
Creative Commons Attribution 4.0 International (CC BY 4.0)  
https://creativecommons.org/licenses/by/4.0/ 
 

 

Access to this work was provided by the University of Maryland, Baltimore County (UMBC) 
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) 
platform.  

 
Please provide feedback 

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s 
important to you. Thank you.  

 

https://creativecommons.org/licenses/by/4.0/
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu


Measuring Software Security Using Improved CWE Base
Scores
Sabrina Mamtaz Nourin1, George Karabatis1 and Foteini Cheirdari Argiropoulos2

1Department of Information Systems, University of Maryland, Baltimore County (UMBC), Baltimore, Maryland, USA
2ML4Cyber, Baltimore, Maryland, USA

Abstract
Increasing the security of a software system by decreasing the number of its vulnerabilities has been a major objective of
any organization. Therefore, it is important to identify a measure that indicates the security level of the software system.
This paper presents a scoring method to measure the security posture of a software system. This novel scoring method for
Common Weakness Enumeration (CWE)s considers semantic information in order to increase the accuracy of the score and
provides a better outlook of the security posture of a software system using full automation.
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1. Introduction
As software systems are quite prevalent in today’s digital
society, the existence of vulnerabilities in the software is
often the culprit for malicious attacks, resulting in secu-
rity breaches, leading to loss of information and computer
assets, and inflicting disruption of operations, and finan-
cial losses. The more we examine software systems the
more we discover potential vulnerabilities. Therefore,
the security of software is an issue of high priority, al-
though it is a labor intensive and complex task. The first
step is to gauge the level of security in a software system
and calculate it.

In this paper we propose a novel method to com-
pute software security score using semantic knowledge
and Natural Language Processing (NLP). We introduce
a new scoring system for Common Weakness Enumer-
ation (CWE), which is a community-developed list of
software and hardware weakness types. Identified weak-
nesses in software code written in any programming
language, are commonly found in CWE, which serves as
a measuring stick for security tools, and as a baseline for
weakness identification, mitigation, and prevention ef-
forts [1]. There is no publicly available list of CWE scores
[2]. MITRE [3] provides guidelines on how to calculate
the CWE scores. But it is a time-consuming process, very
user dependent and requires manual input from the user.
Therefore, our objective is to provide an accurate and
automated scoring method for CWEs, by implementing
context similarity using NLP.
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Common Vulnerabilities and Exposures (CVE) [4] pro-
vides a list that contains actual instances of the weak-
nesses listed in CWE. The CVE list comes with a pub-
licly available score, along with impact and exploitability
sub-scores for each vulnerability. Impact represents how
much damage a weakness can cause if exploited, and
exploitability measures the ease of causing damage by
exploiting the weakness. Practically, the base score is the
sum of impact and exploitability sub-scores [4]. CVSS
(Common Vulnerability Scoring System) [5] is the offi-
cial guideline to generate scores for CVE. CVSS scores
are publicly available, therefore, most related research
uses them to generate software security scores. However,
the same CVSS score is typically assigned to the same
type of vulnerabilities (all nearly similar vulnerabilities
have the same score despite certain few yet substantial
differences, especially when operated in different envi-
ronments). Sometimes a CVSS score is not available for
all possible CWEs. Based on our understanding and ex-
perimentation, using a combination of semantic informa-
tion of CWE along with CVE, one can generate a more
accurate software security score, because CWE provides
additional information for each vulnerability and it is the
basis for CVE.

The CWSS (Common Weakness Scoring System) [6]
is a system that provides a mechanism for prioritizing
CWEs based on a weakness scoring concept. CWSS pro-
poses three metrics for weakness scoring – base metric,
attack surface metric, and environmental metric. The
base metric captures the inherent risk of the weakness,
and it does not change over time and environment. Also,
the base score for each CVE is generated using this base
metric, and it does not change over time and system
environment. The attack surface metric represents the
barriers that an attacker must overcome in order to ex-
ploit the weakness. Finally, the environmental metric
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represents characteristics of the weakness that are spe-
cific to a particular environment or operational context.
In this paper, we propose a solution to automatically
calculate the CWE base score using NLP, without any
user input. We augment the components of base metrics
by utilizing semantic similarity of the CWE and CVE
descriptions. By doing so, we obtain an accurate CWE
score for each weakness in the system, and hence, we
generate an accurate score that represents the security
posture of the software.

