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Particle distributions in weakly collisional environments such as the magnetosphere have been

observed to show deviations from the Maxwellian distribution. These can often be reproduced in

kinetic simulations, but fluid models, which are used in global simulations of the magnetosphere,

do not necessarily capture any of this. We apply the maximum entropy fluid closure of Levermore,

which leads to well posed moment equations, to reconstruct particle distributions from a kinetic

simulation in a reconnection region. Our results show that without information other than the

moments, the model can reproduce the general structure of the distributions but not all of the finer

details. The advantages of the closure over the traditional Grad closure are also discussed.

Published by AIP Publishing. https://doi.org/10.1063/1.5041758

I. INTRODUCTION

In weakly collisional plasma environments, particle dis-

tributions can become quite non-Maxwellian. This is sup-

ported by observational evidence in space plasmas, such as

the solar wind, where measured proton and electrons can

show distortions with anisotropy and heat flux,1 the magne-

topause, with recently observed “crescent” electron distribu-

tions in reconnecting regions,2 and near reconnection regions

in the magnetotail,3 where anisotropic, flat-top, and other

complex distributions have been seen.

For magnetic reconnection—a change in topology of the

magnetic field lines in a plasma4—in particular, kinetic simu-

lations have been used to study these distributions and their

origin in detail.5–7 However, global simulations of magneto-

spheres, which include these reconnection regions, use fluid

models such as magnetohydrodynamics (MHD). Though there

have been efforts to extend fluid models to include aspects of

the kinetic physics using higher moment equations,8–11 the

closure of the moment equations is difficult, and the underly-

ing distributions of these models capture some important

kinetic features but not all of the complex structure.

This work focuses on understanding which aspects of

the distribution function can be represented correctly by

moment closures. To this end, we employ the principle of

maximum entropy,12 which provides a method to determine

a probability distribution given limited information. This has

been used in many scientific fields including astrophysics,13

biology,14 and natural language processing.15 With regard to

fluid closures, the maximum entropy fluid closure of

Levermore16 has the additional advantage of leading to well-

posed fluid equations, which is not true for traditional meth-

ods such as the Grad method.17

The rest of this paper is organised as follows: We first

describe the traditional Chapman-Enskog and Grad

approaches to the closure of moment equations, followed by

the derivation of the maximum entropy closure of Ref. 16 in

Sec. II. This closure is then used to reconstruct distribution

functions close to the electron diffusion region of a kinetic

simulation of magnetic reconnection in Sec. III. We con-

clude in Sec. IV with a summary and discussion of the impli-

cations of our findings.

II. MAXIMUM ENTROPY FLUID CLOSURE

In this section, we review the derivation of the maxi-

mum entropy closure of Levermore.16 This was devised as a

nonperturbative alternative to the usual Grad moment sys-

tems and ensures that the hierarchy of moment equations

obtained is hyperbolic.

We start with the Boltzmann equation for a single parti-

cle phase space distribution f ðx; v; tÞ

@f

@t
þ v � rf ¼ Cðf Þ: (1)

Here, f is the single-particle phase space density and Cðf Þ is

a collision operator, assumed to conserve number, momen-

tum, and energy. The evolution of fluid quantities is obtained

by taking moments of this equation to get the hierarchy of

fluid equations16,17

@n

@t
þr � ðnvÞ ¼ 0

@nmv

@t
þr � ðPþ nmvvÞ ¼ 0

..

.

(2)

Here, n is the number density, v is the fluid velocity, and P is

the pressure tensor.

More generally, one can write

@U

@t
þr � F ¼ S; (3)

where U is the vector of moments of the distribution func-

tion, F is the tensor of the associated fluxes, and S is the
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vector of source terms arising from moments of the collision

operator. The problem of closure arises as the time evolution

of each fluid quantity depends on the flux term, which con-

tains higher velocity moments, so that there are always more

moments than equations. It is then necessary to describe

these unknowns in terms of other quantities (usually the

lower moments) to close the equations.

