similar to, although

a bit smaller than, the baseline results. This is not surprising given that there are very few

cases in which the same runner-up county appears in multiple experiments.

Table A8: Runner-Up Counties with Colleges

No Traditional No Traditional/Professional No Non-Community No Colleges Counties in
Colleges Colleges Colleges of Any Type Multiple Experiments

College * PostCollege 0.722*** 0.762*** 0.777*** 0.664** 0.309**
(0.235) (0.240) (0.286) (0.277) (0.132)

PostCollege -0.167** -0.176** -0.132 -0.107 -0.007
(0.073) (0.074) (0.094) (0.095) (0.065)

County FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

County-Experiment FE No No No No Yes
Year Range 1836-2010 1836-2010 1836-2010 1836-2010 1836-2010

Cnty-Year Obs. 12,883 12,533 10,608 8,532 39,784
# Counties 71 69 59 47 180

# Experiments 27 27 24 20 72
Mean of Dep. Var. 0.390 0.382 0.363 0.415 0.480

Adj. R-Sqr. 0.453 0.457 0.459 0.465 0.506

Notes: Column 1 excludes all runner-up counties with a traditional college. Column 2 also excludes all
runner-up counties with a professional school. Column 3 additionally excludes all runner-up counties with a
trade school or for-profit college. Column 4 additionally excludes all runner-up counties with a community
college. Column 5 includes runner-up counties that appear in multiple college site selection experiments. Re-
sults are for high quality experiments only. Standard errors are clustered by county and shown in parentheses.
Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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D.C Additional Specifications

In this section, I estimate several additional regression specifications to demonstrate that

the baseline results described in Section II are robust. Results are presented in Table A9.

In Column 1, I estimate the following modification of the baseline regression:

PatentMeasureit =δ1Collegei ∗ PostCollegeit+

+ Countyi + Y eart + Experimentj + Experimentj ∗ Y eart + εijt.

(2)

Here, the PostCollegeit term is not needed as it is colinear with the experiment-by-year fixed

effect, Experimentj ∗ Y eart. Establishing a new college causes 36% more patents per year

in the college counties than in the runner-up counties, only slightly smaller than the baseline

results in Column 1 of Table 2. Column 2 examines the extensive margin: do counties have a

higher probability of obtaining at least one patent per year after receiving a new college. In

this linear probability model, I find that establishing a new college makes a county 26% more

likely to have at least one patent in a given year. Column 3 uses an alternative construction

of logged patenting, log(Num.Patents + 0.0001). These results are much larger than the

baseline estimate. This is not surprising in light of the results in Column 2, since this

specification penalizes having zero patents more heavily than the baseline specification that

uses log(Num.Patents+ 1) as the dependent variable. Column 4 displays the results using

the number of patents as the dependent variable in a simple linear specification. To convert

this estimate to a proportional increase, I divide the estimated increase in the number of

patents by the average number of patents in 1880, around the year that the median college is
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established. The estimated percentage increase is large (almost 500% more patents per year

in the college counties relative to the runners-up, using 1880 as the baseline year) but in line

with the results using a negative binomial model in Table 2. Column 5 presents results from

a fixed effects negative binomial specification, again using winsorized data and expressed as

incident rate ratios. These results are nearly identical to the Poisson results presented in

Table 2. In sum, while the exact magnitude varies, all specifications tell the same story:

establishing a new college causes a sizable increase in local patenting.

Table A9: Additional Regression Specifications

log(Patents + 1) Any Patents log(Pat. + 0.0001) Num. Patents Neg. Binomial

College * PostCollege 0.355*** 0.261*** 2.848* 5.880** 0.890**
(0.117) (0.083) (1.609) (2.563) (0.436)

PostCollege 0.007 -0.001 -2.421 6.545***
(0.068) (0.313) (1.533) (1.532)

County FE Yes Yes Yes Yes Yes
Experiment FE Yes No No No No

County-Experiment FE Yes No No No No
Year FE Yes Yes Yes Yes Yes

Experiment-Year FE Yes No No No Yes
Year Range 1836-2010 1836-2010 1836-2010 1836-2010 1836-2010

Cnty-Year Obs. 33,617 33,773 33,660 33,660 33,660
# Counties 176 176 176 176 176

# Experiments 64 64 64 64 64
Mean of Dep. Var. 0.498 0.425 -5.084 1.104 1.104

Adj. R-Sqr. 0.670 0.389 0.453 0.337 0.202
Log-Likelihood -30,690.407 -16,011.898 -94,455.024 -144,125.458

Notes: Column 1 includes experiment-by-year fixed effects when the dependent variable is
log(Num.Patents + 1). Column 2 estimates a linear probability model where the dependent variable is
an indicator equal to one if a county has at least one patent in a given year and zero otherwise. The depen-
dent variable in Column 3 is log(Num.Patents+0.0001). The dependent variable in column 4 is the number
of patents. Column 5 estimates a negative binomial model. Results are for high quality experiments only.
Standard errors are clustered by county and shown in parentheses. Stars indicate statistical significance: *
p < 0.10; ** p < 0.05; *** p < 0.01
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D.D Preexisting Colleges

It is important to note that there may be a distinction between establishing an additional

college in a county and establishing the first college in a county. In the baseline results,

I consider the establishment of any college for which I can identify high quality runner-

up counties, independent of the presence or absence of previously established colleges in

either the college or runner-up counties. In practice, the focal colleges I study were often

the first colleges built in an area, particularly for western states. In cases where previous

colleges existed, they were typically extremely small, with tenuous survival prospects, relative

to the experimental college in my sample. Nevertheless, a college’s effect on a local area

may systematically differ depending on whether or not a preexisting college was present. I

systematically investigate these issues in Table A10.

For the results in Column 1, I return to the narrative college histories and exclude any

cases in which the presence of a preexisting college was mentioned as a factor in the college

site selection decision. For instance, in the cases of several land grant colleges such as

Virginia Tech, the state decided to allocate its land grant status, and enlarged state and

federal support and visibility that went with it, to one of several existing public universities

(Kinnear, 1972; Wallenstein, 1997).15 When excluding these cases, establishing a college

causes about 56% more patents per year in the college county relative to the runners-up,

relative to a baseline increase of 48%.

In Column 2, I examine only the cases in which the presence of a preexisting college was

15When a preexisting college was mentioned as a factor in a runner-up county, I omit the runner-up county.
When a preexisting college was mentioned as a factor in the college county, I omit the entire experiment,
dropping the college county and all runner-up counties.
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mentioned as a factor in the college site selection decision.16 The estimate is nearly identical

to that in Column 1, with college counties producing 55% more patents per year relative to

the runner-up counties.

The narrative histories may fail to mention all preexisting colleges in the college and

runner-up counties, and even if these preexisting institutions did not affect the site selection

decision, they still may have systematically influenced the new college’s effect on the local

economy. To account for this, in Column 3 I turn to the Commissioner of Education reports

(discussed in Section I.E and A.A) and exclude any cases in which the reports list the

presence of colleges in the college county in the years before the focal college is established.

In addition to the concerns about the accuracy and completeness of the Commissioner of

Education reports raised above, the reports are not available in the years before college

establishment for all of the colleges in the sample. Nevertheless, when excluding these cases,

I find results that are similar to the baseline results.

Finally, in Column 4 I exclude all experiments in which the Commissioner of Education

reports list the presence of colleges in the years before the focal college is established in any

of the experiment counties, not just in the college county. The result is similar to, although

a bit smaller than, the baseline estimate.

In short, across all specifications, it does not appear that the presence or absence of preex-

isting colleges substantially alters the interpretation of the results, although the coefficients

are perhaps a bit larger in cases when no college has been previously established.

16More specifically, I keep all counties in any experiment for which a preexisting college was mentioned as
a factor for either the college county or any of the runner-up counties.
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Table A10: Experiments with and without Preexisting Colleges

Previous College Not Previous College No Previous Colleges No Previous
Factor in Decision Factor in Decision in Treatment County Colleges

College * PostCollege 0.561** 0.545** 0.445** 0.343**
(0.283) (0.246) (0.216) (0.170)

PostCollege -0.036 0.272* -0.038 0.038
(0.096) (0.160) (0.083) (0.094)

County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010 1836-2010
Cnty-Year Obs. 26,835 10,629 31,757 26,507

# Counties 147 57 165 142
# Experiments 52 19 61 52

Mean of Dep. Var. 0.502 0.551 0.489 0.489
Adj. R-Sqr. 0.534 0.527 0.524 0.555

Notes: Column 1 excludes all runner-up counties with a traditional college. Column 2 also excludes all
runner-up counties with a professional school. Column 3 additionally excludes all runner-up counties with a
trade school or for-profit college. Column 4 additionally excludes all runner-up counties with a community
college. Column 5 includes runner-up counties that appear in multiple college site selection experiments. Re-
sults are for high quality experiments only. Standard errors are clustered by county and shown in parentheses.
Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01

D.E Alternative Geographic Boundaries

Clearly, colleges can affect invention across county borders as well. If a college is very close

to a county border, or if a county is very small, then counties may not be the best geo-

graphical unit at which to examine the results. In Column 1 of Table A11 I present results

at the commuting zone level, dropping any runner-up observations that take place in the

same commuting zone as the college. I use commuting zone definitions providing by the

U.S. Department of Agriculture Economic Research Service for the year 1980, the earliest

year for which commuting zones are defined (https://www.ers.usda.gov/data-products/

commuting-zones-and-labor-market-areas/). Results are nearly identical using commut-

ing zones defined for 1990 or 2000. The estimated treatment effect is similar to the baseline

result, with commuting zones that receive a new college having about 64% more patents per
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year relative to their runner-up commuting zones after the college is established.

