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Hyperspectral imaging has emerged as a remote sensing image processing 

technique in many applications. The reason that hyperspectral data is called 

hyperspectral is mainly because hundreds of contiguous spectral bands provide the 

massive spectral information used for data analysis. Such high spectral resolution 

leads to a challenging issue in how to effectively utilize vast amount of spectral 

information. In order to resolve this dilemma one general approach is to use Band 

Selection (BS) to judiciously select a desired band subset that can well represent the 

data. Unfortunately, two prime issues, (1) the number of bands need to be selected p, 

and (2) how to select appropriate bands, need to be addressed. Recently, an 

alternative approach, Progressive Band Selection (PBS) was proposed which can 

process data band by band without knowing the value of p. 

This dissertation looks into PBS and develops a rather different approach according 

to Band SeQuential (BSQ) data acquisition format, called Recursive Band Processing 

(RBP) which focuses on PBS specified by applications. With the custom-designed 

algorithmic architectures RBP can be carried out by PBS recursively in a similar 



 

 

manner that a Kalman filter does. Since the utility of RBP must be realized by 

applications, three applications of interest are investigated: (1) unsupervised active 

hyperspectral target detection where the well-known Automatic Target Generation 

Process (ATGP) is extended to RBP-ATGP; (2) unsupervised target identification 

where one of most popular algorithms Pixel Purity Index (PPI) is re-derived as RBP-

PPI; (3) endmember finding where a recently developed Orthogonal Projection (OP) 

based Simplex Growing Algorithm (OPSGA) is further extended to RBP-OPSGA. 

Several advantages result from the proposed RBP-based algorithms. First it is 

specifically designed based on BSQ data acquisition format and it is particularly 

suitable for hyperspectral data communication and transmission with limited 

bandwidth. Second, RBP provides spectral profiles of changes in target detection 

which allow users to screen preliminary results while data collection is ongoing 

without waiting for completion of full data set. Most importantly, the recursive nature 

in RBP can facilitate the hardware design which can significantly reduce 

computational complexity in chip design. 
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Chapter 1: Introduction 

1.1 Hyperspectral Image Processing 

Hyperspectral image processing analyzes information from across hundreds of contiguous 

electromagnetic spectrum for each pixel in an image to detect objects of interest, which are often 

difficult to identify with regular color images. Because of its advantages in capturing rich 

information, hyperspectral imaging has received broader attention in its applications in 

agriculture, mineralogy, reconnaissance and surveillance, and biomedicine with the fast 

advancement in sensor technique and computational technologies. Like a color image may have 3 

RGB bands and a multispectral image may have tens of discrete bands, a hyperspectral image 

typically has hundreds of bands. Fig. 1.1 presents an example of a hyperspectral image cube 

where x-axis and y-axis denotes the rows and columns of the image, and z-axis is specified by 

spectral dimensionality, . 

 

Figure 1.1. An example of hyperspectral image cube 

With increased spectral resolution in conjunction with the increased number of bands 

hyperspectral imaging distinguishes itself from traditional spatial-domain based image processing 

techniques by exploring spectral properties of data rather than spatial information. This leads to a 

significant difference in designing hyperspectral imaging algorithms where direct extensions or 

expansions from multispectral imaging techniques are generally not effective. One major strength 

resulting from hyperspectral imaging is target detection which can be categorized into active 

target detection with application in reconnaissance where the desired target information is 

provided and passive target detection with applications in surveillance where no target knowledge 

x 
y 

z 
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is available. This dissertation looks into three major algorithms: (1) ATGP for active target 

detection, (2) PPI and OPSGA for passive target detection and further derive their RBP versions. 

1.2 Acquisition Formats Used by Hyperspectral Imaging 

In general, there are two data acquisition format generally used by hyperspectral imaging 

sensors (Schowengerdt, 1997). The first type is referred to as Band-Interleaved-by-Pixel (BIP)/ 

Band-Interleaved-by-Sample (BIS), or Band-Interleaved-by-Line (BIL) process shown in Fig. 

1.2(a) and Fig. 1.2(b) respectively. In Fig. 1.2, the coordinates (x, y) represent the spatial location 

of a particular data sample or pixel, λ is a wavelength parameter used to specify the spectral bands, 

the data currently being collected is highlighted by red dashed lines. BIP/ BIS format, as shown in 

Fig. 1.2(a), at each time instant, one pixel with full bands information is collected. While a line of 

pixels with full bands of information is collected for BIL format displayed in Fig. 1.2(b). The 

second type is referred to as Band-Sequential (BSQ) date acquisition format shown in Fig. 1.2(c), 

which collects one band with full image pixels at a time. 

 

   

                                   (a) BIP/BIs                                            (b) BIL                                                 (c) BSQ 

Figure 1.2. Hyperspectral image data acquisition format (a) BIP/BIS (b) BIL (c) BSQ 

1.3 Progressive Processing in Hyperspectral Imaging (PHSI) 

Progressive processing is a sequence of data processing so that each process can be used to 

update and improve its previous processes by subsequent processes in terms of performance. In 

other words, a progressive process can effectively and intelligently utilize its information stage by 

stage in a succession of stage processes to achieve its best performance. In order to implement 

progressive processing, two types of PHSI can be designed, sample-wise Progressive Sample 

Processing (PSP) and band-wise Progressive Band Processing (PBP). 
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1.3.1 Sample-wise PHSI 

Consider an AVIRIS hyperspectral image cube of 100 lines and 100 samples per line with 

224 contiguous spectral bands per sample. A sample can be considered as a pixel vector with 

each component corresponding to a pixel collected by a particular wavelength. The idea of PSP is 

to process the data one sample vector at a time with all 224 spectral bands being collected. Each 

successive sample that is received and processed by PSP according to the data acquisition formt 

BIP/BIS. When each new sample vector, the result is updated by previous results. The same 

process is repeated over and over again until all sample vectors have been processed. With this 

interpretation, real time processing can be considered as a version of PSP.  

1.3.2 Band-wise PHSI 

By contrast, PBP is a version of band-wise PHSI which processes band data, referred to as 

band image, one at time band by band progressively. It first receives the 1
st
 band image and in the 

meantime it also processes the band image without waiting for the 2
nd

 band image being collected. 

When it receives the 2
nd

 band, it then updates results by the results obtained from the 1
st
 band 

image and the newly received 2nd band image. The same process is then repeated over and over 

again until it reaches the last or final band images. However, such process can be also terminated 

earlier if data analysts do not need any more band data for their analysis. Two advantages can be 

gained from PBP. One is that PBP can be carried out simultaneously by different users using 

different sets of bands. Another is that PBP can significantly reduce computing time because it 

reduces processing 3D image cubes to 2D images  

1.4 Dissertation Outline 

Contributions of this study include: (1) a thorough study on the concept of RBP and making 

RBP applicable to hyperspectral data exploitation in finding targets of interest; (2) development 

of RBP-ATGP algorithm which can find additional targets of interest comparing with the original 

ATGP, speed-up the process 30% comparing PBP-ATGP; (3) development of RBP-PPI on the 

basis of PPI; (4) development of RBP-FIPPI which process the data in RBP manner, expedite the 

process 10% and (5) development of RBP-OPSGA and RBP-GSGA without calculating the 

matrix determinant. 

There are many advantages that RBP has but cannot be offered by most hyperspectral data 

processing techniques. One is to provide users with preliminary results progressively band by 

band so that users can terminate data processing anytime by aborting the process. Second, it 

reduces the tremendous amount of storage and computing time by only processing innovations 
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information without re-processing previously processed data. Both advantages are crucial in 

satellite data processing when data can be communicated and processed band by band 

progressively between transmitting and receiving ends. Most importantly, it can be realized in 

real time so that a timely decision can be made while data processing is taking place. Finally, it 

paves the way for implementation in hardware devices such as a Field Programmable Gate Array 

(FPGA) or Application Specific Integrated Circuit (ASIC). 

The thesis is organized as follows: 

Chapter 2 reviews background knowledge that is necessary to understand the work in this 

dissertation. It includes a detailed description of the data sets to be used for experiments as well 

as descriptions of algorithms to be developed for RBP in this dissertation. 

Chapter 3 develops Recursive Band Processing of Automatic Target Generation Process (RBP-

ATGP) for ATGP which can implement ATGP band by band progressively. 

Chapter 4 introduces and presents a recursive band processing version of a well-known 

endmember candidate finding algorithm, Pixel Purity Index (PPI) referred to as RBP-PPI. In 

addition, RBP-Progressive-PPI (RBP-P-PPI) and RBP-Causal-PPI (RBP-C-PPI) are further 

proposed to address the issues in finding an appropriate number of skewers. 

Chapter 5 further derives a recursive band processing version of Fast Iterative Pixel Purity 

Index (RBP-FIPPI) for extracting endmembers without the need of determining the number of 

skewers and selecting a threshold value, which are the major two drawbacks in PPI. 

Chapter 6 introduces and presents a recursive-band-processing version of a well-known 

endmember finding algorithm, Simplex Growing Algorithm (SGA) referred to as PBP-SGA. 

SGA was previously developed by Chang et al. to ease the computational  complexity of one of 

the two most widely used endmember finding algorithms in remote sensing community, N-finder 

algorithm (N-FINDR) developed by Winter. PBP-SGA allows users to find endmembers by 

growing simplexes band by band without waiting for receipt of all bands. 

Finally, chapter 7 summarizes the results obtained in this dissertation and presents some 

applications and extensions for future work. 
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Chapter 2: Preliminaries 

This chapter provides the background information needed to fully understand the history and 

applications of the proposed work in this dissertation. It begins by introducing hyperspectral data 

and concludes by presenting the algorithms to be studied in this dissertation, that are Automatic 

Target Generation Process (ATGP), Pixel Purity Index (PPI), Fast Iterative Pixel Purity Index 

(FIPPI), and Simplex Growing Algorithm (SGA) for unsupervised targets finding and 

endmember extraction. 

2.1 Hyperspectral Data 

Hyperspectral images are distinguished from color or multispectral images by the number of 

spectral bands and the resolution of the spectral bands. That said, it is important to understand 

that there is no clear standard definition for what hyperspectral data is. The term hyperspectral 

was defined in (HYMSMO Program Office, 1995) as “high spectral resolution sensor, having 

hundreds of spectral bands, each with a resolution between 0.1 and 10nm.” The same document 

defined multispectral as “moderate spectral resolution sensors, having tens of image bands, and 

spectral resolution greater than 10nm.” For the purposes of this dissertation, a hyperspectral 

image is defined as an image having greater than 100 spectral bands with an average spectral 

resolution less than or equal to 10nm. The average spectral resolution is given since the spectral 

resolution for each band varies depending on wavelength. Two kinds of data sets are used 

throughout this work to demonstrate the application of the algorithms developed. The first kind is 

synthetic images custom-designed and simulated based on Cuprite image data, which is available 

on the USGS website http://aviris.jpl.nasa.gov/. Synthetic images are simulated which provides 

complete knowledge to conduct quantitative analysis for performance evaluation. The second 

kind is real hyperspectral image scene. Proposed algorithms are applying on HYDICE scene, 

which is collected from an airborne platform with ground truth carefully recorded. 

2.1.1 Synthetic Data 

In order to substantiate and validate the proposed Recursive Band Processing (RBP) approach, 

first, a real image scene is used to custom design synthetic images for experiments where a set of 

controllable parameters was used to obtain complete ground truth. The image scene to be used 

was a real Cuprite image data shown in Fig. 2.1(a) which is available at the USGS website 

http://aviris.jpl.nasa.gov/
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http://aviris.jpl.nasa.gov/. This scene is a 224-band image with size of 350 × 350 pixels and was 

collected over the Cuprite mining site, Nevada, in 1997. It is well understood mineralogically. As 

a result, a total of 189 bands were used for experiments where bands 1-3, 105-115 and 150-170 

have been removed prior to the analysis due to water absorption and low SNR in those bands. 

Although there are more than five minerals in the data set, the ground truth available for this 

region provides only the locations of the pure pixels: Alunite (A), Buddingtonite (B), Calcite (C), 

Kaolinite (K) and Muscovite (M). The locations of these five pure minerals are labeled by A, B, 

C, K and M respectively and shown in Fig. 2.1(b). Available from the image scene is a set of 

these reflectance spectra shown in Fig. 2.1(c) that will be used to simulate synthetic images. 

  

                                                              (a)                                                             (b) 

 

(c) 

Figure 2.1. (a) Cuprite AVIRIS image scene (b) spatial positions of five pure pixels corresponding to 

minerals: alunite (A), buddingtonite (B), calcite (C), kaolinite (K) and muscovite (M); (c) Five mineral 

reflectance spectra and background signature (b) - which is the sample mean of the image in (a) 

Since real images generally do not have complete ground truth about the endmembers, we 

must rely on synthetic images which are simulated by complete knowledge to conduct 

quantitative analysis for performance evaluation of various scenarios. Fig. 2.2 shows a synthetic 

image simulated by 25 panels using five mineral signatures in Fig. 2(c). 
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Figure 2.2. A set of 25 panels simulated by A,B,C,K,M 

Among 25 panels are five 4 × 4 pure-pixel panels for each row in the 1st column and five 2 × 

2 pure-pixel panels for each row in the 2nd column, the five 2 × 2 mixed pixel panels for each 

row in the 3rd column and both the five 1 × 1 subpixel panels for each row in the 4th column and 

the 5th column where the mixed and subpanel pixels were simulated according to legends in Fig. 

2.2. So, a total of 100 pure pixels (80 in the 1st column and 20 in the 2nd column), referred to as 

endmember pixels were simulated in the data by the five endmembers, A,B,C,K,M. An area 

marked by “BKG” at the upper right corner of Fig. 2.1(a) was selected to find its sample mean, 

i.e., the average of all pixel vectors within the area “BKG”, denoted by b and plotted in Fig. 

2.1(c), to be used to simulate the background for image scene in Fig. 2.2. The reason for this 

background selection is empirical since the selected area “BKG” seemed more homogeneous than 

other regions. Nevertheless, other areas can be also selected for the same purpose. This b-

simulated image background was further corrupted by an additive noise to achieve a certain 

signal-to-noise ratio (SNR) which was defined as 50% signature (i.e., reflectance/radiance) 

divided by the standard deviation of the noise in (Du Q. and Ren H., 2003). 

Once target pixels and background are simulated, two types of target insertion can be designed 

to simulate experiments for various applications. The first type of target insertion is Target 

Implantation (TI) which can be simulated by inserting clean target panels into the clean image 

background plus additive Gaussian noise by replacing their corresponding background pixels. As 

a result, the implanted target pixels satisfy both abundance sum-to-one constraint (ASC) and 

abundance non-negativity constraint (ANC). The second type of target insertion is Target 

Embeddedness (TE) which can be also simulated by embedding clean target panels into the clean 

image background plus additive Gaussian noise by superimposing target pixels over the 

background pixels in which case the embedded target pixels violate the ASC but still satisfy 

ANC. Fig. 2.3 (a, b) shows the TI scene and TE scene correspondingly. As shown in Fig. 2.3, the 

ground truth pixels were marked by red cross. 

 100% 50% signal + 50% any other four  
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                                                         (a)                                                              (b) 

Figure 2.3. Synthetic Scene (a) TI Scene (b) TE Scene 

 

2.1.2 Real Data (HYDICE Scene)A real image scene collected by HYperspectral Digital 

Imagery Collection Experiments (HYDICE) is used for experiments throughout this dissertation 

to demonstrate the utility of the recursive band processing approaches proposed. The image scene 

to be studied is a subset of the Forest Radiance I (FR-I) standardized hyperspectral imagery data 

set which was collected using the HYDICE sensor in 1996 (Topographic Technology Laboratory 

Topographic Engineering Center, 1995). An example image scene is shown in Figure 2.4(a) 

which has a size of 64 lines with 64 samples per line. Each sample was originally acquired by 210 

spectral bands with spectral coverage from 0.4µm to 2.5 µm. Low signal/high noise bands: bands 

1-3 and bands 202-210; and water vapor absorption bands: bands 101-112 and bands 137-153 

were subsequently removed for a total of 169 bands used in the experiments. The FR-I dataset 

captured multiple hyperspectral images where materials of different types were arranged within 

the image scene. Figure 2.4(a) is an image that contains 15 panels in the scene and the ground 

truth map is shown in Figure 2.4(b). Note that the ground truth map contains two colors 

associated with each panel. A memo associated with the original investigation (Resmini, Ron, 

HYMSMO, 1997) defined two heuristics: 

1) Detection of targets highlighted by Red; 

2) Hits of target highlighted by yellow mask areas. 

The red and yellow ground truth map colors correspond to the red and yellow masks mentioned 

above. The spatial resolution varies based on the altitude of the HYDICE sensor and is 1.56m for 

the images shown in Figure 2.4. The spectral resolution varies with wavelength, ranges from 3nm 

to 15nm and has an average of 10nm. More information on the HYDICE sensor can be found in 

(Nischan, Kerekes, & Baum, 1999). Within the scene in Figure 2.4, there is a large field that to 

dominates the image and a forest on the left edge. A small road divides the forest and the field. 
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There are 15 panels distributed into five rows and three columns inside the field. Each panel will 

be denoted by pij with rows indexed by i and columns indexed by j. For each row i = 1, 2, …, 5, 

there are three panels, pi1, pi2, pi3, composed of the same material but with three different sizes. 

The sizes of the panels in the first, second and third columns are 3m × 3m, 2m × 2m and 1m × 

1m respectively. Since the size of the panels in the third column is 1m × 1m, they cannot clearly 

be seen in Figure 2.4(a) due to the fact that the panel size is less than the 1.56m pixel resolution 

of the sensor. For each column j = 1, 2, 3, the 5 panels, p1j, p2j, p3j, p4j, p5j have the same size but 

are composed of different paint and material combinations. A list of the materials used is given in 

Table 2.1. 

 

Table 2.1: List of materials used for target panel pixels marked by red and the corresponding panel number 

Panel Pixels Materials 

p11, p12, p13 Nomex Kevlar (woodland) 

p211, p221, p22, p23 Light olive parachute 

p311, p312, p32, p33 Dark olive parachute 

p411, p412, p42, p43 Spectral tag on green fabric 

p511, p521, p52, p53 Green fabric with no spectral tag 

 

It should be noted that the panels in rows 2 and 3 were made with the similar material but 

different camouflage. This is also the case for the panels in rows 4 and 5. The 1.56m spatial 

resolution of the image scene suggests that most of the 15 panels are one pixel in size except that 

p21, p31, p41, p51 which are two-pixel panels, denoted by p211, p212, p311, p312, p411, p412, p511, p512. 

