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Abstract

A well-known theorem of Korovkin asserts that if {Tk} is a sequence of positive linear

transformations on C[a, b] such that Tk(h) → h (in the sup-norm on C[a, b]) for all h ∈ {1, φ, φ2},

where φ(t) = t on [a, b], then Tk(h) → h for all h ∈ C[a, b]. In particular, if T is a positive

linear transformation on C[a, b] such that T (h) = h for all h ∈ {1, φ, φ2}, then T is the Identity

transformation. In this paper, we present some analogs of these results over Euclidean Jordan

algebras. We show that if T is a positive linear transformation on a Euclidean Jordan algebra

V such that T (h) = h for all h ∈ {e, p, p2}, where e is the unit element in V and p is an element

of V with distinct eigenvalues, then T = T ∗ = I (the Identity transformation) on the span of

the Jordan frame corresponding to the spectral decomposition of p; consequently, if a positive

linear transformation coincides with the Identity transformation on a Jordan frame, then it is

doubly stochastic. We also present sequential and weak-majorization versions.

Key Words: Korovkin’s theorem, Euclidean Jordan algebra, positive linear transformation, uni-

tal, stochastic, doubly stochastic

AMS Subject Classification: 17C20, 17C27, 47B65

1

http://arxiv.org/abs/2209.13303v1


1 Introduction

A well-known theorem of Korovkin [15] asserts that if {Tk} is a sequence of positive linear trans-

formations on the space C[a, b] (of all real-valued continuous functions on the interval [a, b] with

sup-norm) such that Tk(h) → h for all h ∈ {1, φ, φ2}, where φ(t) = t on [a, b], then Tk(h) → h for

all h ∈ C[a, b]. In particular, if T is a positive linear transformation on C[a, b] such that T (h) = h

for all h ∈ {1, φ, φ2}, then T = I (the Identity transformation). There are numerous generalizations

and analogs of Korovkin’s theorem in various settings such as Banach function spaces, C∗-algebras,

etc., see e.g, [2, 1, 16]. In many of these settings, associativity of the product (as in C[a, b] and the

space of n×n complex matrices) and an inequality of the form T (h)2 ≤ T (h2) (known as Kadison’s

inequality) are crucially used [17, 16]. In this paper, we focus on Euclidean Jordan algebras, where,

generally, associativity is not available and a Kadison-type inequality is not (yet) known. Here, we

formulate several Korovkin-type results and make an interesting connection to doubly stochastic

transformations.

Let V be a Euclidean Jordan algebra with unit element e (see Section 2 for definitions and examples)

and T be a positive linear transformation on it (so T keeps the symmetric cone of V invariant).

Let p be an element of V with distinct eigenvalues. Our main result, Theorem 4.2, asserts that the

condition T (h) = h for all h ∈ {e, p, p2} is equivalent to T = I and also to T ∗ = I on the span of the

Jordan frame corresponding to p, where I denotes the Identity transformation on V and T ∗ denotes

the adjoint of T . An immediate consequence is that if a positive linear transformation coincides

with the Identity transformation on a Jordan frame, then it is doubly stochastic (i.e., it is positive,

unital, and trace-preserving). The sequential version – proved as a consequence of our main result

– is as follows: Let p be as above and suppose {Tk} is a sequence of positive linear transformations

on V such that Tk(h) → h for all h ∈ {e, p, p2}. Then Tk(h) → h and T ∗
k (h) → h for all h in the span

of the Jordan frame corresponding to p. Along with the above equality and sequential versions, we

also discuss (weak) majorization formulations. We show that under certain conditions, a positive

linear transformation T satisfying T (e) ≺
w
e, p ≺

w
T (p), and T (p2) ≺

w
p2 coincides with an (algebra)

automorphism of V on the Jordan frame of p. We also formulate the problem of characterizing

positive linear transformations T for which the conditions T (e) ≺ e, T (p) ≺ p, and T (p2) ≺ p2 hold.

An outline of the paper is as follows. We cover some preliminary material in Section 2. Section 3

deals with a Korovkin-type result for matrices and its weak-majorization modification. In Section

4, we present our main result (Theorem 4.2), describe its connection to Priestley’s generalization

of Korovkin’s theorem ([16], Theorem 1.3), and provide some examples. Section 5 deals with

sequential and weak-majorization versions on Euclidean Jordan algebras.
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2 Preliminaries

In Rn, vectors are considered as either column vectors or row vectors depending on the context.

For any x = (x1, x2, . . . , xn) ∈ Rn, we write x2 := (x21, x
2
2, . . . , x

2
n). We write e for the vector of

ones (reserving the same symbol for the unit element in a general Euclidean Jordan algebra, see

below). We say that a real n × n matrix A is nonnegative if all its entries are nonnegative; it is

unital if Ae = e and subunital if Ae ≤ e. A nonnegative unital matrix is said to be (row) stochastic.

A nonnegative matrix A with both A and AT unital is said to be doubly stochastic.

For a vector x ∈ Rn with entries/components x1, x2, . . . , xn, let x
↓ denote the vector obtained by

rearranging the of entries of x in a decreasing manner (so that x
↓
1
≥ x

↓
2
≥ · · · ≥ x

↓
n). Clearly

x↓ = Px for some permutation matrix P and (Ex)↓ = x↓ for every permutation matrix E. (Recall

that a permutation matrix is obtained by permuting the rows/columns of the Identity matrix.) It

is known ([3], page 29) that

x1 + x2 + · · ·+ xm ≤ x
↓
1
+ x

↓
2
+ · · ·+ x↓m

for all m = 1, 2, . . . , n. Given x, y ∈ Rn, we say that x is weakly-majorized by y and write x ≺
w

y

if x↓
1
+ x

↓
2
+ · · · + x

↓
k ≤ y

↓
1
+ y

↓
2
+ · · ·+ y

↓
k for each k ∈ {1, 2, . . . , n}. If, additionally, equality holds

for k = n, we say that x is majorized by y and write x ≺ y. By a well-known theorem of Hardy-

Littlewood-Polya ([3], Theorem II.1.10), x ≺ y if and only if x = Dy for some doubly stochastic

matrix D. Moreover, by Birkhoff’s theorem ([3], Theorem II.2.3), every doubly stochastic matrix

is a convex combination of permutation matrices. We note one useful property of majorization:

x ≺ y ⇒ f(x) ≤ f(y) for any real-valued convex function f on Rn.