D.F Alternative Samples of Colleges

I conduct a number of additional robustness checks as well. To further show that the

results are not driven by the subjective classification of some experiments as either high

or low quality, I re-estimate the baseline regression excluding each high quality experiment,

one at a time, and re-estimating the baseline regression. I also reclassify each low quality

experiment as high quality, one at a time, and re-estimate the baseline regression. In all cases,

the estimated coefficient is very similar to the baseline result and statistical significance is

unchanged. A related concern is that the results are driven primarily by large cities, as in

the example of Georgia Tech mentioned in the Introduction. It may be a stretch to believe

that all of the differences between Atlanta and Macon that occurred after the establishment

of Georgia Tech were due to its creation (although Georgia Tech was likely the cause of some

follow-on investment). To verify that these largest cities are not driving the results, I omit

data from counties with large populations and find that the results are largely unchanged.

An additional concern is that different types of college experiments may be systematically

different from one another. While each experiment is unique, they tend to fall into groups

in which the colleges were assigned with different general methods. It would be suspicious

if one method of “random” assignment gave systematically different results from other such

methods. I test this by grouping experiments by the method in which the college was assigned

and then verifying that the estimated coefficients are similar across different groups. All of

these results are available upon request.
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D.G A Placebo Test

I next conduct a placebo test to determine whether patenting changes differentially in college

and runner-up counties in the years leading up to the college site selection experiment. I drop

all data for the years after and including the year in which the college was established; all the

remaining data is for the pre-trend. I then artificially designate the halfway point between

the first year of observations and the last pre-experiment year as the “experiment year” and

re-run the baseline regressions. Results are presented in Columns 1 and 2 of Table A11,

with Column 1 showing the effects on logged patenting and Column 2 showing the effects

on logged county population. If the college counties are up-and-coming places, then they

should be growing faster then the runner-up counties in the years before the original college

site selection experiment, both in terms of the number of inventions and the size of the

population, and the estimated coefficient (College∗“PostCollege”) should be significantly

positive. Instead, neither of the coefficients are statistically different from zero and, while

slightly positive, are close to zero in magnitude relative to their counterparts in Table 2. I

take this as further evidence that the college site selection experiment is valid. Results are

very similar if I instead designate random pre-college years as the placebo “treatment” year.

D.H Patent Classes

Establishing a new college may alter the composition of patented technologies in addition to

changing the total number of patents. To get a sense of patent technology type, in Table A12

I use the patent classes assigned to historical patents by Marco et al. (2015) to examine how
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Table A11: Placebo Test and Results at Other Geographic Levels

Commuting Zones log(Pat. + 1) log(Pop.)

College * PostCollege 0.639** 0.078 0.150
(0.262) (0.081) (0.142)

PostCollege -0.137 -0.074* -0.102
(0.087) (0.041) (0.070)

County FE No Yes Yes
Commuting Zone FE Yes No No

Year FE Yes Yes Yes
Year Range 1836-2010 1836-1953 1840-1950

Cnty-Year Obs. 25,460 8,784 691
# Counties 138 192 175

# Experiments 71 64 64
Mean of Dep. Var. 0.476 0.410 9.535

Adj. R-Sqr. 0.538 0.216 0.553

Notes: In Column 1, I present baseline regression results estimated at the commuting zone level rather than
the county level. In Columns 2 and 3, the baseline regression results are reproduced with all post-experiment
data dropped. The experiment year is set to halfway between the initial year of patent data and the year prior
to the original college site selection experiment. In Column 2 the dependent variable is logged patenting,
while in Column 3 it is logged population. Results are for high quality experiments only. Standard errors are
clustered by county and shown in parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05;
*** p < 0.01
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patenting across all classes changes after establishing a new college.17 In Column 1, I include

controls for the share of patents in each county that belong to each of the NBER patent

classes (patents with missing classes is the omitted category). The differences-in-differences

estimate is a bit more than half the size of the baseline estimate and is no longer statistically

significant at conventional levels.

In Column 2, I repeat the baseline estimate at the patent class-by-county-by-year level.

That is, I estimate:

PatentMeasureijct =δ1Collegei ∗ PostCollegeit + δ2PostCollegeit

+ Countyi + Classc + Y eart + Classc ∗ Y eart + εijct, (3)

for patent classes c. This specification thus includes patent class and patent class-by-year

fixed effects, flexibly picking up the fact that certain types of technology may be more or

less prevalent at different points in time. The coefficient is similar to that in Column 1.

The results in Columns 1 and 2 suggest that there is some shifting in the composition of

types of inventions patented in college counties after a new college is established. Are college

counties becoming increasingly specialized in a few narrow technology areas that happen to

be especially patent-prone? This does not appear to be the case. To see this, I construct a

Herfindahl-Hirschman index of patent concentration:

Pat.Concentit =
∑

c∈Cit

( Num.Patc∑
k∈Cit

Num.Patk

)2
(4)

17The NBER one-digit patent classes are: chemical, communications, medical, electric, mechanical, other,
no class, and missing class. All results in this section are similar when using two-digit NBER patent classes,
USPTO patent classes, or IPC classifications.
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where Cit is the set of all patent classes in county i at time t. I construct this index using two-

digit NBER patent classes, although results are similar with other patent class measures.

Results are presented in Column 3 of Table A12. A new college causes concentration to

increase, although the sign reverses after controlling for the number of patents granted

in each county in Column 4 (since concentration is mechanically related to the number of

patents, especially for small absolute numbers of patents), and neither estimate is statistically

different from zero.

Table A12: Patent Classes

Control for By Patent Class Concentration Class Concentration
Patent Classes Classes (2-Dig.) (2-Dig.)

College * PostCollege 0.262 0.205 4.012 -5.139
(0.314) (0.299) (4.238) (3.214)

PostCollege -0.022 -0.005 -5.902* -1.459
(0.122) (0.136) (3.210) (2.180)

Num. Pat. 0.730***
(0.112)

Control for Distribution of Classes Yes No No No
Class FE No Yes No No

Class-Year FE No Yes No No
County FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes
Year Range 1836-2010 1838-2010 1836-2010 1836-2010

Cnty-Year Obs. 16,984 77,562 20,900 20,900
# Counties 176 176 176 176

# Experiments 64 64 64 64
Mean of Dep. Var. 0.498 0.844 51.573 51.573

Adj. R-Sqr. 0.613 0.603 0.261 0.587

Notes: Column 1 includes a control for the fraction of patents in each NBER patent class. Column 2
estimates the results at the class-by-county-by-year level. Column 3 estimates the change in patent class
concentration. Column 4 repeats the estimates in Column 3 but includes a control for the number of patents
granted in each county. Results are for high quality experiments only. Standard errors are clustered by county
and shown in parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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D.I Patent Quality

As Trajtenberg (1990) makes clear, looking at raw patent counts without correcting for

patent quality can produce misleading results. Ex ante, it is not clear whether patents in

college counties should be expected to increase or decrease in average quality after estab-

lishing the college. On one hand, patents coming from more educated inventors might be

expected to be of higher quality. On the other hand, more educated individuals, especially

those trained in subjects like law, may have better access to the legal system and therefore

patent more marginal inventions, leading to lower average quality. A third possibility is

that the change in patenting is driven by shifts in the size of the population but not in the

distribution of inventive abilities, in which case the distribution of patent qualities may not

change at all. Following Hall et al. (2001) and Hall, Jaffe, and Trajtenberg (2005), I check

whether the number of patent citations and citations per patent change in college counties

relative to the runners-up after the establishment of a new college. I thank Enrico Berkes

for providing lifetime citation counts for the universe of patents (see Berkes (2018)).

In Column 1 of Table A13, I show that the absolute number of patent citations in college

counties increases by 82% relative to the runner-up counties after establishing a new college.

