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1 Introduction

In a classical round-robin tournament, each of n players wins or loses a game against each

of the other n − 1 players (Moon, 1968). Let Xij equal 1 or 0 according as player i wins

or loses the game played against player j, for 1 ≤ i, j ≤ n, i 6= j, where Xij + Xji = 1.

We assume that all
(

n
2

)

pairs (Xij, Xji) are independently distributed with P (Xij = 1) =

P (Xji = 0) = 1/2. Let

si =

n
∑

j=1,j 6=i

Xij

denote the score of player i, 1 ≤ i ≤ n, after playing against all the other n−1 players. We

refer to (s1, s2, . . . , sn) as the score sequence of the tournament.

Round-robin tournaments can be considered as a model of paired comparison experi-

ments used in an attempt to rank a number of objects with respect to some criterion–or

at least to determine if there is any significant difference between the objects–when it is

impracticable to compare all the objects simultaneously. Measuring players’ strengths in

tournaments by paired comparisons of strength has a long history and there is a considerable

literature on such experiments; see, e.g., Zermelo (1929), David (1988), David and Edwards

(2001), and Aldous and Kolesnik (2022). In particular, David (1959) generated the score

sequences of tournaments with n players for 3 ≤ n ≤ 8 and their frequencies by expanding

products of the form

G(n) =
∏

1≤i<j≤n

(ai + aj).

For example,

G(3) = a21a2 + a1a
2
2 + a21a3 + a1a

2
3 + a22a3 + a2a

2
3 + 2a1a2a3,

so the (ordered) score sequence (1, 1, 1) occurs twice while (0, 1, 2) occurs six time in the

23 = 8 possible outcomes when n = 3. He used this information to develop, among other

things, tests for deciding whether the maximum in a given outcome was significantly larger

than the expected value (n− 1)/2 of a given score.

Let rn denote the probability that an ordinary tournament with n labeled vertices has

a unique vertex with maximum score, assuming all the 2(
n
2) such tournaments are equally

likely. Epstein (1967), p. 353 gave the values r4 = .5, r5 = .586, r6 = .627, r7 = .581, and
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r8 = .634 with no explanation of how these numbers were calculated. However, the paper

of David (1959) is included among the references Epstein gave at the end of the chapter

containing these values. So it seems plausible to assume that he deduced these values from

Table 1 in David (1959) since the values agree except that it follows from Table 1 that the

value for r8 should be 160, 241, 152/228 = .596.

Stockmeyer (2022) has recently pointed out that MacMahon (1923) generated the score

sequences and their frequencies for tournaments with up to 9 vertices and his results agree

with David’s for n = 8. It follows from MacMahon’s data that r9 = 42, 129, 744, 768/236 =

.613.

As a partial check we obtained the same result by another approach that made use of

information about 8-vertex score frequencies but did not require prior information about

9-vertex degree distributions. Then one of us began trying to apply this approach to de-

termine r10, whose value was not known to us at the time. In the course of this process

an error was discovered in the frequency that MacMahon (1923) (p.26) gave for the se-

quence (2, 2, 3, 3, 4, 4, 6, 6, 6) and its complement; the frequency he gave, 361, 297, 520, is

not divisible by 9, as it should be since there are 9 choices for the label of the vertex

that represents the winner of the match between, say, the two vertices of degree 2. It

is a fairly straightforward exercise to show that the correct frequency for each of these

two sequences is 10, 000 more than the frequency stated. With these corrections, the sum

of all the frequencies is what it should be and this approach led to the conclusion that

r10 = 21, 293, 228, 876, 800/245 = .605.

During this process the other author discovered that Doron Zeilberger (Zeilberger, 2016)

had extended MacMahon’s work and had generated the score vectors and their frequencies

for tournaments with up to 15 vertices using the Maple program. (We remark that Zeil-

berger’s frequency for the two sequences mentioned earlier agree with the corrected values

we gave.) Using a Matlab program, the values of rn were deduced from Zeilberger’s data

for n = 10, 11, and 12. The value obtained when n = 10 agreed with the value stated

above. And, as a partial check, we confirmed that the value for r12 obtained by using

12-vertex frequency data agreed with the value obtained by applying the other procedure

described earlier to 11-vertex data. The values for n = 4, 5, . . . , 12 are given in Table 1.
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It was around this time that we discovered that the sequence https://oeis.org/A013976

contains the values of the number of tournaments with a unique vertex of maximal score

for n = 1, 2, . . . , 16; these values are attributed to Michael Stob and Andrew Howroyd.

