
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

https://creativecommons.org/licenses/by-nc/4.0/

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.

https://creativecommons.org/licenses/by-nc/4.0/
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

Sentaur: Sensor Observable Data Model for Smart Spaces
Peeyush Gupta

University of California, Irvine, USA
peeyushg@uci.edu

Sharad Mehrotra
University of California, Irvine, USA

sharad@ics.uci.edu

Shantanu Sharma
New Jersey Institute of Technology,

USA
shantanu.sharma@njit.edu

Roberto Yus
University of Maryland, Baltimore

County, USA
ryus@umbc.edu

Nalini Venkatasubramanian
University of California, Irvine, USA

nalini@ics.uci.edu

ABSTRACT
This paper presents Sentaur, a middleware designed, built, and de-
ployed to support sensor-based smart space analytical applications.
Sentaur supports a powerful data model that decouples seman-
tic data (about the application domain) from sensor data (using
which the semantic data is derived). By supporting mechanisms to
map/translate data, concepts, and queries between the two levels,
Sentaur relieves application developers from having to know or
reason about either capabilities of sensors or write sensor specific
code. This paper describes Sentaur’s data model, its translation
strategy, and highlights its benefits through real-world case studies.

CCS CONCEPTS
• Information systems → Middleware for databases;

KEYWORDS
Emerging Applications, IoT, Semantic Abstraction, Data Model
ACM Reference Format:
Peeyush Gupta, SharadMehrotra, Shantanu Sharma, Roberto Yus, and Nalini
Venkatasubramanian. 2022. Sentaur: Sensor Observable Data Model for
Smart Spaces. In Proceedings of the 31st ACM Int’l Conference on Information
and Knowledge Management (CIKM ’22), Oct. 17–21, 2022, Atlanta, GA, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3511808.3557147

1 INTRODUCTION
Database systems provide ways to efficiently store/process data
and support a data model (e.g. relational data model) that allows
easy manipulation and retrieval of data. Database systems are a
general technology widely used in a variety of contexts to manage
application data. However, for application domains having large
and complex business logic, directly writing applications on top of a
database system using the database’s data model becomes challeng-
ing. Application developers are well versed with the application
logic but, in general, do not have the specialized knowledge of
tables and the complex network of relationships between them in
the underlying database system.

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9236-5/22/10.
https://doi.org/10.1145/3511808.3557147

In the past, application specificmiddleware systems have been de-
veloped on top of existing database systems for several application
domains (e.g., Enterprise Resource Planning (ERP) systems [6, 9],
Customer Relationship Management (CRM) systems [8], and fi-
nancial systems [7]). These systems provide higher-level models
that capture the essence of the application domain. For instance,
a CRM model may have an in-built data model for customer con-
tact, buying history, etc. Such data model is then appropriately
mapped, stored and processed on top of a database system by the
middleware-based system. This layered approach has been success-
ful and widely adopted since it leverages the power of database
systems to manage, store, and process data while supporting higher-
level models to make application development easier. Given the
importance and emergence of the Internet of Things, sensor-based
systems, and smart spaces, we believe it is time to think of spe-
cialized middleware to provide appropriate abstractions to build
applications on top of sensor data.

In smart space domains, application logic is best expressed at a
more semantically meaningful level (i.e., closer to concepts of inter-
est of the application), though data arrives at raw sensor level [40].
We argue that a middleware system that supports data to be viewed
at both levels of abstraction (and provides mechanisms to seam-
lessly translate concepts, data, queries across them) offers several
benefits from the perspective of building smart space applications.

First, and foremost, such a system will significantly reduce the
complexity of building smart space applications from the perspec-
tive of application developers. Building applications over large scale
sensor deployments require application logic to reason about:
• Which semantic observation can be interpreted from which kind
of sensor?
• Which particular sensors, from the ones deployed in an instru-
mented space, can be used to generate which semantic observations
based on dynamic context (including the location of the sensor and
time in case mobile sensors)?
• What criteria should applications use to choose one sensor over
another, in case multiple sensors offer overlapping capabilities,
given the information need?
• How should applications deal with the heterogeneity of sensors
that could detect same semantic observations? Also, how should
applications deal with intermittent availability, failures of sensors?

