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Abstract. The so-called bi-spectral method retrieves cloud optical thickness (τ) and cloud droplet effective radius (re) 
simultaneously from a pair of cloud reflectance observations, one in a visible or near infrared (VIS/NIR) band and the 
other in a shortwave-infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the 
retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved τ and re. In this 
study, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel 
variances of VIS/NIR and SWIR cloud reflectances and their covariance on the τ and re retrievals. This framework takes 
into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually 
dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel 
cloud reflectance variations impact the τ and re retrievals based on the bi-spectral method. In particular, our framework 
provides a mathematical explanation of how the sub-pixel variation in VIS/NIR band influences the re retrieval and why 
it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to 
a potential contribution of positive bias to the re retrieval. 

INTRODUCTION 

Among many satellite-based cloud remote sensing techniques, the bi-spectral solar reflective method (“bi-
spectral method” hereafter) is a widely used method to infer cloud optical thickness (τ ) and cloud droplet effective 

radius ( re ) from satellite observation of cloud reflectance1. The bi-spectral method makes several important 
assumptions about the cloud (or cloudy pixels). Most important of all, cloud is assumed to be horizontally 
homogenous (referred to as the “homogenous pixel assumption”) within a cloudy pixel. The focus of this study is to 
develop a unified framework for understanding and quantifying the impacts of sub-pixel level unresolved 
reflectance variations on re and τ retrievals based on the bi-spectral method. A number of previous studies have 
already made substantial progresses in this direction. It has been known for a long time that at the spatial scale of 
climate model grids (e.g., ~ 102 km) approximating inhomogeneous cloud fields with plane-parallel clouds can lead 
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to significant biases in shortwave solar radiation e.g., 2-4. Cahalan et al. 3 described an elegant theoretical framework 
based on a fractal cloud model to explain the influence of small-scale horizontal variability of τ  on the averaged 

cloud reflectance in the visible spectral region RVIS . It is shown that the averaged reflectance RVIS τ i( ) , where τ i  
denotes the sub-pixel scale cloud optical thickness, is smaller than the reflectance that corresponds to the averaged 

cloud optical thickness τ i , i.e., RVIS τ i( ) < RVIS τ i( ) . This inequality relation is well known as the “plane-parallel 

homogenous bias” (referred to as PPHB), which is a result of the non-linear dependence of RVIS  on τ  i.e., 

∂2 Rvis

∂τ 2
< 0 . The implication of the PPHB for τ  retrievals from RVIS  is illustrated using an example shown in Fig. 

1a. Here, we assume that one half of an inhomogeneous pixel is covered by a thinner cloud with τ 1 = 5  and the 
other half by a thicker cloud with τ 2 = 18  (both clouds with re = 8µm ). Because of the PPHB, the retrieved cloud 

optical thickness τ * = 9.8  based on the averaged reflectance R = R(τ 1 ) + R(τ 2 )[ ] / 2  is significantly smaller than 

the linear average of the sub-pixel τ , i.e., τ = 11.5 . The impacts of PPHB on satellite based cloud property 
retrievals and the implications have been investigated in a number of studies 5-7. Marshak et al. 8 pointed out that 
similar to the PPHB the non-linear dependence of the SWIR band cloud reflectance RSWIR  on re  can also lead to 
significant biases on re  retrievals, which is demonstrated in Fig. 1b. Here, one half of an inhomogeneous pixel is 
covered by a cloud with re = 8µm  and the other half by a cloud with re = 22µm . Both parts have the same τ = 4.1

. As shown in the figure, the retrieved re
* = 12µm  based on the averaged reflectance is significantly smaller than the 

linear average of sub-pixel re = 15µm , similar to the PPHB of τ  in Fig. 1 a.  

 

 
FIGURE 1 a) an example to illustrate the PPHB bias proposed in Cahalan et al. 3 for τ  retrieval, b) example to illustrate the 

PPHB bias proposed in Marshak et al. 8, c) example to illustrate the r
e
 retrieval bias caused by sub-pixel τ  variability proposed 

in Zhang and Platnick  9 and Zhang et al. 10. See text for details. Solar and view zenith angles are assume to be 20° and 0° and 
relative azimuth angle is assumed to be 30° in these cases.  (This figure is from Zhang et al. 2016 11) 