We remark that Hamming (1968) reviewed the 1st edition of Epstein’s book. Three later

editions of Epstein (1967) are reviewed in Mathematical Reviews; the review by Edward

Thorp (1977, MR0446535) is the most thorough. The later editions contain more material

and references, but the material about rn remains unchanged (Epstein, 2013).

Epstein also stated that as n increases indefinitely, rn approaches unity without a proof

or reference for such a result.

It is not feasible to test Epstein’s claim for large values of n by generating score se-

quences and their frequencies directly because of the length of time this would take. For

example, executing the Zeilberger (2016) Maple code for n = 17 on a powerful com-

puter (a dual CPU Intel 2620 v4, 1TB of memory, Unix operating systems) took 157:04

hours. We note that in this case, the number of different score sequences is 6,157,058

(see https://oeis.org/A000571 and references therein.) So we have used Monte-Carlo

simulations (Metropolis and Ulam, 1949) to test Epstein’s statement for larger values of

n. For a given value of n we sample n(n − 1)/2 values of random Bernoulli variables

Xij, 1 ≤ i < j ≤ n, where P (Xij = 0) = P (Xij = 1) = 1/2; this determines a random

n-vertex tournament and its score sequence. We repeated this process M times for a pre-

determined integer M . We let It denote a random indicator function that equals one if

the tournament obtained at the t-th repetition has a unique score of maximum value, and

equals zero otherwise, for 1 ≤ t ≤ M . Then r̂n(M) = 1/M
∑M

t=1 It is an unbiased estimator

of rn (i.e., E (r̂n(M)) = rn for any M); also r̂n is a consistent estimator of rn for large M ,

(i.e., limM→∞ P (|r̂n(M)− rn| > ε) = 0 for any ε > 0). We used smaller values of M for

some of the larger values of n because of time constraints. The results of these simulations

are given in the Table 1 below.
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n M rn r̂n(M)

4 106 0.5 0.5003 · · ·
5 106 600/210 = 0.5859 · · · 0.5862 · · ·
6 106 20, 544/215 = 0.6269 · · · 0.6262 · · ·
7 106 1, 218, 224/221 = 0.5808 · · · 0.5806 · · ·
8 106 160, 241, 152/228 = 0.5969 · · · 0.5966 · · ·
9 106 42, 129, 744, 768/236 = 0.6130 · · · 0.6129 · · ·
10 106 21, 293, 228, 876, 800/245 = 0.6051 · · · 0.6054 · · ·
11 106 22, 220, 602, 090, 444, 032/255 = 0.6167 · · · 0.6169 · · ·
12 106 45, 959, 959, 305, 969, 143, 808/266 = 0.6228 · · · 0.6231 · · ·
13 106 0.6240 · · ·
14 106 0.6323 · · ·
15 106 0.6355 · · ·
30 106 0.6881 · · ·
50 106 0.7290 · · ·
100 106 0.7808 · · ·
500 104 0.8673 · · ·
1,000 104 0.8996 · · ·
10,000 300 0.9533 · · ·

Table 1: r4, . . . , r8 were calculated from the scores distribution given in Table 1 of David

(1959); r9 from MacMahon (1923) data; r10, r11, r12 from Zeilberger (2016) data; see also

https://oeis.org/A013976.

One of us inherited a copy of the 1st edition of Epstein’s book a number of years

ago and in the early 1980’s wrote a letter to him, at the address on the title page of his

book, to enquire about his statement concerning the uniqueness of the maximum scores

in tournaments; the letter was returned stamped ”return to sender, unable to locate”.

So a second letter was sent, this time to Academic Press, the publisher of the book; the

reply to this letter stated that a certain address in California was the last known address.

