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ABSTRACT 
Web search logs are of growing importance to researchers as they 
help understanding search behavior and search engine 
performance. However, search logs typically contain sensitive 
information about users and therefore considerable caution must 
be exercised when considering releasing the logs to the research 
community. Current approaches to releasing search logs focus on 
either protecting the privacy of users or enhancing the utility of 
data to researchers. In this work, we address the privacy-utility 
tradeoff by providing safe access to search logs, instead of 
releasing them. We propose a policy based safe interactive 
framework built on semantic policies and differential privacy to 
allow researchers access to search logs, while maintaining the 
privacy of the users. Semantic policies are used to infer the higher 
levels of information that can be mined from a dataset based on 
the fields accessed by a researcher. The accessed fields are then 
used to build research profile(s) that guide the amount of privacy 
to be enforced using differential privacy. We show the additional 
utility that can be obtained in our framework by two 
demonstrative experiments that involve access to user level 
information. Our results indicate that valid research can be 
conducted in our framework without forgoing the privacy of 
individuals.   

Categories and Subject Descriptors 
H.1.m [Information Systems]: Miscellaneous  

General Terms 
Management, Measurement, Documentation, Experimentation, 
Security. 

Keywords 
Privacy, Policy, Semantics. 

1. INTRODUCTION 
Search query logs are of growing importance to academic  

 
researchers interested in a variety of fields such as studying user 
search behavior, search engine performance. However, these logs 
are currently closed behind the vaults of large corporations as 
there are currently no well accepted practices for sharing such 
data with academic researchers. Sharing search logs needs to be a 
cautious exercise, since logs contain user information and, 
therefore could potentially undermine the privacy of the 
individuals in the dataset. 
Existing approaches to releasing query logs (after anonymisation 
and appropriate sanitization) to the research community follow a 
non-interactive access framework and are subject to data 
breaches.  Once the data is released in the public domain, the data 
owners have no control over the use of the dataset, and privacy 
violations have been reported in the media in the past [9]. Other 
approaches have given higher priority to privacy and restricted 
the kinds of information released in these datasets. For example, 
the Microsoft Request for Proposal (RFP) dataset had no user id 
released, and the data set was protected via a licensing agreement 
whose terms bound the recipient of the data to not share the data 
set. However, these approaches restrict the kinds of research that 
can be performed with these datasets, and researchers have 
expressed their need for access to user fields such as user id and 
IP address to broaden the scope of research questions that can be 
explored by the research community, as discussed in [25]. 
In this paper, we focus on balancing both the needs of the 
researchers to pursue scientific research as well as the privacy of 
individuals in the dataset. Unlike existing approaches, we propose 
an interactive access framework through which researchers can 
now query the system for data that they need rather than being 
provided with a one-size-fits-all anonymised dataset to start with. 
We argue that the interactive access paradigm benefits both data 
owners and researchers as follows. In the interactive framework, 
data owners never release the raw data to researchers and 
therefore are always in control of their data. Access control can 
easily be enforced in this framework compared to the non-
interactive framework where data owners lose control over the 
data once it is released. The researchers too are bound to benefit 
from the interactive framework in that it is flexible as they can 
now issue queries over all the fields of the dataset rather than 
having to work with sliced up datasets that cannot support the 
entire range of research questions. 
 
*Work done during internship at Microsoft Research 
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Our interactive framework is built using 
1. Semantic Policies that allow expressing the data owner 

policy in terms of the higher levels of knowledge that 
can be inferred from the dataset 

2. Differential Privacy which enables tuning the amount of 
privacy guaranteed 

The main contributions of this work can be summarized as 
1. Proposing an interactive framework  to safely access 

sensitive information  
2. The first (as far as the authors are aware) practical 

demonstration of differential privacy to the study of 
search logs showing the utility of differential privacy to 
do scientific research on sensitive data.  