The standard material on Euclidean Jordan algebras given below can be found in [4, 7]. A Euclidean

Jordan algebra is a finite dimensional real inner product space (V, 〈·, ·〉) together with a bilinear

product (called the Jordan product) (x, y) → x ◦ y satisfying the following properties:

• x ◦ y = y ◦ x,

• x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦ x, and

• 〈x ◦ y, z〉 = 〈x, y ◦ z〉.

In such an algebra, there is the ‘unit element’ e with the property x ◦ e = x for all x. In V,

K = {x ◦ x : x ∈ V}

is called the symmetric cone of V. It is a self-dual cone.

The space Rn is a Euclidean Jordan algebra under the componentwise product and the usual inner

product. In this algebra, the symmetric cone is the nonnegative orthant. Any (nonzero) Euclidean
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Jordan algebra is a direct product/sum of simple Euclidean Jordan algebras and every simple

Euclidean Jordan algebra is isomorphic to one of five algebras, three of which are the algebras of

n × n real/complex/quaternion Hermitian matrices. The other two are: the algebra O3 of 3 × 3

octonion Hermitian matrices and the Jordan spin algebra Ln. In the algebras Sn (of all n× n real

symmetric matrices) and Hn (of all n × n complex Hermitian matrices), the Jordan product and

the inner product are given, respectively, by

X ◦ Y :=
XY + Y X

2
and 〈X,Y 〉 := tr(XY ),

where the trace of a real/complex matrix is the sum of its diagonal entries.

Let V be a Euclidean Jordan algebra. A nonzero element c in V is an idempotent if c2 = c; it is a

primitive idempotent if it is not the sum of two other idempotents. A Jordan frame {e1, e2, . . . , en}

in V consists of primitive idempotents that are mutually orthogonal (equivalently, ei ◦ ej = 0 when

i 6= j) with sum equal to the unit element. All Jordan frames in V have the same number of

elements, called the rank of V. Let the rank of V be n. According to the spectral decomposition

theorem [4], any element x ∈ V has a decomposition

x = x1e1 + x2e2 + · · ·+ xnen, (1)

where the real numbers x1, x2, . . . , xn are (called) the eigenvalues of x and {e1, e2, . . . , en} is a Jordan

frame in V. (An element may have decompositions coming from different Jordan frames, but the

eigenvalues remain the same. However, if all the eigenvalues are distinct, then, up to permutation,

there is only one spectral decomposition, see [4], Theorem III.1.1.) For notational simplicity, we

write the above spectral decomposition (1) in the form x = r ∗ E , where r = (x1, x2, . . . , xn) and

E := {e1, e2, . . . , en}.

For any x ∈ V, let λ(x) denote the vector of eigenvalues of x written in the decreasing order. Then,

we can always write the spectral decomposition of any x ∈ V in the form x = λ1(x)f1 + λ2(x)f2 +

· · ·+ λn(x)fn = λ(x) ∗ F relative to a Jordan frame F = {f1, f2, . . . , fn}.

Given a ∈ V, we define linear transformations La and Pa (called the quadratic representation of a)

on V by

La(x) := a ◦ x and Pa(x) := 2a ◦ (a ◦ x)− a2 ◦ x (x ∈ V).

We say that elements a, b ∈ V operator commute if the transformations La and Lb commute. It

is known, see [4], Lemma X.2.2, that a and b operator commute if and only if a and b have their

spectral decompositions with respect to the same Jordan frame.
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For any x ∈ V with eigenvalues x1, x2, . . . , xn, the trace of x is defined by

tr(x) := x1 + x2 + · · ·+ xn.

It is known that (x, y) 7→ tr(x ◦ y) defines another inner product on V that is compatible with the

Jordan product. We let

〈x, y〉tr := tr(x ◦ y)

and call this, the trace inner product. When we replace the given inner product by the trace inner

product, Jordan frames as well as the eigenvalues of an element remain the same. One advantage

is: In the trace inner product, the norm of any primitive idempotent is one and so any Jordan

frame in V is an orthonormal set. Additionally, tr(x) = 〈x, e〉tr for all x ∈ V.

We use the notation x ≥ 0 (x > 0) when x ∈ K (respectively, interior of K) or, equivalently, all the

eigenvalues of x are nonnegative (respectively, positive); when x > 0, we say that x is a positive el-

ement. We also write x ≤ y in V when y−x ≥ 0. Since K is self-dual, we see that x ≥ 0 if and only

if 〈x, y〉 ≥ 0 for all y ≥ 0. For any x ∈ V with spectral decomposition x = x1e1+x2e2+ · · ·+xnen,,

we define x+ := x+
1
e1+x+

2
e2+ · · ·+x+n en, and x− := x+−x so that x+, x− ∈ K and x = x+−x−.

(Here, for any real number λ, λ+ := max{λ, 0}.)