This is a bit larger in magnitude than the percentage change in the total number of patents

granted in college counties. The next three columns investigate changes in citations per

patent after establishing a new college. Column 2 shows that citations per patent (Citationsit
Patentsit

,

where Citationsit measures lifetime forward citations for all patents granted in county i in

year t) declines dramatically in college counties relative to the runners-up after establishing

a new college, although it is not statistically different from zero. In Column 2, I omit any
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counties with zero patents for which the number of patents in the denomination of Citationsit
Patentsit

is zero; in Column 3 I include these counties and code citations per patent to be zero in

these cases, as well as including a dummy variable for zero patents. The coefficient is again

negative but closer to zero in magnitude and not statistically significant. In Column 4, I also

control for the distribution of patent classes in each county as in Column 1 of Table A12;

this is due to the fact that some classes may inherently receive more citations than others.

The coefficient is now very close to zero in magnitude and not statistically significant.

One possible reason for the lack of a large average effect, as noted above, is that more high

quality patents in college counties could also be offset by more marginal patents. To simply

check for this, I estimate whether the share of patents falling in the tails of the distribution

of forward citations changes in the college counties relative to the runners-up following the

establishment of a new college. Column 5 estimates the change in the fraction of a county’s

patents that fall below the 10th percentile of patents in terms of forward citations in each

year. While I find a large (more than 70%) increase in the share of patents in the 10th

percentile or below, the estimate is extremely noisy. In Column 6, I estimate the change in

the fraction of patents falling in the 90th percentile of forward citations or above in each

year; this coefficient is also large but extremely imprecisely estimated. Taking all the citation

results together, there is no measurable change in citations per patent.

Unfortunately, patent citations are only consistently available beginning in 1947, making

them a less-than-ideal measure when using historical patent data. I therefore use an alter-

native measure to gauge patent quality. As suggested in Kuhn and Thompson (2019), the

length of a patent’s first claim is an informative measure of a patent’s scope, and hence its

quality. A patent’s claims formally define the legal scope of an invention. The first listed
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claim is the most broad. A very short first claim therefore indicates a patent that is very

broad in scope, while a long claim indicates a patent that is narrow in scope. Kuhn and

Thompson (2019) and Kuhn, Younge, and Marco (2017) argue that patent claim length is in

fact more informative of patent quality than citation-based measures. Additionally, unlike

patent citations, claims are recorded in the body of a patent for all patents granted in the

U.S. from 1836 onward. I use the patent body text and claim counts from Enrico Berkes. I

again thank Enrico Berkes for graciously providing this data.

In Column 1 of Table A14, I re-estimate the baseline regression specification using the

average number of words in the first claim for all patents granted within each county in

each year as the dependent variable. Column 2 uses the logged number of words in the first

claim as the dependent variable. Neither measure is statistically significant and both are

small in magnitude. Column 3 estimates the change in the share of patents at or below

the tenth percentile of the first claim length distribution, representing the very broadest

patents granted in a particular year. Column 4 estimates the change in the share of patents

at or above the 90th percentile, the narrowest patents. Again, neither coefficient is large

in magnitude. These results suggest that, while counties that receive a college gain more

patents overall, there is no measurable change in patent quality.

D.J Results with Low-Quality Site Selection Experiments

In Table A15, I repeat the analysis in Columns 1-3 of Table 2 but include data from all

colleges and counties for which runner-up sites can be identified. This includes the “low-

quality” experiments as well as other runner-up counties in the high quality experiments that
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Table A13: Patent Quality: Forward Citations

Citations Citations Citations Frac. Citations Frac. Citations
log(Citations + 1) per Patent per Patent per Patent <10th Pcntl >90th Pcntl

College * PostCollege 0.818** -0.657 -0.355 0.021 0.719 0.428
(0.341) (0.484) (0.359) (0.103) (0.680) (0.544)

PostCollege -0.193* 0.268 -0.343 0.125 -0.353 -1.093
(0.115) (0.625) (0.500) (0.184) (0.719) (0.891)

Zero Pat. Dummy -1.607*** 0.449**
(0.222) (0.211)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010 1836-2010 1836-2010 1836-2010
Cnty-Year Obs. 33,660 16,984 33,660 33,660 13,763 13,763

# Counties 176 176 176 176 176 176
# Experiments 64 64 64 64 64 64

Mean of Dep. Var. 1.062 9.626 4.857 4.857 2.085 4.348
Adj. R-Sqr. 0.578 0.132 0.099 0.470 0.544 0.525

Notes: Column 1 estimates the change in the number of logged lifetime forward citations for all patents in a
county. Column 2 estimates the change in the average citations per patent, omitting any counties with zero
patents. Column 3 estimates the change in the average citations per patent, including a dummy variable for
counties with zero patents. Column 4 re-estimates Column 3 but also controls for the distribution of patent
classes. Column 5 estimates the change in the fraction of a county’s patents that are at or below the 10th
percentile of patents with respect to forward citations in each year. Column 6 estimates the change in the
fraction of a county’s patents that are at or above the 90th percentile of patents with respect to forward
citations in each year. Results are for high quality experiments only. Standard errors are clustered by county
and shown in parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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Table A14: Patent Quality: Claim Length

Length of Frac. 1st Claim Frac. 1st Claim
1st Claim log(Length 1st Claim) <10th Pcntl >90th Pcntl

College * PostCollege -0.052 -0.026 0.108 -0.035
(0.040) (0.021) (0.116) (0.118)

PostCollege 0.091*** 0.041** -0.201* 0.183**
(0.033) (0.021) (0.104) (0.090)

County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010 1836-2010
Cnty-Year Obs. 14,172 14,172 14,172 14,172

# Counties 176 176 176 176
# Experiments 64 64 64 64

Mean of Dep. Var. 46.432 3.744 0.078 0.095
Adj. R-Sqr. 0.432 0.503 0.017 0.013

Notes: Column 1 estimates the change in the average number of words in a patent’s first claim in the college
counties relative to the runner-up counties after the establishment of a college. Column 2 estimates the
change in the average logged number of words in a patent’s first claim. Column 3 estimates the change in
the fraction of a county’s patents that are at or below the 10th percentile of patents with respect to the
length of first claim in each year. Column 4 estimates the change in the fraction of a county’s patents that
are at or above the 90th percentile of patents with respect to the length of first claim in each year. Results
are for high quality experiments only. Standard errors are clustered by county and shown in parentheses.
Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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were nevertheless not as good as randomly assigned and so are excluded from the baseline

sample. Instead of estimating Equation (1), I now estimate a triple-difference equation of

the form

PatentMeasureit =δ1Collegei ∗HighQualityi ∗ PostCollegeit

+ δ2Collegei ∗ PostCollegeit + δ3HighQualityi ∗ PostCollegeit

+ δ4PostCollegeit + Countyi + Y eart + εit. (5)

The indices mean the same as in the previous equations. Now HighQualityi is equal to

one if county i is included in the original baseline sample (that consists of only the high

quality experiments), and zero otherwise. In Column 1, I estimate Equation (5) using

log(NumPatit + 1) as the dependent variable. In Column 2, I use as the dependent vari-

able the inverse hyperbolic sin of patenting, while in Column 3 the dependent variable is

the alternative log(NumPatit) measure that includes a dummy equal to one if a county has

zero patents in a particular year. In the new regression specifications, the coefficient of the

triple-interaction term, Collegei ∗HighQualityi ∗ PostCollegeit, measures how much larger

the differences-in-differences estimator between high quality college and runner-up counties

is compared to the differences-in-differences estimator between all college counties (high and

low quality) and all runner-up counties (not just the high quality runners-up). This coeffi-

cient is negative and statistically significant at the 1% level in all columns, indicating that

there is positive selection into the low quality college experiments; that is, the difference

between the college and runner-up counties is smaller for high quality experiments than for

counties not included in the baseline results. The coefficient on Collegei ∗ PostCollegeit
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estimates the increase in patenting in all college counties relative to all runner-up coun-

ties after establishing a new college. The estimated coefficient is positive and significant,

so the qualitative conclusions of the baseline specification in Table 2 are still true even if

the low quality experiments are included, although the coefficients are a bit larger when

attention is not restricted to the high quality experiments. The increase in patenting in

high quality college counties over high quality runner-up counties after establishment of a

new college (that is, the same quantity as estimated by the differences-in-differences term in

Equation (1)) is given by adding the coefficient on the triple interaction term to the interac-

tion term for all colleges in the post-college periods.18 Combining these coefficients reveals

that high quality college counties increase patenting by amounts slightly smaller than, but

qualitatively similar to, the findings in Columns 1-3 of Table 2 (a 36% increase in Column 1,

44% increase in Column 2, and 27% increase in Column 3). All the combined coefficients are

still statistically significant. The coefficient on HighQualityi ∗ PostCollegeit estimates the

change in patenting in high quality college and runner-up counties after the establishment of

a college relative to low quality college and runner-up counties; these coefficients are positive

and statistically significant, further suggesting that the high quality college and runner-up

counties were more likely to be up-and-coming locations in terms of invention. Finally, the

coefficient on PostCollegeit has the same interpretation as before and simply measures the

increase in patenting after establishment of a new college.