In the Chapman-Enskog approach,18 the distribution

function is described by small deviations from local equilib-

rium and can be expanded in powers of the Knudsen number

�, which describes the ratio of the mean free path to the gra-

dient scale

fCEðx; v; tÞ ¼ fMðx; v; tÞð1þ �f ð1Þ þ �2f ð2Þ þ � � �Þ;

fMðx; v; tÞ ¼
m3=2nðx; tÞ
2pTðx; tÞð Þ3=2

exp �mjv� uðx; tÞj2

2Tðx; tÞ

 !
:

(4)

The fluid equations can then be closed by solving for the dis-

tribution function using this expansion. Truncating the

expansion at the zeroth order leads to the Euler equations,

which are adiabatic and inviscid, while the first order expan-

sion leads to the Navier-Stokes equations, where viscosity

and heat flux are expressed in terms of velocity and tempera-

ture gradients, respectively.16 Beyond the Navier-Stokes

equations, one obtains the Burnett and super-Burnett equa-

tions, which must be modified to prevent instability at short

wavelength.19

In the Grad approach, the distribution function is

expanded in Hermite polynomials about a local Maxwellian,

and closure is achieved by truncating the Hermite expansion.

This can be written (omitting the x and t dependence for

brevity) as17

fGradðvÞ ¼ fMðvÞ
X1
n¼0

1

n!
aðnÞi H

ðnÞ
i

w

vt

� �
; (5)

where w ¼ v� uðx; tÞ and H
ðnÞ
i are multivariate Hermite

polynomials.20 The coefficients a are determined from the

moments of the distribution function. For clarity, the distri-

bution function can also be written in terms of physical quan-

tities. For example, the 20-moment model,17 which is used

in Sec. III, is

f20ðvÞ ¼ fMðvÞ 1þ pij

2pT
wiwj þ

qijk

6pT2
wiwjwk �

qi

2pT
wi

� �
:

(6)

Here, Einstein summation convention is used and p is the

scalar pressure, pij ¼ pij � pdij is the traceless part of the

pressure tensor, and qijk and qi are components of the heat

flux tensor and vector, respectively. Although moment equa-

tions can be derived using this closure, the Grad distribution

functions can become negative in regions of phase space,

and the moment equations can become ill-posed away from

equilibrium.16,21 In spite of these issues, the regularised thir-

teen moment system has had some success in describing rar-

efied gases22,23 and is still the subject of study using non-

Grad distribution functions.24–26

In contrast to the previous approaches, the maximum

entropy approach introduced by Levermore16 is non-

perturbative and uses a distribution function

f ða; vÞ ¼ exp ðasmðvÞÞ; (7)

where m(v) is a vector containing monomials up to a certain

degree of the particle velocity components and a is a vector

of closure coefficients.16

As the distribution function must be finite as v!1, the

polynomial in the exponent must be of an even degree. For

maximal degree 2, the 5 or 10-moment equations are obtained,

with the density, momentum, and either scalar or tensor pres-

sure being evolved. At degree 4, the next two systems, which

are considered in this paper, are the 14 and 21-moment equa-

tions, which retain the heat flux vector and tensor in a manner

similar to the 13- and 20-moment Grad equations. The addi-

tional quantity is the jvj4 moment, which is necessary to

ensure that the distribution remains finite as mentioned earlier.

In this closure model, the free parameters are the coeffi-

cients a. These are determined by a process which maxi-

mises entropy given the known moments of the distribution.

Here, we sketch the derivation.16

Using the form of the distribution function given above,

the moment equations can be rewritten as

@hmðvÞf ða; vÞi
@t

þr � hvmðvÞf ða; vÞi ¼ hmðvÞCðf ða; vÞÞi;

(8)

where the angled brackets indicate integration over velocity

space.

From here, we omit the v argument and let hðaÞ
¼ hf ðaÞi and jðaÞ ¼ hvf ðaÞi. These are denoted as the den-

sity and flux potentials, respectively, in Ref. 16. Here, we

can see that the a derivatives of these quantities give the

moment and flux terms in Eq. (8). Thus, the moment equa-

tions can be written as

@tha þr � ja ¼ SðaÞ: (9)

Equation (9) can be rewritten as

haaðaÞ@taþ jaaðaÞ � ra ¼ SðaÞ: (10)

This ensures hyperbolicity as haaðaÞ is positive definite and

jaaðaÞ is symmetric.

The closure coefficients a are determined through the

minimisation of the quantity hðaÞ � hasmf ðaÞi with respect

to a. This maximises the entropy �hf log f � f i given the

constraint of the known moments.16 The remaining quanti-

ties in the moment equations can then be calculated using

this distribution.

For five and ten moments, there are closed form solu-

tions, giving the isotropic Maxwellian f5ðvÞ ¼ fMðvÞ and the

generalised Gaussian distribution

f10ðvÞ ¼
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ3detðHÞ
q exp � 1

2
v� uð ÞsH�1 v� uð Þ

� �
;

(11)
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where H is a positive definite matrix.