A system that supports a layered data model will relieve the
application logic from having to deal with sensor capabilities, place-
ment, and availability. Such complexities will now be hidden by the
appropriate abstractions supported by the system thus enabling

3131

https://doi.org/10.1145/3511808.3557147
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3511808.3557147

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Peeyush Gupta et al.

application writers to write code almost entirely at the semantic
level. In addition to the above advantages, such a system is extensi-
ble and portable since new sensors and sensor types can be added
without modifying application code.

This paper describes Sentaur, a middleware with a data model
that makes smart space application development easier by hiding
all the complex sensor logic. Sentaur has been deployed in a real-
world sensorized environment, a University Campus. The paper
describes Sentaur and highlights lessons learnt from its deployment.
In summary, Sentaur offers several unique features discussed below:
Semantic Abstraction. Sentaur supports a novel two-tier data
model that separates the sensor data from the higher-level semantic
data. Sentaur models the physical world/domain in the same way
we model domains in current databases – as physical entities and
relationships. The difference is that we are now modeling the dy-
namically evolving physical world that is observed through sensors.
Sentaur uses an Entity-Relational Model suitably extended to sup-
port the dynamic nature of evolving smart space for this purpose.
In particular, attributes of entities (and relationships between them)
may be static or dynamic that may change over time. For instance,
a person’s name may be static, but their location may change with
time. Likewise, relationships between entities may be dynamic. E.g.,
a person entering a room captured through a sensor may create a
new relationship instance between the person and the room. Such
dynamic aspects of semantic data that is observed through sen-
sors, are represented using an extended Entity-Relationship (ER),
referred to as the Observational ER (OER) model, which represents
temporal data evolution. As we will see later, such an OER repre-
sentation makes data modelling as well as data processing easier.
In addition to representing data at the semantic level, Sentaur rep-
resents data at the sensor level in the form of data streams. It also
provides mechanisms for the specification of functions to translate
data at the sensor level into higher-level semantic abstraction. Such
a layered data model decouples application logic from sensors and
alleviates the burden of dealing with sensor heterogeneity from
application programming which greatly reduces the complexity of
developing smart-space applications.
Transparent Translation. Sentaur translates sensor data to gen-
erate semantic/application-level information. Sentaur associates
observing functions with dynamic properties, which observe “value”
of the properties through sensors. Also, Sentaur maintains a rep-
resentation of sensors and their coverage (i.e., what entities in the
physical world they can observe) as a function of time.
Query Driven Translation. Sensor data translation can be done at
ingestion or during query execution. In IoT-based systems, sensors
continuously generate data, causing the data arrival rates to be very
high. Processing sensor data at ingestion using Streaming systems
(e.g., Spark Streaming [41], Storm [38] – often used for scalable
ingestion) leads to significant overhead. Therefore, complete sensor
data translation at ingestion is not viable. This observation has
also been made in several prior works [15, 21]. The alternate strat-
egy of translating sensor data at query time is more suitable. Not
only it avoids the large ingestion time delay, it also reduces redun-
dant translation of sensor data if the applications end up querying
(a small) portion of the data. This query-time translation is also
consistent with the modern data lake view architecture where we

store and process only data that is needed. Sentaur uses such an
architecture and does query-driven translation.
Related Works: Sentaur is related to IoT frameworks [20, 26, 31,
39] proposed to ease IoT application development. These frame-
works, however, focus on abstracting communication and manage-
ment of IoT devices and do not provide an abstraction over sensors
for application developers, who still have to translate sensor data.
Likewise, industrial systems like Nest [5], AWS IoT [1] only allow
easy access to the sensors and sensor data but fail to provide any
semantic-level abstraction. Sentaur is also related to temporal data
model supported by temporal databases [32, 37] and uses one such
model [33] to map the its application-level data model to under-
lying relational representation. Finally, Sentaur is also related to
works to support streaming of semantic RDF data [17, 19, 27]. How-
ever, Sentaur extends the relational model to leverage efficiency of
traditional relational databases in query processing and translation.
Paper Outline:We describe the data and query models of Sentaur
in §2.We explain the realization of thosemodels on top of a database
system in §3. We introduce Sentaur’s translation mechanism in §4.
§5 describes the deployment of Sentaur in the real world and an
evaluation. Finally, §6 discusses future deployments and challenges.