But there was no response to a letter sent to that address; so the matter was dropped

for around 40 years until the present authors began considering an inequality by Huber

(1963) for the distribution function of the scores in tournaments that had implications

for the maximum scores in tournaments. Professor Noga Alon (Alon, 2022) referred us

5
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to a paper by Erdős and Wilson (1977) that contained a Lemma stating, in effect, that

almost all labeled graphs in which pairs of vertices are joined by an edge with probability

1/2 have a unique vertex of maximum degree. In pursuing his suggestion we learned that

Bollobás (1981) had derived numerous results on the distributions of the degree sequences

d1 ≥ d2 ≥ · · · ≥ dn of ordinary n-vertex graphs in which edges are present with probability

p; see also, Bollobás (2001) and Frieze and Karoński (2016). And then, after we had

started writing this note, we came upon Guy (1984) by accident and learned that Epstein’s

statement had, in effect, been proposed as a Monthly problem and evidently was still

unresolved in 1984.

2 Main Result

For expository convenience we introduce some notation and relations that we shall need

later. Let

b(n− 1, j) = P (si = j) = C(n− 1, j)1/2n−1, C(n− 1, j) =

(

n− 1

j

)

and

B(n− 1, k) = P (si > k) =
∑

j>k

b(n− 1, j)

for 0 ≤ k, j ≤ n− 1 and 1 ≤ i ≤ n.

Next, let

tn−1 = (n− 1)/2 + xn−1((n− 1)/4)1/2 (1)

where

xn−1 = (2 log(n− 1)− (1 + ǫ) log(log(n− 1)))1/2 (2)

for an arbitrary constant ǫ between 0 and 1, say. Then xn−1 → ∞ and xn−1 = o(n1/6) as

n → ∞ it follows that

b(n− 1, tn−1) ∼
(

2

π(n− 1)

)1/2

e−
x2n−1

2 ∼
√
2(log(n− 1))(1+ǫ)/2

√

π(n− 1)3
(3)

and

B(n− 1, tn−1) ∼
1√
2π

1

xn−1
e−

x2n−1
2 ∼ (log(n− 1))ǫ/2√

4π(n− 1)
; (4)
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see, e.g., Feller (1968), Ch. VII.2, Ch. VII.6 and Huber (1963).

Theorem 1. The probability that a random n-vertex tournament Tn has a unique vertex

of maximum score tends to one as n tends to infinity. In particular, if tn−1 is defined as

in (1) and (2) and s⋆ denotes the maximum value of the scores s1, . . . , sn in Tn, then the

following statements hold:

(i) P (s⋆ > tn−1) → 1 as n → ∞;

(ii) If Wn = Wn(Tn) denotes the number of ordered pairs of distinct vertices u and v

in Tn such that su = sv = h for some integer h such that tn−1 ≤ h ≤ n − 1, then

P (Wn > 0) → 0 as n → ∞.

Proof. Conclusion (i) was proved by Huber (1963) and makes use of the following inequality

for the joint distribution function for the scores s1, . . . , sn in a round-robin tournament.

P (s1 < k1, . . . , sm < km) ≤ P (s1 < k1) · · ·P (sm < km) , (5)

where m ≤ n. Huber (1963) proved the inequality for any probability matrix (pij), where

pij + pji = 1, and any numbers (k1, . . . , km), m ≤ n. In our present case we assume

pij = 1/2 for all i 6= j. Huber’s derivation of (5) involves coupling arguments, a straight-

forward iterative procedure in which the dependent variables Xij and Xji, defined earlier,

are replaced, one pair at a time, by independent variables Zij and Zji without chang-

ing the marginal distributions. The procedure leads to the conclusion that the left hand

side of (5) is bounded above by a product of the corresponding probabilities for indepen-

dent variables with the same distribution as the variables in the left hand side. Huber’s

inequality holds if we replace < by ≤ in (5), and in a more general round-robin tourna-

ment model (Malinovsky and Moon, 2022); also in different tournaments and games models

Malinovsky and Rinott (2022).

Once we have this inequality, the required conclusion follows upon observing that

P (s⋆ < tn−1) ≤ (1−B(n− 1, tn−1))
n ≤ e−nB(n−1,tn−1) ≤ (1 + o(1))e

−
(log(n−1))ǫ/2

√

4π → 0, (6)

as n → ∞, appealing to the definition of B (n− 1, tn−1), inequality (5), the inequality

1− c ≤ e−c , and relation (4).
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We now give a second proof of (i). This approach is based on an application of the

Chebyshev’s or Cauchy-Schwarz inequalities and is often called the 2nd Moment Method

when it is applied in probabilistic problems in Graph Theory. See also Bollobás (1981),

Sect.3 and Frieze and Karoński (2016), Sect. 3.2 where this method is applied to more

general problems on the degrees in ordinary graphs.