We record one useful consequence of the well-known Hirzebruch’s min-max theorem [9]:

x ≤ y ⇒ λ(x) ≤ λ(y). (2)

Given a Jordan frame {e1, e2, . . . , en}, we have the Peirce orthogonal decomposition ([4], Theorem

IV.2.1): V =
∑

i≤j Vij , where Vii := {x ∈ V : x ◦ ei = x} = R ei and for i < j, Vij := {x ∈ V :

x ◦ ei =
1

2
x = x ◦ ej}. Then, for any x ∈ V, we have

x =
∑

i≤j

xij =

n
∑

i=1

xiei +
∑

i<j

xij with xi ∈ R and xij ∈ Vij . (3)

Let {e1, e2, . . . , en} be a (fixed) Jordan frame in V. For arbitrary x, y ∈ V, consider the correspond-

ing Peirce decompositions x =
∑n

i=1
xiei +

∑

i<j xij and y =
∑n

i=1
yiei +

∑

i<j yij. Define the real

symmetric matrix

x∆y :=

n
∑

i=1

xiyi||ei||
2Eii +

1

2

∑

i<j

〈xij , yij〉Eij ,

where Eij is the n× n matrix with 1s in the (i, j) and (j, i) slots and zeros elsewhere. It has been

proved in [8], Theorem 8, that x∆y is a (symmetric) positive semidefinite matrix when x, y ≥ 0.
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Since

x∆x =

n
∑

i=1

x2i ||ei||
2Eii +

1

2

∑

i<j

||xij ||
2Eij,

and all (in particular, 2 × 2 and 1 × 1) principal minors of a real symmetric positive semidefinite

matrix are nonnegative, we see that for x ≥ 0 and i < j,

||xij ||
2 ≤ 2xixj||ei|| ||ej ||.

(Note: When V carries the trace inner product, this inequality reduces to ||xij ||
2 ≤ 2xixj, see [4],

Page 80.) We record a useful consequence:

Proposition 2.1. Suppose x ≥ 0 in V and let x =
∑n

i=1
xiei+

∑

i<j xij be its Peirce decomposition

relative to a given Jordan frame {e1, e2, . . . , en}. If xi = 0 for some i, then xil = 0 for l > i and

xli = 0 for l < i.

A linear transformation T : V → V is said to be positive if x ≥ 0 ⇒ T (x) ≥ 0 and unital if T (e) = e.

T is said to be trace-preserving if tr(T (x)) = tr(x) for all x ∈ V. A positive unital trace-preserving

transformation is said to be doubly stochastic.

Note that positivity means that T (K) ⊆ K, whereK is the symmetric cone of V. By the self-duality

of K, if T is positive, then so is the adjoint T ∗ (defined by the condition 〈T (x), y〉 = 〈x, T ∗(y)〉 for

all x, y ∈ V). Writing T ∗
tr for the adjoint of T relative to the trace inner product, we see that T is

trace-preserving if and only if T ∗
tr(e) = e.

A linear transformation φ : V → V is an (algebra) automorphism if it is bijective and φ(x ◦ y) =

φ(x) ◦ φ(y) for all x, y ∈ V. An automorphism φ maps a Jordan frame to a Jordan frame and so

λ(φ(x)) = λ(x) for all x. Moreover, for any p ∈ V, φ(p) and φ(p2) have their spectral decompositions

with respect to the same Jordan frame. We observe that automorphisms are doubly stochastic. We

mention two more useful results: On a simple Euclidean Jordan algebra, any Jordan frame can be

mapped onto any another by an automorphism, see [4], Theorem IV.2.5. Also, every automorphism

on Hn is of the form φ : X 7→ UXU∗ for some unitary matrix U .

We define majorization in V by: x ≺ y in V if λ(x) ≺ λ(y) in Rn. Likewise, x ≺
w
y if λ(x) ≺

w
λ(y)

in Rn.

We have the following result from [5]:

Theorem 2.2. For x, y ∈ V, consider the following statements:

(a) x = T (y), where T is a convex combination of automorphisms of V.

(b) x = T (y), where T is doubly stochastic on V.
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(c) x ≺ y in V.

Then, (a) ⇒ (b) ⇒ (c). Furthermore, reverse implications hold when V is Rn or simple.

Along with the above, we mention a result of Jeong and Gowda ([12], Lemma 2): T is doubly

stochastic if and only if T (x) ≺ x for all x ∈ V. For some results related to weak-majorization, we

refer to [13].

Throughout this paper, depending on the context, I denotes either the Identity matrix or the

Identity transformation (on a vector space).

3 Results over Rn

Our first result is stated in the setting of the algebra Rn. While it can be derived from known

results such as Theorem 1.3 in [16], for completeness, we provide a simple and direct proof.

Theorem 3.1. Suppose A ∈ Rn×n is a nonnegative matrix such that Ah = h for all h ∈ {e, p, p2},

where p ∈ Rn is a vector with distinct entries. Then A = I.

Proof. Let A = [aij] and p = (p1, p2, . . . , pn). For any fixed i, we claim that the ith row of A,

namely, (ai1, ai2, . . . , ain) has 1 in the ith slot and zeros elsewhere. We observe that the entries

of this row are nonnegative. The given conditions Ae = e, Ap = p, and Ap2 = p2 imply that

(Ae)i = 1, (Ap)i = pi, and (Ap2)i = p2i . Then, from the convexity of the function t 7→ t2 on R,

p2i =
(

n
∑

k=1

aikpk

)2

≤
n
∑

k=1

aikp
2
k = p2i .

Consequently, since the entries of p are distinct, by the strict convexity of the function t 7→ t2, only

one aik can be nonzero. From
∑n

k=1
aik = 1 and

∑n
k=1

aikpk = pi, we see that k = i and aii = 1.

This proves our claim. Thus, A = I.

In our next result, we replace the equality Ah = h by an appropriate weak-majorization inequality.