We first follow the scoring guidelines from MITRE [2]
to generate a security score, which is used as a baseline
for comparison purposes against our method. The base-
line yields a base score of a CWE by mapping CWE to
CVE using their id, and taking the average of the base
scores of mapped CVEs. Then, the baseline is used to gen-
erates the security score by taking the sum of base scores
of all CWEs that exist in the software system, multiplied
by their respective percentage of appearance. A higher
security score means that the system is more secure and
less vulnerable to possible attacks. However, this direct
mapping between CWE and CVE may not provide an
accurate score, because a large number of CWEs cannot
be mapped with any CVE, while a small number of CWEs
is mapped with multiple CVEs, introducing inaccuracies
in the base score of CWE.

We propose a novel algorithm that leads to more accu-
rate way to score the CWEs by mapping to CVE using
context similarity. We use the available CVE scores [4] to
generate a base score for each CWE. We discover similar
CVEs and CWEs based on their respective description
using NLP techniques, and using this similarity, we can
generate the CWE base scores, and hence, an overall soft-
ware security score. Software developers and managers
can observe the continuous improvement of the software
based on the changes of the scores of consecutive phases
of fixing, testing, and debugging. In addition, the score
generated for each CWE can be used to generate a rank-
ing of weaknesses in the system, and determine which
ones to address first, making a positive impact on pro-
grammers and managers. The final result of the entire
process is a scored list of the actual vulnerabilities that
exist in the software system, and its overall security score.
In summary, the contributions of this paper are:

• Generate a more accurate base score for software
weaknesses (CWEs) using context similarity of
CWE and CVE.

• Calculate the security score of a software system
using the generated CWE base score in a fully
automated way.

• Evaluate the accuracy of the scoring mechanism
through experimentation.

2. Related work
We categorize the related work in two topics: improve-
ment of vulnerability scores, and calculating the overall
security of a system. Most of these works use CVE as the
basis for scoring. Very few works have considered CWE
for measuring software security.

2.1. Vulnerability score improvement
A lot of work has been performed to predict and acquire
a score for vulnerabilities (CVEs). In [7], the authors
use logistic regression to detect the probability of hav-
ing a vulnerability and binomial distribution to detect
the severity of vulnerabilities, on vulnerability datasets
of Adobe flash player and Firefox. The authors used
mean time to vulnerability (temporal factor), local risk
rate, mean risk rate, and overall risk value as important
factors to predict the severity of a vulnerability. In [8],
the authors used attack surface entity point connection
with vulnerability location to predict vulnerability ex-
ploitation potential. All of these works used the CVSS
(Common Vulnerability Scoring System) [5] score. In
[9], temporal and environmental metrics were used to
obtain an improved CVSS (Common Vulnerability Scor-
ing System) score. In [10], the authors used temporal
factor with Pareto and Weibull distribution [11] on dis-
cover, disclosure, exploit and patch date to add a temporal
metric. Subsequently, [12] and [13] were inspired from
[10] for temporal metrics. In [14], the authors also used
the temporal factor to calculate software integrity level.
These temporal factors consider the time passed since
the discovery of that vulnerability. The temporal factor
is adjusted as newer versions of CVE come in, sometimes
the base scores change, some other times a resolved CVE
is even removed from the list. So, for the time being, we
can ignore the temporal metrics. In [13], the authors used
software context information to prioritize CVSS based
vulnerabilities, where the context information works as
equivalent to temporal and environmental metrics. Our
goal is to make a better use of context information by
incorporating it with CWE to generate a better CWE
score. Recently, information extraction techniques are
being used to predict vulnerability score from the vul-
nerability description. In [15], the authors used word
embedding (using skip-gram [16]) and one-layer shallow
Convolutional Neural Network (CNN) [17] to predict vul-
nerability severity using the CVE database. They used
probabilistic distribution to predict the severity level of
the vulnerabilities. In [18], the authors also used word
embedding (using word2vec [19]) with CNN to create
sentence embedding of CVE, CWE and Common Attack
Pattern Enumeration and Classification (CAPEC) [20],
and knowledge graph to predict security entity relation-
ship. The vectors generated by word embedding do not