Let Yt = Yt(Tn) denote the number of vertices in Tn with score larger than t = tn−1, i.e.

Yt =
∑n

j=1 I (sj > t) . Since P (su > t) = B (n− 1, t) for any u and t, it follows that

E (Yt) = nB(n− 1, t) ∼ n
(log(n− 1))ǫ/2√

4π(n− 1)
, (7)

upon appealing to (4) with t = tn−1.

To determine the variance V ar(Yt) we first observe that for any ordered pair of vertices

u and v we can write their scores as su = s′u + Xuv and s′v + Xvu, where s′u and s′v are

the number of games u and v win against the remaining n− 2 players; since s′u and s′v are

independent variables, it follows that

P (su > t, sv > t)

= P (Xuv = 0)P (s′u > t)P (s′v > t− 1) + P (Xuv = 1)P (s′u > t− 1)P (s′v > t)

= B(n− 2, t)B(n− 2, t− 1).

Consequently,

V ar(Yt) = E(Yt) + E(Yt(Yt − 1))− (E(Yt))
2

= E(Yt) + n(n− 1)B(n− 2, t)B(n− 2, t− 1)− (nB(n− 1, t))2. (8)

Now

B(n− 1, t) = 1/2(B(n− 2, t) +B(n− 2, t− 1)),

so relation (8) simplifies to

V ar(Yt) = E(Yt)− nB(n− 2, t)B(n− 2, t− 1)− (1/4)n2 {B(n− 2, t− 1)−B(n− 2, t)}2

= E(Yt)− nB(n− 2, t)B(n− 2, t− 1)− (1/4)n2b(n− 2, t)2 ≤ E(Yt). (9)

8



Therefore,

P (Yt = 0) ≤ P (|Yt − E(Yt)| ≥ E(Yt)) ≤
V ar(Yt)

(E(Yt))2
≤ 1

E(Yt)
→ 0,

as n → ∞, by Chebyshev’s Inequality, relation (9), and (7). This implies conclusion (i).

We now turn to conclusion (ii). In view of conclusion (i), we may restrict our attention

to tournaments Tn in which the maximum value s⋆ of the scores realized by the vertices

is at least as large as t = tn−1. Recall that Wn = Wn(Tn) denotes the number of ordered

pairs of distinct vertices u and v of Tn such that t < su = sv where t ≤ n− 1, i.e.

Wn =
∑

1≤v<u≤n

I(t < su = sv).

Let s′u and s′v denote the scores of two such vertices u and v in their matches with the

remaining n− 2 players and note that s′u and s′v are independent variables. Then it follows

that

P (su = h, sv = h) = 1/2P (s′u = h− 1)P (s′v = h) + 1/2P (s′u = h)P (s′v = h− 1)

= C(n− 2, h− 1)(1/2)n−2C(n− 2, h)(1/2)n−2

≤ 4
h

n− 1

(

1− h

n− 1

)

C(n− 1, h)(1/2)n−1C(n− 1, h)(1/2)n−1 ≤ (b(n− 1, h))2 . (10)

Hence,

E(Wn) = E

(

∑

1≤v<u≤n

I(t < su = sv)

)

= n(n− 1)E (I(t < s1 = s2))

= n(n− 1)P (t < s1 = s2) = n(n− 1)
n−1
∑

h=t+1

P (su = h, sv = h) ≤ n(n− 1)
n−1
∑

h=t+1

b(n− 1, h)2

≤ n(n− 1)b(n− 1, t+ 1)B(n− 1, t) ≤ n(n− 1)b(n− 1, t)B(n− 1, t)

∼ (log(n− 1))1/2+ǫ

π
√

2(n− 1)
→ 0,

as n → ∞. Consequently, appealing to (3), (4), and to the fact that Wn = WnI(Wn >

0) ≥ I(Wn > 0), we find that

1− P (Wn = 0) = P (Wn > 0) ≤ E(Wn) → 0,

as required.
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For the sake of completeness, we mention an upper bound Huber (1963) gave for the

maximum score s⋆ in almost all tournaments Tn. Let t′ = t′n−1 be defined as t = tn−1

was defined earlier except that the ǫ in relation (2) is replaced by −ǫ, it turns out that a

relation corresponding to (4) is

B(n− 1, t′n−1) ∼
(log(n− 1))−ǫ/2

√
4π(n− 1)

.