Theorem 3.2. Let A ∈ Rn×n be a nonnegative matrix and p ∈ Rn be a positive vector with

distinct entries. If Ae ≺
w
e, p ≺

w
Ap, and Ap2 ≺

w
p2, then A is a permutation matrix; additionally, if

the entries of p and Ap are decreasing, then A = I.
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Note: In this result we assume that p has positive entries. Without this assumption, the result

may not hold. For example, over R2, let p be a vector with entries 1 and −1, and A be the matrix

with rows (1, 0) and (1
2
, 1
4
).

Proof. Suppose Ae ≺
w

e, p ≺
w

Ap, and Ap2 ≺
w

p2. From Ae ≺
w

e, we see that Ae ≤ e, that is, A is

subunital. Let q := p↓ so that the entries of q are positive and strictly decreasing. Then, q2 = (p2)↓.

Let p = E1q and Ap = E2(Ap)
↓ for some permutation matrices E1 and E2. With B := E−1

2
AE1,

we verify that

B is nonnegative, Be ≤ e, q ≺
w
Bq, and Bq2 ≺

w
q2.

Additionally, Bq = (Ap)↓ so Bq has decreasing entries. We now claim that B = I.

Consider the first row of B. As q and Bq have decreasing entries, from q ≺
w
Bq we have q1 ≤ (Bq)1.

As B is nonnegative, Be ≤ e and q1 is the largest entry in q, by the convexity of the function t 7→ t2

on R,

q21 ≤
(

n
∑

j=1

b1jqj

)2

≤

n
∑

j=1

b1jq
2
j ≤

n
∑

j=1

b1jq
2
1 ≤ q21. (4)

From the ensuing equality, we have b1jq
2
j = b1jq

2
1 for all j. As the entries of q are positive and dis-

tinct, b1j = 0 for all j 6= 1 and, from (4), b11 = 1. Thus, the first row of B is (1, 0, 0, . . . , 0).

In particular, q1 = (Bq)1. We use induction to show that the kth row of B is of the form

(0, . . . , 0, 1, 0, . . . , 0) with 1 in the kth slot. Assume that this statement holds for all indices in

{1, 2, . . . , k}, where k < n. (From the above argument, this statement holds for k = 1.) We show

that the statement holds of k + 1. To simplify the notation, let l = k + 1, x := Bq2 and y := q2.

From the induction hypothesis (by the form of B), qi = (Bq)i for all i = 1, 2, . . . , k. Then, from

q ≺
w
Bq and the fact that the entries of q and Bq are decreasing, we have

ql ≤ (Bq)l.

From x = Bq2 ≺
w
q2 = y, we have, for all m = 1, 2 . . . , n,

x1 + x2 + · · ·+ xm ≤ x
↓
1
+ x

↓
2
+ · · ·+ x↓m ≤ y1 + y2 + · · · + ym, (5)

where the second inequality is due to the fact that the entries of y are decreasing. From the form of

the first k rows of B, we have xi = yi for all i = 1, 2 . . . , k; by successively putting m = 1, 2, . . . , k

in (5), we get xi = x
↓
i = yi for all i = 1, 2 . . . , k. By putting m = l (= k + 1) in (5), we get

xl ≤ x
↓
l ≤ yl, that is, (Bq2)l ≤ (Bq2)↓l ≤ q2l .

Since ql ≤ (Bq)l with B nonnegative and Be ≤ e, by the convexity of the function t 7→ t2 on R,

q2l ≤
(

n
∑

j=1

bljqj

)2

≤

n
∑

j=1

bljq
2
j = (Bq2)l ≤ (q2)l.
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Then, by the ensuing equality and the strict convexity of function t 7→ t2, we get blj = 0 for all

j 6= l and bll = 1. This proves that our induction statement holds for l (= k + 1). We conclude

that B = I. Now, I = B = E−1
2

AE1 implies that A is a product of permutation matrices, hence a

permutation matrix.

Finally, suppose p and Ap have decreasing entries. Since A is a permutation matrix, it follows that

A must be the Identity matrix. (This can also be seen by letting q = p and E1 = E2 = I in the

above proof so that A = B = I.) This completes the proof.

We state two immediate consequences.

Corollary 3.3. Suppose A ∈ Rn×n is nonnegative and p is a positive vector with distinct entries.

If (Ah)↓ = h↓ for all h ∈ {e, p, p2}, then A is a permutation matrix; additionally if the entries of p

and Ap are decreasing, then A = I.

Corollary 3.4. Suppose A ∈ Rn×n is doubly stochastic (so that Ax ≺ x for all x ∈ Rn). If

(Ap)↓ = p↓ for some p ∈ Rn with positive and distinct entries, then A is a permutation matrix;

additionally, if the entries of p and Ap are decreasing, then A = I.

We remark that the latter corollary can also be deduced from Birkhoff’s theorem via the strict

convexity of the Euclidean norm.

In reference to the above theorem, one may ask if the condition p ≺
w

Ap can be replaced by

Ap ≺
w
p to make A (at least) doubly stochastic. A simple example (such as the 2 × 2 matrix with

rows (0, 1) and (0, 1) with p having entries 1 and 2) shows that for a nonnegative matrix, the

conditions Ae ≺
w

e, Ap ≺
w

p, and Ap2 ≺
w

p2, need not imply that A a doubly stochastic. What if

we replace weak-majorization inequalities by majorization ones? As the answer is unclear, we pose

the following.

Problem: Let p ∈ Rn be a positive vector with distinct entries. Consider the compact convex set

Ωp := {A ∈ Rn×n : A is nonnegative and Ah ≺ h for all h ∈ {e, p, p2}}.

Is every matrix in this set doubly stochastic? If not, what are the extreme points of this set?