Figure 2.4(b) shows the precise spatial locations of these 15 panels. Figure 2.4(c) plots the 5 

panel spectral signatures pi for i = 1, 2, …, 5 obtained by averaging the red pixels of the 3m × 3m 

and 2m × 2m panels in row i of Figure 2.4(b). The red pixels of the 1m × 1m panels are not used 

to calculate the spectral signatures since they are not pure pixels, mainly due to that fact that the 

spatial resolution of the panels is smaller than the pixel resolution of the sensor in which case the 

ratio of the panel area to a single pixel is approximately (1.56)
-2

 ≈ 0.4. These panel signatures in 

Fig. 2.4(c) were used as prior target knowledge for experiments. 

 

1 HYMSMO is Hyperspectral MASINT Support to Military Operations 
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                                                                       (a)                                            (b) 

 
(c) 

Figure 2.4. (a) A HYDICE panel scene with 9 signatures identified by prior knowledge via the ground 

truth given in (b) which contains 15 panels with ground truth map of spatial locations of the 15 panels; 

(c) the spectral profile of the five panel signatures p1, p2, p3, p4, and p5 

2.2 Automatic Target Generation Process (ATGP) 

    The development of ATGP primarily comes from a need of finding targets of interest in image 

data when no prior knowledge is available. It implements a sequence of orthogonal complement 

subspaces from which a succession of targets of interest can be found by finding maximal 

orthogonal projections. Interestingly, as shown in (Chang, 2013, Chang, 2013, and Greg, 2010), 

most of such ATGP-generated target pixels turned out to be endmembers. This is certainly not a 

coincidence because the concept behind ATGP is actually the same as pixel purity index (PPI) 

except two key differences. PPI requires a very large number of random vectors, called skewers, 

to find maximal/minimal orthogonal projection (OP) compared to ATGP that finds targets of 

interest from a sequence of orthogonal projection subspaces with maximal OP. As a result, PPI 

simultaneously extracts all endmembers, whereas ATGP extracts targets sequentially one at a 

time. Additionally, PPI takes advantage of random nature in skewers to uncover all possible 

endmembers as opposed to ATGP which searches for possible target candidates by finding the 

maximal OP. Nonetheless, both PPI and ATGP use the same principle, OP, in two different ways. 
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ATGP was originally called automatic target detection and classification algorithm (ATDCA) 

in (Chang, 2003). It repeatedly implements an orthogonal subspace projector defined by  

  TTP UUUUIU

1                                                           (2.1) 

to find targets of interest directly from the data without prior knowledge as follows. 

Automatic Target Generation Process (ATGP) 

1)  Initial condition: 

Select an initial target pixel vector  rrt r

T
maxarg0   and an error threshold ε. Set 1p  and 

 00 tU   

2) At the p
th
 iteration, apply 



0tP  via (1) to all image pixels r in the image and find the n
th
 target 

tn satisfying 

   













 


rrt UUr 11

maxarg
pp

PP
T

p                                               (2.2) 

where  1211   pp tttU   is the target matrix generated at the (p-1)
st
  stage. 

It should be pointed out that (2.2) can be carried out by the following procedure: 

a.  Assume that  N

ii 1
r  are the set of total data sample vectors. Let i = 1 and 1

max
rr p . 

b.  If 1i  calculate     2| || |
111 ii

T

i ppp
PPP rrr UUU



  and | || || || | max

11 pi pp
PP rr UU



  then ip rr max  

and go to step (c). Otherwise, continue. 

c.  If Ni  , the go to step 2. Otherwise, continue. 

d. max
pp rt   and go to step 3. 

3). Stopping rule:  

If 

 p
T
p p
P tt U 1

                                                                                                                       (2.3) 

then let    pppp ttttUU 211    be the p-th target matrix, go to step 2. Otherwise 

continue.  

4). At this stage, ATGP is terminated and the final set of produced target pixel vectors comprises 

p target pixel vectors,      12101210 ,,,,,,,   pp tttttttt    

It is worth noting that replacing tp in (2.3) with t0 yields 

00 1
tt U



p
PT                                                                    (2.4) 

which is exactly the orthogonal projection correlation index (OPCI) defined in (Chang, 2003). 
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2.3 Pixel Purity Index (PPI) 

    The PPI has been widely used for endmember finding due to availability of the popular ENVI 

software system originally developed by Analytical Imaging and Geophysics (AIG). While the 

details of the specific steps to implement ENVI’s PPI are not available in the literature, a 

MATLAB version of the PPI described below is only based on the limited published results and 

our own interpretation. Nevertheless, our algorithm was verified and validated by the PPI with 

ENVI 3.6, both of which produce the same results. 

MATLAB PPI Algorithm 

1)  Initialization:  

(i)  Let K be the number of skewers which is a pre-assumed sufficiently large positive 

integer. 

(ii)  Randomly generate a set of K unit vectors called “skewers”  K

kk 1
skewer . 

2) PPI count calculation:  

For each skewerk, all the data sample vectors are projected onto skewerk to find sample 

vectors at its extreme positions and form an extrema set for this particular skewerk, denoted 

by  kextremaS skewer . Despite the fact that a different skewerk generates a different extrema 

set  kextremaS skewer , it is very likely that some sample vectors may appear in more than one 

extrema set. Define an indicator function of a set S,  rSI  by 

 









S

S
SI

r

r
r

 if ;0

 if ;1

 
and  k S kextrema

IN )()(
)(PPI rr

skewer
                           (2.5) 

where )(rPPIN  is defined as the PPI count of sample vector r. 

3)  Candidate selection:  

Find the PPI counts )(rPPIN  for all the sample vectors defined by (2.5). 

4)  Endmember finding:  

Let t be a threshold value set for the PPI count. Extract all the sample vectors with tNPPI )(r  

2.4 Fast Iterative Pixel Purity Index (FIPPI) 

As noted in Section 2.4, there are three major issues in implementing PPI. One is “how many 

skewers are needed for PPI to work effectively?” Of course, in order to cover as many directions 

of interestingness as possible, we would like to have the number of skewers K sufficiently large. 

But what value of K is considered to be large enough? So far, there is no guideline available for 

determining the value of K. Another is “what value of the threshold should be selected as a cut-
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off value for PPI counts to extract endmembers?” Theoretically speaking, the higher the PPI 

count of a data sample, the more likely the data sample to be an endmember. Unfortunately, 

according to our extensive experiments, this may not be always true. However, it is generally true 

that an endmember must have its PPI count at least greater than 0. A third issue is inconsistency 

caused by skewers that are randomly generated. In other words, the PPI counts obtained for data 

sample vectors are not reproducible because such PPI counts can vary quite differently if different 

sets of skewers are used. More precisely, PPI counts produced by running PPI at different times 

or by different users at the same time are generally not the same due to randomly generated 

different sets of skewers. Under such circumstances, Fast Iterative Pixel Purity Index (FIPPI) is 

proposed. First of all, it takes the advantage of Virtual Dimensionality (VD) in (Chang, 2003) to 

estimate the number of endmembers p in the data set. FIPPI starts using the p endmembers 

generated by ATGP, and processes iteratively until it converge. FIPPI uses the value of p 

determined by VD, which solved the problem of K in the original PPI. Meanwhile, p endmembers 

is a smaller set of skewers comparing with K skewers, the computational complexity drops a lot. 

Then, FIPPI identifies the pixels that with the maximum of the minimum projection value instead 

of finding the pixels with PPI Count value greater than threshold t, in other words there is no need 

to determine the value of t. Moreover, FIPPI using the pixels found by ATGP as initial condition, 

so there is no randomness involved in the process. 

Fast Pixel Purity Index Algorithm 

1) Initialization: Find the VD using the Harsanyi–Farrand–Chang (HFC) method in (Harsanyi et 

al., 1994), and let it be p, the number of endmembers required to generate. 

2) Dimensionality Reduction: Apply the MNF transform for dimensionality reduction and retain 

the first p components. Let
p

j
j

1

)0(









skewer  be an initial set of skewers generated by selecting 

those pixels that correspond to target pixels generated by ATGP in (Ren & Chang, 2003). 

3) Iterative Rule: At iteration 0n , for each 
)(n

j
skewer  all the sample vectors are projected 

onto this particular 
)(n

j
skewer  to find those which are at its extreme positions to form an 

extrema set, denoted by )( )(n
jextremaS skewer . Find the sample vectors that produce the largest 

)( )(k
jPPIN r  defined by (2.5) and let them be denoted by  )(k

jr . 
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4) Stopping Rule: Form the joint set,       )(

0)(

)()1(
)(

k
jN

k
j

k
j k

jPPI
skewerrskewer

r




 . If 

   )()1( k
j

k
j skewerskewer  , then no new endmembers are added to the skewer set. In this case, the 

algorithm is terminated. Otherwise, let 1 kk  and go to step 2. 

2.5 Simplex Growing Algorithm (SGA) 

In this section, we first briefly review the simplex growing algorithm (SGA) developed by 

(Chang et al., 2006) starts with one vertex and then begins to grow a simplex by one vertex at a 

time until it reaches p vertices. 

A key to making SGA work hinges on how to appropriately select new vertices to augment 

growing simplexes.  According to N-FINDR for a given positive integer p a simplex formed by p 

endmembers is one that produces the maximum volume among all possible simplexes formed by 

any set of p data sample vectors. Using this as a criterion SGA grows the current k-vertex simplex 

),,,(
)1()1()0( k

S eee   to a (k+1)–vertex simplex ),,,(
)(

,
)1()1()0( kk

S eeee


  by finding a new (k+1)
st
 

vertex e
(k)

 so that the new (k+1)-vertex simplex ),,,(
)(

,
)1()1()0( kk

S eeee


  produces its volume no 

less than volumes of all possible (k+1)–vertex simplexes ),,,,(
)1()1()0(

reee
k

S   augmented by any 

other data sample vector r. The detailed implementation of the above growing simplex process is 

summarized as follows. 

Simplex Growing Algorithm (SGA) 

1.  Initialization:  

(a) Let p be the number of endmembers to be generated. 

(b) There are two ways to generate random initial endmembers for SGA. 

(i) Randomly select a data sample vector as an initial endmember e
(0)

 and set 0k . In this 

case, the SGA is referred to as 1-SGA. 

(ii) Randomly select a pair of two data sample vectors (e
(0)

,e
(1)

) to form as a random 

degenerate 2-dimesnional simplex which is a line segment connecting e
(0)

 and e
(1)

. Set 1k . In 

this case, the SGA is referred to as 2-SGA. 

2.  At 0k  and for each sample vector r, we calculate 
),,,(

)()0(
ree

k
V 

 defined by 

)!1(

1

...

1...11
Det

),,,(

)()1()0(

)()0(


























k

V

k

k
reee

ree 
                                     (2.6) 
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which is the volume of the simplex ),,,,(
)()1()0(

reee
k

S   specified by vertices 

reee ,,,,
)()1()0( k

  and the definition of the matrix determinant in (2.6) can be found in any 

linear algebra book. Since the matrix 









reee

1

...

1...11
)()1()0( k

 in (2.6) is not necessarily a 

square matrix, a DR technique such as PCA or MNF is required to reduce the original data 

dimensionality L to the dimension k+1. 

3.  Find e
(k+1)

 that yields the maximum of (1), that is,  

  ),,,(maxarg
)()0()1(

reee r

kk
V 



                                            (2.7) 

4.   Stopping rule: 

If 1 pk , then 1 kk  and go step 2. Otherwise, the final set of   )1()1()0(
,,,

p
eee   is the 

desired p endmembers. 

 



16 

 

Chapter 3: Recursive Band Processing of Automatic Target 

Generation Process (RBP-ATGP) 

3.1 Introduction 

Automatic Target Generation Process (ATGP) is an unsupervised target detection 

technique which has been widely used in hyperspectral target detection (Chang, 2003). It 

implements a succession of orthogonal subspace projections to find targets which have 

maximal leaking residuals from subspaces generated by previous targets. Generally speaking, 

there are three types of unsupervised targets are of interest in the literature. One is 

endmembers whose spectral signatures are pure. There are two challenging issues; signature 

purity and number of endmembers need to be addressed. A second type is anomalies. In the 

past anomaly detection has been studied extensively (Reed and Yu, 1990). It makes use of 

data sample correlation/covariance to capture targets whose spectral profiles are different 

their surrounding data sample vectors. In analogy with endmembers, there are also two 

challenging issues involved in anomaly detection which have not received much attention in 

the past. One is how to discriminate its detected anomalies one from another. The other is 

how many distinct anomalies are present in the data. A third type is unknown targets whose 

signatures are spectrally distinct. In order to differentiate the detected unknown targets a 

general approach is to design a target finding process which can detect different distinct 

targets in a sequence of target detection. Due to its simplicity and easy implementation, 

ATGP receives a great interest in many applications. However, the original ATGP cannot 

process hyperspectral data progressively, this chapter takes an innovative look of ATGP, 

which implement target detection using ATGP band by band, to be called Recursive band 

processing of ATGP (RBP-ATGP). The work of RBP-ATGP is inspired by one of the 

hyperspectral data acquisition format – BSQ, noted in the previous chapters. Several 

advantages can be gained from RBP-ATGP. Many advantages can be gained from RBP-

ATGP. First of all, RBP-ATGP can be implemented whenever bands are available without 

waiting for full bands of data information being collected according to the BSQ data 

acquisition format. Second, a spectral profile of RBP-ATGP detected abundance can be 

provided. Such target detection profiles allow users to see changes in target detection maps 
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by ATGP in each band which are not available in one-shot ATGP using full band information. 

Third, using progressive target detection map profiles enables users to find weak targets 

which may be captured by certain bands and later be overwhelmed and dominated by strong 

targets subsequently detected by ATGP. The targets of this type such as moving targets are 

generally not shown in the final ATGP-detection map, i.e., detection map produced by ATGP 

using full bands. Fourth, with the help of RBP-ATGP, progressive band selection can be 

conducted without the need of a priori, the number of bands need to be selected. The hint and 

clue of choosing the bands with essential information can be gained at the same time. In 

addition, the RBP-ATGP is specifically designed for BSQ data acquisition format, and data 

processing can be conducted with limited bandwidth. 

3.2 Derivations of RBP-ATGP 

In order for ATGP to be processed band by band a key issue is to implement the 

succession of orthogonal projection progressively band by band. Let 
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 pl
T

pl UU  in (3.2) yields 
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3.3 Detailed RBP-ATGP Algorithm 

According to Eq. (3.6), 


pl
PU  in (2.1) carried out by ATGP can be updated by 
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 pl
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without re-calculating 
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 in (2.5) can be updated by (3.8) via p

T

p pl
P tt U



 )1(
. By 

virtue of (3.8) a recursive band processing of ATGP (RBP-ATGP) can be derived as follows. 

Recursive Band Processing of ATGP (RBP-ATGP) Algorithm 

Outer Loop indexed by l from VD to L 

Inner Loop indexed by p from 1 to VD 

1. Initial condition:  
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Let pl   to avoid the issue of matrix singularity. Find an initial target pixel vector 
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PT

 via (3.8) over all data sample 

vectors, 
 N

il i
1

)(


r
. This can be done by the following 

a. Initial conditions: Let 
  )()(max iPi l

T

l
p
l pl

rr U





 and 
)()( il

l
p rt 

. Set i =2. 

b. At the i
th
 iteration, calculate 

  )()( iPi l
T

l pl
rr U



  

c. If 
  p

ll
T

l iPi
pl

max)()( 


rr U

, then 
  )()(max iPi l

T
l

p
l pl

rr U





 and 
)()( il

l
p rt 

. 

Otherwise continue. 

d. If  i < N , then 1 ii  and go step 1.b. Otherwise, the algorithm is 

terminated and  
)( p

lt
is already found. 

3. Let 1 ll  and use (3.5) and (3.6) to update 
#

plU
 and 



pl
PU

via previously 

calculated 
#

)1( pl U
 and 



 pl
P

)1(U
. 

4. End (Inner Loop) 

Go to step 2 until l = L. 

End (Outer Loop) 

From the above designed recursive algorithm RBP-ATGP can generate an LL  target 

matrix, TM denoted by 
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                                  (3.9) 

with 
)(l

pt
 being the p

th
 target generated by ATGP using the first l bands as shown in Fig. 3.1 

where x and y axes denote the number of bands, nB, used to perform ATGP and sp is the p
th
 

target generated by ATGP. So, when ATGP uses all full bands p
L

p tt )(

 is the p
th
 target as it 

was originally designed in (Chang, 2003). That is, ATGP generates a set of target signal 

vectors 
 p

j

L
j 1

)(


t

 which can be arranged as a target vector, TV = V
target
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 )()(
2

)(
1

ATGP ,,,TV L
p

LL
tttV 

                                                                (3.10) 

corresponding to the last L
th
 column in M

ATGP
 in Fig. 3.1. 

 

Figure 3.1. L2 target pixels,  LL

lp

l

p

,

1,1 
t  generated by RBP-ATGP 

It is the M
target

 in (3.9) generated by RBP-ATGP distinguishes itself from the target vector 

V
ATGP

 in (3.10) generated by ATGP. This is because for each j target ATGP generates only 

one single target, which is 
)(L

jt
, compared to PBP-ATGP which can generate at most L 

different targets,    )()2()1(

1

)( ,,, L

jjj

L

l

l

j tttt 


  where 
)(i

jt
 may not be same as 

)(k
jt

 if ki   for 

each j. 

3.4 Experiments 

3.4.1 Synthetic Data 

A. Synthetic TI Data Set 

Fig. 3.2 shows progressive detection profiles of these five mineral signatures, A,B,C,K,M 

for TI where x, y and z axes denote found signatures, the number of the first bands being used 

for data processing, denoted nl and RBP-ATGP detected abundance fractions respectively. As 

shown in Fig. 3.2 the signatures s1, s2, s3, s4 and s5 in x-axis are the first five targets found by 

RBP-ATGP and the five mineral signatures, A,B,C,K,M are represented by the panel pixels, 

A(1,1), K(1,1), M(1,1), B(1,1) and C(1,1) correspond to the first panel pixel of the five 44

panels in five rows, each of which is located at the upper left corner in each row in the first 

column in Fig. 2.2. 
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Figure 3.2. 3D plot of detection progressive maps of five signatures versus nl for TI 

Fig. 3.3 also shows five RBP-ATGP found target maps using different numbers of bands 

starting with nl = 6 in Fig. 3.3 (a) progressively increasing to nl =15 in Fig. 3.3 (b), nl = 28 in 

Fig. 3.3 (c), nl =170 in Fig. 3.3 (d) and finally reaching the full bands, nl =189 in Fig. 3.3 (e), 

each of which shows the targets found in particular transition bands specified by Fig. 3.2. 