Hence, it follows from Boole’s inequality that

P (s⋆ > t′) ≤ nB(n− 1, t′) = O
(

(log(n− 1))−ǫ/2
)

, (11)

as n → ∞. From (6) and (11) Huber (1963) concluded that

s⋆ − n− 1

2
−
√

n− 1

4

√

2 log(n− 1) → 0

in probability as n → ∞.

3 Pairs of Equal Scores and Degrees in Tournaments

and Graphs

We saw in the last section that pairs of vertices with equal scores at least as large as tn−1

are rare for large values of n. The suggests the problem of determining the expected value

of the number Fn = Fn(Tn) of unordered pairs of vertices u and v in a tournament Tn such

that su = sv. It follows from the first part of relation (10) that if n ≥ 3, then

E(Fn) = C(n, 2)(1/2)2(n−2)
∑

h

C(n− 2, h− 1)C(n− 2, h)

= C(n, 2)(1/2)2(n−2)
∑

h

C(n− 2, h− 1)C(n− 2, n− 2− h)

= C(n, 2)C(2(n− 2), n− 3)(1/2)2(n−2) ∼ 1
√

π(n− 2)
C(n, 2),

appealing to Vandermonde’s identity at the next to the last step, and to equation (2.6) in

Feller (1968), p.80.
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Similarly, one could consider the expected value of the number Ln = Ln(Gn) of un-

ordered pairs of vertices u and v in an ordinary graph Gn with equal degrees du and dv.

Let d′u and d′v denote the number of edges joining u and v to the remaining n−2 vertices in

Gn, and note that d′u and d′v are independent variables. When we consider the cases when

there is or is not an edge joining u and v, we find that

P (du = h, dv = h) = 1/2(P (d′u = h− 1)P (d′v = h− 1) + P (d′u = h)P (d′v = h))

= (1/2)2n−3((C(n− 2, h− 1))2 + (C(n− 2, h))2);

see, e.g. Bollobás (2001), p. 69. Hence,

E (Ln) = C(n, 2)(1/2)2n−3
∑

h

[C(n− 2, h− 1)C(n− 2, n− h− 1) + C(n− 2, h)C(n− 2, n− 2− h)]

= C(n, 2)C(2(n− 2), n− 2)(1/2)2(n−2). (12)

Note that

E(Fn) =
n− 2

n− 1
E(Ln).

Suppose no two vertices of a tournament Tn or an ordinary graph Gn have the same

score or degree, assuming that n ≥ 2; then the corresponding (non-decreasing) score or

degree sequences must be (0, 1, . . . , n−1). The following observations are well known. The

transitive tournament Tn, in which the vertices can be linearly ordered in such a way that

each vertex wins against each of its predecessors in the sequence, is the only tournament

with this score sequence (Moon (1968), chapter 7). But there is no graph Gn with this

degree sequence since it is not possible for there to be vertices of degree 0 and n− 1 in the

same graph.

Remark 1. Every non-trivial graph Gn contains at least one pair of vertices with equal

degrees.

As it turns out, the situation is reversed, in a sense, when we consider tournaments and

graphs with exactly one pair of vertices with the same score or degree. From now on we

shall frequently refer to such pairs of vertices as pairs of special vertices.

Theorem 2. There is no round-robin tournament Tn with exactly one pair of special ver-

tices.
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Proof. This certainly holds for small values of n, so we may assume that n ≥ 4, say. If there

is such a tournament Tn then its scores must be members of the set Nn = (0, 1, . . . , n− 1).

Let h denote the score of the two (and only two) vertices with the same score realized by

the two special vertices. The remaining n− 2 scores must be distinct and not equal to h.