When Ah ≺ h for some h, we have 〈Ah, e〉 = 〈h, e〉, that is, 〈AT e − e, h〉 = 0. Hence, if A is

nonnegative and p is a positive vector with distinct entries, then the condition Ah ≺ h for all h in

(the basis) {e, p, p2, . . . , pn−1} implies that AT e = e, that is, A is doubly stochastic. In particular,

if A ∈ Rn×n with n ≤ 3, the above problem has an affirmative answer, that is, every A in Ωp is

doubly stochastic. The answer for n ≥ 4 is unclear.
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4 Equality versions over general Euclidean Jordan algebras

Throughout this section, we assume that V is a Euclidean Jordan algebra of rank n with unit

element e.

Before proving our equality/identity version of Korovkin’s theorem over Euclidean Jordan algebras,

we provide a simple example to show that the direct analog of Theorem 3.1 is false.

Example 1 Let V = Hn and T be the transformation that takes a matrix X ∈ V to the corre-

sponding diagonal matrix, that is,

T (X) := Diag(X),

where Diag(X) is the diagonal matrix whose diagonal is that of X. Then, T is linear, positive,

and unital. Moreover, T (H) = H for all H ∈ {I, P, P 2}, where I is the Identity matrix, P is

any diagonal matrix with distinct diagonal entries. Yet, T does not coincide with the Identity

transformation on Hn. It is interesting to observe that T is trace-preserving and, hence, doubly

stochastic. It follows, for example, from Theorem 2.2, that the diagonal of a Hermitian matrix

is majorized by the eigenvalue vector of that matrix – this is the well-known Schur’s theorem in

matrix theory.

In preparation for the main theorem, we present a lemma. Here, we let δij denote Kronecker’s delta

function.

Lemma 4.1. Suppose T : V → V is a positive linear transformation and {e1, e2, . . . , en} is a

Jordan frame such that

〈T (ej), ei〉 = ||ei||
2 δij (1 ≤ i, j ≤ n). (6)

Then, T (ek) = T ∗(ek) = ek for all k; moreover, T is doubly stochastic.

Proof. Let I denote the Identity transformation on V. Fix any k ∈ {1, 2, . . . , n} and let b := T (ek).

Consider the Peirce decomposition of b relative to the Jordan frame {e1, e2, . . . , en}:

b =
n
∑

i=1

biei +
∑

1≤i<j≤n

bij .

Now fix any index i, i 6= k. By (6) and the orthogonality of the individual terms in the Peirce

decomposition,

0 = 〈T (ek), ei〉 = 〈b, ei〉 = bi ||ei||
2.

Since b ≥ 0 (due to the positivity of T ), from Proposition 2.1, we must have bil = 0 for all l > i and

bli = 0 for all l < i. So, in the Peirce decomposition of b, only one term survives. Hence, b = bkek.
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Since ||ek||
2 = 〈T (ek), ek〉 = 〈b, ek〉 = bk||ek||

2, we must have bk = 1. Thus, b = ek, proving the

equality T (ek) = ek. As k is arbitrary, T = I on the Jordan frame {e1, e2, . . . , en} and on the span

of {e1, e2, . . . , en}.

We now show that T ∗ = I on this span. As T is positive, T (K) ⊆ K. Since K is self-dual,

T ∗(K) ⊆ K, so T ∗ is also positive. Since the condition 〈T (ej), ei〉 = ||ei||
2 δij is the same as

〈T ∗(ei), ej〉 = ||ej ||
2δij, from the above proof we see that T ∗(ek) = ek for all k; hence T ∗ = I on

the span of {e1, e2, . . . , en}; in particular, T ∗(e) = e. As T is positive and T (e) = e, to show that

T is doubly stochastic, we need only show that T is trace-preserving, that is, T ∗
tr(e) = e, where T ∗

tr

is the adjoint of T relative to the trace inner product. From T (ek) = ek for all k, we see that

〈T (ej), ei〉tr = 〈ej , ei〉tr = ||ei||
2
tr δij (1 ≤ i, j ≤ n).

By what has been proved earlier (applied to the trace inner product), T ∗
tr(ek) = ek for all k and so,

T ∗
tr(e) = e. Thus, T is doubly stochastic.

We now state our main theorem.

Theorem 4.2. Suppose V is a Euclidean Jordan algebra of rank n and T : V → V is a positive

linear transformation. Let {e1, e2, . . . , en} be a Jordan frame and p = p1e2 + p2e2 + · · · + pnen,

where pis are distinct. Then, the following statements are equivalent:

(a) T (h) = h for all h ∈ {e, p, p2}.

(b) T (h) = h for all h ∈ span{e1, e2, . . . , en}.

(c) T ∗(h) = h for all h ∈ span{e1, e2, . . . , en}.

(d) T ∗(h) = h for all h ∈ {e, p, p2}.

Moreover, under any of the above conditions, T is doubly stochastic; hence T (x) ≺ x for all x ∈ V.

Proof. (a) ⇒ (b), (a) ⇒ (c): Suppose (a) holds. As p = p1e1 + p2e2 + · · · + pnen, we have

p2 = p21e1 + p22e2 + · · ·+ p2nen. Consider the matrix A = [aij ], where aij :=
1

||ei||2
〈T (ej), ei〉. As T is

positive and the symmetric cone K is self-dual, we see that A is a nonnegative matrix. Since the

sum of all ejs is e with T (e) = e and 〈e, ei〉 = ||ei||
2, we see that A is stochastic. From T (p) = p

and T (p2) = p2, we have, for all i,

n
∑

j=1

aijpj = pi and
n
∑

j=1

aijp
2
j = p2i .

Thus, A satisfies the conditions of Theorem 3.1. It follows that A is the Identity matrix. Hence,

〈T (ej), ei〉 = ||ei||
2 δij , for all 1 ≤ i, j ≤ n. From the above lemma, T (ek) = T ∗(ek) = ek for all k.