More specifically, the bands underneath the figures in Fig. 3.3 were those actually picked up 

panel pixels where the red crosses indicate ground truth pixels and triangles highlight the 

targets found in the current band with the numbers next to the triangles indicating the order of 

the targets being found. Also, the targets found in the previous bands are also marked by the 

magenta color. 
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                                         (d) 1st 170 bands                                 (e) 1st 189 bands 

Figure 3.3. Progressive target detection maps by RBP-ATGP with different numbers of processed 

bands: (a) nl = 6 (b) nl = 15 (c) nl = 28 (d) nl = 170 (e) nl = 189 

Table 3.1 summarizes 6 target pixels found by RBP-ATGP when nl varies from 6 bands, 

15 bands, 28 bands, 170 bands to full 189 bands, to extract panel pixels corresponding to five 

mineral signatures, A, B, C, K and M. The panel pixels )(l
jt  in the 2

nd
 column of the table 

were identified as the j
th
 target among the 6 target pixels found by ATGP using the first l 

bands. The value of j indicates the j
th
 order of the target found by ATGP when the particular 

l
th
 band was the new band added to process ATGP. 

Table 3.1. Summary of panel pixels being identified by RBP-ATGP versus nl for TI 

nl Panel pixels found by RBP-ATGP 

6 )6(

1
K t , 

)6(

2
A t  

15 )15(

1
K t , 

)15(

2
M t  

28 )28(

1
A t , 

)28(

2
K t ,

)28(

3
B t  

170, 189 )170(

1
M t ,

)170(

2
A t ,

)170(

3
B t ,

)170(

4
K t ,

)170(

5
C t  

Table 3.2 also tabulates all panel pixels that were found by RBP-ATGP corresponding to 

the five mineral signatures with using the minimal nl where the value of the subscript “j“ in 

)(l
jt  listed in the 3

rd
 column is its order appearing in the entire sequence of RBP-ATGP-

generated target pixels and the order of the five panel pixels to be found by RBP-ATGP in the 

4
th
 column by their particular bands where order of the signature found among 6 ATGP-found 

targets when the total number of bands up to the particular band were being used to process 

ATGP. 

For example, the panel pixel B(1,1) found to be the 3
rd

 ATGP target in Fig. 3.3(c), 

)28(
3B t  when nl = 28 was used. But if we include the previous RBP-ATGP generated targets 

found by using the number pf processed bands, nl < 28, the panel pixel B(1,1) is actually 

found as the 50
th
 target by RBP-ATGP, i.e., )28(

50B t . Similarly, C(1,1) was picked up as the 

1

2

3

4

5

6
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3
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5
th
 target by RBP-ATGP in Fig. 3.3(d) when the minimal nl =170, but it was actually found as 

141
st
 ATGP target by counting all previous generated RBP-ATGP targets. 

Table 3.2. Summary of minimal nl to identify signatures and their orders found in their particular 

bands for TI 

Signatures found by 

RBP-ATGP 

Minimal nl 

identifying signatures 

Order of signatures found 

by RBP-ATGP  

Order of signatures found using 

bands up to its particular band 

)6(

2
A t  6 2 2 

)28(

50
B t  28 50 3 

)170(

141
C t  170 141 5 

)6(

1
K t  6 1 1 

)15(

27
M t  15 27 2 

As noted, the nl is defined as the number of l bands used to process ATGP where these l 

bands starts with the 1
st
 band and ends with the l

th
 band and the “l” is used to as an index to 

track the l
th
 band. So, if two different targets, )(l

jt  and )(m
kt  with nl, nm, used to process ATGP 

then these targets will be first ranked by nl. If l < m, then )(l
jt  is more significant than )(m

kt  

because )(l
jt  can be found by ATGP with smaller nl than that used to extract )(m

kt . If both )(l
jt  

and )(m
kt  are found with the same nl = nm and kj  , then )(l

jt  will be ranked higher than )(m
kt  

since )(l
jt  is found ahead of )(l

kt . Therefore the target set,  )(l
pt  found by RBP-ATGP can be 

ranked by their significance according to two indices, superscript “l” and the subscript “p”. 

More specifically, the value of “l” is first to rank targets. If the values of l are the same, the 

subscript “p” will be then used to prioritize their orders. In other words, when two targets 

found by the same “nl” and their significance should be ranked by their found order, “p”. 

For a given nl ATGP is implemented to find p targets. In this case, for two targets )(l
jt  and 

)(l
kt  with kj   found by ATGP using the same nl it implies that )(l

jt  is found prior to )(m
kt . 

This indicates that )(l
jt  is more significant than )(m

kt . So, for example, according to Table 4.1 

the two mineral signatures A and K were identified by )6(
1

(6)
2 )1,1(K)1,1(A tt   and both A 

and K were found by RBP-ATGP using the same nl = 6. Now if “nl” is increased from 6 to 

15, then the two mineral signatures K and M were identified by )15(
2

(15)
1 )1,1(M,)1,1(K tt   

where K once again was picked up by ATGP using the first 15 bands and M was the first time 

to be found by ATGP as the 2
nd

 ATGP target. In this case, the minimal nl for A, K and M 

were 6, 6 and 15 respectively, but their found orders by RBP-ATGP were actually 1, 2 and 27 

as tabulated in Table 3.2. Tables 3.1 and 3.2 offer such advantage of RBP-ATGP over ATGP 



25 

 

in the sense that RBP-ATGP keeps track of the targets it detects and also record these targets 

in its data base. 

B. Synthetic TE Data Set 

Same experiments conducted for TI were also performed for TE. Fig. 3.4 shows 

progressive detection profiles of these five mineral signatures, A, B, C, K, M for TE where x, 

y and z axes denote found signatures, nl and RBP-ATGP detected abundance fractions 

respectively. Similar to Fig. 3.2, Fig. 3.4 also shows the five mineral signatures, A, B, C, K, 

M were found by the panel pixels, A(1,1), K(1,1), M(1,1), B(1,1) and C(1,1) correspond to 

the first panel pixel of the five 44 panels in five rows, each of which is located at the upper 

left corner in each row in the first column in Fig. 2.2. 

 

Figure 3.4. 3D plot of detection progressive maps of five signatures versus nl for TE 

   

                   (a)  1st 6 bands                                   (b) 1st 15 bands                                  (c) 1st 22 bands 
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                                              (d) 1st 141 bands                                 (e) 1st 189 bands 

Figure 3.5. Progressive target detection maps by RBP-ATGP with different numbers of processed 

bands: (a) nl = 6 (b) nl = 15 (c) nl = 22 (d) nl = 141 (e) nl = 189 

Fig. 3.5 further shows five RBP-ATGP found target maps using different sets of bands 

starting with nl = 6 in Fig. 3.5(a) progressively increasing to nl = 15 in Fig. 3.5(b), nl = 22 in 

Fig. 3.5(c), nl = 141 in Fig. 3.5(d) and finally reaching the full bands, nl = 189 in Fig. 3.5(e) 

where each detection map shows the targets found in the transition bands in 4 ranges in Fig. 

3.5(b). Specifically, the bands underneath the figures were those actually picked up panel 

pixels where the red crosses indicate ground truth pixels and triangles highlight the targets 

found in the current band with the numbers next to the triangles indicating the order of the 

targets being found. The targets found in the previous bands are also marked by the magenta 

color. 

According to Fig. 3.5 Table 3.3 summarizes 6 target pixels found by RBP-ATGP as nl 

varies where the number of processed bands starting from the nl = 6, 15, 28, 170 to full 189 

bands, to extract panel pixels corresponding to five panel signatures. The panel pixels )(l
jt  in 

the 2
nd

 column of the table are identified as the j
th
 target among these 6 target pixels with the 

first l bands being used to process ATGP. 

Table 3.3. Summary of panel pixels being identified by RBP-ATGP nl for TE 

nl Panel pixels found by RBP-ATGP 

6 )6(

1
K t , 

)6(

2
A t  

15 )15(

1
K t , 

)15(

2
M t  

22 )22(

1
A t , 

)22(

2
K t ,

)22(

4
B t  

141, 189 )141(

1
M t ,

)141(

2
A t ,

)141(

3
B t ,

)141(

4
K t ,

)141(

5
C t  

Table 3.4 also tabulates all panel pixels that were found by RBP-ATGP corresponding to 

the five mineral signatures with using the minimal nl where the value of the subscript j in )(l
jt  

listed in the 3
rd

 column is its order appearing in the entire sequence of RBP-ATGP-generated 

target pixels and the order of the five panel pixels to be found by RBP-ATGP in the 4
th
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column with the order of the signature found among 6 ATGP-found targets as the total 

number of bands up to the particular band were being used to process ATGP. 

Table 3.4. Summary of minimal nl to identify signatures and their orders found in their particular 

bands for TE 

Signatures found by 

RBP-ATGP 

Minimal nl 

identifying signatures 

Order of signatures found 

by RBP-ATGP  

Order of signatures found using 

bands up to its particular band 

)6(

2
A t  6 2 2 

)22(

35
B t  22 35 4 

)141(

108
C t  141 108 5 

)6(

1
K t  6 1 1 

)15(

24
M t  15 24 2 

For example, the panel pixel B(1,1) found to be the 4
th
 ATGP target in Fig. 3.5(c), )22(

4B t  

when nl = 22 was used. But if we include the previous RBP-ATGP generated targets found by 

using the processed bands, nl < 22, the panel pixel B(1,1) is actually found as the 35
th
 target 

by RBP-ATGP, i.e., )22(
35B t . Similarly, C(1,1) was picked up as the 5

th
 target by RBP-

ATGP in Fig. 3.5(d) when the minimal nl =141, but it was actually found as 108
th
 ATGP 

target, )141(
108C t  by counting all previous generated ATGP targets. 

3.4.2 Real Data (HYDICE Scene) 

Fig. 3.6 also plots 3D detected abundance fractions by PBP-ATGP in z-axis where x and y 

axes denote the number of bands from 1 to 169 being processed and 20 panel pixels including 

19 R panel pixels plus the yellow panel pixel, p212 in Fig. 2.4(b). There are a total of 6 R-

panel pixels, p11, p221, p311, p312, p411, p521 and 1 Y-panel pixel, p212 being identified during the 

entire RBP-ATGP process. Table 3.5 summarizes the number of bands processed that a 

signature first identified and the order of this signature found in the particular band for the 7 

ground truth pixels identified by RBP-ATGP. 
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Figure 3.6. 3D detection map plot of the 5th to the 18th targets versus the number of bands being 

processed 

 

Table 3.5. Summary of minimal number of bands processed to identify signatures and order of 

signatures to be found in particular bands 

Signatures found by 

RBP-ATGP 

Minimal nl identifying 

signatures 

Order of signatures to 

be found 

Order of signatures found in the 

particular band 

)48(

5611
p t

 

48 56 16 

)27(

37221
p t

 

27 37 5 

)26(

35212
p t

 

26 35 12 

)48(

55311
p t

 

48 55 8 

)46(

53312
p t

 

46 53 17 

)97(

98411
p t

 

97 98 18 

)18(

5521
p t

 

18 5 5 

The cyan arrow in the graph indicates a ground truth pixel is first identified. To compare 

the results in Fig. 3.6, Fig. 3.7 plots 18 targets generated by ATGP using full bands with the 

number of targets to be generated, p = 18 determined by the work (Chang, 2003) where the 

red crosses indicate the spatial locations of the 19 R panel pixels, the yellow cross highlights 

the location of the Y-panel pixel and the cyan upper triangles show the targets found by 

ATGP. As we can see, only 5 R panel pixels in five different rows were identified during this 
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process. That is, 
)169(

611p t , 
)169(

17212p t , 
)169(

5312p t , 
)169(

18411p t  and 
)169(

3521p t . It should 

be noted that the target pixel found by 
)169(

17t  is the yellow panel pixel p212 not the ground truth 

R panel pixel p221. 

 

Figure 3.7. ATGP Results with p = 18 

As shown in Fig. 3.6 there were 6 R panel pixels, p11, p311, p312, p411, p42, p521 and one 

yellow panel pixel p212 found by RBP-ATGP. In order to further dictate the targets found by 

RBP-ATGP in the transition bands Fig. 3.8 shows the targets picked up by transition bands 

where the red cross indicates the spatial location of the 19 R-panel pixels, the yellow cross 

denotes the location of the Y-panel pixel p212, the cyan upper triangles highlight the targets 

found in the current band, and the numbers next to the triangles reflect the order of the targets 

being found by RBP-ATGP. In addition, the bands underneath each of figures were the one 

actually to pick up panel pixels. The targets found in the previous bands are also marked by 

magenta circles. 

   

                                 (a)                                                       (b)                                                       (c)  
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                                 (d)                                                       (e)                                                      (f) 

 

(g) 

Figure 3.8. RBP-ATGP Target Detection Results with different number of bands processed, nl: (a) 

nl = 18 (b) nl = 26 (c) nl = 27 (d) nl = 46 (e) nl = 48 (f) nl = 97 (g) nl = 169 

As shown in Fig. 3.8, the 5 panel pixels in Fig. 3.7 can be found by RBP-ATGP using the 

first 97 bands. Comparing the results available in (Chang, 2003) two more panel pixels, p212 

and p42 were found in Fig. 3.8(f) which showed the advantage of using RBP-ATGP. 

Theoretically speaking, there would be the maximal number of targets, Lp  that can be 

found by RBP-ATGP band by band progressively. That is, for each different band ATGP can 

generate a different target. However, practically, the size of the ATGP-generated target set is 

smaller than Lp , since some of the targets may be picked up by ATGP more than once. 

For example, for the HYDICE data set, p = 18, 3042 Lp . In reality the number of distinct 

targets found by RBP-ATGP was 98 which was much smaller than 3042. In the meantime, 

the number of targets found by RBP-ATGP tended to be stabilized as more bands were added 

into the progressive process and the generated RBP-ATGP targets stopped varying after 97 

bands were processed as shown in Fig. 3.9. 
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Figure 3.9. The plot of the number of unique signatures found by RBP-ATGP versus number of 

processed bands 

Furthermore, Fig. 3.10 demonstrates a 3 dimensional histogram to show how frequently a 

particular pixel is picked up by RBP-ATGP as a target. The x-axis and y-axis correspond to 

the columns and rows of the HYDICE scene. The z-axis indicates the number of times a 

given pixel was detected as a target by RBP-ATGP after processing all bands. So, for 

HYDICE scene with 169 bands, the maximum value for z-axis is 169. As shown in the figure, 

the magenta arrows indicate the ground truth panel pixel. 

 

Figure 3.10. 3D Histogram of the pixels picked up by RBP-ATGP as targets 

3.5 Computational Complexity 

In order to evaluate computational efficiency of RBP-ATGP in data processing time, we 

calculate the computing time of RBP-ATGP using the recursive equations specified by (3.8) 
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to update the results and PBP-ATGP without using recursive equations but rather repeatedly 

implementing (2.5) with U augmented band by band as every time the l
th
 band is a new band 

coming in. Both RBP-ATGP and PBP-ATGP were run and executed in MATLAB R2012B 

with an Intel Core i7 – 3770 running at 3.40 GHz with 16GB of RAM on three data sets ten 

times to produce an average computing time. Fig. 3.11 (a-c) plots computing times required 

for RBP-ATGP and PBP-ATGP without using recursive equations (3.8) to process TI, TE 

and HYDICE data respectively where the y-axis is computer processing time in seconds and 

x-axis is the l
th
 band as new band coming in. As can be seen from these figures the processing 

time required for RBP-ATGP and PBP-ATGP to run each new individual band is nearly 

linear where RBP-ATGP required less time than PBP-ATGP did. It is also worth noting that 

the fluctuations of plots were resulting from numerical computations by computer 

implementation. 

   

                              (a) TI                                                 (b) TE                                          (c) HYDICE 

Figure 3.11. Computing time versus the lth band by RBP-ATGP (a) TI (b) TE (c) HYDICE 

For a fair comparison Fig. 3.12(a-c) further plots computing time versus the number of 

processed bands, nl, (i.e., the number of the first l bands to be used for processing) required 

for RBP-ATGP with using recursive equations (3.8) and PBP-ATGP without using recursive 

equation (3.8) for TI, TE and HYDICE data respectively. 

   

                             (a) TI                                                  (b) TE                                           (c) HYDICE 

Figure 3.12. Computing time versus nl by ATGP and RBP-ATGP (a) TI (b) TE (c) HYDICE 
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It should be noted that the plots of RBP-ATGP is the accumulative computer processing 

time by RBP-ATGP, which is obtained by summing all the computing times in Fig. 3.11 up 

to the l
th
 band. As we can see RBP-ATGP ran faster than PBP-ATGP which was 

implemented without using recursive equations (3.8). In the latter case, PBP-ATGP 

repeatedly used (2.5) to directly calculate band varying 


 pl
PU  when each new band, i.e., the l

th
 

band came in. 

Table 3.6. Comparison of computing time in seconds required by RBP-ATGP and PBP-ATGP 

 TI (sec) TE (sec) HYDICE (sec) 

ATGP 0.5794 0.5895 0.1854 

RBP-ATGP 43.4537 43.4818 10.0628 

PBP-ATGP 61.5242 60.0149 13.5124 

Table 3.6 calculated the final computer times required for RBP-ATGP and PBP-ATGP to 

complete the entire data sets where RBP-ATGP achieved around 30% efficiency compared to 

PBP-ATGP. However, we believe that this saving would be tremendous and pronounced 

once RBP-ATGP is implemented in hardware due to its recursive structure. 