2. PRIVACY IN SEARCH  QUERY LOGS 
Laws abound to protect the privacy of individuals. However, there 
are no universally accepted definitions of privacy. In this section, 
we describe our model/interpretation of privacy in search query 
logs. Search queries can be interpreted to represent an 
individual’s intentions and information needs and could thereby 
reveal a large amount of personal information about the 
individual. For example, most users search for their own names 
(vanity queries), pornography, alarming terms such as murder, 
specific health conditions as described in [10]. These queries if 
released could potentially raise suspicions about the user and 
therefore could be classified as sensitive data from the 
individual’s perspective. If any of the alarming terms are searched 
in the same session as a vanity search, we may in fact be able to 
identify the searcher thereby threatening her privacy. 
In this work, we focus on protecting the privacy of individuals in 
search query logs, which contain both explicit and implicit private 
information about individuals. In general, data about individuals 
can be classified as 

PII (Personally Identifiable Information): Any piece of 
information that can uniquely identify an individual such as, 
Social Security Number, Credit Card number, email address, Full 
Name if not common.  Following the HIPAA [1] safe 
harbor guidelines, search logs should not reveal PII. 
Not PII: Data that is common to a reasonably large subpopulation 
such as gender, zipcode. 
Inadvertent PII: Multiple pieces of Not PII which when joined 
together and with additional data processing can identify an 
individual. For example, “ Daily Planet reporter working in 
Metropolis”   provides enough implicit information to uniquely 
identify the individual. 

Search queries which are essentially free text can be classified as 
inadvertent PII and need to be sanitized before releasing them.  
Current approaches involve removing PII, such as removing 
phone numbers, social security number, either manually or 
through automatic techniques. Unfortunately, these approaches 
are ad hoc and are performed at the expense of enabling scientific 
research. 

3. RELATED WORK 
There is a large body of work devoted to the study of query logs 
[18] looking at user intent [17], query format [21], how users 
issue search queries [13], creating a taxonomy of web search [3],  

human interaction with web search engines [20], and [4] for a 
survey of approaches. 
One of the well known approaches for privacy preserving data 
release of structured records is k-Anonymity [22]. The basic idea 
is that each record should be indistinguishable from at least k-1 
other records in the released data set.  Computationally, K- 
anonymity has shown to be NP-Hard [2]. Furthermore, the effect 
of k-anonymity on the utility of data is not clearly understood 
[15]. Also, it is not yet clear how to ensure that the search history 
of one user is exactly identical to that of k-1 other users. 
Achieving K-anonymity typically involves generalization and 
suppression of cells in the dataset.  Generalization works well for 
situations where there is a well defined domain hierarchy such as 
generalizing male and female to person. However, there is no well 
defined hierarchy for generalizing query terms across queries and 
users consistently.   
There has also been work in the field of anonymising network 
logs for the purpose of sharing between network administrators. 
Slagell et al. [19] propose using multiple levels of anonymisation 
for different fields of network logs based on what the 
user/enterprise intends to reveal. These approaches generally 
exploit the inherent structure and semantics of fields present in 
network logs. For example, IP addresses have specific formats 
and interpretations that make them amenable to anonymisation 
such as releasing only the first 16 bits of an IP address.  However, 
these approaches are not directly applicable to search query logs 
since search terms are essentially free text with structure and 
semantics yet to be formalized. In [23] Pang et al. present a high 
level programming environment for packet trace anonymisation 
with support for a variety of tasks such as changing HTTP/SMTP 
headers, retaining the anonymised payload data.  
There has recently been active interest in privacy preserving 
approaches to releasing search query logs. Xiong et al. [15] 
present an overview of query log analysis applications as well as 
various granularities of releasing log information and their 
associated privacy threats. The authors in [14] point out the 
unsuitability of token based hashing for query log anonymisation. 
Token based hashing involves tokenizing the search string and 
securely hashing each token to an identifier. The authors argue 
that an adversary having access to a reference query log could 
exploit the statistical properties of the co-occurrence of terms 
within search queries to invert the hash function and thereby 
reveal the underlying search strings.  
 Given that the search queries themselves contain sensitive 
information that can lead to re-identification, approaches to query 
release cannot  include a user id, even anonymised, to prevent re-
identification of individuals from the search queries.  However, 
the lack of a user id across sessions prevents researchers from 
pursuing questions that involve discovering individuals’ query 
trends (without actually identifying any particular individual) 
such as the number of individuals searching for a particular 
product over time. Our approach differs from the above 
approaches in that we propose an interactive access framework 
that does not directly depend on anonymisation for privacy, but 
rather is based on semantic policies and differential privacy. 