provide the entire context information. Hence, there
is room for mistakes, therefore, the semantic process
does not produce the correct result. To resolve this, we
are using sentence embedding. It does a better, due to
comparison between sentences, because it considers the
context of sentence. In [21], the authors used PageRank
[22] algorithm on CVSS to calculate the CWE score. They
tried to improve it by using the child-parent relationship
between different CWE. This can be useful to identify the
possibility of a weakness being present in the system. But
as we certainly know which CWEs exist in the system
from our prior work [23], we can directly calculate the
CWE score without considering its possible children.

2.2. Security score
As the vulnerability score gained from CVSS only pro-
vides information about individual CVEs, and not the
total security posture of the software system, we need an
approach to calculate the software security score accu-
rately. There are only few existing works that concentrate
on calculating the security score of the entire software.
In [24], the authors proposed a method to assess the po-
tential risk of cyber-attacks utilizing network-wide com-
pliance reports. They consider vulnerability distribution,
dependency between the vulnerabilities, and network
configuration. But they do not consider the important
impact factor. In [25], the authors propose that security
metrics are proportional to the weighted total of base
score and the weight of the vulnerabilities. In [26], the
authors used aspect-oriented Stochastic Petri nets for
threat modeling, where the authors followed the secu-
rity metrics calculation proposed in [25]. They consider
threat categorization of STRIDE for creating a way for
threat mitigation. CVSS is used in [26], [24], [25] as the
basis of vulnerability scoring. Our goal is to improve
the security score compared to the above methods by
using CWE along with CVE for scoring, and by using
environmental metrics.

3. Approach
In order to calculate the security score of a software sys-
tem, we first need to identify the number of weaknesses
(CWEs) that exist in the system, and the base scores of
those CWEs. Based on our previous work [23], we ob-
tain a list of existing CWEs in a system by scanning the
software with a scanning tool and we identify the true
weaknesses using our machine learning methodology.
Using the CWE base score, we derive the overall security
score of a software system. First, we create a baseline
method to calculate the software security score based on
one of the existing and most commonly used methods
[2]; then, we create and implement our own method and

compare the results of both methods.

3.1. Baseline
For the baseline, we generate the CWE base score by
mapping the CWE ID with its corresponding CVE ID,
using the CVE list provided by MITRE [4]. We have
followed the scoring suggestions from MITRE [2], which
are:

Base Score for a CWE: Every CVE can be mapped
to a CWE (multiple CVEs can be mapped with the same
CWE), but not every CWE can be mapped to a CVE.
Therefore, some CWE (CWEX) can be mapped with one or
more CVEs, and some CWE cannot be mapped with any
CVE. The CVE list provided by MITRE [4] includes the
following information for each CVE: a CWE ID, a CVSS
base score, and impact and exploitability sub-scores. For
each CWE, we take the average of the CVSS base scores
of its mapped CVEs. Then we normalize this average
score by dividing it by the range of CVSS base scores
(difference of the maximum and minimum CVSS base
scores among all the mapped CVEs) for that particular
CWE. The result is the base score Sc(CWEX) of a CWE.