3.6 GUI Design 

A graphical user interface (GUI) with a screenshot shown in Fig. 3.13 was developed 

using Matlab’s guide to aid algorithm performance analysis. The GUI allows the user to load 

different data sources and also to choose different numbers of signatures for analysis. The 

three images displayed on top of the windows show a color image of the scene, a gray scale 

image of the current band being processed, and the result of subpixel detection after the 

current band is processed. At the bottom a window shows changes of the detected abundance 

fraction values in real time with the cyan upward arrow at the top to highlight the results of 

current band being processed. Once the data is loaded, the users can start processing by 

clicking the start button. When each band is received at each iteration RBP-ATGP processes 

this new received to produce results with the current band and the resulting image updated to 

allow the users to observe the changes in target detection by RBP-ATGP. 
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Figure 3.13. GUI interface for RBP-ATGP 

3.7 Conclusion 

ATGP is an unsupervised hyperspectral target detection which has been shown to be very 

effective in many applications such as subpixel target detection, endmembers, anomalies, 

man-made targets, etc. Its field programmable gate array (FPGA) implementation were also 

studied (Chang, 2003). Interestingly, the idea of implementing ATGP according to BSQ band 

by band has not been investigated in the past. This paper develops such an approach, called 

RBP-ATGP which allows image analysts to dictate ATGP-detected targets from band to band 

to capture the effect of inter-band correlation on progressive changes in target detection by 

ATGP. Eventually, RBP-ATGP produces a set of L
2
 targets which provides more target 

information band to band compared to L targets for each ATGP-generated by ATGP using 

entire L bands. This additional piece of information is significant to find weak targets which 

may be dominated by ATGP-generated target using full bands. 
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Chapter 4: Recursive Band Processing of Pixel Purity Index 

(RBP-PPI) 

4.1 Introduction 

Pixel purity index (PPI) has been widely studied for finding endmembers (Chang, 2003; 

Chang 2013). However, its utility has been shown more than endmemmber finding, for 

example, finding seed training samples for multispectral image classification in (Chen, Lin, 

Chen, Wen, Chen, Ouyang and Chang, 2013), finding feasible sets for potential endmember 

candidates (Xiong et al., 2011). This chapter presents a new application of PPI in band 

processing, which is called recursive band processing of PPI (RBP-PPI). The idea of RBP-

PPI is derived from Band SeQuential (BSQ) data acquisition format where band is acquired 

band by band. Implementing RBP-PPI is much harder than it looks, since there are 4 

variables involved in the process, that are the number of bands processed, the number of 

pixels processed, the number of skewers required and the proper threshold for PPI Count 

value. The key of RBP-PPI is how to calculate PPI counts for data sample vectors recursively 

band by band. However, this is very closely related to the number of skewers, K to be used by 

PPI. Technically speaking, a skewer is a randomly generated unit vector which points out a 

direction which data samples can be aligned with. How to effectively determine an 

appropriate value for K still remains unsolved and is a very challenging issue needed to be 

addressed although there was one developed in (Chang and Plaza, 2006). Interestingly, when 

it comes to RBP-PPI, how to process skewers band by band become a major issue, which is 

not encountered in full-band processed PPI. This is due to the fact that skewers not only are 

changing band by band but also need to be normalized to unity again once a new band is fed 

in. In order to address this issue one approach is developed in this dissertation, that is using a 

fix set of skewers for all bands and skewers are only updated by its most recent band 

information provided by the incoming band. 

Some benefits can be gained from RBP-PPI process. First of all, progressive changes in 

PPI counts of data samples as more bands are included for data processing can be captured 

from RBP-PPI process. This allows image analysts to keep track of significance of data 

samples. Second is to help find crucial bands for data processing according to progressive 
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changes in PPI counts. Intuitively, RBP-PPI can be considered as a band-to-band slow motion 

version of PPI which dictates slow varying changes in spectral variation that cannot be 

provided by PPI which is basically a one-shot operation of full band data processing. 

Moreover, RBP-PPI is designed for BSQ data acquisition format, data process can be done 

with limited bandwidth. 

4.2 Derivation RBP-PPI 

Let L = total number of bands, N = the total number of data samples, )(lir  = the i
th
 image 

pixel acquired by the l
th
 spectral band where Ni 1  and Ll 1 . Then the set of all 

data sample is denoted by  N

ii l
1

)(


r . )(lir  can be represented by: 

 Til

T

i

T

illiii rlrrrl ),1(),,()( )1(1   rr 
                                              (4.1) 

Also suppose that there is a given set of K skewers denoted by  K

kk l
1

)(


s : 

 Tkl

T

k

T

kllkkk slsssl ),1(),,()( )1(1   ss 
                                           (4.2) 

Then, all the data sample vectors are projected onto )(lks , the projected value can be 

calculated by: 

  Tkl

T
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The extrema set can be defined as 

   ))(ˆ)((minarg))(ˆ)((maxarg))(ˆ( 1;1; lllllS kiNikiNikextrema ii
srsrs rr        (4.4) 

Then, the indication function can be expressed by 


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
otherwise  ;0
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                                      (4.5) 

4.3 Detailed RBP-PPI Algorithm 

As noted in the previous sections, using a fix set of skewers is proposed to address the 

issue that skewers not only are changing band by band but also need to be normalized to unity 

once a new band is fed in, that is skewers are only updated by its most recent band 

information provided by the incoming band. In this section, various versions of RBP-PPI 

algorithms using a fix set of skewers are introduced. For the first band l = 1, a set of K 

skewers,  K

kk 1
)1(


skewer  is randomly generated, where )()1( 1kk sskewer is actually a 
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scalar skl. These K scalar skewers will be then used to update skewers across all bands. In 

other words, when the band number is increased to l, the K-skewer set used for l is 

 K

kk l
1

)(


skewer  where each skewerk(l) is actually made up by 

 Tkl

T

kk sll ),1()(  skewerskewer . More specifically, once skewer set is generated at band 

one, l = 1, the locations of skewers are fixed and used for all following bands by adding the 

new band information  K

kkls
1

 provided by the incoming band, the l
th
 band for 

 K

kk l
1

)(


skewer . In the later discussions, a general version of RBP-PPI is proposed. 

However, RBP-PPI is neither a causal nor a real time process since it requires to find maxl(k) 

and minl(k) via (4.3 – 4.4) for all the data samples  N

ii l
1

)(


r . Under such circumstances, two 

versions of implementing RBP-PPI are further proposed. There are three loops for these two 

newly proposed algorithms, that are the outer loop, the middle loop and the inner loop. The 

outer loop for both of these two versions of algorithms is the total number of bands. While 

one version implements skewers in the middle loop while data samples in the inner loop the 

resulting PPI is called RBP-Progressive-PPI (RBP-P-PPI). On the other hand, swapping the 

inner and middle loops results in RBP-Causal-PPI (RBP-C-PPI). 

 

Algorithm for Implementing General RBP-PPI Using A Fix Set of Skewers 

 Initialization: 
0))(()(

PPI lN k
r

 

 Loop from l = 1 to L 

 Input the skewer set,  K

kk l
1

)(


s  by adding the l
th
 band data information. 

  K

kk l
1

)(ˆ


s  are obtained by normalizing 
 K

kk l
1

)(


s
 to unit random vectors. 

 Calculate the projected value according to equation (4.3), then identify the extrema 

set ))(ˆ( lS kextrema s  based on eq. (4.4). 

A. If 0))((1  lI l

S r  and 0))(( lI l

S r , then 0))(()(

PPI lN k r . Otherwise, continue. 
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PPI lN k r . Otherwise, continue. 
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S r , then 0))(()(

PPI lN k r . Otherwise, continue. 

D. If 1))((1  lI l

S r  and 1))(( lI l

S r , then 0))(()(

PPI lN k r . Otherwise, continue. 

 Calculate  


K

k i

k

i lNlN
1

)(

PPIPPI )(())(( rr . 

 Let 1 ll  until l = L. 
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 End loop. 

4.4 Experiments 

4.4.1 Synthetic Data 

A. TI Data Set 

The image scene from Figure 2.3(a) was processed by proposed RBP-PPI. Fig. 4.1 shows 

the plots of PPI count value versus the different number of bands processed for the 5 mineral 

signatures A, B, C, K, M in TI scene, where x-axis denotes the number of bands is being 

processed, y-axis indicates the different signatures, and z-axis presents the PPI-count value 

respectively. In this figure, 500 skewers are generated and utilized in the experiments. Since 

all of the 20 pure pixels for each signature on the first two columns can be found 

simultaneously, only the top left pixels on the first column for each signature are used for 

demonstrations and marked as A(1, 1), B(1, 1), C(1, 1), K(1, 1), M(1, 1). As shown in Fig. 

4.1, the magenta arrow states the first band that a particular signature is identified as 

endmember candidate. For instance, signature B(1, 1) is first identified as endmember 

candidate with 27 bands collected and processed. 

 

Figure 4.1. 3D plots of PPI counts versus the number of processed bands for the 5 different 

signatures 

Fig. 4.2 shows the spatial location of the endmember candidates identified by RBP-PPI 

with different number of bands collected and processed. Fig. 4.2(a) starts with only 1 band, 

then progressively increases to 3 bands in Fig. 4.2(b), 10 bands in Fig. 4.2(c), 27 bands in Fig. 

A(1, 1)

B(1, 1)

C(1, 1)

K(1, 1)

M(1, 1)

175

150

125

100

75

50

25

0

0

100

200

300

400

500

600

5 Signatures

M(1, 1)  E
500
(10)

K(1, 1)  E
500
(1)

C(1, 1)  E
500
(1)

B(1, 1)  E
500
(27)

Num
ber of Processed Bands

A(1, 1)  E
500
(3)

P
P

I 
C

o
u

n
t 

V
a
lu

e



39 

 

4.2(d), and reaches the full bands 189 bands in Fig. 4.2(e) in the end, each of which shows the 

endmember candidates finding results by RBP-PPI in the particular transition bands specified 

by Fig. 4.1. In Fig. 4.2, the red cross indicates the ground truth pixels in TI scene, the cyan 

upper triangle highlights the endmember candidates found in the current band, and the 

endmember candidates identified in the previous bands are marked by green circles as well. 

   

               (a) 1 band                                           (b) 3 bands                                         (c) 10 bands 

  

                                            (d) 27 bands                             (e) 189 bands (full bands) 

Figure 4.2. Endmember candidates finding results by RBP-PPI with different number of bands 

collected and processed: (a) 1 band (b) 3 bands (c) 10 bands (d) 27 bands (e) 189 bands (full bands) 

Table 4.1 summarizes the 5 mineral signatures A, B, C, K, M among the endmember 

candidates identified by RBP-PPI when nl varies from 1 band, 3 bands, 10 bands, 27 bands to 

full bands 189 bands. As demonstrated in the table, )(l

N skewers
E  in the 2

nd
 column was identified 

using 
skewersN  skewer sets with first l bands collected and processed. 

Table 4.1. Summary of the mineral signatures being identified by RBP-PPI versus nl for TI scene 

nl Signatures identified by RBP-PPI 

1 
)1(

500)1,1C( E , )1(

500)1,1K( E  

3 
)3(

500)1,1A( E  

10 
)10(

500)1,1M( E  

27 
)27(

500)1,1B( E  
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189 
)189(

500)1,1A( E , )189(

500)1,1B( E , )189(

500)1,1C( E , )189(

500)1,1K( E , )189(

500)1,1M( E  

Furthermore, Fig. 4.3(a) displays the endmember candidates identified by PPI for TI scene 

using 500 skewers with all the bands received and processed. While the same results can be 

achieved with only 27 bands collected and processed with RBP-PPI. Moreover, Fig. 4.3(b) 

plots the order of each mineral signature A, B, C, K and M been identified as endmember 

candidates versus the number of bands processed. It is clear to see that with only 27 bands 

available, all the 5 signatures have been found. 

  

                                                  (a)                                                                             (b) 

Figure 4.3. Comparative study between PPI and RBP-PPI (a) PPI identified signatures (b) The 

order of signatures identified by RBP-PPI 

As stated in the previous sections, 500 skewers are generated and used in the RBP-PPI 

process for TI scene. However, choosing a proper number of skewers remains an unsolved 

problem in the literature. RBP-P-PPI is further proposed when it comes to address the issue 

that how many skewers need to be generated for process. Fig. 4.4 plots the variation of PPI 

Count versus the number of processed bands as the number of skewers increases from 50 to 

500 with step size 50 for the 5 mineral signatures, where x-axis denotes the number of bands 

collected and processed, y-axis displays the number of skewers generated for RBP-P-PPI 

process, and z-axis presents the value of PPI Count correspondingly. 
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(a) A(1, 1) 

 

(b) B(1, 1) 
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(c) C(1, 1) 

 

(d) K(1, 1) 
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(e) M(1, 1) 

Figure 4.4. PPI Count variations versus the number of processed bands and the number of skewers 

for each mineral signatures (a) A(1, 1) (b) B(1, 1) (c) C(1, 1) (d) K(1, 1) (e) M(1, 1) 

As shown in the figure, the height of each bar represents the value of PPI Count for a 

particular combination of the number of processed bands and the number of skewers 

generated for process. The magenta upward arrow indicates that one material begins to be 

identified as endmember candidates in the band that it first identified as an endmember 

candidate in RBP-PPI. For instance, signature B(1, 1) is first identified as endmember 

candidates with 27 bands available in RBP-PPI with 500 skewers. In the RBP-P-PPI process, 

it can be identified as endmember candidates with only 300 skewers generated. The less 

skewers generated in the process could reduce the computational complexity. 
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(a) A(1, 1) 

 

(b) B(1, 1) 

0
2000

4000
6000

8000
10000

12000
14000

16000
18000

20000
22000

24000
26000

28000
30000

32000
34000

36000
38000

40000

175

150

125

100

75

50

25

0

0

50

100

150

Number of Processed Pixels

N
um

ber o
f P

ro
cessed

 B
an

d
s

3

P
P

I 
C

o
u

n
t 

V
a

lu
e

0
2000

4000
6000

8000
10000

12000
14000

16000
18000

20000
22000

24000
26000

28000
30000

32000
34000

36000
38000

40000

175

150

125

100

75

50

25

0

0

5

10

15

Number of Processed Pixels

N
um

ber o
f P

ro
cessed

 B
an

d
s

27

P
P

I 
C

o
u

n
t 

V
a

lu
e



45 

 

 

(c) C(1, 1) 

 

(d) K(1, 1) 
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(e) M(1, 1) 

Figure 4.5. PPI Count variations versus the number of processed bands and the number of 

processed pixels for each mineral signatures (a) A(1, 1) (b) B(1, 1) (c) C(1, 1) (d) K(1, 1) (e) M(1, 

1) 

RBP-C-PPI is further proposed to address the issue that partial pixels are available in the 

data collection process. Fig. 4.5 plots the changes of PPI Count with different number of 

processed bands as the number of processed pixels increases from 2,000 to 40,000 with step 

size 2,000 for the 5 mineral signatures, where x-axis denotes the number of bands collected 

and processed, y-axis displays the number of pixels included in the process, and z-axis 

presents the value of PPI Count correspondingly. As shown in the Fig. 4.5, the height of each 

bar represents the value of PPI Count for a particular combination of the number of processed 

bands and the number of processed bands. The magenta upward arrow indicates that one 

material begins to be identified as endmember candidates in the band that it first identified as 

an endmember candidate in RBP-PPI. For instance, signature B(1, 1) is first identified as 

endmember candidates with 27 bands available in RBP-PPI with 500 skewers. In the RBP-C-

PPI process, it can be identified as endmember candidates with 14,000 pixels collected. 

Moreover, Fig. 4.6 shows a RBP-C-PPI process with the number of processed pixels 

range from 4,000 to 40,000 with step size 4,000 in band 1. As displayed in the figure, the red 

cross indicates the ground truth location of the TI scene, the cyan upper triangle highlights 

the ground truth pixels that been identified as endmember candidates. The white area in the 

scene indicates the pixels in this area are not available yet. The beauty of RBP-C-PPI process 

is to extract the moving targets in the scene. For instance, sub-pixel material A on the third 
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column can be identified as endmember candidates with 8,000 to 24,000 pixels available, and 

it vanished after that. RBP-P-PPI catches this characteristic properly. 

   

            (a) 4,000 pixels                                   (b) 8,000 pixels                                  (c) 12,000 pixels 

   

           (d) 16,000 pixels                                  (e) 20,000 pixels                                (f) 24,000 pixels 

   

           (g) 28,000 pixels                                (h) 32,000 pixels                                 (i) 36,000 pixels 

 

(j) 40,000 pixels (full pixels) 
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Figure 4.6. An example of RBP-C-PPI process with different number of pixels processed in band 1. 

(a) 4,000 pixels (b) 8,000 pixels (c) 12,000 pixels (d) 16,000 pixels (e) 20,000 pixels (f) 24,000 

pixels (g) 28,000 pixels (h) 32,000 pixels (i) 36,000 pixels (j) 40,000 pixels (full pixels) 

B. Synthetic TE Data 

Fig. 4.7 shows the plots of PPI count value versus the different number of bands processed 

for the 5 mineral signatures A, B, C, K, M in TE scene, where x-axis denotes the number of 

bands is being processed, y-axis indicates the different signatures, and z-axis presents the 

PPI-count value respectively. In this figure, 500 skewers are generated and utilized in the 

experiments. Since all of the 20 pure pixels for each signature on the first two columns can be 

found simultaneously, only the top left pixels on the first column for each signature are used 

for demonstrations and marked as A(1, 1), B(1, 1), C(1, 1), K(1, 1), M(1, 1). As shown in Fig. 

4.7, the magenta arrow states the first band that a particular signature is identified as 

endmember candidate. For instance, signature B(1, 1) is first identified as endmember 

candidate with 21 bands collected and processed. 

 

Figure 4.7. 3D plots of PPI counts versus the number of processed bands for the 5 different signatures 

Fig. 4.8 shows the spatial location of the endmember candidates identified by RBP-PPI 

with different number of bands collected and processed. Fig. 4.8(a) starts with only 1 band, 

then progressively increases to 2 bands in Fig. 4.8(b), 9 bands in Fig. 4.8(c), 21 bands in Fig. 

4.8(d), 134 bands in Fig. 4.8(e), and reaches the full bands 189 bands in Fig. 4.8(f) in the end, 

each of which shows the endmember candidates finding results by RBP-PPI in the particular 

transition bands specified by Fig. 4.7. In Fig. 4.8, the red cross indicates the ground truth 

pixels in TE scene, the cyan upper triangle highlights the endmember candidates found in the 
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current band, and the endmember candidates identified in the previous bands are marked by 

green circles as well. 

   

                (a) 1 band                                          (b) 2 bands                                         (c) 9 bands 

   

              (d) 21 bands                                      (e) 134 bands                             (f) 189 bands (full bands) 

Figure 4.8. Endmember candidates finding results by RBP-PPI with different number of bands 

collected and processed: (a) 1 band (b) 2 bands (c) 9 bands (d) 21 bands (e) 134 bands (f) 189 

bands (full bands) 

Table 4.2 summarizes the 5 mineral signatures A, B, C, K, M among the endmember 

candidates identified by RBP-PPI when nl varies from 1 band, 2 bands, 9 bands, 21 bands, 

134 bands to full bands 189 bands. As demonstrated in the table, )(l

N skewers
E  in the 2

nd
 column 

was identified using 
skewersN  skewer sets with first l bands collected and processed. 