We see that T = T ∗ = I on the span of {e1, e2, . . . , en}. Thus we have (b) and (c).

(b) ⇒ (a), (c) ⇒ (d): These are obvious, as p, p2 ∈ span{e1, e2, . . . , en}.
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(d) ⇒ (c), (d) ⇒ (b): Suppose (d) holds. Since T is positive and the symmetric cone K is self-dual,

T ∗ is also positive. Then, applying the implications (a) ⇒ (b), (a) ⇒ (c) to T ∗, we see that (c) and

(b) hold.

From the above, we see that the stated conditions are all equivalent. Now suppose (b) holds. Then,

condition (6) holds. From the above lemma, T is doubly stochastic. By Theorem 2.2, T (x) ≺ x for

all x ∈ V.

Corollary 4.3. If a positive linear transformation coincides with an automorphism on a Jordan

frame, then it is doubly stochastic.

Proof. Let T = φ on a Jordan frame, where T is a positive linear transformation and φ is an

automorphism. Then, using the properties of φ and φ−1, we see that φ−1 ◦ T is a positive linear

transformation satisfying the condition (b) of the above theorem. Hence φ−1◦T is doubly stochastic.

As φ is doubly stochastic, we see that the composition φ◦(φ−1 ◦T ) is also doubly stochastic. Hence,

T is doubly stochastic.

Remarks. In the setting of a C∗-algebra A, Kadison’s inequality [14] asserts that if a linear

transformation T : A → A is positive and T (I) ≤ I, then

T (X)2 ≤ T (X2)

for all self-adjoint elements X in A. (Uchiyama’s elementary proof of Korovkin’s theorem [17] uses

this inequality in the setting of C[a, b].) Based on this inequality, Priestley [16] has shown that

when {Tk} is a sequence of positive linear transformations on A with Tk(I) ≤ I for all k, the set

J := {X ∈ A : X∗ = X, Tk(X) → X, Tk(X
2) → X2}

is a norm-closed Jordan algebra of self-adjoint elements of A, that is, a real linear subspace of

A closed under the Jordan product X ◦ Y := XY+Y X
2

. We specialize Priestley’s result by letting

A = Mn (the space of all n × n matrices) with Tk = T for all k, where T : Mn → Mn is a

positive unital linear transformation. Then, Hn is the Jordan algebra of self-adjoint elements of

Mn (under the Jordan product mentioned above). By the above result, the set J := {X ∈ Hn :

T (X) = X, T (X2) = X2} is a Jordan subalgebra of Hn. Suppose there is a P ∈ Hn with distinct

eigenvalues such that T (P ) = P and T (P 2) = P 2. In Hn, let E be a Jordan frame with respect

to which P has its spectral decomposition. Because P has distinct eigenvalues, by uniqueness

of Jordan frame (see [4], Theorem III.1.1), this Jordan frame must be the Jordan frame of P in

the Jordan subalgebra J . This means that E ⊂ J , showing that T coincides with the Identity

transformation on the span of E . So, in the setting of Hn, the implication (a) ⇒ (b) in Theorem 4.2

can be deduced from Priestley’s result. We note, however, that Priestley’s result does not provide

any information about T ∗. Motivated by the above discussion, we raise the following questions:
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(1) Is there a Kadison-type inequality for Euclidean Jordan algebras? That is, if T is a positive

linear transformation that is (sub)unital, can we assert that T (x)2 ≤ T (x2) for all x?

(2) Does Priestley’s result have an analog in the setting of Euclidean Jordan algebras? That is,

if T is a positive (sub)unital transformation on V, can we say that the set

{x ∈ V : T (x) = x, T (x2) = x2}

is a subalgebra of V?

We now describe some examples where condition (b) of Theorem 4.2 holds.

Example 2 Let A = [aij ] be an n × n real symmetric positive semidefinite matrix with every

diagonal entry 1 (that is, A is a correlation matrix) and {e1, e2, . . . , en} be a Jordan frame in V.

Then, writing the Peirce decomposition of any x ∈ V as x =
∑

i≤j xij, we define the transformation

T : x 7→ A • x :=
∑

i≤j

aijxij .

This transformation is positive, unital, and self-adjoint (see Example 8 in [5]) and satisfies condition

(b). T being doubly stochastic leads to some interesting consequences, see [6]. For example, by

taking nonzero numbers a1, a2, . . . , an and letting A =
[

2aiaj

a2i+a2j

]

, we get the pointwise majorization

inequality [aiaj ] • x ≺
[a2i+a2j

2

]

• x. Written in the familiar form, this becomes

Pa(x) ≺ La2(x) (x ∈ V),

where for any a = a1e1 + a2e2 + · · ·+ anen ∈ V, La(x) := a ◦ x and Pa(x) := 2a ◦ (a ◦ x)− a2 ◦ x.

Note: In the case of Hn, the real matrix A can be modified as follows. Let B be an n × n

complex (Hermitian) positive semidefinite matrix with every diagonal entry 1. Writing X = [xij ]

and B = [bij], we define the (Schur/Hadamard product) transformation T on Hn by T (X) :=

B • X := [bijxij ]. Then, T is positive (by Schur product theorem, see [10], Theorem 5.2.1) and

T (Ei) = Ei for all i, where Ei ∈ Hn is the matrix with 1 in (i, i) slot and zeros elsewhere. As

T ∗(X) = B •X, where B is the matrix of conjugates of entries of B, we see that T ∗(Ei) = Ei for

all i. Note that, generally, T need not be self-adjoint.