(1)𝑆𝑐(𝐶𝑊𝐸𝑋) =
𝑎𝑣𝑔(𝐶𝑉 𝑆𝑆)−𝑚𝑖𝑛(𝐶𝑉 𝑆𝑆)

𝑚𝑎𝑥(𝐶𝑉 𝑆𝑆)−𝑚𝑖𝑛(𝐶𝑉 𝑆𝑆)

Equation 1 is the popularly used method of calculating
CWE base scores, and it is presented in [2]. As several
CWEs can be mapped to a CVE, the unmapped CWEs
were ignored in [2]. In order to consider unmapped CWEs
we need to assign a base score for each one of them. One
possible solution is to use the severity level generated
by the scanning tools. When the source code is passed
through the scanning tools, it generates a list of possible
CWEs in the system, along with their severity level. The
different severity levels are - informational, low, medium,
high, and critical. We map these severity levels to nu-
meric values in the range of possible CWE scores (0 to
10). Severity levels that are informational, low, medium,
high, and critical are mapped to 1,3,5,7 and 9 respectively.

Weight of a CWE: We also calculate the weight
(wt(CWEX)) for each CWE representing the percentage
of times a CWE appears within the software system.

𝑤𝑡(𝐶𝑊𝐸𝑋) =
# 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝐶𝑊𝐸𝑋 𝑜𝑐𝑐𝑢𝑟𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑤𝑒𝑎𝑘𝑛𝑒𝑠𝑠𝑒𝑠
(2)

In [2], weight is represented as frequency, and it is calcu-
lated as the number of CVEs that can be mapped to a CWE
within the National Vulnerabilities Database (NVD) [27].
The NVD is the U.S. government repository of vulnera-
bility management data. This mapping with the entire
database of CVE was performed to rank the entire CWE
list. As every software system has a small number of
repeated CWEs, we do not need to consider the entire



list of CWE to generate that system’s security score. So,
we modified the weight calculation as follows: instead
of counting the number of times a CWE maps with any
CVE in the entire NVD database, we count the number
of times a particular CWE appears in the system.

Weakness Score of a CWE: After generating the
CWSS base score for each CWE in the system, we take
their weighted average to determine the security score
[25] [26]. To get the base score of each CWE, we multiply
their mapped base score with their weight. The sum of
the base scores of all existing CWE in a system is the
weakness score of a system.

𝑊𝑒𝑎𝑘𝑛𝑒𝑠𝑠 =
∑︁

(𝑤𝑡(𝐶𝑊𝐸𝑋)× 𝑆𝑐(𝐶𝑊𝐸𝑋)) (3)

Security Score: In this method, the CWE base score is
generated from CVE base scores. As the CWE base score
is the weighted average of base scores of the mapped
CVEs, the maximum value of CWE base scores must also
be 10. Since the highest value of base scores is 10, and
the weights are less than 1 (weight in this case is defined
as the percentage of times a CWE appears in a system),
this score identifies how weak the overall system is, and
ranges from 1-10. We multiply the base score by 10 to
generate a more conventional score out of 100. Therefore,
the security score of the system, based on the weakness
score as follows:

𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 = 100−𝑊𝑒𝑎𝑘𝑛𝑒𝑠𝑠 (4)

In the baseline, we map a CVE to a CWE, to get the
CWE base score. Though this method is widely used,
it does not give us an accurate CWE score, due to the
fact that many CWEs map to the same CVE. Therefore,
these CWEs will have similar base score. In real life,
CWEs that map to the same CVE sometimes may not
operate in a similar way, and hence may not cause similar
security breach. This difference leads to an error in the
base score calculation. In order to have a more precise
base score, we make use of the contextual information
to map the CWEs to CVEs; consequently, we minimize
this error. Also, considering the severity level as the base
scores for unmapped CWEs generates an error in the
security score, because the severity level is generic, and
can vary from one scanning tool to another. However,
if we use context similarity, we can generate a more
accurate score for any non-mapped CWEs. Therefore,
for a more accurate estimation of the security posture
of the system, we propose to create a general method to
generate CWE base score using context similarity, impact,
and exploitability sub-scores for each weakness.