It must be noted that in the framework of Marshak  et al. 8 the retrievals of re  and τ  are considered separately 
and assumed to be independent from one another. However, as Marshak et al. 8 pointed out this assumption is valid 
only for “large enough”  τ  and re   (typically, re > 5 µm and τ  > 10). However, the RSWIR  is not completely 
orthogonal to the RVIS , especially when τ  is small. As a result, the retrievals of re  and τ  are not independent from 
one another. Marshak et al. 8 suspected that some cases with large re  bias in their simulations might be the result of 
this mutual dependence of re  and τ  retrievals. Recently, Zhang and Platnick 9 showed that the sub-pixel variance of 
τ  can have a significant impact on the re  retrieval, which is illustrated in the example in Fig. 1c. In this 
hypothetical case, an inhomogeneous pixel is assumed to be covered by a thinner cloud with τ1=6 in one half and a 
thicker cloud with τ2=18 in the other. Both clouds have the same re=14 µm. Note that in this case the sub-pixel 
reflectance variation is solely caused by the variability in t.  If the re  retrieval were independent from the τ retrieval, 
then the retrieved re  would be 14 µm. The solid triangle in the figure indicates the location of the RVIS  and RSWIR  

030002-2



	

	

averaged over the pixel, i.e., the “observation”. The retrieved τ * = 10.8  is smaller than the averaged τ = 12  as a 
result of the PPHB. However, the retrieved re

* = 16  is 2 µm larger than the expected value of 14 µm. This positive 
bias in the re  retrieval, apparently caused by the sub-pixel variability of τ , cannot be explained by the framework 
of Marshak et al. 8 in which the re  retrieval is assumed to be independent from the τ  retrieval. Zhang and Platnick 9 
and Zhang et al. 10 also found that the magnitude of the positive re  retrieval bias caused by the sub-pixel variability 
of τ  is dependent on the SWIR band chosen for the re  retrieval. 

STATEMENT OF THE PROBLEM 

In the bi-spectral method, re  and τ  are retrieved from a pair of cloud reflectance observations, one in VIS/NIR 
and the other in SWIR. From this point of view, we can define re  and τ  as: 

 
τ ≡ τ RVIS ,RSWIR( )
re ≡ re RVIS ,RSWIR( ) ,      (1) 

where RVIS  and RSWIR  are the observed reflectances in the VIS/NIR (denoted by subscript “VIS” for short) and SWIR 
bands, respectively. Assume that an instrument with a relatively coarse spatial resolution observes a horizontally 

inhomogeneous cloudy pixel in its field of view. The observed cloud reflectances are RVIS  and RSWIR , where the 
overbar denotes the spatial average. Now if we use another instrument with a finer spatial resolution to observe the 
same area covered by the coarser resolution pixel, we can obtain high-resolution observations, RVIS ,i  and 

RSWIR ,i , i = 1,2,...N , (the number N depends on the relative sizes of the pixels). The high-resolution measurements 

provide the information on the variance and covariance of RVIS  and RSWIR  at sub-pixel scale. Each sub-pixel 

observation RVIS ,i  and RSWIR ,i can be specified as the deviation from the mean value RVIS  and RSWIR  as: 

 
RVIS ,i = RVIS + ΔRVIS ,i

RSWIR ,i = RSWIR + ΔRSWIR ,i

; i = 1,2...N .    (2) 

It naturally follows that the spatial average ΔRVIS ,i = ΔRSWIR ,i = 0 . Based on the coarse-resolution reflectance 

observations RVIS  and RSWIR , we can retrieve τ RVIS ,RSWIR( )  and re RVIS ,RSWIR( ) . From the high-resolution, sub-pixel 

observations RVIS ,i  and RSWIR ,i , we can retrieve τ RVIS ,i ,RSWIR ,i( )  and re RVIS ,i ,RSWIR ,i( ) . The differences Δτ  and Δre , 
defined as: 

 
Δτ = τ RVIS ,RSWIR( ) − τ RVIS ,i ,RSWIR ,i( )
Δre = re RVIS ,RSWIR( ) − re RVIS ,i ,RSWIR ,i( )

,    (3) 

are considered in this, as well as previous studies, as the biases caused by the homogeneous pixel assumption in re  
and τ  retrievals 8,10,12 

A UNIFIED MATHEMATICAL FRAMEWORK 

The objective of this paper is to introduce a comprehensive framework that is able to reconcile and unify the 
theoretical understandings provided by Marshak et al. 8 , Zhang and Platnick 9, and Zhang et al. 10 To investigate the 
sign and magnitude of Δτ  and Δre , we first expand the τ RVIS ,i ,RSWIR ,i( )  and re RVIS ,i ,RSWIR ,i( )  into two-dimensional 

Taylor series of RVIS ,i  and RSWIR ,i . Take re RVIS ,i ,RSWIR ,i( )  for example. The expansion is:  
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where σ VIS