2 SENTAUR DATA MODEL
Sentaur data model is layered and provides an abstraction to write
applications independently of the sensor infrastructure (see Fig-
ure 1). Before describing its components, we introduce our deploy-
ment scenario to serve as a running example.

2.1 Running Example: A Smart Campus
Consider a smart campus that supports services such as: locating
group members in real-time, customizing heating, ventilation, and
air conditioning (HVAC) controls based on user preferences, contact
tracing by computing who came in contact with whom and when,
monitoring occupancy of different parts of a building over time,
analyzing building usage over time, understanding social interac-
tions amongst residents and visitors, and keeping track of facilities
visited by visitors. While a smart campus requires multiple types of
sensors (e.g., HVAC sensors such as temperature, humidity, pressure
sensors), for the sake of our example, we focus on location sensing
and consider that people can be located based on: (a) GPS sensors
on their mobile device which transmit GPS coordinates to the sys-
tem, (b) camera images in locations where cameras are installed,
(c) connectivity events in the WiFi network using techniques such
as [28, 29]. Each of these mechanisms have their benefits/limita-
tions. GPS-based method works only if the user is outdoors and has
downloaded an app on their device. Cameras, typically installed
in limited locations, are more time consuming to analyze. WiFi
events provide potentially a ubiquitous localization solution but
might not be as accurate. Mapping application’s localization needs
requires complex logic to identify and access the set of sensors that
individually/jointly meet such needs.

2.2 Spatial Extent Layer
Sentaur models the geography in which the smart space is embed-
ded hierarchically in the form of a tree where the root corresponds
to the entire extent of the smart space. For instance, it may rep-
resent the campus in our running example as root with children

3132

Sentaur: Sensor Observable Data Model for Smart Spaces CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Sensor Layer

Semantic Layer

Glue Layer

Entities Observing
Functions

Coverage
FunctionsSensor Types / Instances Sensor Data

Domain Knowledge

Spatial
Extent Layer

Figure 1: Sentaur data model layers.
including buildings, parks, and walkways which might be further
divided into floors in a building, rooms in a floor, etc. Such spatial
hierarchy naturally supports viewing data and postulating queries
at different spatial granularity. For instance, an application may
pose an occupancy query at the room, floor, or building level.

Managing spatial data in databases has been extensively studied
in the literature [22, 24, 34] with SQL/MM [34] having emerged as
a standard to store, retrieve, and process spatial data using SQL.
In Sentaur, we adopt SQL/MM, implemented by DBMSs such as
SQL Server, DB2, and PostgreSQL, to manage spatial objects. We
additionally allow users to define and store hierarchical/topolog-
ical relationships between spatial objects explicitly. Sentaur sup-
ports ways to define extents and topological relationships by using
SQL/MM shapes that represent the geographical shape of an extent
and explicit topological containment of extents.

Through SQL/MM, Sentaur supports a variety of spatial predi-
cates (overlap, intersection, meet, etc.) and spatial operations (in-
tersection, union, area, etc.) over spatial objects.