3.2. Proposed Approach
Figure 1 depicts an overview of the proposed scoring
system. We start by providing the source code to the

static analysis scanning tools, which scan the code and
generate a list of potential CWEs. Based on our prior
research, we observe that many of these potential CWEs
are in fact false positives. So, we designed and imple-
mented the VINCI (Vulnerability IdeNtifiCatIon) tool,
which identifies and labels the false positive vulnerabil-
ities using the output report of the scanning tools [23].
VINCI uses author information along with other criteria
to accurately identify false positive CWEs, allowing only
true positive CWEs to be considered for security scor-
ing. Consequently, using VINCI, we get an actual list of
weaknesses (CWE) in a system. Then, we calculate an
accurate base score for the CWEs, and using this base
score, generate the software security score.

Figure 1: Overview of the proposed system for measuring
the security score of a software application

Measuring similarity between a CWE and a CVE
using NLP: At this point we need to identify how similar
a given CWE is to a CVE. Hence, we need to perform a
contextual comparison between the descriptions of CWE
and CVE to find out which vulnerability (CVE) is con-
textually similar to a weakness (CWE) by using their
descriptions. This is not only important but also critical
since we can get a better idea whether a CVE and a CWE
work in the similar way and cause security breach in
the same way, or not. To do this, we create a universal
vector of all the CVE and CWE descriptions using sen-
tence embedding. Sentence embedding is an NLP process
that embeds each sentence into an n-dimensional vector
space, by inheriting the features from underlying word
embeddings. So, each sentence vector is created based
on the words in that sentence, and the context of those
words. After representing two sentences as vectors (for
example sentences like ‘I drive car’ and ‘I can drive’), we
can calculate their cosine similarity.

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴,𝐵) = 𝑐𝑜𝑠𝜃 =
(𝐴.𝐵)

|𝐴||𝐵| (5)

In equation 5, A and B represent the sentence vectors of



the two sentences. If similarity(A,B) increases, it means
that the angular difference between these two sentences
decreases, meaning the sentences are similar. Using this
process, we perform a semantic search between a CWE
and a CVE. Semantic search is the task of finding similar
sentences from a corpus to a given sentence, by using
the context of the sentence. Therefore, we conduct a se-
mantic search to find the closest CVEs to any given CWE
based on similarity, which is represented by the sentence
vector. This is represented in lines 1 to 3 in algorithm 1.
We use Python NLP libraries to create sentence vectors,
such as the sentence-transformers [28] library. As there
is not enough CVE/CWE description data to train the
model, and the vulnerability/weakness descriptions are
well formatted, we decided to use a pre-trained model for
sentence embedding. This model is trained on well for-
matted text, which means it is good at creating a vector
for grammatically and syntactically correct texts, and it
works well for our purpose. We have manually checked
each CWE and its similar CVEs to confirm the accuracy
of the model.

Using the generated sentence vectors for CVE and
CWE description in the universal vector space, we calcu-
late how much two sentences differ from each other. By
subtracting their vectors using distance modules from
Scipy [29], we get a score that represents how different
these two sentences are, i.e. we obtain the distance be-
tween them. This distance score is always less than or
equal to 1, (1 signifies that the sentences are completely
different, and 0 signifies that both sentences are the same).
By subtracting the distance score from 1, we get the sim-
ilarity score between two sentences. Higher similarity
score means that two sentences are more similar. When
we compare the sentence vector of a CWE against the
universal sentence vector of the CVEs, this similarity
score helps us find the most similar CVEs for that CWE.
This is equivalent to the probability of a CWE being re-
lated to a particular CVE. For each weakness in CWE list,
we consider the 5 most similar CVEs. The CVE list [4]
comes with base score of a CVE, along with its impact
and exploitability sub-score. For each CWE we take the
weighted average of the impact and exploitability sub-
score of the 5 most similar vulnerabilities, where weight
is the similarity score between the CWE and the CVE.
The impact score is represented as,

(6)𝑖𝑚𝑝𝑎𝑐𝑡 =

∑︀5
𝑖=1(𝑖𝑚𝑝𝑎𝑐𝑡𝑖 × 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖)

5

And the exploitability score is represented as,

𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

∑︀5
𝑖=1(𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑖 × 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖)

5
(7)

Therefore, the base score is given by Equation 8 below.