2 = ΔRVIS ,i

2 , σ SWIR

2 = ΔRSWIR ,i

2  are the spatial variances of RVIS ,i  and RSWIR ,i , respectively, and cov RVIS ,RSWIR( )  

is the spatial covariance of  RVIS ,i  and RSWIR ,i . We obtain the following formula for Δre : 
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Following the same procedure, we can derive the formula for Δτ  as: 
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Eq. (6) and (7) can be combined into a matrix form as follows:   
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Eq. (8) is the central equation of our framework for quantifying the impact of sub-pixel reflectance variance on re  
and τ  retrievals. Eq. (8) decomposes the impact of sub-pixel cloud reflectance variability on the τ  and re  retrievals 
based on the bi-spectral method into two parts: 1) the magnitude of the sub-pixel reflectance variance and 

covariance specified by the vector σ VIS

2 ,  cov,  σ SWIR

2( )T  (referred to as “sub-pixel variance vector”) and 2) the matrix 

of the second-order derivatives of the LUT with respect to RVIS  and RSWIR  (referred to as “matrix of 2nd derivatives”). 
Given the LUT, the matrix of 2nd derivatives can be easily derived from straightforward numerical differentiation. 
An example of such a derived matrix based on the LUT for 0.86 µm reflectance ( R0.86 ) and 2.1 µm reflectance ( R2.1 ) 
is shown in The values of the 2nd derivatives for the grids of LUT are indicated by the color bar. Note that the sign of 

Δτ  or Δre  is determined both by the 2nd derivatives and the sub-pixel variance vector σ VIS

2 ,  cov,  σ SWIR

2( )T . While 

σ VIS

2  and σ SWIR

2  are positive definite, the covariance term can be negative.  
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FIGURE 2.	The sign and magnitude of each 2nd derivative term in Eq. (8) derived from the R

0.86
 and R2.1 LUT.  a) corresponds 

to −
1

2

∂
2

τ R
VIS
, R

SWIR
( )
∂R

VIS

2
, b) to −

∂
2

τ R
VIS
, R

SWIR
( )

∂R
VIS

∂R
SWIR

, c) to −
1

2

∂
2

τ R
VIS
, R

SWIR
( )
∂R

SWIR

2
, d) to −

1

2

∂
2

r
e

R
VIS
, R

SWIR
( )
∂R

VIS

2
, e) to −

∂
2

r
e

R
VIS
, R

SWIR
( )

∂R
VIS

∂R
SWIR

, and f) to 

−
1

2

∂
2

r
e

R
VIS
, R

SWIR
( )
∂R

SWIR

2
. Solar and view zenith angles are assume to be 20° and 0°, relative azimuth angle is assumed to be 30° in these 

cases.  (this figure is from Zhang et al. 201611)	

 

It is clear from Eq. (8) that the τ  and re  retrievals are not only influenced by the sub-pixel variation of the 
primary band (i.e., RVIS for τ  and RSWIR   for re ) but also by the variation of the secondary band (i.e., RSWIR for τ  and 
RVIS  for re ), as well as the covariance of the two bands RVIS  and RSWIR . Therefore, it reconciles and unifies the 
theoretical frameworks in Marshak et al. 8 and Zhang and Platnick 9 and Zhang et al. 10. In particular, the impact of 
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2, both terms are generally negative over the most part of LUT, consistent with the finding of Marshak  et al. 8 that 
ignoring sub-pixel variability tends to result in an underestimation of the pixel average of the retrieved quantity if  
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cases, when σ VIS

2 is large as in the example in Fig. 2c, the influence of −
1

2

∂2 r
e
R

VIS
, R

SWIR( )
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VIS

2
 may be stronger, leading 

to a positive Δre , as argued in Zhang and Platnick 9 and Zhang et al. 10. 

CONCLUSIONS AND SUMMARY 

The impact of unresolved sub-pixel level variation of cloud reflectances is an important source of uncertainty in 
the bi-spectral solar reflective method. In this study, we develop a mathematical framework for understanding this 
impact and quantifying the consequent biases, Δτ  and Δre . We show in Eq. (8) that Δτ  and Δre are determined by 
two factors—the nonlinearity of the LUT and the inhomogeneity of reflectances within the pixel. We tested our 
framework using LES cloud fields and real MODIS observations. The results indicate that, in comparison with 
previous studies, our framework provides a more comprehensive explanation and also a more accurate estimation of 
the retrieval biases caused by the sub-pixel level variation of cloud reflectances11. Most importantly, it demonstrates 
that sub-pixel variations in cloud reflectance can lead to both positive and negative values of Δre . In both the LES 
and MODIS cases that we examined, Δre were dominantly positive, hence contributing to the dominantly positive 
bias in retrieved re from resolved cloud variability. Our framework could have several applications. For example, it 
can be used to understand the differences between retrievals made at different spatial resolutions (e.g., MODIS vs. 
SEVIRI) or based on different spectral reflectances (e.g., MODIS 2.1 µm vs. 3.7 µm).  It could also useful for 
estimating retrieval uncertainties. For example, the retrieval uncertainty caused by sub-pixel reflectance variation in 
the operational 1 km MODIS cloud products can be estimated based on our framework from the 500 m cloud 
reflectances. It can also be integrated into the operational MODIS retrieval algorithm to determine in real-time 
whether the high-resolution retrievals (e.g., from 1km to 500m) are necessary for a given pixel. Such applications 
will be explored in future works. 
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