18Let y = log(NumPatents+ 1). Then, the coefficient of interest is

(E[yCollege,HighQuality,PostCollege]−E[yCollege,HighQuality,PreCollege])

− (E[yRunUp,HighQuality,PostCollege]− E[yRunUp,HighQuality,PreCollege])

=[δ1 + δ2 + δ3 + δ4]− [0]− [δ3 + δ4] + [0]

=δ1 + δ2.
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Table A15: Results with High and Low Quality College Site Selection Experiments

log(Pat. +1) arcsinh(Pat.) Alt. log(Pat.)

College * HighQuality * PostCollege -0.277*** -0.307*** -0.236***
(0.098) (0.109) (0.080)

College * PostCollege 0.632*** 0.744*** 0.508***
(0.138) (0.169) (0.101)

HighQuality * PostCollege 0.221*** 0.276*** 0.142***
(0.065) (0.080) (0.042)

PostCollege 0.050*** 0.064*** -0.031***
(0.007) (0.009) (0.005)

Zero Pat. Dummy -0.701***
(0.006)

County FE Yes Yes Yes
Year FE Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010
Cnty-Year Obs. 2,426,699 2,426,699 2,426,699

# Counties 1,956 1,956 1,956
# Experiments 181 181 181

Mean of Dep. Var. 0.310 0.393 0.310
Adj. R-Sqr. 0.443 0.441 0.650

Notes: Column 1 estimates the level shift in patenting in college counties relative to all runner-up counties
after establishment of a new college when the dependent variable is log(Num.Patents+ 1). The dependent
variable in Column 2 is the inverse hyperbolic sin of patents. The dependent variable in Column 3 is
log(Num.Patents), with values replaced with 0 if Num.Patents = 0 and a dummy variable for zero patents
included. Each coefficient is transformed into a percentage change in the dependent variable /100. When
the model estimates changes in levels, the percentage change is calculated based on the baseline value of
the independent variable in 1880. Standard errors are clustered by county and shown in parentheses. Stars
indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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D.K Additional Results on Colleges and Population

I present several additional results relating to colleges and population. Because population

variables are collected from the decennial U.S. population censuses, I first restrict the data

to observations that occur only in the census years: 1840, 1850, 1860, etc. Thus the outcome

variable is the log of the number of patents granted in the ten years closest to each census

year. In Column 1 of Table A16, I reproduce the baseline result on patenting using only

patenting in census years. The estimated coefficient is similar to the baseline coefficient

estimated in Column 1 of Table 2, although not statistically significant, likely due to the

smaller sample of years. Column 2 reproduces the results from Column 6 of Table 2 and

shows the effect of a new college on logged county population.

In Column 3, I re-estimate Equation (1) but include log(TotalPop) as a control. Not sur-

prisingly, county population is highly predictive of county patenting (a ten percent increase

in population leads to a 6.2% increase in patenting). When including log(TotalPop), the

coefficient on the interaction term of interest is only 39% of the baseline estimate, decreasing

from 40% more patents per year in the baseline to 16% more patents per year. In Column 4, I

remain agnostic about the functional form that population can take in the model, employing

fractional polynomial regression as proposed by Royston and Altman (1994). I estimate a

second degree polynomial, but results are similar with higher dimensions. I omit the coeffi-

cients on the polynomial terms for readability. When population is allowed to take a flexible

form, the coefficient on the interaction term of interest drops even further, to only 25% of its

baseline value. Thus, simply controlling for population in the baseline regression can explain

about 60-75% of the observed increase in patenting. Moreover, in both cases the estimated
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effect of establishing a new college is not statistically significant at conventional levels, and

so I cannot reject the null hypothesis that population can explain all of the observed increase

in patenting in college counties after the establishment of a new college. Of course, these

results should not be interpreted as causal; in the language of Angrist and Pischke (2009),

population is a “bad control” for patenting.

If knowledge spillovers are larger when individuals can interact with alumni or college

students, then simply controlling for population may be capturing the effect that migrants

are endogenously sorting to places where these spillovers are largest. As a crude test of this,

I check whether a marginal increase in population has a larger effect on patenting in college

counties than in runner-up counties. Formally, I estimate

log(NumPatit + 1) =δ1Collegei ∗ PostCollegeit + δ2PostCollegeit + δ3 log(TotalPopit)

+ δ4Collegei ∗ PostCollegeit ∗ log(TotalPopit)

+ Countyi + Experimenti + Y eart + εit. (6)

Results are presented in Column 5 of Table A16. There is no evidence that increasing

population increases patenting more in college counties (measured by δ4). A 10% increase

in population increases the differences-in-differences estimate by a statistically insignificant

1.5%. Results are similar when using other functional forms or semiparametric regressions

for county population.

Appendix F.D shows heterogeneous treatment effects of establishing colleges on the basis

of population at the time each college is established, among other dimensions of heterogeneity,

and thus avoids challenges in interpreting ex post endogenous controls.
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Table A16: The Effect of Colleges on Patenting when Controlling for Population

log(Pat. + 1) log(Total Pop.) log(Pat. + 1) log(Pat. + 1) log(Pat. + 1)

College*PostCollege 0.402 0.486* 0.158 0.100 -0.769***
(0.248) (0.255) (0.147) (0.115) (0.263)

PostCollege -0.022 0.214* -0.109* -0.063 -0.980***
(0.089) (0.124) (0.060) (0.059) (0.013)

log(Total Pop.) 0.620*** 0.232***
(0.099) (0.057)

College * PostCollege * log(Total Pop.) 0.150
(0.125)

Population Fract. Polynomials No No No Yes No
County FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes
Year Range 1840-2000 1840-2000 1840-2000 1840-2000 1840-2000

Cnty-Year Obs. 3,062 3,062 3,062 3,062 3,062
# Counties 176 176 176 176 176

# Experiments 64 64 64 64 64
Mean of Dep. Var. 0.694 9.759 0.694 0.694 0.694

Adj. R-Sqr. 0.626 0.721 0.688 0.734 0.711

Notes: Column 1 estimates the level shift in patenting in college counties relative to runner-up counties after
establishment of a new college when the dependent variable is log(Num.Patents+ 1). Column 2 estimates
the level shift in population in college counties relative to the runner-up counties after establishment of a
new college when the dependent variable is log(TotalPop.). The dependent variable for Columns 3-5 is
log(Patents + 1). Column 3 re-estimates Column 1 but includes a control for log(TotalPop.). Column 4
re-estimates Column 1 but includes fractional polynomial controls for population. Column 5 estimates the
effect of the level shift in patenting in college counties relative to runner-up counties after establishment of
a new college when controlling for log(TotalPop.) and interacting log(TotalPop.) with a dummy for college
counties, a dummy for post-college years, and the interaction term. Results are from census years only and
log(Num.Patents+ 1) measures the number of patents in the ten years closest to the census year. Results
are for high quality experiments only. Standard errors are clustered by county and shown in parentheses.
Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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E Additional Results on Patenting by Alumni and Fac-

ulty

E.A Patenting by Alumni and Faculty Under Alternative Data

Construction Assumptions

In this section, I reproduce results for the share of population and patents coming from

alumni, faculty, and pre- and post-college others under several alternative data assumptions.

In the baseline results, shown in Table 3, I consider a patent to belong to an alumnus

or faculty member if the name on a patent record matches to a name from the yearbook

records, regardless of how many individuals in the census have the same name. This “John

Smith problem” could substantially overstate the share of patents coming from alumni and

faculty if a large share of patents belong to individuals with common names. In Table A17,

I instead assign an alumnus or faculty 1
N

of a patent if they share a name with N other

individuals in the same county and census year. Perhaps surprisingly, this common name

issue does not appear to substantially bias upwards the share of patents from alumni and

faculty: under the new method, alumni and faculty account for about 4.9% of all patents

instead of 5.3% in the baseline results.

In the baseline results, I consider to records to be a match if they have a bigram matching

score of 0.8 or above.19 In Table A18, I present matching results when requiring a ratio of

0.85 to consider two records to be a match. Shockingly, this slight increase in match strictness

19The bigram score is calculated as the ratio of common two consecutive letter pairs in both the patent (or
yearbook) record and census record to their average two consecutive letter pairs in both records. I compute
this using Stata’s reclink2 command (an extension of Blasnik (2007)); see Wasi and Flaaen (2015) for more
details.
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reduces the share of patents attributed to alumni and faculty to approximately zero. I am

still able to match a similar number of patents to the census with this new criteria, so it

appears that alumni and faculty names are less likely to exactly match census records than

are patent records. A ratio of 0.8 is already quite liberal as a match cutoff; for instance,

Sarada et al. (2019) use a cutoff of 0.9. The fact that I use a relatively liberal cutoff of 0.8

in the baseline results further suggests that the baseline results likely overstate the share of

patents from alumni and faculty.