𝑏𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 = 𝑖𝑚𝑝𝑎𝑐𝑡+ 𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (8)

The entire process to calculate the base score is shown
in Algorithm 1.

Algorithm 1
Input: the list of the CWE and CVE descriptions
Output: CWE base scores

1: Create universal sentence vectors (vectx) for all CWE
and CVE descriptions using sentence embeddings

2: for all CWE do
3: Find the most similar CVEs by comparing the sen-

tence vectors.

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑦)
(𝑣𝑒𝑐𝑡𝑥.𝑣𝑒𝑐𝑡𝑦)

|𝑣𝑒𝑐𝑡𝑥||𝑣𝑒𝑐𝑡𝑦|

4: Calculate the average impact and exploitability
sub-scores as in equations 6 and 7

5: Calculate CWE base score using impact and ex-
ploitability sub-scores as in equation 8

6: end for

An advantage of this process is that, unlike the base-
line, every CWE gets scored, depending on its similarity
with a CVE. Even if a CWE does not properly map to
any CVEs, it gets assigned an appropriate score. The
sub-scores of the mapped CVEs are multiplied by the
similarity score, which give us the weighted sub-scores
that help us generate accurate base score for a CWE
with respect to the CVE. We can also generate CWE base
scores directly from CVE base scores (without generating
impact and exploitability sub-scores separately, and then
adding them) using the same method. But impact and
exploitability of two CWEs can sometimes vary largely,
even if they have the same base score. So, it is better to
derive impact and exploitability score first, and then add
them to generate the base score.

Finally, when we have all the base weakness scores
for all CWEs, we can calculate the total weakness score
of the system by taking the average of their base scores
using the following equation:

(9)𝑤𝑒𝑎𝑘𝑛𝑒𝑠𝑠 𝑠𝑐𝑜𝑟𝑒 =

∑︀
(𝑏𝑎𝑠𝑒 𝑠𝑐𝑜𝑟𝑒𝑖)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑊𝐸𝑠

where, n represents the total number of CWEs in a sys-
tem.

Like the baseline, this weakness score always ranges
from 1 to 10. We multiply the resulting score by 10 to get
a more conventional score out of 100. It is more desir-
able for a higher score to reflect a more secure system,
Therefore, the security score of the system, based on the
weakness score is as follows:

𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 = 100− 10× 𝑤𝑒𝑎𝑘𝑛𝑒𝑠𝑠 𝑠𝑐𝑜𝑟𝑒 (10)

This calculation process is represented in lines 4 to 5 in
Algorithm 1.



4. Experimental Evaluation
In order to evaluate our technique, compare it against the
most commonly used ones, and to measure the improve-
ment, we performed several experiments and recorded
the results using various actual and synthetic datasets.

4.1. Datasets
We applied our method on two real-world open source
software systems (WhatsApp [30] and Atom [31]) and
a synthetic dataset (SARD [32]). After running static
analysis tools on these software systems, we obtain a
list of possible weaknesses. However, this list contains
false positives, which are removed by running the VINCI
tool [23]. The result contains only actual CWEs that
exist in the system (true positives). WhatsApp had 490
actual CWEs, Atom had 160 CWEs and SARD had 30
CWEs. In every system, one CWE might be repeated
multiple times. There are also a lot of CWEs that cannot
be directly mapped with any CVE, especially in the case
of SARD and Atom. The unmapped CWEs add significant
effect on the security score. The base scores of CWEs are
calculated as the methods discussed in section 3.2.

4.2. Experiments and Results
In our experiments we derive the security posture of a
software system using the security score described in our
approach. We used a 64 bit Dell laptop with Windows 10
Pro operating system, Intel(R) Core(TM) i7- 1065G7 CPU
(2 GHz) with 8GB RAM and 500 GB hard disk. Figure 2
shows a comparison of the final security score baseline
method versus two versions of our approach. The first
version calculates weakness scores acquired directly by
averaging the base score of similar CVEs, without calcu-
lating the impact and exploitability sub-scores separately.
The second version calculates the impact and exploitabil-
ity sub-scores separately, and then adds them to obtain
the base score for CWE. Different methods of calculating
security score for different systems are represented in the
X-axis, and the security score for each case is represented
in the Y-axis. The security score ranges from 1 to 100,
where higher scores identify better security.