Example 3 Let V = Hn. We consider a completely positive linear transformation T on Hn which,

by definition, is of the form

T (X) := A1XA∗
1 +A2XA∗

2 + · · ·+ANXA∗
N (X ∈ Hn),

where A1, A2, . . . , AN are n × n complex matrices. If this transformation satisfies condition (b)

of the above theorem, then T (I) = I = T ∗(I) and so A1A
∗
1 + A2A

∗
2 + · · · + ANA∗

N = I and
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A∗
1A1+A∗

2A2+· · ·+A∗
NAN = I. We now characterize completely positive transformations satisfying

condition (b).

Let T be as above and let {e1, e2, . . . , en} be a Jordan frame in Hn with T (ei) = ei for all i. Let

{E1, E2, . . . , En} denote the canonical Jordan frame in Hn, where Ei is a diagonal matrix with

1 in the (i, i) slot and zeros elsewhere. As Hn is simple, the Jordan frame {E1, E2, . . . , En} can

be mapped into the Jordan frame {e1, e2, . . . , en} by an automorphism. Hence, there is a unitary

matrix U such that ei = UEiU
∗ for all i. Define the transformation S on Hn by

S(X) := U∗T (UXU∗)U (X ∈ Hn).

Then, S is positive and S(Ei) = Ei for all i. We see that S(X) = B1XB∗
1+B2XB∗

2+· · ·+BNXB∗
N ,

where Bk = U∗AkU for all k. By considering the block form of each Ei, we deduce from S(Ei) = Ei

that Bk is a diagonal matrix. Let bk denote the diagonal of Bk (viewed as a column vector). Then,

BkXB∗
k can be written as (bkb

∗
k) •X. Letting C :=

∑N
k=1

bkb
∗
k, we see that

S(X) = C •X (X ∈ Hn).

We observe that C, being a sum of rank-one matrices, is positive semidefinite; from S(Ei) = Ei we

see that each diagonal entry of C is one. Finally,

T (X) = U
(

C • U∗XU
)

U∗ (X ∈ Hn). (7)

Clearly, the above arguments can be reversed to see that a transformation of the form (7) is

completely positive and satisfies condition (b) of the theorem.

We now specialize by letting k = 1. Let T (defined by T (X) = A1XA∗
1) coincide with the Identity

transformation on the Jordan frame {e1, e2, . . . , en} in Hn. Then, by the above, B1 is a diagonal

matrix where every diagonal entry has absolute value 1 and A1 is unitarily similar to B1.

5 Sequential and weak-majorization versions

Our next result deals with the sequential version of Theorem 4.2. First, some preliminary material.

On the Euclidean Jordan algebra V, for any x ∈ V with eigenvalues x1, x2, . . . , xn, the ∞-norm is

defined by

||x||∞ = max
1≤k≤n

|xk|.

(It is known that || · ||∞ is a norm on V, see e.g., [5].) For any linear transformation S on V, let

||S||∞ denote the operator norm relative to || · ||∞. Now assume that S is positive. For any x ≥ 0,

we have 0 ≤ x ≤ ||x||∞ e and so

0 ≤ S(x) ≤ ||x||∞ S(e).
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We now apply (2) to get the inequality ||S(x)||∞ ≤ ||x||∞ ||S(e)||∞ for all x ≥ 0.

Now let x ∈ V. By considering the spectral decomposition of x, we can write x = a − b, where

a = x+ and b = x− (see Section 2 for definitions). Then, ||a||∞ ≤ ||x||∞ and ||b||∞ ≤ ||x||∞. Hence,

||S(x)||∞ = ||S(a) − S(b)||∞ ≤ ||S(a)||∞ + ||S(b)||∞ ≤ ||a||∞ ||S(e)||∞ + ||b||∞ ||S(e)||∞

and so

||S(x)||∞ ≤ 2||x||∞ ||S(e)||∞.

Hence, for a positive linear transformation S on V,

||S||∞ ≤ 2||S(e)||∞.

Now, let

B(V,V): = Space of all linear transformations from V to V.

Since V is finite dimensional, the norm induced by the given inner product on V is equivalent to

the ∞-norm. Correspondingly, the operator norms induced by these on B(V,V) are also equivalent.

Hence, there is a positive constant C (depending only on the dimension of V) such that for any

positive linear transformation S on V,

||S|| ≤ C||S(e)||, (8)

where ||S|| is the operator norm of S and ||S(e)|| is the norm of S(e) relative to the norm induced

by the given inner product on V.

Theorem 5.1. Suppose V is a Euclidean Jordan algebra of rank n and {Tk} is a sequence of

positive linear transformations on V such that Tk(h) → h for all h ∈ {e, p, p2}, where p ∈ V with

distinct eigenvalues. Let p = p1e1 + p2e2 + · · ·+ pnen be the spectral decomposition of p. Then,

Tk(h) → h and T ∗
k (h) → h

for all h ∈ span {e1, e2, . . . , en}.

Proof. For any k, Tk is positive; hence, from (8),

||Tk|| ≤ C||Tk(e)||.

As Tk(e) → e, the sequence ||Tk(e)|| is bounded. Hence, from the above, the sequence {Tk} is

bounded in B(V,V).

We now claim that Tk(h) → h for all h ∈ span {e1, e2, . . . , en}. Since Tks are linear, it is enough

to show that Tk(ei) → ei for all i = 1, 2, . . . , n. Suppose this is false; assume, without loss of

generality, that Tk(e1) 6→ e1. Then there is a subsequence {Tkl} of {Tk} and a positive number ε

such that

||Tkl(e1)− e1|| ≥ ε for all l. (9)
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On the other hand, Tkl is a bounded sequence (in the finite dimensional space B(V,V)), hence has

a subsequence – continue to call this Tkl – that converges to a linear transformation, say, T . We

see that T is positive and (by the imposed conditions on {Tk}) satisfies the conditions

T (e) = e, T (p) = p, and T (p2) = p2.