2.3 Semantic Layer
At the semantic level, Sentaur models applications using an ex-
tended entity-relation (ER) model that we refer to as observable
entity-relation (OER) model. OER extends the ER model by defin-
ing some attributes and relationships to be observable.
2.3.1 Observable Attributes. Observable attributes of enti-
ties/relationships are those for which changes can be observed
(or computed) using data captured by sensors. Figure 2 shows an
example entity set “occupant” that is either a “visitor” or a “resi-
dent”. The resident entity set has an observable attribute “vitals”
whose value changes with time and can be observed, among others,
through a smartwatch. Besides observable attributes, an entity may
have additional attributes (e.g., occupant entities have an attribute
name) the value of which is not associated with any sensor. We
refer to such attributes as non-observable or regular attributes.
2.3.2 Observable Relationships. Relationships between entities
in an OER model may themselves be observable - that is, can also
be observed using sensor data. For instance, in Figure 2, contact is
one such relationship since contact between two occupants can be
observed, e.g., using the Bluetooth sensor in their smartphones (it
records all Bluetooth devices in close proximity).
2.3.3 Cardinality Constraints. An observable relationship is
characterized as observational 1-1 if an entity 𝑒1 of entity set 𝐸1 at
any instance of time can be related to a single entity 𝑒2 of entity set
𝐸2 and likewise, any entity 𝑒2 in 𝐸2 at any time is related to a single
entity 𝑒1 in 𝐸1. Note that the definition of observational 1-1 is not
identical to that in a regular ER model since an entity 𝑒1 can, indeed
be related to one or more entities 𝑒2 and 𝑒3 in the entity set 𝐸2. It is
just that 𝑒1 cannot be related to both simultaneously. The concept of
observational cardinality constraints generalizes naturally to 1-N,
N-1, and N-N relationships. For instance, Location relationship in
Figure 2 is an N-1 relationship since a person can be only in a single
room at a given time, though a room may have multiple individuals

Resident

Room

Age

Vitals

Name

Area

Occupancy

Energy

Visitor

Purpose

OccupantContacts

Name

Location

Is A

N

N

1N

Email

School

Faculty Staff Student

Building

IsA

Contains

Dean
of

Chair
of

Member
of

Manages

Department

Part of

name

name

type

Phone no.

name

budget

EmploymentResearch area

Occupancy

Energy
Contai
ns

Classes

Course name

Start time

End time

Attends

Held in

Figure 2: OER model for a smart campus showing entities
with observable attributes/relationships (in red).
at the same time. In an N-N relationship, entities from both entity
sets can be related to multiple entities at a given time instant. The
Contact relationship is such an example since multiple people can
simultaneously be in contact with each other.
2.3.4 Participation Constraints. An entity set has total partici-
pation in an observable relationship if every entity of the entity set
is related to at least one entity of other entity set at a given time
instance. For example occupant entity set has total participation in
location relationship since every person is located in some room at
a given time instance. An entity set has partial participation in an
observable relationship if not all entities of the entity set are related
to an entity of other entity set at a given time instance. For example
room entity set has partial participation in location relationship
since there can be rooms with no person located in them.

Sentaur provides the following commands to create entity sets,
observable properties, and observable relationships.
CREATE T_ESET Occupant(ID int , name char (20), age int , KEY (ID))

ADD T_OBSERVABLE Property vitals TO Occupant (value int))

CREATE T_OBSERVABLE RELATIONSHIP location (Occupant , Room , N1,TP)

CREATE T_OBSERVABLE RELATIONSHIP Contact(Occupant , Occupant ,NN,PP)

2.3.5 Mapping OER Model to Relations. Entities and relation-
ships in OER model are mapped to relations using the standard
ER to relational mapping. However, the observable attributes and
relationships cannot be modeled as simple attributes as their values
change with time. First, we note that prior literature has explored
several ways to represent time-varying data. Broadly, techniques
are: point-based [36] (that model time as discretized points with a
value associated with each time point) or interval-based [33] (that
model time as a continuous timeline with a value associated with
each time interval). Sentaur uses an interval-based representation
to represent observable attributes and relationships. Before we de-
scribe how observable attributes and relationship sets are mapped
to relations, we first describe the concept of temporal maps.
Temporal Map. A temporal map (denoted by T 𝑝𝑗

𝑒𝑖) for an entity 𝑒𝑖
and a dynamic property 𝑝𝑗 is a set of pairs (𝐼 , 𝑣) where 𝐼 is a time
interval and 𝑣 is the value of property 𝑝𝑗 for entity 𝑒𝑖 during time
interval 𝐼 . A dynamic property for an entity has a value at any given
time and therefore the time intervals in a temporal map cover the
entire time range and are non-overlapping. However, there can be

3133

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Peeyush Gupta et al.