4. POLICY BASED SAFE INTERACTIVE 
ACCESS FRAMEWORK 
We propose a safe interactive access framework for accessing 
search query logs based on  

1) Semantic Policies 
2) Differential Privacy 

 
The amount of privacy enforced by the framework is governed by 
the “privacy threat” of the research questions asked. We use 
semantic policies to model higher level abstractions of knowledge 
that can be inferred by a researcher based on the fields accessed in 
the search logs. Differential privacy is used as the privacy 
enforcement mechanism to translate the semantic policies into 
appropriate privacy guarantees. 

4.1 Semantic Policies 
Dwork [5] proved that in the general case semantic security is 
unattainable since the adversary could possess auxiliary 
information over which the data owner has no control. 
Consequently, we take a policy based approach in which the 
semantics of the data is used to control the amount of privacy to 
be enforced. Different fields in a dataset vary in their privacy 
revealing property.  For example, in query logs the user id field is 
probably more privacy revealing than the timestamp of when a 
search is performed. Data owners who are aware of the privacy 
semantics of the fields and combinations thereof can specify the 
amount of privacy to be enforced based on the fields accessed by 
the researchers. In our system, we use semantic policies to specify 

1) Higher level abstractions of knowledge such as user 
level trends, temporal trends 

2) The utility of each field in the dataset to the above 
defined abstractions/trends 

3) High level abstractions that can be inferred from the 
dataset based on the fields accessed 

 
Figure 1. Semantic policies specify higher level knowledge 
that can be inferred based on the fields accessed 
Every researcher who requires access to the data is assigned a 
research profile based on the fields accessed. The research profile 
in a way represents the higher level abstractions of knowledge 
that can be mined by the researcher based on the fields she has 
access to. For example, a researcher who has access to the 
“session id”, “timestamp” and “queries” fields, could possibly 
learn session level patterns such as the average number of queries 
per session, time interval between successive queries in a session. 

We enable this nature of semantic reasoning by mapping each 
field in the dataset as belonging to a higher level knowledge class. 
For example, in Figure 1, the timestamp field is an instance of a 

temporal field; session id is an instance of a session based field. 
Our approach offers extensibility in that the research profiles 
which are specified at the higher level knowledge abstraction are 
not directly affected by changes in the lower level fields in the 
dataset. Thus adding a new field such as IP address involves only 
mapping the field to the appropriate knowledge class such as 
Locational, User Based. The research profiles themselves remain 
the same and are unaffected by the addition or deletion of fields in 
the underlying dataset. Thus, the same profiles could be used 
across multiple data sets as long as the research profiles remain 
consistent with the underlying data set. 
We use the research profile thus constructed to set appropriate 
privacy guarantees as specified by the data owner. For example, 
the data owner may specify that User Level patterns are more 
revealing than Session level patterns, and hence be guaranteed 
higher privacy.  
Our semantic policies differ from traditional authorization and 
privacy policies such as SecPAL [16], P3P [11] in that the intent 
is to express higher level semantic information rather than 
focusing on file/data level access control. 

4.2 Differential Privacy 
In this section we provide an overview of differential privacy [5] 
and our motivation behind using it as the policy enforcement 
mechanism in our framework. Differential privacy works along 
the lines of statistical databases and returns only numerical 
aggregates and thereby, the underlying raw data is not released in 
public as such. Unlike privacy preserving mechanisms such as k-
anonymisation which attempt to guarantee absolute privacy, 
differential privacy focuses on reducing the increased privacy risk 
of an individual participating in a dataset. In other words, 
differential privacy addresses the change in privacy rather than 
absolute privacy. This definition of differential privacy enables us 
to tune the amount of privacy that is guaranteed based on the 
semantic policies described in the previous section. Our results 
indicate that in most cases, accurate results about the dataset can 
be released without threatening the privacy of the individuals in 
the underlying dataset.  
Differential privacy essentially guarantees that the presence or 
absence of an individual does not greatly alter the resulting output 
distribution. Mathematically, for any random computation k, ε-
differential privacy guarantees 

 εeXDkXDk ×=≤= ])(Pr[])(Pr[ 21  

for all datasets D1 and D2 differing by at most one element. For 
example, assuming D1 to be the database including a particular 
individual and D2 to be the database without the individual, 
differential privacy guarantees then that the outputs of a 
computation such as average height on both datasets does not 
differ from each other by more than ℮ε, where ε is tunable. With 
small values of ε, the difference between the two outputs becomes 
negligible making it impossible for an adversary to guess whether 
the output corresponds to D1 or D2. Thus differential privacy 
guarantees an individual’s privacy by masking their presence or 
absence in the dataset. 
Intuitively, differential privacy can be viewed as adding random 
noise to the real output of a computation before returning the 
result to the user. The magnitude of the noise added determines 
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the privacy-utility tradeoff. Larger the noise, higher the privacy 
but lower the utility. Also, the noise added is independent of the 
underlying dataset and depends only on the query function. 