We observe a large difference of security score be-
tween the baseline and our proposed methods. The final
security score generated by our proposed method is sig-
nificantly higher than the baseline score. This is due to
the fact that each CWE in the baseline is mapped to one
or more CVEs, and sometimes there is no equivalent CVE
for a given CWE. For the non-mapped CWEs, the base-
line considers the severity level as the base score, which
is often not accurate. This can sometimes increase and
sometimes decrease the actual security score, injecting
more inaccuracy in the final score. Also, if the number of

Figure 2: Security score using different methods

non-mapped CWEs is very large, it can greatly affect the
actual security score. The more non-mapped CWE a sys-
tem contains, the more its final security score varies from
the baseline score. So, even though the baseline approach
is the most commonly used method, it provides inaccu-
rate results for most of the cases, especially in the SARD
dataset. As it is synthetic, it may not reflect real word
scenarios, even lesser number of distinct CWEs. Among
our datasets, SARD has the least number of unique CWEs,
and a higher number of CWEs that are non-mapped to a
CVE. Therefore, the baseline security score for SARD is
very low, resulting in a large difference from the security
score generated using NLP. We also experimented on
Atom version 1.33.0, which contains a large number of
unmapped CWEs. We observe that there is a big differ-
ence between the baseline score and the final security
score for Atom too, with a low baseline score and much
higher security score. The base scores achieved by our
process utilize context and are available for all CWEs. For
the two methods that we implemented, we observe that,
the one calculating impact and exploitability sub-score
gives slightly better result than directly calculating the
base score. This happens because even if two CVEs have
the same base score, their impact on the system can be
different, and their exploitability can vary too. So, the
CWE base score can be different sometimes if we calcu-
late impact and exploitability sub-scores of CVE first and
add them later, as opposed to calculating it directly from
CVE base scores. The difference of these scores occurs
for some CWEs, but in some other cases, impact and ex-
ploitability sub-scores do not vary much when they have
the same base score. So, the overall security score, which
consists of all CWEs, might not always be very different
for these two methods.



5. Conclusion
It is very important to estimate how secure a software
is, in order to determine how much effort and attention
should be allocated in terms of having a more secure
software system. The more CWEs a system has, and the
more severe those CWEs are, the more vulnerable the
system is to attacks. Using the CWEs that exist in a sys-
tem, we can generate a score that identifies the security
posture of a software system, therefore providing idea
about the vulnerability of the software system against
cyber attacks.

In this paper, we have designed and implemented a
method to provide a more accurate software security
score based on the existing CWE information. This is
accomplished by scoring each CWE in the software as
accurately as possible, utilizing contextual information.
We have used semantics and NLP to map CWEs to CVEs,
in order to generate a base score for CWE. In order to
guarantee the correctness of the semantic mapping pro-
cess, we manually checked the correctness of sentence
similarity. In the future, we plan to reduce the need of
manual checking by generating and collecting sufficient
data for supervised learning, which will make the process
even more automated.

In addition, we have evaluated our methods through
experimentations, where we have compared the results
with the most generally used baseline, which is currently
the state-of-art [2]. We have tested our proposed method
and the baseline method on different real world and syn-
thetic software systems. In every case, our proposed
method has produced significantly more accurate and
logical scores compared to the popularly used baseline
method.

The resulting procedure can help system managers
and developers get an accurate estimation about the se-
curity posture of the system, leading towards more se-
cure software (which are less prone to cyber-attacks),
and therefore increasing the quality of software. This
method for CWE scoring can also be used to prioritize
weaknesses that exist in a system, and determine which
ones to address first. In a whole, our method can reduce
the workload relevant to ensuring software security, and
help the organizations create more secure software sys-
tems using less time and resources.
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