ID Name Age

1 John 28

2 Smith 30

Start End Value

0 30 MISSING

30 100 20

Start End Value

0 90 10

90 100 15

Resident

Start End Value

0 10 MISSING

10 20 L-09

20 100 MISSING

Start End Value

0 90 L-1

90 100 L-3

(a) Vitals Temporal maps

ID Name

1 John

2 Smith

Occupant

(a) Location Temporal maps

Figure 3: Mapping OER to Temporal Maps.

ID Start End Value

1 0 10 MISSING

1 10 20 L-09

1 20 100 MISSING

2 0 90 L-1

2 90 100 L-3

(b) OccupantLocation

ID Start End Value

1 0 30 MISSING

1 30 100 20

2 0 90 10

2 90 100 15

(a) ResidentVitals

ID Start End Value

1 0 60 MISSING

1 60 100 2

1 60 100 3

2 0 100 1

2 0 100 3

3 0 100 MISSING

(c) OccupantContact
Table 1: Temporal Relations.

time intervals in a temporal map when the value is MISSING.1 Note
that a MISSING value is different from NULL in SQL. Unlike NULL,
MISSINGmeans that the value exists but has not yet been computed
and can be filled in the future; Since temporal maps are defined
over the complete timeline, they are associated with a concept of
lowest and highest value of time. These values can be set by a user
but in the following we assume that the smallest value is 0 and the
largest is referred to as Infinity (which can be set to an arbitrarily
large number). A temporal map can be formally defined as follows:

T 𝑝𝑗
𝑒𝑖 = {(I1, 𝑣1], (I2, 𝑣2], ...(I𝑘 , 𝑣𝑘)} | ∪𝑘

𝑗=1 I𝑗 = [0, Infinity)
Mapping Observable Attributes. To represent an observable
attribute of an entity set, Sentaur creates a temporal map for each
entity in the entity set and initializes it with a single default time
interval of [0, infinity] and a corresponding MISSING value. Figure 3
shows two temporal maps (one for each entity) for vitals observable
attribute of the resident entity set. Observe that no two intervals
in the temporal map overlap, and the intervals together cover the
entire time range (with the maximum time (infinity) set as 100).
Mapping Observable relationships. A 1-1 observable relation-
ship is mapped as a temporal map created for the entities of either
of the two entity sets. A 1-N or N-1 observable relationship is stored
as temporal maps created for the entities on the N-side. For example,
for the location relationship in Figure 2, which is a 1-N relationship
between room and occupant entity set, we create temporal maps for
each occupant entity. Mapping of an observable N-N relationship
is more complex. We map this by creating temporal maps for each
entity in both the entity sets. except in the case of a self-referencing
symmetric relationship, in which case the two temporal maps will
be identical, and hence only one needs to be stored. Note that the
value column in temporal maps created for N-N relationships is a
multiset, since it stores a list of entities a given entity is related to in
a given time interval. Note that N-N relationship introduce a con-
straint that if a temporal map of entity 𝑒1 of entity set 𝐸1 contains
an entity 𝑒2 of entity set 𝐸2 in its multiset value for time interval 𝐼 ,
then the temporal map for 𝑒2 must contain 𝑒1 in its multiset value
for time interval 𝐼 . For example, for the contact relationship in
Figure 2, which is a self-referencing symmetric N-N relationship of
the occupant entity set, we create temporal maps for each occupant
where the value is a multiset containing all the other occupants
that he/she came in contact with at a given time.

The temporal maps corresponding to an observable attribute
(or a relationship) associated with each entity in the entity set are
stored together in a single relation referred to as the temporal re-
lation for that attribute. A temporal relation 𝑅𝑖𝑝𝑗 for an observable
property 𝑝𝑗 of an entity set 𝑅𝑖 consists of a set of triples: a reference
to the identity of an entity in 𝑅𝑖 , a time interval, and a value 𝑝𝑗 for
that entity and time interval. Table 1a shows the ResidentVitals
1In Sentaur’s layered design (discussed in detail in §3), to represent MISSING value, Sentaur reserves
a special value for each data type.