In our system, the semantic policies specified by the data owners 
are used to set the ε in differential privacy, thereby controlling the 
amount of privacy guaranteed. 

5. SYSTEM ARCHITECTURE 
Figure 2 presents an overview of our system architecture. In this 
section, we describe the building blocks of our architecture and 
how they are tied together in our framework. 

 Figure 2. System Architecture 

Our system is based on the interactive access paradigm wherein 
researchers query the system as opposed to the non-interactive 
paradigm in which data as a whole (after filtering and 
anonymisation) is released to the research community. The 
various building blocks in our system are as follows 

DATA: The data that needs to be protected. In our case, this 
refers to the search query logs. 

PINQ: The Privacy Integrated Queries (PINQ) framework is an 
implementation of differential privacy developed at Microsoft 
Research [24]. PINQ handles all the underlying mathematics of 
differential privacy. All programs written in PINQ guarantee 
differential privacy. PINQ supports a number of aggregation 
operations such as NoisyCount, NoisySum, NoisyAverage. PINQ 
aggregate operators take ε  as an argument which determines the 
amount of noise that is added, and thereby the accuracy of the 
returned results. A sample PINQ query looks as follows 
Count = SearchData.select(x=>x.Split(‘\t’)). 

  .Where(x=> x[1].Equals(“Britney 
Spears”)) 

  .NoisyCount(0.1); 

To enforce the differential privacy semantics of various operators 
such as where, join, group by, the researcher supplied ε is 
internally amplified by PINQ before applying to the underlying 
data.  

PRIVACY BUDGET: PINQ also allows data providers to 
specify their data access policy. This is enabled through the 
privacy budget mechanism.  Data providers can specify the 
maximum allowed accuracy of the returned results by 
appropriately setting the ε in the privacy budget. When a user 
issues a query, PINQ consults the privacy budget (after 
appropriate amplification of ε) to determine whether the query is 

acceptable. Only if the privacy budget constraints are satisfied i.e. 
the supplied ε is within the bounds of the privacy budget does 
PINQ perform the user query.  

In our framework, the privacy budget is set by the data owner to 
reflect the sensitivity of the data. For example, the data owner 
could specify that user level trends are more revealing that session 
level trends and therefore are set a lower privacy budget. A lower 
privacy budget ensures higher privacy. The data owner policy in 
SPARQL [12] would be expressed as 
construct{?s ex:hasPrivacyBudget 0.1} 

where { 

            ?s rdf:type ex:QueryLevel. 

          ?s rdf:type ex:UserLevel 

} 

Whenever a researcher issues a query, based on the sensitivity of 
the query, PINQ decreases the privacy currency from the 
researcher’s budget. When the budget reaches zero, no more 
queries from the user will be answered. The researcher could 
either ask a single query with high accuracy or multiple queries 
with lower accuracy. Thus, we can control the amount of 
information that can be learned from the dataset.  

RESEARCHER: In our framework, we require that the 
researcher be authenticated prior to data access. In addition to the 
sensitivity of the data, the privacy budget could also be 
determined based on the organization of the researcher to reflect 
institutional agreements. 

RESEARCHER PROFILE: Every researcher having access to 
the data is assigned a researcher profile based on inference from 
the fields to be accessed by the researcher. For example, we 
specify that a research profile is of type SessionLevel if it has 
access to a field of type SessionBased as follows 
construct {?s rdf:type ex:SessionLevel}  

where {?s ex:hasAccessTo ?o .                          

 ?o rdf:type ex:SessionBased .                         

} 

DATA OWNER POLICY: Semantic policies specified by data 
owner to set the privacy budget. 