One of the concerns with using yearbook data, described in detail above in Section C, is

that the yearbook data are not available for all years. This is especially problematic when

computing the number of patents from alumni, since missing yearbooks will undercount the

stock of possible alumni inventors. To adjust for this, I create an adjusted stock of potential

alumni by interpolating student counts in missing yearbooks. In Table A19, I present results

without making this adjustment for missing yearbook years. Not surprisingly, without this

adjustment alumni and faculty account for only about 1.2% of the patents in their college

counties. Table A20 presents results when using an alternative method to interpolate student

and faculty counts for missing yearbook years. In Table A20, I use cubic splines to interpolate

counts, whereas for the baseline results in Table 3 I use a linear interpolation. Results are

similar in both tables.

Finally, I use an alternative method to determine whether a patentee was present in the

college county at the time the college was established. In the baseline results, I consider a

patentee to be present in the college county at the time the college was established if, as

proposed by Ferrie (1996), an individual with a similar name appears in the census prior to

the college establishment and the earlier record has the same race, gender, birthplace, and
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an appropriate age. In Table A21, I instead consider a patentee to be present in the college

county at the time the college was established if a record with a similar name is present. Not

surprisingly, this results in a much larger share of “pre-college others,” since any patentee

with a common name is likely to appear in multiple censuses.

Table A17: Patents by Alumni, Faculty, and Others: Multiple Matches

Num. People Share of Pop. Num. Patents Share Patents Pat. per 10,000 Cap.

Alumni 512.673 0.110 0.111 0.049 2.157

Faculty 19.013 0.004 0.000 0.000 0.000

Pre-College Others 1,159.196 0.248 0.411 0.183 3.549

Post-College Others 2,989.906 0.639 1.723 0.767 5.762

Notes: Population and patenting results for college alumni, faculty, and other individuals living in the same
county using fractional assignment of multiple patents. The first row lists statistics for alumni. The second
row lists statistics for faculty. The third row lists statistics for other (non-alumni, non-faculty) individuals
who were present in the college counties at the time the college was established. The fourth row lists
statistics for other individuals who were not present in the college counties at the time the college was
established. The first column lists the average number of people in each group per county. The second
column lists the share of the county’s total population belonging to each group. The third column lists
the number of patents attributable to each group. The fourth column lists the share of the county’s total
patents attributable to each group. The fifth column lists the patenting rate for individuals in each group
(Num.Patentsj ∗ 10, 000/Num.Membersj for members of group j). Results are for college counties for
which yearbook data is available. Standard deviations are shown in parentheses.

E.B Alumni and Faculty Patents in Counties with Only One Col-

lege

If establishing a college spurs follow-up investment, including the creation of future colleges,

then simply counting how many patents come from the alumni and faculty of an experiment

college may be understating the direct effects of colleges. That is, alumni and faculty of

other local colleges could be contributing a large number of local patents.
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Table A18: Patents by Alumni, Faculty, and Others: Strict Matching Criteria

Num. People Share of Pop. Num. Patents Share Patents Pat. per 10,000 Cap.

Alumni 213.391 0.046 0.000 0.000 0.000

Faculty 4.890 0.001 0.000 0.000 0.000

Pre-College Others 1,277.891 0.277 0.688 0.228 5.382

Post-College Others 3,118.326 0.676 2.329 0.772 7.470

Notes: Population and patenting results for college alumni, faculty, and other individuals living in the same
county when using strict matching criteria. The first row lists statistics for alumni. The second row lists
statistics for faculty. The third row lists statistics for other (non-alumni, non-faculty) individuals who were
present in the college counties at the time the college was established. The fourth row lists statistics for other
individuals who were not present in the college counties at the time the college was established. The first
column lists the average number of people in each group per county. The second column lists the share of the
county’s total population belonging to each group. The third column lists the number of patents attributable
to each group. The fourth column lists the share of the county’s total patents attributable to each group. The
fifth column lists the patenting rate for individuals in each group (Num.Patentsj ∗ 10, 000/Num.Membersj
for members of group j). Results are for college counties for which yearbook data is available. Standard
deviations are shown in parentheses.

Table A19: Patents by Alumni, Faculty, and Others: No Adjustment for Missing Yearbooks

Num. People Share of Pop. Num. Patents Share Patents Pat. per 10,000 Cap.

Alumni 47.029 0.007 0.036 0.012 7.649

Faculty 7.471 0.001 0.000 0.000 0.000

Pre-College Others 2,008.076 0.288 0.689 0.225 3.432

Post-College Others 4,910.721 0.704 2.340 0.763 4.764

Notes: Population and patenting results for college alumni, faculty, and other individuals living in the same
county without making any correction for missing yearbook years. The first row lists statistics for alumni.
The second row lists statistics for faculty. The third row lists statistics for other (non-alumni, non-faculty)
individuals who were present in the college counties at the time the college was established. The fourth
row lists statistics for other individuals who were not present in the college counties at the time the college
was established. The first column lists the average number of people in each group per county. The second
column lists the share of the county’s total population belonging to each group. The third column lists
the number of patents attributable to each group. The fourth column lists the share of the county’s total
patents attributable to each group. The fifth column lists the patenting rate for individuals in each group
(Num.Patentsj ∗ 10, 000/Num.Membersj for members of group j). Results are for college counties for
which yearbook data is available. Standard deviations are shown in parentheses.
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Table A20: Patents by Alumni, Faculty, and Others: Alternative Between-Yearbook Interpolation

Num. People Share of Pop. Num. Patents Share Patents Pat. per 10,000 Cap.

Alumni 673.511 0.097 0.119 0.039 1.768

Faculty 33.742 0.005 0.002 0.001 0.485

Pre-College Others 1,730.979 0.248 0.659 0.216 3.808

Post-College Others 4,535.065 0.650 2.277 0.745 5.021

Notes: Population and patenting results for college alumni, faculty, and other individuals living in the same
county when using a cubic spline to interpolate the number of students and faculty in missing yearbook
years. The first row lists statistics for alumni. The second row lists statistics for faculty. The third row lists
statistics for other (non-alumni, non-faculty) individuals who were present in the college counties at the time
the college was established. The fourth row lists statistics for other individuals who were not present in the
college counties at the time the college was established. The first column lists the average number of people
in each group per county. The second column lists the share of the county’s total population belonging to
each group. The third column lists the number of patents attributable to each group. The fourth column lists
the share of the county’s total patents attributable to each group. The fifth column lists the patenting rate
for individuals in each group (Num.Patentsj ∗ 10, 000/Num.Membersj for members of group j). Results
are for college counties for which yearbook data is available. Standard deviations are shown in parentheses.

Table A21: Patents by Alumni, Faculty, and Others: Naive Matching Criteria

Num. People Share of Pop. Num. Patents Share Patents Pat. per 10,000 Cap.

Alumni 512.386 0.109 0.119 0.053 2.323

Faculty 19.013 0.004 0.001 0.000 0.474

Pre-College Others 1,159.337 0.248 0.411 0.183 3.541

Post-College Others 2,990.052 0.639 1.717 0.764 5.741

Notes: Population and patenting results for college alumni, faculty, and other individuals living in the same
county when using only first and last names to match individuals across censuses. The first row lists statistics
for alumni. The second row lists statistics for faculty. The third row lists statistics for other (non-alumni,
non-faculty) individuals who were present in the college counties at the time the college was established. The
fourth row lists statistics for other individuals who were not present in the college counties at the time the
college was established. The first column lists the average number of people in each group per county. The
second column lists the share of the county’s total population belonging to each group. The third column
lists the number of patents attributable to each group. The fourth column lists the share of the county’s
total patents attributable to each group. The fifth column lists the patenting rate for individuals in each
group (Num.Patentsj ∗ 10, 000/Num.Membersj for members of group j). Results are for college counties
for which yearbook data is available. Standard deviations are shown in parentheses.
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To check for this, I repeat the results in Table 3 but exclude any counties that had an

additional local college as of 1940. I compile a list of all currently operating non-experiment

colleges in the yearbook college counties from the IPEDS data. Then, I manually look up

the establishment date for each of these colleges and exclude any yearbook college counties

that had another college established in 1940 or earlier. When excluding these colleges,

the remaining yearbook colleges are: Auburn University, Iowa State University, Missouri

University of Science and Technology, North Dakota State University, Texas Tech University,

University of Arizona, University of Colorado, University of Nevada, University of New

Hampshire, University of North Dakota, Utah State University, Virginia Tech University,

and Washington State University.

Results are presented in Table A22. When restricting attention to these colleges, alumni

and faculty together account for about 5.9% of all patents, only slightly larger than the 5.3%

when using all of the yearbook colleges. Thus, it does not appear that missing patents from

alumni and faculty of non-experiment local colleges are resulting in a substantial undercount

of patents from alumni and faculty.