Now, by Theorem 4.2, T (ei) = ei for all i = 1, 2, . . . , n. In particular, T (e1) = e1. But this means

that Tkl(e1) → e1 contradicting (9). Hence, Tk(ei) → ei for all i = 1, 2, . . . , n.

We now claim that T ∗
k (ei) → ei for all i. Suppose, without loss of generality, T ∗

k (e1) 6→ e1. Since

||T ∗
k || = ||Tk|| for all k, the sequence {T ∗

k } is bounded in B(V,V). Then, as argued before, there is

a subsequence T ∗
kl

such that T ∗
kl
(e1) 6→ e1 and T ∗

kl
converges to, say, S. As the adjoint operation is

continuous, we have Tkl → S∗. As Tkl(ei) → ei for all i, we have S∗(ei) = ei for all i. Since S∗ is

positive, from our previous result, S(ei) = ei for all i. But then, T
∗
kl
(ei) → ei for all i, contradicting

our assumption that T ∗
kl
(e1) 6→ e1. Thus, we have our claim.

We now state a result that is analogous to Theorem 3.2 on a simple algebra. Recall that in V, by

definition, u ≺
w
v if λ(u) ≺

w
λ(v) in Rn.

Theorem 5.2. Let V be a simple Euclidean Jordan algebra of rank n and T : V → V be a positive

linear transformation. Let p ∈ V with spectral decomposition p = p1e1 + p2e2 + · · · + pnen, where

pis are positive and distinct. Suppose the following conditions hold:

(i) T (e) ≺
w
e, p ≺

w
T (p), and T (p2) ≺

w
p2, and

(ii) T (p) and T (p2) operator commute.

Then

(a) T coincides with an automorphism on span{e1, e2, . . . , en},

(b) λ(T (x)) = λ(x) for all x ∈ span{e1, e2, . . . , en}, and

(c) T is doubly stochastic.

Proof. We assume that all the assumptions are in place. By permuting e1, e2, . . . , en, we may

assume that p1 > p2 > · · · > pn. Then, p = λ(p) ∗ E , where E := {e1, e2, . . . , en}. Since T (p)

and T (p2) operator commute, they have their spectral representations with respect to the same

Jordan frame, say, F = {f1, f2, . . . , fn}. We write T (p) = r ∗ F = r1f2 + r2f2 + · · · + rnfn and

T (p2) = s ∗ F := s1f1 + s2f2 + · · · + snfn, where r = (r1, r2, . . . , rn) and s = (s1, s2, . . . , sn); we

assume, without loss of generality, that the entries of r are decreasing. Note that r = r↓ = λ(T (p))

and s↓ = λ(T (p2)). Now, since V is simple, there is an automorphism φ which takes F to E , so
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φ(fi) = ei for all i, see [4], Theorem IV.2.5. Then,

φ(T (p)) = φ(r ∗ F) = r ∗ E and φ(T (p2)) = φ(s ∗ F) = s ∗ E .

Let S := φ ◦ T and p := λ(p). Then, S is positive and

T (e) ≺
w
e ⇒ λ(T (e)) ≺

w
λ(e) ⇒ λ(T (e)) ≤ λ(e) ⇒ T (e) ≤ e ⇒ S(e) ≤ e,

where the second implication is due to the fact that λ(e) is the vector of 1s in Rn. Now consider

the matrix B defined by

B = [bij], bij :=
1

||ei||2
〈S(ej), ei〉.

Since S is positive and S(e) ≤ e, we see that B is nonnegative and
∑n

j=1
bij ≤ 1 for all i. From the

relations

S
(

n
∑

j=1

p̄jej

)

= S(p) = r ∗ E =

n
∑

i=1

riei and S
(

n
∑

j=1

p̄2jej

)

= S(p2) = s ∗ E =

n
∑

i=1

siei

we verify that Bp̄ = r and Bp̄2 = s. Moreover, from condition (i), as φ preserves eigenvalues,

λ(p) ≺
w
λ(T (p)) = r = λ(S(p)) and λ(S(p2)) = s↓ ≺

w
λ(p2).

In summary: B is nonnegative, subunital, p ≺
w
Bp, and Bp2 ≺

w
p2; additionally, the entries of p are

strictly decreasing and those of Bp are decreasing.

From Theorem 3.2, we see that B is the Identity matrix. So, for all i, j,

〈S(ej), ei〉 = ||ei||
2δij .

From Lemma 4.1, S = I on W := span{e1, e2, . . . , en}. So, φ(T (x)) = x for all x ∈ W, that is,

T (x) = φ−1(x) for all x ∈ W.

As φ−1 is an automorphism on V, we have Item (a). Since automorphisms preserve eigenvalues,

T preserves eigenvalues of every element in W. This gives (b). Finally, (c) comes from Corollary

4.3.

Remarks. We note that conditions (i) and (ii) in the above result are necessary and sufficient for

T to coincide with an automorphism on {e1, e2, . . . , en}. Moreover, in the presence of (ii), (i) is

equivalent to each of the following:

(1) λ(T (h)) = λ(h) for all h ∈ {e, p, p2}.

(2) T (e) ≺
w
e, λ(T (p)) = λ(p), and T (p2) ≺

w
p2.

It is not clear if the assumption that V is simple can be dispensed with.

Acknowledgments and concluding remarks Thanks are due to Michael Orlitzky, Roman
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Sznajder, and Juyoung Jeong for their comments and suggestions. In a private communication

[11], Jeong notes that Theorem 3.1 and Theorem 4.2 continue to hold when the quadratic function

t 7→ t2 on R is replaced by a strictly convex function. He also shows (by an example) that when

n ≥ 4, the set Ωp (that appears in the problem posed in Section 3) may contain matrices other

than doubly stochastic ones.
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