6. EXPERIMENTS 
6.1 Data 
We used the following two datasets obtained from Microsoft web 
search logs for our experiments. 
Request for Proposal (RFP) Dataset: Microsoft’s RFP [7] 
dataset consists of about 15 million search queries sampled over 
one month. The data was filtered to remove PII, and was provided 
to the winners of the RFP under a limited licensing agreement.  
Also, more importance was provided to privacy and no user id 
(even anonymised) is maintained across the logs preventing 
association of search queries to individuals in the dataset. For 
each query the published attributes include session ID, timestamp, 
query string, number of results returned, and results page number. 
For each result clicked, the released data included the URL, 
associated query, position on results page and timestamp. 

Ad Centre Data: To show how our framework could be used to 
enhance research without leaking private information we used 
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another data set which, in addition to the search query, included 
anonymised user id.  The dataset consisted of about 5.7 million 
entries with around 1 million distinct anonymised user ids. It is 
important to understand that we accessed the data through PINQ 
and as such researchers do not view any instance of sensitive data.  
In all experiments, we used Protégé [6] as the policy editor and 
the Intellidimension Semantics SDK [9] for specifying semantic 
queries in SPARQL [12]. 

6.2 Metrics 
One of the goals of our experiments was to show that scientific 
research could be performed in our framework and that the utility 
of the data was not compromised. Since utility metrics are not 
generic and are application specific, we attempt to develop a 
simple generic metric that can reflect the error characteristics of 
the data obtained in our framework. The average query error is 
defined as 

Average Query Error =∑ −
i

ii PR )(  / No. of data points                           

where, iR  - value of ith data point in real dataset 

           iP   - value of ith data point returned in our framework. 

6.3 Framework Validation  
In these experiments, we replicate an experiment from the RFP. 
The goal is to validate that scientific research can be performed in 
our framework yielding valid results, and empirically understand 
the ε-to-noise mapping. 

6.3.1 Variation of URL Rank 
The experiment focuses on understanding the change in the 
ranking of a URL in the search engine results for a one month 
time period, using the data from the RFP directly versus accessing 
the data via PINQ.  For our experiments, we consider the URL as 
http://www.yellowpages.com and “yellow pages” as the 
corresponding query. Figure 3 shows the number of times in the 
real dataset (i.e. without PINQ), http://www.yellowpages.com 
occurs in Position 1 and Position 3 in the returned result set for 
the query “yellow pages”. 

 
Figure 3. Position vs. day of month using real data 

Figure 4. shows the results obtained in our framework with ε  
equal to one in PINQ’s aggregate operator NoisyCount. From 
figures 3 and 4, it is clear that the trends in the real data are 
retained in our framework and scientific research can be 

 Figure 4. Position vs. day of month in our framework with 
ε =1 
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Figure 5. No. of times URL was returned in position 1 for a 
one month period in our framework  
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Figure 6. No. of times URL was returned in position 3 for a 
one month period in our framework  
performed. We experimented with different values of ε  in our 
framework and obtained the results as shown in Figures 5 and 6. 
We show these results to illustrate that the underlying distribution 
is retained in our framework not only among the categories 
(positions in the result set) but also within a category. 

6.3.2 Empirical evaluation of the effect of ε on the 
accuracy of the returned results 
One of the goals of this experiment was to understand empirically 
the ε-to-noise mapping. Based on the above results, we conclude 
that for ε > 0.01 the data returned by our framework closely 
reflects actual data and hence scientific research can be performed 
with high accuracy. For values of ε >1, the returned results are 
very close to the actual data, and may be privacy threatening. On 



the other hand, for ε ≤ 0.01, higher privacy is guaranteed; 
however the resulting data distribution may not be representative 
of the actual data although major trends may still be reflected. 

6.4 Utility Experiments 
Now that we had established that research yielding valid results 
could be performed, we wanted to show the increased utility 
attainable in our framework. Since utility metrics are not generic 
and are highly application specific, we resort to qualitatively 
demonstrating the increase in utility. Our qualitative approach 
essentially involves demonstrating that sensitive fields like user 
id, IP address can be accessed in our framework and research can 
be performed on the data containing them. The increased utility 
stems from this very property that data once considered sensitive 
and which could never be released to the public, can now be 
accessed by researchers and valid research performed, all the 
while maintaining the individual’s privacy. In the following 
experiments, we used the Ad Centre Data which contains 
anonymised user ids. We demonstrate the increased utility by 
performing analysis using this sensitive field while still 
guaranteeing privacy. 