E.C The Role of Alumni and Faculty Today

In this section, I expand on the discussion in Section III.A, in which I argue that the con-

clusions about the role of alumni and faculty in local invention from the pre-1940 period

still hold in the present. In particular, I explain the data construction and present results

in detail. A challenge with the college yearbook data used in Section III is that it is only

possible to match these to the decennial population censuses up to 1940. To check if the
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Table A22: Patents by Alumni, Faculty, and Others: No Counties with Multiple Colleges

Num. People Share of Pop. Num. Patents Share Patents Pat. per 10,000 Cap.

Alumni 115.217 0.084 0.023 0.059 2.031

Faculty 15.450 0.011 0.000 0.000 0.000

Pre-College Others 383.289 0.281 0.096 0.241 2.512

Post-College Others 851.012 0.623 0.279 0.700 3.283

Notes: Population and patenting results for college alumni, faculty, and other individuals living in the same
county, excluding all cases in which the college county had another local college established in 1940 or
earlier. The first row lists statistics for alumni. The second row lists statistics for faculty. The third row lists
statistics for other (non-alumni, non-faculty) individuals who were present in the college counties at the time
the college was established. The fourth row lists statistics for other individuals who were not present in the
college counties at the time the college was established. The first column lists the average number of people
in each group per county. The second column lists the share of the county’s total population belonging to
each group. The third column lists the number of patents attributable to each group. The fourth column lists
the share of the county’s total patents attributable to each group. The fifth column lists the patenting rate
for individuals in each group (Num.Patentsj ∗ 10, 000/Num.Membersj for members of group j). Results
are for college counties for which yearbook data is available. Standard deviations are shown in parentheses.

role of alumni and faculty in local invention is similar in recent years, one must construct

proxies or find alternative ways of measuring the contribution of these groups.

E.C.1 Alumni Patenting

To construct measures of alumni patenting in post-1940 years, I use recent work by Bell,

Chetty, Jaravel, Petkova, and Reenen (2019), who link patents to both IRS tax records and

to alumni records used in Chetty, Friedman, Saez, Turner, and Yagan (2017). They provide

data on the number of patents invented by college alumni for cohorts born from 1980-1984

and who attended college when they were 19-22 years old.20 To make the Bell et al. (2019)

consistent with the results from the college yearbooks, I restrict attention to only the colleges

for which yearbook data is available.

20See https://opportunityinsights.org/wp-content/uploads/2018/04/Inventors-Codebook

-Table-3.pdf for details on the construction of the alumni patenting data.
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As when using the yearbook data, the Bell et al. (2019) provide the number of patents

belonging to a subset of individuals who obtained their degrees in particular years. Instead,

I am interested in the share of patents over a set of years for which all alumni are the

inventors. To convert these data to the measure of interest, I divide the number of alumni

patents granted in each year by the number of alumni that had graduated by that year to

find the alumni patenting rate. I then use the IPEDS data to construct the stock of alumni

in each college in each year.21 Finally, I multiply the stock of alumni in each year by the

alumni patenting rate to get the total number of alumni patents in each year. These steps

are identical to those described in Section III and Appendix C.A.

One important difference between these alumni patenting counts and the pre-1940 counts

of alumni patenting using the yearbook data in Section III is that these include patents by

all alumni, regardless of where they live. In contrast, the results in Section III only show

patenting by alumni in the counties of their alma maters. To adjust these results to reflect

the degree of alumni geographic mobility, I use the results from Zolas, Goldschlag, Jarmin,

Stephan, Owen-Smith, Rosen, Allen, Weinberg, and Lane (2015), who find that 87.3% of

college graduates are living more than 50 miles from where they obtained their degree. I

therefore scale the number of alumni by 0.127, treating this as a rough proxy for the share

of alumni who live in a county different from that of their alma mater. Of course, naively

applying the Zolas et al. (2015) “headline” mobility number has a number of drawbacks.

First, it is an average over all colleges. Second, even within a college, the most talented and

inventive alumni may also be the most mobile, or conversely, the most likely to remain in

place to take advantage of their college’s resources. While the magnitude, or even the sign,

21See https://nces.ed.gov/ipeds/.
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of this bias is unclear, scaling the number of alumni by 0.127 is likely acceptable for the

rough back-of-the-envelope nature of this calculation.22

With all these adjustments in mind, the alumni account for about 14.5% of all patents

in the counties of their alma maters from 1996-2014. This is only slightly larger than the

pre-1940 share in Table 3. Even under alternative assumptions, alumni still account for less

than a quarter of all patents in college counties.

E.C.2 University-Assigned Patents

A natural substitute for faculty names from the yearbooks is to examine patents that are

assigned to a particular college or university; in fact, this is the measure used in the sizable

literature on university patenting (e.g., Mowery and Sampat (2001), Mowery and Ziedonis

(2002), Sampat (2006)). Note that these two measures are not perfect substitutes. Linking

patents to the names of faculty members included in the college yearbooks will capture all

inventions by faculty members, even if they were not conducted using university resources or

were conducted in a time period when a university did not require its staff to assign all inven-

tions to the college. University-assigned patents, on the other hand, will capture all patents

invented by individuals as part of their work for the university, even if these individuals were

not tenure-line faculty and would be unlikely to be listed in a college yearbook.

To create a list of university-assigned patents, for every patent granted in a college

county, I check the assignee name for the words “College,” “University,” “Institute,” or any

of their common abbreviations. Note that this will capture all university-assigned patents

22I also calculate results when scaling the number of alumni patents by 0.22, which is the share of alumni
living in the same state as their college according to Zolas et al. (2015). This should be thought of as an
upper bound on the share of alumni remaining in the county of their alma mater. Under this alternative
assumption, alumni still account for only 25% of all patents in the college county.

64

Electronic copy available at: https://ssrn.com/abstract=3072565



in a county, and not just the patents assigned to colleges in my sample. So, for example, I

include patents assigned to both Georgia Institute of Technology and Emory University in

Fulton County, GA. This is done to minimize the risk of omitting a sample college’s patents

because of alternative ways in which the college name is written on a patent (for instance,

the assignee may be the name of the university but may also include the name of a particular

school or department within the university, may be assigned to the entire university system

rather than a particular campus, etc.). But this decision likely overstates the number of

patents belonging to faculty members of a particular college.

Results are presented in Figure A6. To make these results as comparable as possible to

the results on faculty patenting in Section III, I present these results only for the college

experiments for which yearbook data is available, although the results are similar for the

sample of all colleges. The number of university-assigned patents, presented in Panel (a), has

been increasing in recent decades. As a sanity check, I confirm that college counties received

essentially zero university-assigned patents in the years before the college was established.

Consistent with Sampat (2006), university-assigned patents began to rise in absolute terms in

the decades before the passage of the Bayh-Dole Act in 1980 and have continued to increase

in recent years, while university patenting was exceptionally rare before 1940; results by

calendar year, rather than year since the college was established, are available upon request.

While the number of university-assigned patents is growing rapidly in recent decades, the

number of overall patents in college counties is growing nearly as quickly, so that the share

of university-assigned patents grows only modestly; with the exception of one outlier year,

university patents never account for more than 20% of all patents in college counties in any

given year, and on average from 1996 to 2014 they account for only 4.5% of patents in college
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counties.

Figure A6: University-Assigned Patents
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(b) Share of Patents

Notes: The x-axis shows the number of years since the college experiment. The year of the establishment
of the new college is normalized to 0. Everything left of 0 shows pre-college results; everything to the
right shows post-college results. In Panel (a), the y-axis shows the number of patents that list a college or
university as an assignee in a college county. In Panel (b), the y-axis shows the share of total patents in the
college counties that list a college or university as an assignee. Data are for college experiments for which
yearbooks are available.

F Additional Results Investigating the Indirect Chan-

nels

F.A Most Common Inventor Occupations by Decade

Table A23 lists the top ten occupations for inventors, along with the share of inventors in

each occupation, for the census years 1900-1940. Most common occupations are based on all

inventors in the U.S. (not just inventors in college and runner-up counties) matched to the

decennial population censuses in Sarada et al. (2019). These results reflect the democrati-

zation of invention (Khan, 2005) in the early years with the prevalence of skilled craftsmen

(e.g., machinists, carpenters, painters) and the increasing specialization, professionalization,
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and technical skills needed to invent as exemplified by the growing role of engineers and

managers.23

Table A23: Sensitivity to Different Types of Consolation Prizes

1900 1910 1920 1930 1940
Occ. % Occ. % Occ. % Occ. % Occ. %

1 CLERK 25.4 MANUFACTURER 11.7 CLERK 32.5 ENGINEER 26.8 SALESMAN 13.9
2 LABORER 9.59 LABORER 10.8 MANUFACTURER 8.52 MANAGER 8.64 MANAGER 12.2
3 MERCHANT 7.05 SALESMAN 6.80 LABORER 6.03 LABORER 6.88 OPERATOR 7.76
4 SHOEMAKER 4.75 OPERATOR 6.46 SALESMAN 5 SALESMAN 6.59 LABORER 7.15
5 MACHINIST 3.44 DRIVER 5.26 OPERATOR 4.90 CLERK 4.51 CLERK 5.28
6 DRIVER 3.42 CARPENTER 4.01 MACHINIST 3.49 OPERATOR 4.34 DRIVER 4.34
7 CARPENTER 2.88 CLERK 3.90 DRIVER 3.16 DRIVER 3.30 MECHANICAL ENGINEER 2.16
8 PAINTER 1.63 MACHINIST 3.64 CARPENTER 2.46 CARPENTER 2.14 MECHANIC 1.99
9 STUDENT 1.63 ENGINEER 2.52 ENGINEER 1.42 MACHINIST 1.86 PAINTER 1.86
10 ENGINEER 1.33 PAINTER 2.08 FOREMAN 1.33 PAINTER 1.78 CARPENTER 1.60

Notes: The ten most common occupation codes for patentees matched to the 1900, 1910, 1920, 1930, and 1940
decennial population censuses from Sarada et al. (2019), along with the percentage of inventors belonging
to each occupation code in each year.