Table 4.2. Summary of the mineral signatures being identified by RBP-PPI versus nl for TE scene 

nl Signatures identified by RBP-PPI 

1 
)1(

500)1,1K( E  

2 
)2(

500)1,1A( E  

9 
)9(

500)1,1M( E  

21 
)21(

500)1,1B( E  

134 
)134(

500)1,1C( E  

189 
)189(

500)1,1A( E , )189(

500)1,1B( E , )189(

500)1,1C( E , )189(

500)1,1K( E , )189(

500)1,1M( E  
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Furthermore, Fig. 4.9(a) displays the endmember candidates identified by PPI for TE scene 

using 500 skewers with all the bands received and processed. As shown in Fig. 4.9(a), 5 

mineral signatures and 3 sub-pixel can be found as endmember candidates. However, with 

only 134 bands collected and processed all the five signatures can be found with RBP-PPI. In 

addition, 4 sub-pixel can be found as endmember candidates by apply RBP-PPI onto TE 

scene, one additional sub-pixel can be discovered comparing with the original PPI. Moreover, 

Fig. 4.9(b) plots the order of each mineral signature A, B, C, K and M been identified as 

endmember candidates versus the number of bands processed. It is clear to see that with only 

134 bands available, all the 5 signatures have been found. 

  

                                           (a)                                                                          (b) 

Figure 4.9. Comparative study between PPI and RBP-PPI (a) PPI identified signatures (b) The 

order of signatures identified by RBP-PPI 

As stated in the previous sections, 500 skewers are generated and used in the RBP-PPI 

process for TE scene. However, choosing a proper number of skewers remains an unsolved 

problem in the literature. RBP-P-PPI is further proposed when it comes to address the issue 

that how many skewers need to be generated for process. Fig. 4.10 plots the variation of PPI 

Count versus the number of processed bands as the number of skewers increases from 50 to 

500 with step size 50 for the 5 mineral signatures, where x-axis denotes the number of bands 

collected and processed, y-axis displays the number of skewers generated for RBP-P-PPI 

process, and z-axis presents the value of PPI Count correspondingly. 
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(a) A(1, 1) 

 

(b) B(1, 1) 
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(c) C(1, 1) 

 

(d) K(1, 1) 
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(e) M(1, 1) 

Figure 4.10. PPI Count variations versus the number of processed bands and the number of 

skewers for each mineral signatures (a) A(1, 1) (b) B(1, 1) (c) C(1, 1) (d) K(1, 1) (e) M(1, 1) 

As shown in the figure, the height of each bar represents the value of PPI Count for a 

particular combination of the number of processed bands and the number of skewers 

generated for process. The magenta upward arrow indicates that one material begins to be 

identified as endmember candidates in the band that it first identified as an endmember 

candidate in RBP-PPI. For instance, signature B(1, 1) is first identified as endmember 

candidates with 21 bands available in RBP-PPI with 500 skewers. In the RBP-P-PPI process, 

it can be identified as endmember candidates with only 300 skewers generated. The less 

skewers generated in the process could reduce the computational complexity. Based on our 

extensive experiments, the spectrum of material C is very similar to background, and it is 

difficult to identify. This is the reason that it is the last material be discovered and it can be 

detected with 134 bands collected and processed, which requires the largest number of 

skewers as well. 

RBP-C-PPI is further proposed to address the issue that partial pixels are available in the 

data collection process. Fig. 4.11 plots the changes of PPI Count with different number of 

processed bands as the number of processed pixels increases from 2,000 to 40,000 with step 

size 2,000 for the 5 mineral signatures in TE scene, where x-axis denotes the number of 

bands collected and processed, y-axis displays the number of pixels included in the process, 

and z-axis presents the value of PPI Count correspondingly. 
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(a) A(1, 1) 

 

(b) B(1, 1) 
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(c) C(1, 1) 

 

(d) K(1, 1) 
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(e) M(1 1) 

Figure 4.11. PPI Count variations versus the number of processed bands and the number of 

processed pixels for each mineral signatures (a) A(1, 1) (b) B(1, 1) (c) C(1, 1) (d) K(1, 1) (e) M(1, 

1) 

As shown in the Fig. 4.11, the height of each bar represents the value of PPI Count for a 

particular combination of the number of processed bands and the number of processed bands. 

The magenta upward arrow indicates that one material begins to be identified as endmember 

candidates in the band that it first identified as an endmember candidate in RBP-PPI. For 

instance, signature B(1, 1) is first identified as endmember candidates with 21 bands available 

in RBP-PPI with 500 skewers. In the RBP-C-PPI process, it can be identified as endmember 

candidates with 14,000 pixels collected. 

Moreover, Fig. 4.12 shows a RBP-C-PPI process with the number of processed pixels 

range from 4,000 to 40,000 with step size 4,000 in band 1. As displayed in the figure, the red 

cross indicates the ground truth location of the TI scene, the cyan upper triangle highlights 

the ground truth pixels that been identified as endmember candidates. The white area in the 

scene indicates the pixels in this area are not available yet. The beauty of RBP-C-PPI process 

is to extract the moving targets in the scene. For instance, sub-pixel material A on the third 

column can be identified as endmember candidates with 8,000 to 24,000 pixels available, and 

it vanished after that. RBP-P-PPI catches this characteristic properly. 
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           (a) 4,000 pixels                                   (b) 8,000 pixels                                  (c) 12,000 pixels 

   

                 (d) 16,000 pixels                                  (e) 20,000 pixels                                 (f) 24,000 pixels 

   

           (g) 28,000 pixels                                 (h) 32,000 pixels                                 (i) 36,000 pixels 

 

(j) 40,000 pixels (full pixels) 
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Figure 4.12. An example of RBP-C-PPI process with different number of pixels processed in band 

1. (a) 4,000 pixels (b) 8,000 pixels (c) 12,000 pixels (d) 16,000 pixels (e) 20,000 pixels (f) 24,000 

pixels (g) 28,000 pixels (h) 32,000 pixels (i) 36,000 pixels (j) 40,000 pixels (full pixels) 

4.4.2 Real Data (HYDICE Scene) 

Fig. 4.13(a-b) shows the plots of PPI count value versus the different number of bands 

processed for the different 19 R-panel pixels with 1,000 skewers being used for PPI where 

the x-axis is the number of bands processed , y-axis is the coordinates of 19 R-panel pixels 

according to the order of row by row, i.e., p11, p12, p13, p211, p221, p22, p23, p311, p312, p32, p33, 

p411, p412, p42, p43, p511, p521, p52, p53, and z-axis is the corresponding PPI count value. Fig. 4.13 

(a) plots the variation of the PPI count for all of the 19 R-panel pixels, while Fig. 4.13 (b) 

only plots the changes of PPI count for the 14 pure R-panel pixels and excludes the 5 sub-

pixels which make the 3D graph clearer. In these two graphs, the height of the lines indicates 

the value of PPI count. The magenta arrows in the graph illustrate the transition bands, which 

present the PPI count of a particular panel pixels increases from zero to a non-zero value and 

have been first found as an endmember candidate in the current band being processed. For 

instance, the PPI count value of panel pixel p11 jumps from 0 to 1 and is first identified as an 

endmember candidate after 101 bands have been received and processed. As we can see in 

the figure, the PPI count of the panel pixels on the 1
st
 column is stronger than the PPI count 

of the one-pixel-size panel pixels on the 2
nd

 column. Meanwhile, PPI count of the subpixel 

panels on the 3
rd

 column stay 0 during the entire process, in other words, sub-pixel cannot be 

found by PBP-PPI. It is clear to see that the PPI count of both p511 and p521 is stronger than p52, 

and PPI count of p53 is 0 during the entire process and cannot be identified. PPI count of the 

panel pixels tend to stabilized as more bands are added into the process. Without PBP-PPI we 

would not be able to evidence such valuable information which was compromised by 

subsequent bands. 
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(a) 

 

(b) 

Figure 4.13. 3D plots of PPI counts versus the number of processed bands for different R-panel 

pixels (a) PPI count variation for the 19 R-panel pixels (b) PPI count variation for the 14 pure R-

panel pixels 

Furthermore, Fig. 4.14 highlights the panel pixels with PPI count greater than 0 in the 

transition bands. In the following figures, the red cross indicates the position of the R-panel 

pixels, the cyan upper triangle displays the panel pixels with PPI count greater than 0 found 

in current band. The yellow circle represents the panel pixels have been found in the previous 
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bands processed. As we can see, after band 101, 13 out of 19 panel pixels have been 

identified as endmember candidate. 

   

                    (a) 5 bands                                         (b) 9 bands                                        (c) 21 bands 

   

                  (d) 22 bands                                       (e) 24 bands                                        (f) 28 bands 

   

                  (g) 34 bands                                       (h) 36 bands                                        (i) 50 bands 

   

                    (j) 52 bands                                     (k) 101 bands                         (l) 169 bands (full bands) 
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Figure 4.14. Panel pixels with PPI count greater than 0 after different number of bands processed. 

(a) 5 bands (b) 9 bands (c) 21 bands (d) 22 bands (e) 24 bands (f) 28 bands (g) 34 bands (h) 36 

bands (i) 50 bands (j) 52 bands (k) 101 bands (l) 169 bands (full bands) 

Figure 4.15 conducts a comparative study between the original PPI and the proposed 

RBP-PPI applying on HYDICE scene. Fig. 4.15(a) displays the ground truth pixels identified 

as endmember candidates by PPI. In Fig. 4.15(a), the red cross indicates the spatial location 

of the R-panel pixel in HYDICE scene, the cyan upper triangle indicates the ground truth 

pixels identified as endmember candidates. There are a total of 7 R-panel pixels been 

identified as endmember candidates. However, according to Fig. 4.13(a) and Fig. 4.14, there 

are a total of 13 R-panel pixels were identified as endmember candidates by RBP-PPI, p11, 

p211, p221, p22, p311, p312, p32, p411, p412, p42, p511, p521, p52 being identified by PBP-PPI. Fig. 

4.15(b) further shows the order of these 13 panel pixels found by PBP-PPI where x-axis 

denotes the number of bands being processed and y-axis represents the order of panel pixels 

being identified. For instance, p221 is the 1
st
 panel pixels being identified with only 5 bands 

collected, p22 and p521 is the 2
nd

 and 3
rd

 panel pixels identified after collected 9 bands. After 

101 bands were processed, the last panel pixel p11 was found. 

  

                                                 (a)                                                                   (b) 

Figure 4.15. Comparative study between PPI and RBP-PPI (a) PPI identified signatures (b) The 

order of signatures identified by RBP-PPI 

As noted in the previous discussions, RBP-PPI will identify a set of endmember candidate 

band-by-band progressively. Figure 4.16 plots the number of distinct endmember candidates 

found by RBP-PPI as the number of processed bands gradually increasing with 1000 skewers 

on HYDICE data set. RBP-PPI will identify a total of 373 endmember candidates for the next 

step process. At the same time, the number of distinct endmember candidate found by RBP-

PPI is stabilized as more bands are included in the process. After 106 bands processed, the 
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number of distinct endmember candidate stops varying and achieves the same results as full 

bands added into process. 

 

Figure 4.16. The plot of number of distinct endmember candidates versus number of processed 

bands for HYDICE data 

Furthermore, Fig. 4.17 plots a 3-dimensional histogram to show how frequently a particular 

pixel was picked up by RBP-PPI as an endmember candidate where the x-axis and y-axis 

corresponding to the columns and rows of special location of HYDICE scene. It should be 

noted that the z-axis in Fig. 4.17 indicates the number of times a given pixel at a particular 

special location was identified as an endmember candidate. For HYDICE scene with 169 

bands the maximum value for z-axis is 169. As shown in Fig 4.17, the magenta upward 

arrows indicate the spatial location of the 13 R-panel pixels. 

 

Figure 4.17. 3D Histogram of the pixels picked up by RBP-PPI as endmember candidates 

0 25 50 75 100 125 150
0

50

100

150

200

250

300

350

400

Number of Processed Bands

N
u

m
b

e
r 

o
f 

D
is

ti
n

c
t 

E
n

d
m

e
m

b
e

r 
C

a
n

d
id

a
te

 I
d

e
n

ti
fi

e
d

 b
y

 R
B

P
-P

P
I

0

8

16

24

32

40

48

56

64

64

56

48

40

32

24

16

8

0

0

50

100

150

200

p
52

p
42

Column Index

p
521

p
511

p
32p

412

p
411

p
22

p
312p

311

p
221

p
211

p
11

R
ow

 Index

F
re

q
u

e
n

c
y



63 

 

As stated in the previous sections, 1000 skewers are generated and used in the RBP-PPI 

process for HYDICE scene. However, choosing a proper number of skewers remains an 

unsolved problem in the literature. RBP-P-PPI is further proposed when it comes to address 

the issue that how many skewers need to be generated for process. Fig. 4.18 plots the 

variation of PPI Count versus the number of processed bands as the number of skewers 

increases from 100 to 1000 with step size 100 for R-panel pixels p11, p211, p311, p411, and p511, 

where x-axis denotes the number of bands collected and processed, y-axis displays the 

number of skewers generated for RBP-P-PPI process, and z-axis presents the value of PPI 

Count correspondingly. 
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(b) 
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(d) 

 

(e) 

Figure 4.18. PPI Count value versus the different number of processed bands and different number 

of skewers (a) p11 (b) p211 (c) p311 (d) p411 (e) p511 

As shown in the figure, the height of each bin represents the value of PPI Count for a 

particular combination of the number of processed bands and the number of skewers 

generated for process. The magenta upward arrow indicates that one material begins to be 

identified as endmember candidates in the band that it first identified as an endmember 

candidate in RBP-PPI. For instance, R-panel pixel p211 is first identified as endmember 

candidates with 28 bands available in RBP-PPI with 100 skewers. However, in the RBP-P-
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PPI process, it can be identified as endmember candidates with only 100 skewers generated. 

Table 4.3 summarizes the number of bands processed that a particular pixel is first found as 

endmember candidates and the minimum number of skewers required to extract the particular 

pixel for all the R-panel pixels on the 1
st
 column been identified as endmember candidate. 

Table 4.3. Summary for all the R-panel pixels on the 1st column in RBP-P-PPI process 

R-panel pixels 

on the 1st column 

Number of bands processed that a pixel is 

first found as an endmember candidate 

Minimum number of skewers 

required to extract the particular pixel 

p11 101 500 

p211 28 100 

p221 5 500 

p311 50 700 

p312 52 100 

p411 36 700 

p412 34 400 

p511 9 600 

p521 21 700 

As displayed in the table, in order to extract all the R-panel pixels on the 1
st
 column, a 

minimum of 700 skewers is required. The less skewers generated in the process could reduce 

the computational complexity. 
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(d) 

 

(e) 

Figure 4.19. PPI Count variations versus the number of processed bands and the number of 

processed pixels for each R-panel pixel (a) p11 (b) p211 (c) p311 (d) p411 (e) p511 

RBP-C-PPI is further proposed to address the issue that partial pixels are available in the 

data collection process. Fig. 4.19 plots the changes of PPI Count with different number of 

processed bands as the number of processed pixels increases from 256 to 4096 with step size 

256 for the 5 R-panel pixels on the 1
st
 column in HYDICE scene, where x-axis denotes the 

number of bands collected and processed, y-axis displays the number of pixels included in the 
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process, and z-axis presents the value of PPI Count correspondingly. As shown in the Fig. 

4.19, the height of each bar represents the value of PPI Count for a particular combination of 

the number of processed bands and the number of processed bands. The magenta upward 

arrow indicates that one material begins to be identified as endmember candidates in the band 

that it first identified as an endmember candidate in RBP-PPI. For instance, R-panel pixel p411 

is first identified as endmember candidates with 36 bands available in RBP-PPI with 1000 

skewers. In the RBP-C-PPI process, it can be identified as endmember candidates with 3,072 

pixels collected. 

Moreover, Fig. 4.20 shows a RBP-C-PPI process with the number of processed pixels 

range from 512 to 4096 with step size 512 in band 5. As displayed in the figure, the red cross 

indicates the ground truth location of the HYDICE scene, the cyan upper triangle highlights 

the ground truth pixels that been identified as endmember candidates. The white area in the 

scene indicates the pixels in this area are not available yet. The beauty of RBP-C-PPI process 

is to extract the moving targets in the scene. For instance, R-panel pixel p22 on the 2
nd

 column 

can be identified as endmember candidates with 1536 to 3072 pixels available, and it 

vanished after that. RBP-P-PPI catches this characteristic properly. 

   

              (a) 512 pixels                                    (b) 1024 pixels                                     (c) 1536 pixels 

   

             (d) 2048 pixels                                    (e) 2560 pixels                                     (f) 3072 pixels 
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                                           (g) 3584 pixels                         (h) 4096 pixels (full pixels) 

Figure 4.20. An example of RBP-C-PPI process with different number of pixels processed in band 

5. (a) 512 pixels (b) 1024 pixels (c) 1536 pixels (d) 2048 pixels (e) 2560 pixels (f) 3072 pixels (g) 

3584 pixels (h) 4096 pixels (full pixels) 

4.5 GUI Design 

A graphical user interface (GUI) with a screenshot shown in Fig. 4.21 was developed 

using Matlab’s GUIDE to aid in algorithm performance analysis. The three images displayed 

on top of the window show a color image of the scene, a gray scale image of the current band 

being processed, and the result after the current band is processed. At the bottom a window 

shows the variations of the PPI counts as more bands being collected for the different 

signatures. Once the data is loaded, the user can start the process by clicking the start button. 

At each iteration each band is received and being processed. Upon completion of processing, 

the current band and the resulting image are updated to allow the user to observe the results. 

A final note on Fig. 4.21 is worthwhile. The plots shown at the bottom window is a real-time 

progressive version of Fig. 4.1/Fig. 4.7/Fig. 4.13. Unfortunately, this nice feature can be only 

demonstrated in real time process. 
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Figure 4.21. GUI Design for RBP-PPI 

4.6 Conclusions 

This chapter derives a new version of PPI in recursive-band-processing (RBP), referred to 

as RBP-PPI, other than endmember finding as commonly being used in the literature. The use 

of RBP-PPI enables us to find and dictate spectral variation from band to band so that 

missing details in spectral characterization of data samples can be captured for data analysis. 