Hence, these scores can collectively realize only n−2 of the n−1 possible values remaining

when h is removed from the set Nn; that is, there is an integer j, where j ∈ Nn and j 6= h,

that is not realized as the score of any vertex in Tn. This implies that the sum of the

scores of all the vertices of Tn–bearing in mind that there are two vertices of score h and

no vertices of score j–must equal

0 + 1 + 2 + · · ·+ (n− 1) + h− j = C(n, 2) + h− j = C(n, 2),

the total number of matches in the tournament. This would imply that h = j, which

contradicts our assumptions. The result now follows.

Let A and B denote two (disjoint) ordinary graphs (without loops or multiple edges).

In what follows we let A ∪ B denote the graph consisting of a copy of A and a copy of

B regarded as a single graph. And we let A + B denote the graph obtained from A ∪ B

by introducing additional edges that collectively join each vertex in A to each vertex in

B. For example, if K1 denotes the trivial graph consisting of a single isolated vertex, then

K1 ∪K1 denotes the graph consisting of two vertices not joined by an edge and K1 +K1

denotes the graph consisting of two vertices that are joined by an edge.

If n ≥ 2, let Jn denote the class of n−vertex graphs Gn with a unique pair of special

vertices u and v with equal degrees.

Theorem 3. If n ≥ 2, then Gn ∈ Jn if and only if Gn can be expressed in one of the

following ways:

Gn = H ′
n or Gn = H ′′

n

where

H ′
2 = K1 ∪K1 and H ′′

2 = K1 +K1

and

H ′
n = H ′′

n−1 ∪K1 and H ′′
n = H ′

n−1 +K1 (13)
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for n ≥ 3.

Proof. The conclusion certainly holds when n = 2. The general argument will be by

induction on n and will involve two different graphs, that are the complements or duals of

each other, for each value of n. We will present the argument in three Assertions.

Assertion 1. Suppose n ≥ 3 and Gn ∈ Jn. If du = dv = h ∈ Nn, for the unique pair of

special vertices u and v of Gn, then h 6= 0, n− 1.

Proof. This is certainly true when n = 3, so we may assume that n ≥ 4. The graph

Gn−2 determined by n − 2 vertices of Gn other than u and v must contain at least one

pair of special vertices w and z, since, by Remark 1, every non-trivial graph contains at

least one such pair. Suppose that h does equal 0 or n − 1. Then each vertex of Gn−2 was

originally joined to neither or to both of the vertices u and v in Gn, according as h = 0

or h = n− 1. Consequently, the vertices w and z are also special vertices of Gn. But this

would imply that Gn had at least two pairs of special vertices, namely, u and v and w and

z, contradicting our assumption.

When we refer to members of the degree sequence (d1, d2, . . . , dn) of the graph Gn we

assume the vertices are labeled so that the degrees appear in non-decreasing order.

Assertion 2. If Gn ∈ Jn and n ≥ 3, then either

(a) d1 = 0 or

(b) dn = n− 1

but not both.

Proof. The original degrees of the n− 2 vertices of Gn−2 determined by the n− 2 vertices

of Gn other than u and v are distinct members of the n− 1 set N ′ = Nn − {h}. We note

that 0 and n − 1 are still in the set N ′, by Assertion 1. But there cannot be a vertex of

degree 0 and one of degree n−1 in the same graph. So one of these numbers is not realized

and all the other numbers in N ′ are realized exactly once-and the h is realized twice. This

implies the required conclusion.
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In view of Assertion 2 we may partition the set Jn into two subsets J ′
n and J ′′

n consisting

of those graphs Gn that satisfy conditions (a) and (b), respectively. We note that H ′
2 and

H ′′
2 , as defined earlier, belong to J ′

n and J ′′
n , respectively. If Gn ∈ Jn, let Gn−1 denote the

graph determined by the vertices in Gn other than the vertex of degree 0 in case (a) or

degree n− 1 in case (b).

Assertion 3. Suppose n ≥ 3.

If Gn ∈ J ′
n then

(a1) Gn = Gn−1 ∪K1, where (a2) Gn−1 ∈ J ′′
n−1;

if Gn ∈ J ′′
n then

(b1) Gn = Gn−1 +K1, where (b2) Gn−1 ∈ J ′
n−1.