F.B Additional Consolation Prize Results

In this section, I present additional comparisons between college and consolation prize coun-

ties. In Column 1 of Table A24, I re-estimate the baseline consolation prize specification

(Column 2 from Table 5) while controlling for logged population. In this case, the difference

between the college and consolation prize counties is still statistically insignificant and close

to zero in magnitude. Of course, population is an endogenous outcome variable, so this

specification must be interpreted with caution.

Next, I show that the results are largely insensitive to the kinds of alternative institutions

that are considered to be consolation prizes. In Column 2 I exclude any consolation prize

counties that are educational institutions. This includes institutions like reform schools,

23The disappearance of “Engineers” (with an “occ1950” code of 16) in 1940 but the appearance of “Me-
chanical Engineer” (“occ1950” code of 460) suggests increasing specialization among a particularly im-
portant high-skilled occupation (Maloney and Caicedo, 2017). See https://usa.ipums.org/usa/volii/

occ ind.shtml for more information on the construction of occupation codes.
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which is a consolation prize for Weber County following the establishment of Utah State

University in Cache County, UT. In Column 3, I again exclude educational institutions while

also controlling for logged county population. The estimates are larger than the consolation

prize results in Column 2 of Table 5 but still smaller than the baseline estimates. In Columns

4 and 5, I exclude any medical-related institutions, namely hospitals and insane asylums. In

thee columns, the coefficient is not only statistically insignificant, but it is actually less than

zero in magnitude. In all columns in Table A24, results are statistically indistinguishable

from zero. One caveat is that restricting attention to particular types of consolation prize

counties reduces the number of counties included in the regressions, reducing statistical

power.

An additional concern is that, because the consolation prize counties were considered

suitable sites to receive a college and because receiving a consolation prize institution induced

local population growth, the consolation prize counties may be quite likely to receive a college

of their own. If this were the case, then the presence of these colleges may be driving the

observed similarity between the college and consolation prize counties. To assuage these

concerns, I compile a list of all currently operating colleges in consolation prize counties from

the IPEDS data. Then, I manually look up the establishment date for each of these colleges

and exclude consolation prize counties from the analysis for any years after these consolation

prize county colleges were established. I also omit the experiment college counties for any

years in which every consolation prize county has a college.24 I present results of this analysis

24For example, Burleigh County, North Dakota, establishes Bismarck State College in 1939 and so is
omitted from the analysis for all years 1939 and onward. In some cases, consolation prize counties establish
colleges at the same time or even earlier than the college counties, as in the case of Stutsman County, North
Dakota, which establishes the University of Jamestown in 1883, the same year that the University of North
Dakota and North Dakota State were established. In these cases, the consolation prize county is omitted for
all years.
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in Table A25. Consistent with the analysis in Appendix D.B, consolation prize counties did

indeed often get a college of their own at some point, although these did not typically appear

very close in time to the opening of the focal college in the treated college county. Omitting

consolation prize counties for any years after the consolation prize counties receive a college

reduces the number of county-year observations by about 40%. The estimated coefficients

are very similar even when excluding years in which consolation prize counties have colleges,

and if anything the college counties perform even worse relative to the consolation prize

counties in Table A25 than in Table 5.

Table A24: Sensitivity to Different Types of Consolation Prizes

Control for Pop. No Educ.-Related No Educ.-Related No Medical No Medical

College * PostCollege 0.063 0.329 0.125 -0.031 -0.190
(0.265) (0.355) (0.297) (0.263) (0.263)

PostCollege -0.119 -0.077 -0.291* 0.299 0.061
(0.216) (0.176) (0.160) (0.255) (0.373)

log(Total Pop.) 0.527** 0.517* 0.449
(0.243) (0.286) (0.353)

County FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010 1836-2010 1836-2010
Cnty-Year Obs. 3,890 4,374 3,720 4,002 3,414

# Counties 27 25 25 23 23
# Experiments 13 13 13 13 13

Mean of Dep. Var. 0.400 0.252 0.252 0.274 0.274
Adj. R-Sqr. 0.645 0.509 0.534 0.528 0.540

Notes: Results omitting different types of consolation prizes. The dependent variable in all columns is
log(Patents+ 1). In Column 1, I compare college to consolation prize counties while controlling for logged
county population. In Column 2, college counties are compared to consolation prizes that exclude any type of
educational institutions. In Column 4, college counties are compared to consolation prizes that exclude state
capitals. In Column 6, college counties are compared consolation prizes that exclude medical institutions,
namely asylums and hospitals. Columns 3, 5, and 7 repeat Columns 2, 4, and 6, respectively, but include a
control for log(Population). Results are for high quality experiments only. Standard errors are clustered by
county and shown in parentheses. Stars indicate statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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Table A25: Omit Consolation Prize Counties with Colleges

State Univs. Cons. Prize No Cons. Prize

College * PostCollege 0.542** -0.048 0.612**
(0.226) (0.403) (0.249)

PostCollege -0.023 -0.145 -0.008
(0.102) (0.217) (0.110)

log(Total Pop.) Yes Yes Yes
Yes Yes Yes

County FE 1836-2010 1836-2010 1836-2010
Year FE

Year Range
Cnty-Year Obs. 17,283 2,030 15,253

# Counties 115 24 91
# Experiments 42 12 33

Mean of Dep. Var. 0.361 0.110 0.415
Adj. R-Sqr. 0.541 0.535 0.539

Notes: Results excluding consolation prize counties for years in which they have a college of their own.
The dependent variable in all columns is log(Patents + 1). Column 1 estimates the baseline level shift in
patenting in college counties relative to runner-up counties after establishment of a new college for the subset
of experiments that could potentially involve consolation prizes. Column 2 compares college counties to only
runner-up counties that receive a consolation prize. Column 3 compares college counties to only runner-up
counties that receive a consolation prize while controlling for log(Population). Column 4 repeats Column
1 but excludes all counties that receives a consolation prize. Results are for high quality experiments only.
Standard errors are clustered by county and shown in parentheses. Stars indicate statistical significance: *
p < 0.10; ** p < 0.05; *** p < 0.01
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F.C Heterogeneity by College Type

I further break down the results of different types of colleges on patenting. In Column 1 of

Table A26, I control for logged county population, since different types of colleges may drive

migration in different ways. After controlling for population, the coefficient is similar for

both types of colleges, the coefficient for classical colleges is still larger in magnitude, and

I cannot reject the null that neither type of college has any effect outside their effects on

population. I stress that population is affected by the treatment, and so this specification

should not be interpreted as causal. In Column 2 I show how patenting differs between

practical and classical colleges, using an alternative classification of practical and classical

than described in Section IV.C. Here, a college is considered a practical college if it is a land

grant college, technical school, or military academy. Classical colleges are normal schools,

other private and public colleges, and HBCUs. The difference between practical and classical

colleges is qualitatively the same when the alternative definitions are used as in the baseline

college type results presented in Table 5.

I also compare differences between each of the seven types of colleges: land grants,

technical schools, military academies, normal schools, HBCUs, other public colleges, and

other private colleges. Unfortunately, as Table 1 shows, there is only a small number of

several types of experiments and so insufficient power to identify differences. Even simply

comparing coefficients, however, paints a picture that does not conform to the naive intuition

that colleges that focus on more practical skills should cause larger increases in patenting.

For example, normal schools and land grant colleges produce nearly the same increase in

patenting, while the former is focused on training primary and secondary school teachers and
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the latter has an explicit focus on very practical fields such as agriculture and machinery.

These results are available upon request.