This is particularly useful and crucial when it comes to find weak targets with only small 

changes in certain specific bands with lower PPI counts which can be overwhelmed or 

dominated by subsequent strong targets found by PPI with higher PPI counts. This is mainly 

because PPI using full bands can only show the final PPI counts of data samples but cannot 

provide any information of changes in PPI counts of data samples from band to band. In 

addition, the potential of RBP-PPI in finding significant bands in changes in PPI counts is 

also demonstrated by experiments. To further study RBP-PPI we can extend RBP-PPI to real 

time implementation for future hardware design. 
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Chapter 5: Recursive Band Processing of Fast Iterative Pixel 

Purity Index (RBP-FIPPI) 

5.1 Introduction 

PPI is widely used for endmember finding (Chang, 2013). However, there are three major 

issues in implementing PPI. One is “how many skewers are needed for PPI to work 

effectively?” Of course, in order to cover as many directions of interestingness as possible, 

we would like to have the number of skewers K sufficiently large. But what value of K is 

considered to be large enough? So far, there is no guideline available for determining the 

value of K. Another is “what value of the threshold should be selected as a cut-off value for 

PPI counts to extract endmembers?” Theoretically speaking, the higher the PPI count of a 

data sample, the more likely the data sample to be an endmember. Unfortunately, according 

to our extensive experiments, this may not be always true. However, it is generally true that 

an endmember must have its PPI count at least greater than 0. A third issue is inconsistency 

caused by skewers that are randomly generated. In other words, the PPI counts obtained for 

data sample vectors are not reproducible because such PPI counts can vary quite differently if 

different sets of skewers are used. More precisely, PPI counts produced by running PPI at 

different times or by different users at the same time are generally not the same due to 

randomly generated different sets of skewers. 

Under such circumstances, Fast Iterative Pixel Purity Index (FIPPI) is proposed in (Chang 

and Plaza, 2006). It has several significant advantages over the PPI. First of all, it makes use 

of a recently developed concept, virtual dimensionality (VD), in (Chang, 2003) to estimate 

the number of endmembers required to be generated. The VD allows us to replace the two 

parameters and used in the PPI so that the algorithm’s sensitivity to these parameters can be 

resolved. Second, the FIPPI takes advantage of the automatic target generation process 

(ATGP) in (Chang, 2003) to generate an appropriate set of initial endmembers that can thus 

speed up the algorithm considerably. Third, the FIPPI is an iterative algorithm that converges 

very rapidly with tremendous savings in computation time. Most importantly, the PPI 

requires a visualization tool to manually select a final set of endmembers. Such a problem is 

avoided by the FIPPI because the FIPPI is automatic and the final set of FIPPI-generated 
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endmembers is always the same, regardless of who is a user of the FIPPI. This is considered 

to be one of the most significant advantages of the FIPPI over the PPI. 

This chapter introduces FIPPI in an innovative manner, which implements FIPPI band by 

band from a specific data acquisition point of view. The idea of RBP-FIPPI is derived from 

data acquisition according to band sequential (BSQ) format which is different from another 

data acquisition format, band-interleaved-pixel (BIP) or band-interleaved-line (BIL) 

implemented data sample by sample or line by line respectively. The difference between 

these two can be explained by how an image is processed progressively or sequentially. A 

progressive image processing processes each pixel of an 8-bit image bit by bit. As a result, 

each image pixel is revisited and processed 8 times. One such example is bit plane coding for 

image enhancement and compression. On the other hand, Pulse Code Modulation (PCM) 

implements an 8-bit quantizer to encode an image using 256 gray level values which can fully 

process each of its pixels sequentially pixel by pixel with no need of revisiting pixels again. 

Downloading images from website make use of PCM. In context of progressive and 

sequential image processing described above the PPI using the BSQ format can be considered 

as progressive hyperspectral imaging technique while the PPI using the BIP format can be 

viewed as sequential hyperspectral imaging technique. With this interpretation the total 

number of bands L, used to acquire a hyperspectral image can be interpreted as the total 

number of bits used to encode an image. The spectral resolution is progressively and 

gradually improved by adding more bands which is similar to spatial resolution is 

progressively and gradually improved by adding more bits. 

Several advantages can be benefited from RBP-FIPPI. First, progressive changes in PPI 

counts of data samples as more bands are included for data processing can be resulted from 

RBP-FIPPI. This allows image analysts to keep track of significance of data samples. Second, 

is to help find crucial bands for data processing according to progressive changes in PPI 

counts. Third, hyperspectral data collection and process can be done simultaneously without 

waiting the full bands information are available. 

5.2 Detailed RBP-FIPPI Algorithm 

Recursive-Band-Processing of FIPPI (RBP-FIPPI) Algorithm 

Initial Conditions: Find the VD using the the Harsanyi-Farrand-Chang (HFC) method and 

let it be p. 

Outer loop from l = p to L 

    Inner loop 
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1. Initial Condition: Let 
 p

jj l, 1

)0(


skewer

 be an initial set of p skewers generated by 

selecting those pixels that correspond to target pixels generated by ATGP. 

2. Normalize 
 p

jj l, 1

)0(


skewer

 into a unit vector. 

3. Iterative rule: At iteration k, for each 

)(k

j l,skewer
, all the sample vectors are projected 

onto this particular 

)(k

j l,skewer
 to find those which are at its extreme positions to form an 

extrema set, denoted by 
)( )(k

j l,extremaS skewer
. Find the sample vectors that produce the 

largest 
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5. If 
   )()1( k

j l,

k

j l, skewerskewer 


, then no new endmembers are added to the skewer set. In 

this case, the algorithm is terminated, break the inner loop. Otherwise, let 1 kk , and 

go to step 2. 

End Inner loop 

End Outer loop 

5.3 Experiments 

5.3.1 Synthetic Data 

A. TI Data Set 

Fig. 5.1 conducts a comparative study between FIPPI and PBP-FIPPI. Fig. 5.1(a) shows 

the results of original FIPPI applying on Synthetic TI scene with VD = 6, Fig. 5.1(b) displays 

the spatial location of PBP-FIPPI results with the same value of VD. As shown in Fig. 5.1, 

the red cross indicates the spatial location of the ground truth pixels, the yellow circle denotes 

the endmember candidates found in the previous bands, the cyan upper triangle highlights the 

endmember candidates in the current band. PBP-FIPPI acquires the same results as FIPPI in 

the last iteration, which verified the correction of the algorithm. FIPPI is a one-shot process, 

while PBP-FIPPI is not, and some moving targets can be discovered during the process, the 

pixels circled by yellow color presents the additional endmember candidates picked up by 

PBP-FIPPI. Furthermore, a total of 81 ground truth pixels can be discovered by PBP-FIPPI 

comparing with only 43 ground truth pixels picked up by the original FIPPI. 
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                                          (a)                                                                     (b) 

Figure 5.1. Comparative study between FIPPI and PBP-FIPPI applying on synthetic TI data set. (a) 

FIPPI experimental results with VD = 6 (b) PBP-FIPPI experimental results with VD = 6 

Furthermore, Fig. 5.2(a) plots the number of skewers identified in each band, Fig. 5.2(b) 

displays the total number of distinct skewers as the number of processed bands is increasing, 

Fig. 5.2(c) plots the spatial location of the endmembers found by PBP-FIPPI in TI scene. As 

shown in Fig. 5.2(b), there are a total of 218 distinct skewers are found as endmembers. After 

172 bands processed, no additional endmember candidates are found. In Fig. 5.2(c), the 

ground truth pixels are marked as red crosses, the 218 endmembers are highlighted by green 

circle. 

   

                                (a)                                                       (b)                                                  (c) 

Figure 5.2. Result of PBP-FIPPI Algorithm. (a) The number of skewers found by PBP-FIPPI in 

each band (b) The number of distinct skewers identified by PBP-FIPPI versus the number of 

processed bands (c) Spatial location of the PBP-FIPPI results on TI scene 

As mentioned in the previous sections, there are 81 ground truth pixels are identified as 

endmember candidates by PBP-FIPPI. Fig. 5.3 displays the order of the ground truth pixels 

been discovered versus the number of bands processed. It is clear shown in the graph that, 

material A, C and K can be discovered with 6 bands collected and processed. After 28 bands 

collected and processed, all the 5 materials have been found as endmember candidates. 
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Figure 5.3. Order of the ground truth pixels been discovered versus the number of bands processed 

Fig. 5.4 further shows the spatial location of the endmember candidates identified by PBP-

FIPPI with different number of bands processed starting from 6 bands. In these figures, the 

red cross indicates the spatial location of the ground truth pixels, the yellow circle denotes the 

endmember candidates found in the previous bands, the cyan upper triangle highlights the 

endmember candidates in the current band. With 6 bands processed, materials A, C, and K 

can be discovered, followed by material M with 15 bands collected and processed, material B 

is the last material been identified with 28 band received. After 28 bands, all the five 

materials in TI scene are detected. 

  

                                               (a) 6 bands                                       (b) 15 bands 

  

                                              (c) 28 bands                           (d) 189 bands (full bands) 
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Figure 5.4. Endmember candidates identified by PBP-FIPPI with different number of bands 

processed (a) 6 bands (b) 15 bands (c) 28 bands (d) 169 bands (full bands) 

In addition, Fig. 5.5 demonstrates a 3 dimensional histogram to show how frequently a 

particular pixel is picked up by PBP-FIPPI as an endmember. The x-axis and y-axis 

correspond to the columns and rows of the TI scene. The z-axis indicates the number of times 

a given pixel was detected as an endmember by PBP-FIPPI after processing all bands. So, for 

TI scene with 189 bands, the maximum value for z-axis is 189. As shown in the figure, the 

magenta arrows indicate the ground truth pixels. 

 

Figure 5.5. 3D Histogram of the pixels picked up by PBP-FIPPI as targets 

B. TE Experiments 

Fig. 5.6 conducts a comparative study between FIPPI and PBP-FIPPI. Fig. 5.6(a) shows 

the results of original FIPPI applying on Synthetic TE scene with VD = 6, Fig. 5.6(b) 

displays the spatial location of PBP-FIPPI results with the same value of VD. As shown in 

Fig. 5.6, the red cross indicates the spatial location of the ground truth pixels, the yellow 

circle denotes the endmember candidates found in the previous bands, the cyan upper triangle 

highlights the endmember candidates in the current band. PBP-FIPPI acquires the same 

results as FIPPI in the last iteration, which verified the correction of the algorithm. FIPPI is a 

one-shot process, while PBP-FIPPI is not, and some moving targets can be discovered during 

the process, the pixels circled by yellow color presents the additional endmember candidates 

picked up by PBP-FIPPI. Furthermore, a total of 62 ground truth pixels can be discovered by 

PBP-FIPPI comparing with only 24 ground truth pixels picked up by the original FIPPI. 
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                                            (a)                                                                    (b) 

Figure 5.6. Comparative study between FIPPI and PBP-FIPPI applying on synthetic TE data set. 

(a) FIPPI experimental results with VD = 6 (b) PBP-FIPPI experimental results with VD = 6 

Furthermore, Fig. 5.7(a) plots the number of skewers identified in each band, Fig. 5.7(b) 

displays the total number of distinct skewers as the number of processed bands is increasing. 

As shown in Fig. 5.7(b) a total of 196 distinct skewers are found as endmember candidates, 

and Fig. 5.7(c) plots the spatial location of the 196 endmember candidates in TE scene. After 

159 bands processed, no additional endmember candidates are found. 

   

                           (a)                                                     (b)                                                   (c) 

Figure 5.7. Result of PBP-FIPPI Algorithm. (a) The number of skewers found by PBP-FIPPI in 

each band (b) The number of distinct skewers identified by PBP-FIPPI versus the number of 

processed bands (c) Spatial location of the PBP-FIPPI results on TE scene 

As mentioned in the previous sections, there are 62 ground truth pixels are identified as 

endmember candidates by PBP-FIPPI. Fig. 5.8 displays the order of the ground truth pixels 

been discovered versus the number of bands processed. It is clear shown in the graph that, 

material A, and K can be discovered with 6 bands collected and processed. After 141 bands 

collected and processed, all the 5 materials have been found as endmember candidates. 
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Figure 5.8. Order of the ground truth pixels been discovered versus the number of bands processed 

Figure 5.9 further shows the spatial location of the endmember candidates identified by 

PBP-FIPPI with different number of bands processed starting from 6 bands. In these figures, 

the red cross indicates the spatial location of the ground truth pixels, the yellow circle denotes 

the endmember candidates found in the previous bands, the cyan upper triangle highlights the 

endmember candidates in the current band. With 6 bands collected, material A and K are 

discovered. Followed by material M with 15 bands collected, material B with 22 bands 

received. Material C is the last material been identified with 141 bands processed. 

   

                          (a) 6 bands                                     (b) 15 bands                                       (c) 22 bands 

  

                                                   (d) 141 bands                           (e) 189 bands (full bands) 

Figure 5.9. Endmember candidates identified by PBP-FIPPI with different number of bands 

processed (a) 6 bands (b) 15 bands (c) 28 bands (d) 141 bands (e) 169 bands (full bands) 
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In addition, Fig. 5.10 demonstrates a 3 dimensional histogram to show how frequently a 

particular pixel is picked up by PBP-FIPPI as an endmember. The x-axis and y-axis 

correspond to the columns and rows of the TE scene. The z-axis indicates the number of 

times a given pixel was detected as an endmember by PBP-FIPPI after processing all bands. 

So, for TE scene with 189 bands, the maximum value for z-axis is 189. As shown in the 

figure, the magenta arrows indicate the ground truth pixels. 

 

Figure 5.10. 3D Histogram of the pixels picked up by PBP-FIPPI as targets (TE Scene) 

5.3.2 Real Data (HYDICE Scene) 

Fig. 5.11 conducts a comparative study between FIPPI and PBP-FIPPI. Fig. 5.11(a) shows 

the results of original FIPPI applying on HYDICE scene with VD = 18, Fig. 5.11(b) displays 

the spatial location of PBP-FIPPI results with the same value of VD. As shown in Fig. 5.11, 

the red cross indicates the spatial location of the R-panel pixels and the yellow cross indicates 

the positon of the Y-panel pixel, the magenta circle denotes the endmember candidates found 

in the previous bands, the cyan upper triangle highlights the endmember candidates in the 

current band. PBP-FIPPI acquires the same results as FIPPI in the last iteration, which 

verified the correction of the algorithm. 6 R-panel pixels and 1 Y-panel pixel are identified by 

PBP-FIPPI, comparing with the original FIPPI, additional 2 R-panel pixels are found. 
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                                                  (a)                                                                     (b) 

Figure 5.11. Comparative study between FIPPI and PBP-FIPPI. (a) FIPPI experimental results 

with VD = 18 (b) PBP-FIPPI experimental results with VD = 18 

Furthermore, Fig. 5.12(a) plots the number of skewers identified in each band, Fig. 

5.12(b) displays the total number of distinct skewers as the number of processed bands is 

increasing. As shown in Fig. 5.12(b) a total of 101 distinct skewers are found as endmember 

candidates, and Fig. 5.12(c) plots the spatial location of the 101 endmember candidates in 

HYDICE scene. After 97 bands processed, no additional endmember candidates are found. 

   

                           (a)                                                        (b)                                                         (c)  

Figure 5.12. Result of PBP-FIPPI Algorithm. (a) The number of skewers found by PBP-FIPPI in 

each band (b) The number of distinct skewers identified by PBP-FIPPI versus the number of 

processed bands (c) Spatial location of the PBP-FIPPI results on HYDICE scene 

As mentioned in the previous sections, 6 R-panel pixels and 1 Y-panel pixel are identified 

as endmember candidates by PBP-FIPPI. Fig. 5.13 displays the order of the panel pixels been 

discovered versus the number of bands processed. It is clear shown in the graph that, p521 is 

the first panel pixel been discovered with only 18 bands collected and processed. After 97 

bands collected and processed, all the 7 panel pixels have been found as endmember 

candidates. 
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Figure 5.13. Order of the panel pixels been discovered versus the number of bands processed 

Figure 5.14 further shows the spatial location of the endmember candidates identified by 

PBP-FIPPI with different number of bands processed starting from 18 bands. In these figures, 

the red cross indicates the spatial location of the R-panel pixels and the yellow cross indicates 

the positon of the Y-panel pixel, the magenta circle denotes the endmember candidates found 

in the previous bands, the cyan upper triangle highlights the endmember candidates in the 

current band. With 18 bands processed, panel pixel p521 is detected, followed by p212 with 26 

bands processed. After 97 bands, no additional panel pixels are detected. 

   

                        (a) 18 bands                                       (b) 26 bands                                        (c) 27 bands 

   

                        (d) 46 bands                                       (e) 48 bands                                        (f) 97 bands 
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(g) 169 bands (full bands) 

Figure 5.14. Endmember candidates identified by PBP-FIPPI with different number of bands 

processed (a) 18 bands (b) 26 bands (c) 27 bands (d) 46 bands (e) 48 bands (f) 97 bands (g) 169 

bands (full bands) 

Moreover, Fig. 5.15 demonstrates a 3 dimensional histogram to show how frequently a 

particular pixel is picked up by PBP-FIPPI as an endmember. The x-axis and y-axis 

correspond to the columns and rows of the HYDICE scene. The z-axis indicates the number 

of times a given pixel was detected as an endmember by PBP-FIPPI after processing all 

bands. So, for HYDICE scene with 169 bands, the maximum value for z-axis is 169. As 

shown in the figure, the magenta arrows indicate the panel pixels. 

 

Figure 5.15. 3D Histogram of the pixels picked up by PBP-FIPPI as targets (HYDICE Scene) 

5.4 Computational Complexity 

The computing time of PBP-FIPPI was compared to the original FIPPI. Each algorithm 

was run and executed in MATLAB R2012B with an Intel Core i7 – 3770 running at 3.40 
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GHz with 16GB of RAM on three data sets ten times to produce an average computing time. 

Fig. 5.16(a-c) plots computing time required for PBP-FIPPI applying on TI, TE and HYDICE 

data resepectively where the y-axis is computer processing time in seconds and x-axis is the 

l
th
 band as new band coming in. As can be seen from these figures the processing time 

required for PBP-FIPPI to run each new individaul band is nearly linear. The computing time 

increasing as more bands are collected and received. It is also worth noting that the 

fluctuations of plots were resulting from numerical computations by computer 

implementation. 

   

                     (a) TI                                                  (b) TE                                               (c) HYDICE 

Figure 5.16. Computing time versus the lth band by PBP-FIPPI (a) TI scene (b) TE scene (c) 

HYDICE scene 

For a fair comparison Fig. 5.17(a-c) further plots computing time versus the number of 

processed bands, nl, (i.e., the number of the first l bands to be used for processing) required 

for PBP-FIPPI for TI, TE and HYDICE data respectively. Table 5.1 further compared the 

computing time between FIPPI and PBP-FIPPI in detail. 