temporal relation containing temporal maps for all entities in the
resident entity set for the observable attribute vitals. In case the
temporal map consisted of a multiset (as in the case of N-N relation-
ships), we flatten the multiset by inserting a triple for each element
in the multiset. For example Table 1c shows the OccupantContact
temporal relation with flattened multisets.
2.3.6 SQL with Temporal Relations. Sentaur allows users to
write SQL queries on top of temporal relations, e.g., the following
query retrieves John’s location in a time interval [0, 15].
SELECT * FROM Occupant O, OccupantLocation OL WHERE O.name='John'

AND OL.id=O.id AND Overlaps ([start , end], [0, 15])

Initially the temporal relations contain a single time interval of
[0, infinity) with a MISSING value for all entities. MISSING values
are computed and materialized by translating appropriate sensor
data during query execution. For example, John’s location in Oc-
cupantLocation temporal relation (Table 1b) is MISSING for time
interval [0, 10], which will be computed during query execution.
Note that computing a MISSING value may add more rows in a
temporal relation, e.g., it may happen that John was in room L-1
during interval [0, 5) and was in room L-2 during interval [5, 10).

2.4 Sensor Layer
At the sensor layer, Sentaur provides a way to specify sensor type,
to associate observation type, and to instantiate sensors in the sys-
tem. As an example, the following first three commands define
two observation types: ConnectivityData (i.e., a data type includ-
ing device and AP mac address), ImageData and VideoData, and
the last two commands define two sensor types: WiFiAP that gen-
erate ConnectivityData and Camera ImageData and VideoData
observation types.
CREATE T_ObservationType ConnectivityData(devMac str , APMac str;

CREATE T_ObservationType ImageData(filelocation str);

CREATE T_ObservationType VideoData(filelocation str);

CREATE T_SensorType WiFiAP ([ConnectivityData]);

CREATE T_SensorType Camera ([ImageData , VideoData]);

After defining observation and sensor types, sensors can be in-
stantiated in the system. Sensors in Sentaur are classified as: (1)
space-based that generate observations in a physical region and are
referred to as covering that space (irrespective of the entity they
observe) or (2) entity-based that generate observations about a spe-
cific entity (irrespective of the location of the entity). An example
of the former is a WiFi access point or a fixed camera deployed at
a specific location, while a GPS sensor on a phone carried by an
individual or any wearable device that provides input about a spe-
cific individual is an example of entity-based sensor. Space-based
sensors are instantiated using the following command:
CREATE T_Sensor Name(type T_SensorType , mobility bool ,

location Temporal <Extent >,physical coverage Temporal <Extent >);

where mobility denotes if the sensor is static or mobile/dynamic,
location refers to the sensor’s actual location, and physical coverage

3134

Sentaur: Sensor Observable Data Model for Smart Spaces CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

represents the geographic area in which the specific sensor can
capture observations. For instance, a camera could be located in a
room, while the physical coverage of the camera is the bounding
box surrounding its view frustum. In other words, the physical
coverage is modeled deterministically and is simply a function of its
location. Both location and physical coverage of a sensor can change
with time, either because the sensor is mobile or it was moved at
some point. We need to preserve historical information about the
location and coverage attribute to answer historical queries, e.g.,
“which rooms John visited last year.” Hence, in Sentaur, location and
coverage are modeled as spatio-temporal attributes. Entity-based
sensors are instantiated using the following command:
CREATE T_Sensor Name(type T_SensorType ,mobility bool ,entity E_SET)

where entity refers to the entity that this particular sensor covers.
Different sensors can also be bundled together and be part of a

single platform. For example, GPS and Accelerometer sensors can
be part of a smartphone or a smartwatch. In that case, the location
of all sensors belonging to a platform is determined by that of the
platform. To add different sensors to a platform, Sentaur provides
the following command:
CREATE T_Platform Name(mobility bool , location Temporal <Extent >,

sensors [T_Sensor])

CREATE T_Platform JohnPhone(true , Temporal <locJS >, sensors [GPS1])

Aside. Sensors have been modeled in the past literature as de-
vices that observe real-world phenomena and generate observations
about measurable properties. The most popular sensor representa-
tions are provided by SensorML [18] and the W3C Semantic Sensor
Network (SSN) ontology [25]. Both these models focus on sensor
configuration and sensor observations.2 However, they do not deal
with type, mobility, and the dynamic coverage of sensors.