I next compare all public schools to all private schools. This involves reclassifying colleges,

as some of the types described above may include both public and private colleges. For

instance, the HBCUs may be either public or private. Cornell University, while officially

New York’s land grant university, is a private institution. I interact dummy variables for

public or private status with the estimated college effect and display the results in Column

3. I find that public colleges have a large positive effect on patenting, while the effect for

private colleges is larger in magnitude but not statistically different from zero. In Column 4,

I control for logged county population, since public colleges may simply be larger and hence

cause more population growth. Indeed, after controlling for population, the effect of both

types of colleges are smaller and similar in magnitude, with neither individually statistically

significant. As above, population is an endogenous outcome.

In Column 5, I check how the estimated treatment effect varies by college quality. Un-

fortunately, reliable data on college quality does not exist for most of each college’s his-

tory. Instead, I proxy lifetime college quality with the 2018 national universities rankings in

the U.S. New and World Reports (https://www.usnews.com/best-colleges/rankings/

national-universities). This is problematic because current college rankings may be due

in part to college’s past patenting performance, but the measure may still be informative

if rankings are highly persistent over time. I split colleges into four groups: those ranked

1-75, those ranked 76-150, those ranked 151-225, and those that do not have a 2018 U.S.

News ranking. The estimated coefficient declines monotonically moving from the highest to

lowest quality schools in the U.S. News rankings. These results suggest that higher quality
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colleges lead to more local patenting, although there are a relatively small number of exper-

iments in each bin and no estimate is individually statistically significant at the 5% level.

It may be the case that better colleges are larger, and it is the size of the institution that

drives patenting rather than measures of quality. To try and account for this, in Column 5

I control for logged county population. The coefficients no longer decline monotonically, the

coefficients are all smaller in magnitude and only the top ranked schools have a coefficient

that is statistically significant at conventional levels. In sum, conclusions about the effect of

college quality on local patenting are sensitive to the specification.

F.D Other Types of Heterogeneity

In this section, I examine the heterogeneity of the results along a number of additional,

non-college related dimensions. In particular, I investigate whether the estimated effect

of establishing a college on local invention systematically varies with preexisting county

conditions.

For each year, I rank each county’s position in the distribution of all U.S. counties for a

number of characteristics, Rit. For the college counties, I then create a distribution of ranks

in the last census year before each college was established, call it Rc
it∗i

, where the superscript

c denotes college counties and t∗i is the last census before college i is established. I separate

the college experiments depending on whether the college county is above the 75th percentile

or below the 25th percentile of the Rc
it∗i

distribution. The purpose of this exercise is to ensure

that counties aren’t recorded as, for instance, being in the top quartile of the population

distribution just because the college was established late, after several decades of population

73

Electronic copy available at: https://ssrn.com/abstract=3072565



Table A26: Additional Results by College Type

College Types Alt. Practical vs. Classical Public vs. Private Public vs. Private College Rank College Rank

Practical College Interaction 0.142 0.285
(0.178) (0.205)

Classical College Interaction 0.295 0.636
(0.316) (0.441)

log(Total Pop.) 0.596*** 0.605*** 0.601***
(0.098) (0.100) (0.096)

All Public Colleges 0.477** 0.207
(0.220) (0.151)

All Private Colleges 0.507 0.188
(0.506) (0.406)

Rank 1-75 0.780* 0.594**
(0.430) (0.285)

Rank 76-150 0.427 0.157
(0.279) (0.254)

Rank 151-225 0.414 0.075
(0.253) (0.232)

Unranked 0.419 0.148
(0.492) (0.294)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010 1836-2010 1836-2010 1836-2010
Cnty-Year Obs. 31,210 33,660 33,660 31,210 33,660 31,210

# Counties 176 176 176 176 176 176
# Experiments 64 64 64 64 64 64

Mean of Dep. Var. 0.498 0.498 0.498 0.498 0.498 0.498
Adj. R-Sqr. 0.566 0.522 0.521 0.566 0.524 0.567

Notes: Regression results by college type. The dependent variable is log(Patents + 1). In Column 1, the
effect of establishing a new college is estimated separately for practical and classical colleges while controlling
for logged county population. In Column 2, the effect of establishing a new college is estimated separately
for practical and classical colleges, using the alternate definition described in the text. In Column 3, the
coefficient is the percentage increase in patenting caused by the college interacted with whether a college is
public or private. Column 4 repeats the specification in Column 3 while also controlling for logged county
population. In Column 5, the coefficient is the percentage increase in patenting caused by the college
interacted with each college’s rank according to the 2018 U.S. News and World Report rankings. Column 6
repeats the specification in Column 5 while controlling for logged county population. Results are for high
quality experiments only. Standard errors are clustered by county and shown in parentheses. Stars indicate
statistical significance: * p < 0.10; ** p < 0.05; *** p < 0.01
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growth. Instead, I determine which counties had relatively higher or lower values of each

characteristic relative to the other college counties at the time each college was established.

Then, I estimate

PatentMeasureijt =δ1Collegei ∗ PostCollegeit ∗ Above75thPcti

+ δ2Collegei ∗ PostCollegeit ∗Below25thPcti

+ δ3PostCollegejt + Countyi + Y eart + εijt, (7)

where Above75thPctj = 1 ifRc
jt∗j
≥75th-Percentile(Rc

it∗i
) for some college j, Below25thPctj =

1 ifRc
jt∗j
<25th-Percentile(Rc

it∗i
), and the sample consists of only the cases whenAbove75thPctj =

1 or Below25thPctj = 1.

Table A27 presents results. Column 1 shows results for counties in the top and bottom

quartiles of the population distribution. The coefficient is larger for counties in the top

quartile at 50% more patents per year in the top quartile of college counties relative to their

runner-ups, compared to 31% more patents per year in the bottom quartile of college counties

relative to their runner-ups, although neither coefficients is statistically significant. Column

2 shows heterogeneity by the fraction of the county population living in an urban area.

The coefficient is similar in both cases, with college counties in the top quartile having an

imprecisely estimated increase of about 28% more patents per year relative to their runner-

up counties, while the bottom quartile of college counties see an increase of 29% more

patents per year relative to their runners-up. Column 3 shows that the bottom quartile of

counties by prior patenting sees a substantially larger increase in patenting relative to their

runners-up (42%, significant at the 5% level) than do the top quartile of counties (27%,
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statistically insignificant). Finally, Column 4 shows that the bottom quartile of counties as

measured in the percentage of the county within 15 miles of access to a railroad line sees a

substantially larger increase in patenting relative to their runners-up (140%, significant at

the 1% level) than do the top quartile of counties (44%, statistically insignificant), although

data on railroad access is not available for many counties.

Results examining heterogeneity by preexisting manufacturing and agricultural condi-

tions are all imprecisely estimated. Results are also similar when dividing by the median

instead of examining the top and bottom quartiles, although the inclusion of colleges just

above and below the median cutoff makes the median results more difficult to interpret.

These additional results are available upon request.

In sum, while these heterogeneity results do not present an unambiguously clear picture

of when and where establishing a college will have a larger effect, they do suggest that

the effect may be likely to be larger when an area is initially less developed, with a more

rural, less inventive, and less connected population.25 This conclusion is also consistent with

the results in Section D.D, which finds that the effect of a college is larger when there is no

preexisting college in the county, although the difference is modest. This is in turn consistent

with the interpretation that the main channel through which colleges affect local invention is

by acting as an initial anchor institution that drives future growth. Of course, these results

cannot be interpreted as causal; it may be the case that more populous counties are able to

fund larger colleges, for instance. Further exploring settings in which colleges have a larger

or smaller effect is an important avenue for future work.

25The population results in Column 1 point in the opposite direction, although the difference in magnitude
of the estimated effect between the top and bottom quartile is small.
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Table A27: Heterogeneity by County Characteristics

By Prev. By Prev. By Prev. By Prev.
County Pop. Frac. Urbanized County Pat. Access to Railroads

Above 75th Pct. 0.498 0.278 0.273 0.444
(0.338) (0.239) (0.310) (0.391)

Below 25th Pct. 0.309 0.293 0.422** 1.397***
(0.363) (0.204) (0.167) (0.048)

County FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Year Range 1836-2010 1836-2010 1836-2010 1836-2010
Cnty-Year Obs. 16,070 21,819 28,935 1,050

# Counties 87 118 152 6
# Experiments 62 64 64 59

Mean of Dep. Var. 0.513 0.416 0.453 0.183
Adj. R-Sqr. 0.505 0.492 0.502 0.331

Notes: Regression results by preexisting county characteristics. The dependent variable is log(Patents+ 1).
In Column 1, the effect of establishing a new college is estimated separately for counties in the top and bottom
quartile of the distribution of college county populations, in Column 2 for the top and bottom quartiles by
urbanization, in Column 3 by the top and bottom quartiles of patenting in pre-college years, and in Column 4
by the top and bottom quartile of access to railways. Results are for high quality experiments only. Standard
errors are clustered by county and shown in parentheses. Stars indicate statistical significance: * p < 0.10;
** p < 0.05; *** p < 0.01
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