   

                   (a) TI                                                  (b) TE                                               (c) HYDICE 

Figure 5.17. Computing time versus nl by PBP-FIPPI (a) TI scene (b) TE scene (c) HYDICE scene 

Table 5.1. Comparison of computing time in seconds required by PBP-FIPPI 

 TI (sec) TE (sec) HYDICE (sec) 

FIPPI 0.6372 0.6061 0.1756 

PBP-FIPPI 0.5523 0.5514 0.1524 
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5.5 GUI Design 

A graphical user interface (GUI) with a screenshot shown in Fig. 5.18 was developed 

using Matlab’s GUIDE to aid in algorithm performance analysis. The three images displayed 

on top of the window show a color image of the scene, a gray scale image of the current band 

being processed, and the result after the current band is processed. At the bottom a window 

shows the frequency of a particular pixel is discovered as endmember in a 3D view. Once the 

data is loaded, the user can start the process by clicking the start button. At each iteration 

each band is received and being processed. Upon completion of processing, the current band 

and the resulting image are updated to allow the user to observe the results. A final note on 

Fig. 5.18 is worthwhile. The plots shown at the bottom window is a real-time progressive 

version of the 3D plots of the frequency for a particular pixel. Unfortunately, this nice feature 

can be only demonstrated in real time process. 

 

Figure 5.18. GUI design for PBP-FIPPI 

5.6 Conclusion 

Fast Iterative Pixel Purity Index (FIPPI) was previously developed to address two major 

issues arising in PPI which are the use of skewers whose number must be determined by a 

priori and inconsistent final results which cannot be re-produced. Recently, a new concept 

has been developed for hyperspectral data communication according to Band SeQuential 

(BSQ) acquisition format in such a way that bands can be collected band by band. By virtue 
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of BSQ users are able to develop Progressive Band Processing (PBP) for hyperspectral 

imaging algorithms so that data analysts can observe progressive profiles of inter-band 

changes among bands. Its advantages have been justified in several applications, anomaly 

detection, constrained energy minimization, automatic target generation process, orthogonal 

subspace projection, PPI, etc. This chapter further extends RBP to FIPPI. The idea to 

implement RBP-FIPPI is to use two loops specified by skewers and bands to process FIPPI. 

Depending upon which one is implemented in the outer loop two different versions of PBP-

FIPPI can be designed. When the outer loop is iterated band by band, it is called to be called 

Progressive Band Processing of FIPPI (PBP-FIPPI). When the outer loop is iterated by 

growing skewers, it is called Progressive Skewer Processing of FIPPI (PSP-FIPPI). 

Interestingly, both versions provide different insights into the design of FIPPI but produce 

close results. 
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Chapter 6: Recursive Band Processing of Simplex Growing 

Algorithm (RBP-SGA) 

6.1 Introduction 

Endmember finding is a fundamental task in hyperspectral data exploitation because 

endmembers can be used to specify spectral classes (Chang, 2003). Due to the fact that the 

number of endmembers, denoted by nE, is relatively smaller than data dimensionality, 

dimensionality reduction (DR) is generally required. Idealistically, if an endmember can be 

accommodated by a specific spectral band, then it only needs nE bands for finding all the nE 

endmembers. This fact can be illustrates by simplex volume-based endmember finding 

algorithms (EFAs) such as N-finder algorithm (N-FINDR) developed by Winter (Chang, 

2003) which finds a simplex of maximal volume with its vertices specified by all 

endmembers. As a result, an nE-vertex simplex has only nE-1 dimensions. This implies that 

there are no more than nE dimensions required to accommodate an nE-vertex simplex. The 

main issue is how to find nE appropriate bands that can accommodate such an nE-vertex 

simplex. Band selection (BS) can be used for this purpose. However, BS requires solving 

band optimization problems for all possible nE-combinations among all the L spectral bands 

repeatedly, which is practically unrealistic. To mitigate this issue band prioritization is used 

to rank all bands according to priorities assigned to each of bands. Since a band with a higher 

priority its adjacent bands may also have higher priorities. To avoid selecting adjacent bands 

with too much overlapped spectral information band de-correlation (BD) is also needed. But 

a challenging issue is to select an adequate threshold. With all these issues this paper 

investigates a new concept of progressive band processing (PBP) to replace BS. Unlike BS 

PBP does not require the prior knowledge of nE or select particular bands. Instead, it 

processes bands progressively band by band so that progressive changes in inter-band 

spectral variations of endmembers of interest can be dictated. Such progressive profiles 

cannot be offered by BS or any endmember finding algorithm (EFA) using full bands. With 

this interpretation a perfect candidate to be used for finding endmembers is simplex growing 

algorithm (SGA) developed by Chang et al. (Chang, 2013) which can be also considered a 

progressive EFA in (Chang, 2003) generating one endmember after another progressively by 
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growing simplexes vertex by vertex where each vertex is specified by one endmember. By 

virtue of SGA we can develop a progressive band processing version of SGA, called PBP-

SGA which implements SGA not only band by band but also endmember by endmember 

both progressively. 

6.2 Derivations of RBP-SGA 

Define 
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(6.5) 

6.3 Various Versions of RBP-SGA Algorithm 

The concept of PBP of SGA (PBP-SGA) was first explored and investigated in (Chang, 

2003) where finding SV was carried out by finding matrix determinants via singular value 

decomposition (SVD). There are two issues needed to be resolved. One is excessive 

computational cost of calculating SV by SVD. Another is the SV calculated by the matrix 

determinant is not true SV as noted in (Chang, 2013). As a result, PBP-SGA remains a 

conceptual approach. This section looks into PBP-SGA from a rather different perspective. 

 

6.3.1 Recursive-Band-Processing of OPSGA (RBP-OPSGA) Algorithm 

Recursive-Band-Processing of OPSGA (RBP-OPSGA) Algorithm 

Initial condition: p is the number of endmembers to be found by PBP-OPSGA algorithm, 

determined by VD. 

Outer Loop ( Llp  ) 

Inner Loop ( pj 1 ) 

1. Initial condition:  
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End (Outer Loop). 

 

6.3.2 Recursive-Band-Processing of GSGA (RBP-GSGA) Algorithm 

Recursive-Band-Processing of GSGA (RBP-GSGA) Algorithm 

Initial condition: p is the number of endmembers to be found by RBP-GSGA algorithm, 

determined by VD. 

Outer Loop ( Llp  ) 

Inner Loop ( pj 1 ) 

1. Initial condition:  

Find two endmembers, 
l
1e
 and 

l
2e
 that yield a line segment with the maximal length. 

In other words, find 
l
1e

 and 
l
2e

 with the maximal Euclidean distance, i.e., 
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6.4 Detailed Experiments 

6.4.1 Synthetic Data 

A. Synthetic TI Experiments 

Fig. 6.1 conducts a comparative study between OPSGA and PBP-OPSGA. Fig. 6.1(a) 

shows the results of original OPSGA applying on TI scene with VD = 6, Fig. 6.1(b) displays 

the spatial location of PBP-OPSGA results with the same value of VD. As shown in Fig. 6.1, 

the red cross indicates the spatial location of the ground truth pixels in TI scene, the magenta 

circle denotes the endmembers found in the previous bands, the cyan upper triangle 

highlights the endmembers identified in the current band, and the number next to the triangle 

points out the order of the endmembers been found. PBP-OPSGA acquires the same results as 

SGA in the last iteration, which verified the correction of the algorithm. OPSGA is a one-shot 

process, while PBP-OPSGA is not, it is a slow motion of OPSGA and some moving targets 
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can be discovered during the process, the pixels circled by magenta color presents the 

additional endmembers picked up by PBP-OPSGA. 

  

                                            (a)                                                                     (b) 

Figure 6.1. Comparative study between OPSGA and PBP-OPSGA applying on TI Scene. (a) 

OPSGA experimental results with VD = 6 (b) PBP-OPSGA experimental results with VD = 6 

There are 5 ground truth pixels are identified as endmembers by PBP-OPSGA. Fig. 6.2 

displays the order of the ground truth pixels been discovered versus the number of bands 

processed. It is clear shown in the graph that, material C and material K are the first two 

materials been discovered. 

 

Figure 6.2. Order of the ground truth pixels been discovered versus the number of bands processed 

Figure 6.3 further shows the spatial location of the endmember candidates identified by 

PBP-OPSGA with different number of bands processed starting from 18 bands. In these 

figures, the red cross indicates the spatial location of the R-panel pixels in HYDICE scene, 

the magenta circle denotes the endmembers found in the previous bands, the cyan upper 

triangle highlights the endmembers identified in the current band, and the number next to the 

triangle points out the order of the endmembers been found. 
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                 (a) 6 bands                                       (b) 8 bands                                        (c) 16 bands 

  

                                             (d) 28 bands                            (e) 189 bands (full bands) 

Figure 6.3. Endmembers identified by PBP-OPSGA with different number of bands processed (a) 

6 bands (b) 8 bands (c) 16 bands (d) 28 bands (e) 189 bands (full bands) 

 

Figure 6.4. 3D plot of the progressive change of PBP-OPSGA calculated height applying on TI scene 

Fig. 6.4 shows a progressive changes of PBP-OPSGA calculated height of the 18 

endmembers identified by PBP-OPSGA, where x, y and z axes denote found members, the 

number of the first bands being used for data processing, and the calculated height by PBP-
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OPSGA. The magenta arrow indicates a particular panel pixel is first identified as an 

endmember. For example, C1(1, 1) can be discovered with 6 bands collected, it is the 2 

endmember found by PBP-OPSGA algorithm. 

Table 6.1 summarize the minimal number of bands required identifying signatures, order 

of signatures to be found and the order of signatures found in the particular band for all the 5 

signatures been identified with PBP-OPSGA in HYDICE scene. 

Table 6.1. Summary of minimal number of bands processed to identify signatures and order of 

signatures to be found in particular bands 

Signatures found by RBP-

GSGA 

Minimal nl identifying 

signatures 

Order of signatures to 

be found 

Order of signatures found in 

the particular band 

)10(

8)1,1(1A e  8 10 3 

)42(

28)1,1(1B e  28 42 1 

)2(

6)1,1(1C e  6 2 2 

)1(

6)1,1(1K e  6 1 1 

)24(

16)1,1(1M e  16 24 6 

 

Fig. 6.5 conducts a comparative study between GSGA and RBP-GSGA. Fig. 6.5(a) shows 

the results of original GSGA applying on synthetic TI scene with VD = 6, Fig. 6.5(b) displays 

the spatial location of RBP-GSGA results with the same value of VD. As shown in Fig. 6.5, 

the red cross indicates the spatial location of the ground truth pixels, the magenta circle 

denotes the endmembers found in the previous bands, the cyan upper triangle highlights the 

endmembers identified in the current band, and the number next to the triangle points out the 

order of the endmembers been found. RBP-GSGA acquires the same results as GSGA in the 

last iteration, which verified the correction of the algorithm. GSGA is a one-shot process, 

while RBP-GSGA is not, it is a slow motion of GSGA and some moving targets can be 

discovered during the process, the pixels circled by magenta color presents the additional 

endmembers picked up by RBP-GSGA. Furthermore, a total of 10 ground truth pixels can be 

discovered by RBP-GSGA comparing with only 5 ground truth pixels picked up by the 

original GSGA. 
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                                                  (a)                                                                     (b) 

Figure 6.5. Comparative study between GSGA and RBP-GSGA applying on synthetic TI scene. (a) 

GSGA experimental results with VD = 6 (b) RBP-GSGA experimental results with VD = 6 

As mentioned in the previous sections, there are 10 ground truth pixels are identified as 

endmembers by RBP-GSGA. Fig. 6.6 displays the order of the ground truth pixels been 

discovered versus the number of bands processed. It is clear shown in the graph that, both 

material C and K can be discovered with 6 bands collected and processed. 

 

Figure 6.6. Order of the ground truth pixels been discovered versus the number of bands processed 

Figure 6.7 further shows the spatial location of the endmember candidates identified by 

RBP-GSGA with different number of bands processed starting from 6 bands. In these figures, 

the red cross indicates the spatial location of the ground truth pixels, the magenta circle 

denotes the endmembers found in the previous bands, the cyan upper triangle highlights the 

endmembers identified in the current band, and the number next to the triangle points out the 

order of the endmembers been found. Material C and K are found with 6 bands collected and 

processed, A can be discovered with 8 bands collected, M and B are identified with 16 bands 

and 28 bands accordingly. 4 ground truth pixels sitting on the second column can be 

discovered as well. 
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                        (a) 6 bands                                        (b) 8 bands                                        (c) 16 bands 

   

                        (d) 23 bands                                      (e) 28 bands                                        (f) 31 bands 

 

(g) 189 bands (full bands) 

Figure 6.7. Endmembers identified by RBP-GSGA with different number of bands processed (a) 6 

bands (b) 8 bands (c) 16 bands (d) 23 bands (e) 28 bands (f) 31 bands (g) 189 bands (full bands) 

Fig. 6.8 shows a progressive changes of RBP-GSGA calculated height of the 6 

endmembers identified by RBP-GSGA, where x, y and z axes denote found members, the 

number of the first bands being used for data processing, and the calculated height by RBP-

GSGA. The magenta arrow indicates a particular panel pixel is first identified as an 

endmember. For example, A1(1, 1) is identified with 8 bands received and processed, it is the 

12
th
 endmembers found by RBP-GSGA algorithm. 
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Figure 6.8. 3D plot of the progressive change of RBP-GSGA calculated height 

Table 6.2 summarize the minimal number of bands required identifying signatures, order 

of signatures to be found and the order of signatures found in the particular band for all the 10 

ground truth pixels been identified with RBP-GSGA in TI scene. 

Table 6.2. Summary of minimal number of bands processed to identify signatures and order of 

signatures to be found in particular bands 

Signatures found by RBP-

GSGA 

Minimal nl identifying 

signatures 

Order of signatures to 

be found 

Order of signatures found in 

the particular band 

)12(

8)1,1(1A e
 

8 12 3 

)46(

28)1,1(1B e
 

28 46 4 

)1(

6)1,1(1C e
 

6 1 1 

)2(

6)1,1(1K e
 

6 2 2 

)26(

16)1,1(1M e
 

16 26 3 

)38(

23)2,2(2A e
 

23 38 1 

)39(

23)2,1(2C e
 

23 39 2 

)10(

8)2,2(2C e
 

8 10 1 

)11(

8)2,1(2K e
 

8 11 2 

)52(

31)2,2(2M e
 

31 52 2 

B. Synthetic TE Experiments 

Fig. 6.9 conducts a comparative study between OPSGA and PBP-OPSGA. Fig. 6.9(a) 

shows the results of original OPSGA applying on TE scene with VD = 6, Fig. 6.9(b) displays 
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the spatial location of PBP-OPSGA results with the same value of VD. As shown in Fig. 6.9, 

the red cross indicates the spatial location of the ground truth pixels in TE scene, the magenta 

circle denotes the endmembers found in the previous bands, the cyan upper triangle 

highlights the endmembers identified in the current band, and the number next to the triangle 

points out the order of the endmembers been found. PBP-OPSGA acquires the same results as 

SGA in the last iteration, which verified the correction of the algorithm. OPSGA is a one-shot 

process, while PBP-OPSGA is not, it is a slow motion of OPSGA and some moving targets 

can be discovered during the process, the pixels circled by magenta color presents the 

additional endmembers picked up by PBP-OPSGA. 

  

                                            (a)                                                                     (b) 

Figure 6.9. Comparative study between OPSGA and PBP-OPSGA applying on TE Scene. (a) 

OPSGA experimental results with VD = 6 (b) PBP-OPSGA experimental results with VD = 6 

There are 5 ground truth pixels are identified as endmembers by PBP-OPSGA. Fig. 6.10 

displays the order of the ground truth pixels been discovered versus the number of bands 

processed. It is clear shown in the graph that, material A and material K are the first two 

materials been discovered. 

 

Figure 6.10. Order of the ground truth pixels been discovered versus the number of bands processed 
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Figure 6.11 further shows the spatial location of the endmember candidates identified by 

PBP-OPSGA with different number of bands processed starting from 6 bands. In these 

figures, the red cross indicates the spatial location of the R-panel pixels in HYDICE scene, 

the magenta circle denotes the endmembers found in the previous bands, the cyan upper 

triangle highlights the endmembers identified in the current band, and the number next to the 

triangle points out the order of the endmembers been found. 

   

                 (a) 6 bands                                       (b) 15 bands                                       (c) 24 bands 

  

                                         (d) 146 bands                              (e) 189 bands (full bands) 

Figure 6.11. Endmembers identified by PBP-OPSGA with different number of bands processed (a) 

6 bands (b) 15 bands (c) 24 bands (d) 146 bands (e) 189 bands (full bands) 

Fig. 6.12 shows a progressive changes of PBP-OPSGA calculated height of the 18 

endmembers identified by PBP-OPSGA, where x, y and z axes denote found members, the 

number of the first bands being used for data processing, and the calculated height by PBP-

OPSGA. The magenta arrow indicates a particular panel pixel is first identified as an 

endmember. 
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Figure 6.12. 3D plot of the progressive change of PBP-OPSGA calculated height applying on TI scene 

Table 6.3 summarize the minimal number of bands required identifying signatures, order 

of signatures to be found and the order of signatures found in the particular band for all the 5 

signatures been identified with PBP-OPSGA in TE scene. 

Table 6.3. Summary of minimal number of bands processed to identify signatures and order of 

signatures to be found in particular bands 

Signatures found by RBP-

GSGA 

Minimal nl identifying 

signatures 

Order of signatures to 

be found 

Order of signatures found in 

the particular band 

)3(

6)1,1(1A e  6 3 3 

)57(

24)1,1(1B e  24 57 6 

)160(

146)1,1(1C e  146 160 6 

)1(

6)1,1(1K e  6 1 1 

)34(

15)1,1(1M e  15 34 3 

 

Fig. 6.13 conducts a comparative study between GSGA and RBP-GSGA. Fig. 6.13(a) 

shows the results of original GSGA applying on synthetic TE scene with VD = 6, Fig. 6.13(b) 

displays the spatial location of RBP-GSGA results with the same value of VD. As shown in 

Fig. 6.13, the red cross indicates the spatial location of the ground truth pixels, the magenta 

circle denotes the endmembers found in the previous bands, the cyan upper triangle 

highlights the endmembers identified in the current band, and the number next to the triangle 

points out the order of the endmembers been found. RBP-GSGA acquires the same results as 

GSGA in the last iteration, which verified the correction of the algorithm. GSGA is a one-
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shot process, while RBP-GSGA is not, it is a slow motion of GSGA and some moving targets 

can be discovered during the process, the pixels circled by magenta color presents the 

additional endmembers picked up by RBP-GSGA. Furthermore, a total of 11 ground truth 

pixels can be discovered by RBP-GSGA comparing with only 5 ground truth pixels picked up 

by the original GSGA. 