6.4.1 Trendsetters 
In this experiment we focus on the distribution of the number of 
trendsetters for search queries. We define a trendsetter as the first 
user to issue a query searched later by other users as well, e.g. 
first one to search for “Xbox 360”. This experiment requires 
anonymised user ids and would not have been feasible in the RFP 
dataset. Also, a user may have been the trendsetter for multiple 
queries such as being the first person to search for “Michael 
Jackson” and “Farrah Fawcett”. We plot the distribution of the 
number of queries for which a user is a trendsetter as shown in 
Figures 7 and 8. 

 
Figure 7. No. of queries for which a user is a trendsetter in 
real data 
Our results show that very few users are trendsetters for more 
than one or two queries. Figure 8 shows the results obtained in 
our framework for the same query using different values of ε . 
Clearly, there is no appreciable difference between the results 
obtained in our framework and the real data. Table 1 provides a 
snapshot of the data distribution in the interval of one to five 
queries. 
As we can see from above, the results obtained in our framework 
closely mirror the real data, validating our approach to perform 
scientific research while still guaranteeing privacy. 

6.4.2 Query Trend 
In this experiment, we focus on understanding the distribution of 

 
Figure 8. No. of queries for which a user is a trendsetter in 
our framework  

Table 1. Snapshot of the Trendsetter Data 

No. of 
Queries Real ε =1 ε =0.1 ε =0.01 

1 598771 598771 598754 598873 

2 100084 100085 100088 100131 

3 25731 25729.5 25797.4 25960.7 

4 9026 9025.58 8996.96 9043.77 

5 3701 3699.9 3699.42 3595.3 

 

the number of distinct users searching over the period of a day. 
This experiment also illustrates the tradeoff of using RFP like 
datasets which contain only query strings and not the associated 
user ids.  In the absence of a user id, we are forced to use query 
count as an approximation of the number of users searching over 
the period of a day as  shown in Figure 9. On the other hand, 
Figure 10 shows the actual number of users obtained using the 
anonymised user id field. As is evident from the above graphs, the 
former experiment although preserving the distribution trends, 
scales up the actual values by around four to five times thus 
invalidating any research that would have depended on actual 
values. 

 
Figure 9. Distribution of the number of queries over the 
period of a day 



Figures 11 and 12 show the results obtained in our framework for 
the same query. The obtained results follow the real data, and the 
average error exponentially decreases with increasing ε.  

 

 
Figure 10. Number of users searching over the period of a day 

 
Figure 11.  Number of users searching over the period of a 
day against ε  

 
Figure 12. Variation of Average error with ε 

7. FUTURE WORK AND CONCLUSION 
Based on our experiments, we find that our framework is effective 
for queries concerning a single entity such as the “number of 
people searching for starbucks over a period of month”. 

However, the validity of the results when comparing across 
entities depends on the underlying distributions. If the 
difference between the data points is large, the result returned 
would be valid for comparative tasks. However, if the data points 
are too close to each other, the returned result may not be 
sufficient to make these decisions. We argue that these use cases 
which depend on accurate evaluation of the underlying dataset 
can be handled outside our framework through other licensing 
agreements. We also argue that query logs are by themselves 
incomplete data since not all queries of all users are stored by a 
single search engine. Given the incomplete nature of data in 
search logs, we argue that the noise added by our framework does 
not heavily distort the data and hence does not hinder typical 
research questions. Furthermore, we argue that recent work in 
synthetic data generation via differential privacy could be used 
for exploratory data analysis applications, where researchers do 
not yet have a clear use case for the data. We also note that in 
addition to the privacy guarantees, our framework is actually 
flexible to support multiple kinds of queries as opposed to 
providing a data cube with canned queries. 

In future work, we would like to support a Natural Language 
Processing and ontological interface for allowing researchers to 
infer knowledge from the dataset. We envision the system being 
capable of accepting a user defined ontology such as a medical 
ontology and answering queries such as the number of people 
searching for medicines, which in current systems would require 
user access to the raw dataset. 

We would also note that though our system has been built for 
query logs, the framework itself is generic and extensible and 
therefore can be used for secure information sharing among 
multiple entities. Given the proliferation of social networks, users 
would definitely want to be able to control the information they 
share with others and how that information is used.  Our work can 
be seen as providing the necessary infrastructure to enable users 
to controllably share information in the public domain without 
threatening their privacy.  
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