There are two main limitations of this technique. For

moments with degree greater than 2, there is no closed form

solution and the coefficients must be calculated numerically

using a minimisation process. It has also been shown that

there can exist physically realisable states which cannot be

described by Eq. (7), though it is possible to guarantee realis-

ability by slightly modifying the distribution.27–29 Fluid sim-

ulations of the 14-moment (in 2-D) and 35-moment (in 1-D)

systems have been performed and show good agreement

with kinetic methods, but there are still ongoing efforts to

improve their efficiency.30–32

III. APPLICATION TO RECONNECTION

When magnetic reconnection occurs in weakly colli-

sional environments such as the magnetosphere, the particle

distributions can become highly non-Maxwellian as has been

shown in observations2,33 and kinetic simulations.6,34,35 We

have chosen this system to show how even large deviations

from the Maxwellian can be described by the Levermore

model. This section demonstrates the reconstruction of the

particle distributions at various points in the reconnection

region using the 10-, 14-, and 21-moment maximum entropy

models. These models are of particular relevance as the elec-

trons exhibit strong pressure anisotropy close to reconnection

regions,34 and the divergence of the pressure tensor balances

the reconnection electric field in the diffusion region.36

While the role of the heat flux is not as well understood, fluid

model simulations of reconnection have been shown to be

sensitive to its precise form Refs. 11 and 37–39.

FIG. 1. Structure of the current sheet at txci¼ 20. The y-axis is into the

page. Crosses mark positions where the upstream, x-point and exhaust parti-

cle distributions are studied.

FIG. 2. Reduced distributions f(px, pz)

in the upstream region. Normalisation

is such that
Ð

f ðpÞd3p ¼ 1. The lower

plot shows the 1-d distribution,

highlighting the importance of anisot-

ropy and the v4 moment in capturing

the structure of the distribution. The

21-moment distribution is not shown

as it is very similar to the 14-moment

distribution.
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To reconstruct these distributions, we perform a kinetic

simulation of a Harris sheet40 using the particle-in-cell

code PSC.41 Parameters are similar to the antiparallel GEM

scenario,42 with mi/me¼ 25, xpe/xce¼ 2, and Ti/Te¼ 5.

Reconnection is initiated by a small magnetic field perturba-

tion. The moments are taken directly from the simulation

data, with reference particle distributions extracted from

boxes with side 2.5de around the points marked in Fig. 1 at

txci¼ 20. These correspond to the inflow, x-point, and

exhaust regions and there are approximately 10 000 particles

in each sampling region.

From the known moments, the coefficient vector a is

determined iteratively using a Newton method. We note that

some of the electron distributions close to the x-line contain

relativistic electrons, so the distributions below are shown in

p-space. However, the closure model uses a non-relativistic

approximation, so that p ¼ mev and the form of the

maximum-entropy distribution in Sec. II remains the same in

these calculations.

Just upstream of the electron diffusion region, the elec-

tron distributions are anisotropic due to a combination of

electrostatic and magnetic trapping.5 This gives Pk > P?,

which can be seen in Fig. 2, where vx is approximately paral-

lel to the magnetic field. The models with ten or more

moments capture the anisotropy correctly, though the

14-moment model better reproduces the small asymmetry

and the flat region associated with the trapping, as shown in

the one-dimensional plots of the reduced distribution f(px).

For distributions in this region, using the 21-moment model

does not significantly change the reconstruction.

The particle distribution at the x-point is shown in the

leftmost column Fig. 3. The first row shows the reduced dis-

tribution f(px, pz), while the second row shows f(px, py). In

the px–py plane, the characteristic triangular shape associated

with electron meandering and acceleration in the py direction

can be seen. The reconstructed distributions are shown in the

remaining columns, where the 10- and 14-moment models

are unable to reproduce the triangular shape. The 21-moment

model is able to capture this shape, but does not have enough

details to capture the bimodal structure in pz or the finer

structures associated with different electron crossings of the

current sheet.6,43 For comparison, a Grad 20-moment distri-

bution is shown in the final column of Fig. 3. The elongation

in the py direction can still be seen, but there are also unphys-

ical regions with negative f, whose boundaries are marked by

the black contours.

Finally, the electron distribution in the exhaust approxi-

mately 1.7 di downstream from the x-point is shown in

Fig. 4. Due to the turning of py into px by Bz, the distribution

retains its triangular shape but is rotated in the px–py plane

FIG. 3. Comparison of reduced distribution functions from various models and a kinetic simulation at the x-point. The contours in the rightmost plot show the

boundary between regions of positive and negative (unphysical) f.