  

                                                  (a)                                                                     (b) 

Figure 6.13. Comparative study between GSGA and RBP-GSGA applying on synthetic TE scene. 

(a) GSGA experimental results with VD = 6 (b) RBP-GSGA experimental results with VD = 6 

As mentioned in the previous sections, there are 11 ground truth pixels are identified as 

endmembers by RBP-GSGA. Fig. 6.14 displays the order of the ground truth pixels been 

discovered versus the number of bands processed. It is clear shown in the graph that, both 

material A and K can be discovered with 6 bands collected and processed. 

 

Figure 6.14. Order of the ground truth pixels been discovered versus the number of bands processed 

Figure 6.15 further shows the spatial location of the endmember candidates identified by 

RBP-GSGA with different number of bands processed starting from 6 bands. In these figures, 

the red cross indicates the spatial location of the ground truth pixels, the magenta circle 

denotes the endmembers found in the previous bands, the cyan upper triangle highlights the 
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endmembers identified in the current band, and the number next to the triangle points out the 

order of the endmembers been found. Material A and K are found with 6 bands collected and 

processed, M can be discovered with 15 bands collected, B and C are identified with 24 

bands and 146 bands accordingly. 5 ground truth pixels sitting on the second column can be 

discovered as well. 

   

                      (a) 6 bands                                       (b) 10 bands                                      (c) 15 bands 

   

                    (d) 24 bands                                      (e) 26 bands                                       (f) 33 bands 

   

                    (g) 37 bands                                       (h) 62 bands                                       (i) 74 bands 
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                                               (j) 146 bands                                (k) 189 bands (full bands) 

Figure 6.15. Endmembers identified by RBP-GSGA with different number of bands processed (a) 

6 bands (b) 10 bands (c) 15 bands (d) 24 bands (e) 26 bands (f) 33 bands (g) 37 bands (h) 62 bands 

(i) 74 bands (j) 146 bands (k) 189 bands (full bands) 

Fig. 6.16 shows a progressive changes of RBP-GSGA calculated height of the 6 

endmembers identified by RBP-GSGA, where x, y and z axes denote found members, the 

number of the first bands being used for data processing, and the calculated height by RBP-

GSGA. The magenta arrow indicates a particular panel pixel is first identified as an 

endmember. For example, A1(1, 1) is identified with 6 bands received and processed, it is the 

8
th
 endmembers found by RBP-GSGA algorithm. 

 

Figure 6.16. 3D plot of the progressive change of RBP-GSGA calculated height 

Table 6.4 summarize the minimal number of bands required identifying signatures, order 

of signatures to be found and the order of signatures found in the particular band for all the 11 

ground truth pixels been identified with RBP-GSGA in TE scene. 
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Table 6.4. Summary of minimal number of bands processed to identify signatures and order of 

signatures to be found in particular bands 

Signatures found by RBP-

GSGA 

Minimal nl identifying 

signatures 

Order of signatures to 

be found 

Order of signatures found in 

the particular band 

)3(

6)1,1(1A e
 

6 3 3 

)58(

24)1,1(1B e  
24 58 6 

)166(

146)1,1(1C e
 

146 166 6 

)1(

6)1,1(1K e
 

6 1 1 

)35(

15)1,1(1M e
 

15 35 3 

)62(

26)1,1(2A e
 

26 62 2 

)131(

74)2,1(2A e
 

74 131 2 

)120(

62)2,2(2A e
 

62 120 1 

)17(

10)2,2(2K e
 

10 17 1 

)89(

37)1,1(2M e
 

37 89 2 

)77(

33)2,2(2M e
 

33 77 1 

6.4.2 Real Data (HYDICE Scene) 

Fig. 6.17 conducts a comparative study between OPSGA and PBP-OPSGA. Fig. 6.17(a) 

shows the results of original OPSGA applying on HYDICE scene with VD = 18, Fig. 6.17(b) 

displays the spatial location of PBP-OPSGA results with the same value of VD. As shown in 

Fig. 6.17, the red cross indicates the spatial location of the R-panel pixels in HYDICE scene, 

the yellow cross displays the spatial location of the Y-panel pixels in the scene, the magenta 

circle denotes the endmembers found in the previous bands, the cyan upper triangle 

highlights the endmembers identified in the current band, and the number next to the triangle 

points out the order of the endmembers been found. PBP-OPSGA acquires the same results as 

SGA in the last iteration, which verified the correction of the algorithm. OPSGA is a one-shot 

process, while PBP-OPSGA is not, it is a slow motion of OPSGA and some moving targets 

can be discovered during the process, the pixels circled by magenta color presents the 

additional endmembers picked up by PBP-OPSGA. Furthermore, a total of 8 ground truth 

pixels (7 R-panel pixels and 1 Y-panel pixel) can be discovered by PBP-OPSGA comparing 

with only 5 ground truth pixels (4 R-panel pixels and 1 Y-panel pixel) picked up by the 

original OPSGA. 
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                                                        (a)                                                                     (b) 

Figure 6.17. Comparative study between OPSGA and PBP-OPSGA applying on HYDICE Scene. (a) OPSGA 

experimental results with VD = 18 (b) PBP-OPSGA experimental results with VD = 18 

As mentioned in the previous sections, there are 8 ground truth pixels (7 R-panel pixels 

and 1 Y-panel pixel) are identified as endmembers by PBP-OPSGA. Fig. 6.18 displays the 

order of the ground truth pixels been discovered versus the number of bands processed. It is 

clear shown in the graph that, p212 and p521 are the first two panel pixels been found with 18 

band collected and received.  

 

Figure 6.18. Order of the ground truth pixels been discovered versus the number of bands processed 

Figure 6.19 further shows the spatial location of the endmember candidates identified by 

PBP-OPSGA with different number of bands processed starting from 18 bands. In these 

figures, the red cross indicates the spatial location of the R-panel pixels in HYDICE scene, 

the yellow cross displays the spatial location of the Y-panel pixels in the scene, the magenta 

circle denotes the endmembers found in the previous bands, the cyan upper triangle 

highlights the endmembers identified in the current band, and the number next to the triangle 

points out the order of the endmembers been found. p212 and p521 are the first two panel pixels 

been found with 18 band collected and received. Followed by p311 with 41 bands received, 
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p312 with 49 band received, p11 with 50 bands collected, p411 with 60 bands collected, p221 with 

67 bands collected, and p412 is the last panel pixels been identified with 149 band processed. 

There is no more panel pixels been found after band 149. 

   

                  (a) 18 bands                                       (b) 41 bands                                       (c) 49 bands  

   

                  (d) 50 bands                                       (e) 60 bands                                       (f) 67 bands 

  

                                              (g) 149 bands                          (h) 169 bands (full bands) 

Figure 6.19. Endmembers identified by PBP-OPSGA with different number of bands processed (a) 

18 bands (b) 41 bands (c) 49 bands (d) 50 bands (e) 60 bands (f) 67 bands (g) 149 bands (h) 169 

bands (full bands) 

Fig. 6.20 shows a progressive changes of PBP-OPSGA calculated height of the 18 

endmembers identified by PBP-OPSGA, where x, y and z axes denote found members, the 

number of the first bands being used for data processing, and the calculated height by PBP-

OPSGA. The magenta arrow indicates a particular panel pixel is first identified as an 
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endmember. For example, p212 is first identified as endmember with 18 bands collected and 

processed, it is the 4
th
 endmember identified by PBP-OPSGA algorithm as well. 

 

Figure 6.20. 3D plot of the progressive change of PBP-OPSGA calculated height 

Table 6.5 summarize the minimal number of bands required identifying signatures, order 

of signatures to be found and the order of signatures found in the particular band for all the 8 

panel pixels been identified with PBP-OPSGA in HYDICE scene. 

Table 6.5. Summary of minimal number of bands processed to identify signatures and order of signatures to be 

found in particular bands 

Signatures found by RBP-

ATGP 

Minimal nl identifying 

signatures 

Order of signatures to be 

found 

Order of signatures found 

in the particular band 

)50(

11 71p t  50 71 16 

)18(

212 4p t  18 4 4 

)67(

221 94p t  67 94 11 

)41(

311 60p t  41 60 9 

)49(

312 68p t  49 68 6 

)60(

411 89p t  
60 89 18 

)149(

115412
p t  

149 115 15 

)18(

521 9p t  
18 9 9 

 

Fig. 6.21 conducts a comparative study between GSGA and RBP-GSGA. Fig. 6.21(a) 

shows the results of original GSGA applying on HYDICE scene with VD = 18, Fig. 6.21(b) 

E1
E2

E3
E4

E5
E6

E7
E8

E9
E10

E11
E12

E13
E14

E15
E16

E17
E18 170

150

125

100

75

50

25

0

0

1

2

3

4

5

x 10
4

e
89

(60)
 = p

411

N
um

ber o
f P

ro
cessed

 B
ands

e
71

(50)
 = p

11

e
9

(18)
 = p

521

e
94

(67)
 = p

221

e
115

(149)
 = p

412

e
60

(41)
 = p

311

e
68

(49)
 = p

312

e
4

(18)
 = p

212

Endmembers

P
B

P
-O

P
S

G
A

 C
a

lc
u

la
te

d
 H

e
ig

h
t



108 

 

displays the spatial location of RBP-GSGA results with the same value of VD. As shown in 

Fig. 6.21, the red cross indicates the spatial location of the R-panel pixels in HYDICE scene, 

the yellow cross displays the spatial location of the Y-panel pixels in the scene, the magenta 

circle denotes the endmembers found in the previous bands, the cyan upper triangle 

highlights the endmembers identified in the current band, and the number next to the triangle 

points out the order of the endmembers been found. RBP-GSGA acquires the same results as 

GSGA in the last iteration, which verified the correction of the algorithm. GSGA is a one-

shot process, while RBP-GSGA is not, it is a slow motion of GSGA and some moving targets 

can be discovered during the process, the pixels circled by magenta color presents the 

additional endmembers picked up by RBP-GSGA. Furthermore, a total of 8 ground truth 

pixels (7 R-panel pixels and 1 Y-panel pixel) can be discovered by RBP-GSGA comparing 

with only 5 ground truth pixels (4 R-panel pixels and 1 Y-panel pixel) picked up by the 

original GSGA. 

  

                                                        (a)                                                                     (b) 

Figure 6.21. Comparative study between GSGA and RBP-GSGA applying on HYDICE Scene. (a) 

GSGA experimental results with VD = 18 (b) RBP-GSGA experimental results with VD = 18 

As mentioned in the previous sections, there are 8 ground truth pixels (7 R-panel pixels 

and 1 Y-panel pixel) are identified as endmembers by RBP-GSGA. Fig. 6.22 displays the 

order of the ground truth pixels been discovered versus the number of bands processed. It is 

clear shown in the graph that, p212 and p521 are the first two panel pixels been found with 18 

band collected and received. 
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Figure 6.22. Order of the ground truth pixels been discovered versus the number of bands processed 

Figure 6.23 further shows the spatial location of the endmember candidates identified by 

RBP-GSGA with different number of bands processed starting from 18 bands. In these 

figures, the red cross indicates the spatial location of the R-panel pixels in HYDICE scene, 

the yellow cross displays the spatial location of the Y-panel pixels in the scene, the magenta 

circle denotes the endmembers found in the previous bands, the cyan upper triangle 

highlights the endmembers identified in the current band, and the number next to the triangle 

points out the order of the endmembers been found. p212 and p521 are the first two panel pixels 

been found with 18 band collected and received. Followed by p311 with 41 bands received, 

p312 with 49 band received, p11 with 50 bands collected, p411 with 60 bands collected, p221 with 

67 bands collected, and p412 is the last panel pixels been identified with 149 band processed. 

There is no more panel pixels been found after band 149. 

   

                        (a) 18 bands                                       (b) 41 bands                                       (c) 49 bands 
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                        (d) 50 bands                                        (e) 60 bands                                      (f) 67 bands 

  

                                                    (g) 149 bands                          (h) 169 bands (full bands) 

Figure 6.23. Endmembers identified by RBP-GSGA with different number of bands processed (a) 

18 bands (b) 41 bands (c) 49 bands (d) 50 bands (e) 60 bands (f) 67 bands (g) 149 bands (h) 169 

bands (full bands) 

 

Figure 6.24. 3D plot of the progressive change of RBP-GSGA calculated height 

Fig. 6.24 shows a progressive changes of RBP-GSGA calculated height of the 18 

endmembers identified by RBP-GSGA, where x, y and z axes denote found members, the 
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number of the first bands being used for data processing, and the calculated height by RBP-

GSGA. The magenta arrow indicates a particular panel pixel is first identified as an 

endmember. For example, p212 is first identified as endmember with 18 bands collected and 

processed, it is the 4
th
 endmember identified by RBP-GSGA algorithm as well. 

Table 6.6 summarize the minimal number of bands required identifying signatures, order 

of signatures to be found and the order of signatures found in the particular band for all the 8 

panel pixels been identified with RBP-GSGA in HYDICE scene. 

Table 6.6. Summary of minimal number of bands processed to identify signatures and order of 

signatures to be found in particular bands 

Signatures found by 

RBP-GSGA 

Minimal nl identifying 

signatures 

Order of signatures to 

be found 

Order of signatures found in the 

particular band 

)50(

11 71p t
 

50 71 16 

)18(

221 4p t
 

18 4 4 

)67(

212 94p t
 

67 94 11 

)41(

311 60p t
 

41 60 9 

)49(

312 68p t
 

49 68 6 

)60(

411 89p t
 

60 89 18 

)149(

115412
p t

 
149 115 15 

)18(

521 9p t
 

18 9 9 

 

6.5 GUI Design 

    A graphical user interface (GUI) with a screenshot shown in Fig. 6.25 was developed using 

Matlab’s GUIDE to aid in algorithm performance analysis. The three images displayed on top 

of the window show a color image of the scene, a gray scale image of the current band being 

processed, and the result after the current band is processed. At the bottom a window shows 

the RBP-OPSGA calculated height for each discovered endmember in a 3D view. Once the 

data is loaded, the user can start the process by clicking the start button. At each iteration 

each band is received and being processed. Upon completion of processing, the current band 

and the resulting image are updated to allow the user to observe the results. A final note on 

Fig. 6.25 is worthwhile. The plots shown at the bottom window is a real-time progressive 

version of the 3D plots of the RBP-OPSGA calculated height for each found endmember. 

Unfortunately, this nice feature can be only demonstrated in real time process. 
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Figure 6.25. GUI Design for RBP-SGA 

6.6 Conclusions 

This chapter presents a new approach to finding endmembers which allows users to find 

endmembers band by band progressively and recursively. It is referred to as recursive band 

processing (RBP) and extends a well-known SGA to RBP-SGA. Since endmembers are 

generally considered as insignificant targets because of their rare appearance in the data. 

Accordingly, they may be very likely missed in many cases. The proposed RBP provides 

advantages of finding endmembers during its inter-band processing. In fact, as shown in 

experiments, RBP-SGA can find more endmembers than SGA does during its progressive 

endmember finding process. 
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Chapter 7: Conclusions 

7.1 Conclusions 

This dissertation develops a theory of Recursive Band Processing (RBP) for finding 

unsupervised targets in hyperspectral imagery. The proposed RBP allows users to process 

algorithms one band at a time so as to achieve real time processing. To the author’s best 

knowledge, the idea of RBP has not been previously explored before. It is particularly 

suitable for applications that have limited bandwidth for data transmission and 

communication where progressive results provide early assessment as well as timely decision 

on whether or not the current process needs to be continued. In this dissertation, several 

potential algorithms such as Automatic Target Generation Process (ATGP) for active target 

detection, Pixel Purity Index (PPI) and Fast Iterative Pixel Purity Index (FIPPI) find 

endmembers for passive target detection, are studied and extended to their RBP versions. 

Most importantly, in order to demonstrate its real time processing capability, this dissertation 

also develops Graphical User Interfaces (GUIs) to show all the algorithms processing in real 

time. These GUIs pave the way for future hardware implementation. 

Chapter 3 presents an active target detection approach RBP-ATGP which is shown not 

only possible but also have comparable performance to the traditional ATGP for target 

detection with less data transmission required. Moreover, RBP-ATGP algorithm provides a 

spectral profile of the detected abundance fractions, this will provide clues for band selection, 

prioritization. Furthermore, comparing to the original ATGP RBP-ATGP can find more 

endmembers and offer more valuable information for data analyst. 

Chapter 4 develops RBP-PPI which conducts target detection in a passive manner with no 

assumed prior knowledge. The theory behind PPI is OP, but is it is not as easy as it looks. 

This is because there are 4 parameters involves in the process, the number of skewers K, the 

number of processed bands l, the number of processed pixels n and the proper threshold t for 

PPI Count value. RBP-P-PPI and RBP-C-PPI are developed to address the issues that how to 

choose a proper number of skewers K and how to process data if only partial pixel data is 

available correspondingly. 

Chapter 5 shows RBP-FIPPI, which is a special case of RBP-PPI, with no need of 

determining the number of skewers K and the value of threshold t. In the mealtime, since 
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RBP-FIPPI using a small amount of skewers it reduces computational complexity. In 

addition, RBP-FIPPI has also the ability to reduce the amount of data necessary to transmit. 

This supports the concept that RBP algorithms can be used to speed the decision making 

process while the data acquisition is ongoing. 

Chapter 6 introduces and presents a recursive-band-processing version of a well-known 

endmember finding algorithm, Simplex Growing Algorithm (SGA) referred to as PBP-SGA. 

SGA was previously developed by Chang et al. (2006) to ease the computational  complexity 

of N-finder algorithm (N-FINDR) developed by Winter. PBP-SGA allows users to find 

endmembers by growing simplexes band by band without waiting for completion of all 

bands. 

7.2 Future Work 

There are a number of extensions for future research.. One potential method that hasn’t 

been fully explored is the concept of progressive band tuning (PBT). Conceptually, band 

tuning can add and remove bands in a forward and backward manner to identify bands of 

interest and improve results. 

Another area is to determine an optimal number of bands needed to be processed. 

Presently, the algorithms are intended to have users decide if any further bands should be 

processed according to their interpreted results. Without operator interaction, they will 

continue to process data band by band until all data is received. In the future, automatic band 

processing should be designed in such a fashion that the algorithm can be terminated 

according to custom designed stopping rules. 

While the algorithms presented have been successfully implemented in software, the 

datasets used were relatively small. One can expect a significant increase as the spatial 

dimensions of the hyperspectral image increase. Additionally, computing time required for 

newer sensors that may contain thousands of bands of spectral information may exceed the 

ability of software implementation. RBP paves the way for designing hardware devices such 

as FPGAs or ASICs for future hyperspectral data processing. 
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