Proof. Relations (a1) and (b1) follow from Assertion 2 and the definitions of the ∪ and +

operations. It follows from Assertions 1 and 2 that the unique pair of special vertices u and

v of Gn must belong to the subgraph Gn−1 in both cases (a) and (b). When we consider the

relation between the degrees of u and v in Gn−1 and their degrees in Gn, for cases (a) and

(b), we see that u and v must be the unique pair of special vertices in the subgraph Gn−1;

consequently Gn−1 ∈ Jn−1. In case (a), Gn−1 cannot have a vertex of degree 0 because if

it did there would be two vertices of degree 0 in the graph Gn, and this would contradict

Assertion 1. But if Gn−1 does not have a vertex of degree 0, then alternative (b) must hold

when Assertion 2 is applied to Gn−1 and this implies relation (a2). Similarly, in case (b),

Gn−1 cannot have a vertex of degree n− 2 because if it did there would be two vertices of

degree n− 1 in the graph Gn and this would contradict Assertion 1. But if Gn−1 does not

have a vertex of degree (n− 1)− 1 = n− 2, then alternative (a) must hold when Assertion

2 is applied to Gn−1 and this implies relation (b2), as required.

When we combine these Assertions we find that Theorem 3 follows by induction.

The formal relations (13) describe a straightforward iterative procedure for constructing

the extremal graphs H ′
n and H ′′

n. After n− 2 iterations we obtain expressions for H ′
n and

H ′′
n in terms of H ′

2 = K1 ∪K1 and H ′′
2 = K1+K1, respectively, when n is even; or in terms
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of K1 +K1 and K1 ∪K1, when n is odd. The following examples illustrate the pattern by

which these graphs develop.

H ′
2 = K1 ∪K1 H ′′

2 = K1 +K1

H ′
3 = (K1 +K1) ∪K1 H ′′

3 = (K1 ∪K1) +K1

H ′
4 = ((K1 ∪K1) +K1) ∪K1 H ′′

4 = ((K1 +K1) ∪K1) +K1

H ′
5 = (((K1 +K1) ∪K1) +K1) ∪K1 H ′′

5 = (((K1 ∪K1) +K1) ∪K1) +K1.

Each symbol K1 in these expressions represents a vertex in the corresponding graph

H ′
n or H ′′

n. If w and z denote the vertices represented by two particular copies of K1,

where the copy representing w is to the left of the copy representing z, then w and z are

joined in the corresponding graph if and only if the operation immediately preceding the

copy representing z is the sum symbol. The two vertices that were in the initial graphs

H ′
2 = K1 ∪K1 and H ′′

2 = K1 +K1 are the pair of special vertices u and v in all the graphs

H ′
n and H ′′

n derived from them.

Corollary 1. If n ≥ 2 and Gn ∈ Jn, let D(Gn) denote the common value of the degrees du

and dv of the unique pair of special vertices u and v of Gn.

(C1) If n = 2k or 2k + 1, where k ≥ 1, then D(H ′′
n) = k.

(C2) If n = 2, then D(H ′
2) = 0; and if n = 2k+1 or 2k+2, where k ≥ 1, then D(H ′

n) = k.

Proof. One way to prove this is to apply the defining relations for H ′′
n and H ′

n−1 to conclude

that H ′′
n = H ′

n−1 + K1 = (H ′′
n−2 ∪ K1) + K1, for n ≥ 4. This implies that D(H ′′

n) =

D(H ′′
n−2) + 1 for n ≥ 4, upon appealing to the definitions of the graph union and graph

sum operations. Since D(H ′′
2 ) = D(H ′′

3 ) = 1, conclusion (C1) now follows by induction.

Since H ′
n = H ′′

n−1 ∪ K1, by definition, it follows that D(H ′
n) = D(H ′′

n−1) for n ≥ 3. So

conclusion (C2) now follows from conclusion (C1). This suffices to complete the proof of

the Corollary since the result for D(H ′
2) is obviously true.

We may also note that it follows from the definition of these graphs that these two

special vertices are both joined to the same vertices other than themselves; and these other
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vertices all have different degrees. It follows, therefore, that the number of different ways to

label the vertices of H ′
n and H ′′

n is n!/2, for each of them. Consequently, the total number of

labeled graphs Gn with exactly one pair of special vertices is n!, for n ≥ 2. By coincidence

this the same as the number of labeled tournaments Tn with no two vertices with the same

score.
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