082113-4 Ng, Hakim, and Bhattacharjee Phys. Plasmas 25, 082113 (2018)



compared to the x-point distribution. Again, the effects of

adding the various moments can be seen, with the 21-

moment model doing the best job of representing the general

structure of the kinetic distribution.

To determine how effective the reconstructions are, we

calculate the difference between the model distributions and

simulation results using the Hellinger distance44

H ¼ 1�
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fModelðvÞf ðvÞ
p

d3v: (12)

In spite of the number of particles being used, there are still

some issues with noise affecting the error calculation. Vlasov-

Maxwell codes may be a better tool for such comparisons of

distributions. For the 20-moment model, where f can become

negative in certain regions, we use jfModelj in Eq. (12).

The results are shown in Fig. 5 for the various models and

locations in the reconnection region. The agreement between

the models increases with the number of moments, though the

Grad 20-moment model, with its different functional form,

does not necessarily improve the agreement. In the inflow

region, the improvement when going from 5 to 10 moments

shows the importance of the pressure anisotropy in describing

the distributions there, while the improvement going from 10

to 14 and 21 moments is smaller. Due to the location of the

sample on the vertical axis of symmetry, the heat flux is small

and the deviation from the Gaussian is limited to the flattening

of the distribution, which is well described by the scalar v4

moment. At the x-point and in the exhaust, the difference

between the model and particle distributions is larger than the

inflow case, which is unsurprising due to the larger deviation

from the equilibrium distribution and indicates that more

moments are needed to fully describe the structure.

IV. CONCLUSION

We have shown how the maximum entropy method can

be used to reconstruct distribution functions from their

known moments in a non-perturbative way. Compared to the

Grad method, the reconstructed distributions are always

FIG. 4. Comparison of reduced distribution functions from various models and a kinetic simulation at the 1.7 di downstream of the x-point. The contours in the

rightmost plot show the boundary between regions of positive and negative (unphysical) f.

FIG. 5. Comparison between maximum entropy distributions and particle

distributions.
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positive and guarantee the hyperbolicity of the resulting

moment equations, which is important for numerical evalua-

tion. However, a major drawback of this method is the neces-

sity of evaluating the closure coefficients for >10 moment

models. From a practical standpoint, this computation, which

includes velocity space integrals and solving a minimisation

problem, must be avoided for affordable fluid simulations to be

performed. A possible approach, which has been used for 14-

moment neutral fluids,30 is the development of closed form

approximations based on interpolating between the realisability

boundaries of the maximum entropy closure, but further devel-

opment will be necessary for higher moment equations.

This work is focused on understanding the number of

moments necessary to capture the structure of the electron

distribution function in antiparallel reconnection without

additional information. In the inflow region, the Gaussian

description of pressure anisotropy is insufficient to describe

the flattening of the distribution due to particle trapping, and

it is necessary to take into account the v4 moment.

Within the current sheet, the more complicated distribu-

tion functions are not well described by even the 21-moment

model, which only captures the electron acceleration in the y
direction without the structure associated with meandering and

counter-streaming particles. The description of the counter-

streaming flows likely requires retaining more of the fourth

order moments (i.e., the 26- or 35-moment models),32 while

the finer scale structures with multiple electron populations

possibly require many more moments, based on the results of a

similar closure model in 1-D, where 15 moments were

required to properly describe a distribution with three peaks.45

Because the maximum entropy model closure is based

only on the known fluid moments, it does not require or pro-

vide information about the physical processes involved in

the evolution of the distribution function. Using the recon-

nection inflow as an example again, the anisotropy due to

trapping can be described by equations of state for Pk and

P?,5 while the maximum entropy closure requires 14

moments. On the other hand, the equations of state require

knowledge of the background plasma density and magnetic

field, while the maximum entropy closure requires only local

information. Thus, while it is less efficient compared to spe-

cific physical models, the same form of the distribution and

set of equations can be used more generally.

Finally, we comment briefly on the relation of these

results to existing ten-moment descriptions of reconnection.

In spite of the differences between the distribution functions,

ten-moment methods with an approximate heat flux or tem-

perature relaxation have ostensibly had some success in

modeling reconnection.8,9,11,46 The balancing of the recon-

nection electric field by the pressure tensor is included, as

are some aspects of the anisotropy, but the importance of the

heat flux (which is not fully evaluated by some of these mod-

els) is seen in the sensitivity of the reconnection rates to the

closure approximations.9,38
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