2.5 Glue Layer
The glue layer in Sentaur translates sensor data into semantic
information at the application level (i.e., values for the observable
attributes and relationships of entities). In this layer, users specify
wrapper functions, entitled observing functions, for sensor data
analysis. Users can also specify Semantic Coverage functions that
help identifying which data from which sensors can be used to
generate which semantic observations.
2.5.1 Observing Function. Observing functions convert sensor
data into semantic observations. These functions are invoked at
query time to process sensor data based on the user query. Users first
specify their sensor analysis code3 using the following command.
ADD Function Image2Occupancy(Image);

The above command adds a sensor data processing function named
Image2Occupancy that computes occupancy from an image.

To enable such functions to be used as observing functions, the
user needs to further connect the type of sensor inputs the function
may take and the observing attribute it can generate. For instance,
a user can write the following code to wrap the Image2Occupancy
as an observing function.
CREATE T_ObservingFunction Camera2Occupancy("Image2Occupancy",

T_Temporal <Room.occupancy >, inputType: [Camera]){}

2This work does not deal with actuators that perform actions (e.g., switching something on/off).
3Currently Sentaur supports Python and Java-based functions.

The above command creates an observing function named Cam-
era2Occupancy that computes values for observable attribute oc-
cupancy (of room entity set) using data from a camera as input.
Note that an observing function can take input from more than one
sensor. Sensors can be of different types, e.g., an observing function
that takes data from both WiFi APs and cameras can be added.
2.5.2 Semantic coverage functions. We define a concept of
Semantic Coverage (Coverage for short) with spatial sensors. The
semantic coverage of a sensor (or a set of sensors) is defined with
respect to an observing function and it denotes the spatial region
for which the observing function can compute values of an observ-
able attribute using the sensor. For instance, for a given camera
(sensor), the coverage with respect to face recognition (function)
is the region where the image from the camera can be used to de-
tect and recognize the person. The camera image may be used for
a different purpose (e.g., detecting people) and its coverage w.r.t.
such a function, used, for instance, to determine occupancy of a
region might be different compared to its coverage w.r.t. face recog-
nition. Semantic coverage of a sensor is defined as a function of the
physical coverage (which is a property of the sensor, see §2.4).

Similar to the physical coverage, the semantic coverage can also
change with time for sensors that are mobile or were moved at
some point in time. Formally, Coverage function is defined below:

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑓𝑙 , {𝑆}, 𝑡) → {(𝑝𝑖 , Γ𝑗)}
where 𝑓𝑙 is an observing function, {𝑆} is a set of sensors, 𝑡 is the
time instant, 𝑝𝑖 is the observable property that 𝑓𝑙 computes and Γ𝑗
is a spatial region. Note that the type of a sensor 𝑠 ∈ 𝑆 should be
one of the input sensor types of 𝑓𝑙 . Also, there should be at least
one sensor in 𝑆 for each input sensor type of 𝑓𝑙 . Users can specify
semantic coverage as a function in Sentaur, otherwise Sentaur uses
the physical coverage of a sensor as its semantic coverage.

Based on semantic coverage, Sentaur further defines the notion
of Coverage−1. Given an observable property of interest (e.g., vitals,
occupancy, location), such a function identifies all possible sets of
sensors the input from which can be used to observe the property.
For instance, consider a room wherein a person can be located
using a camera. Let us further assume that the user can also be
located within a room through connection events with a specific
WiFi access point. In such a case, Coverage−1 function returns both
the possible sensors. Formally Coverage−1 is defined as follows:
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒−1 (𝑝𝑖 , Γ, 𝑡) = {(𝑓𝑙 , {𝑆}) |∃{(𝑝𝑖 , Γ𝑘)} ∈ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑓𝑙 , {𝑆}, 𝑡)

such that Γ𝑘 ∩ Γ ≠ 𝜙}
As will become clear, Coverage−1 is computed, when processing

any query that contains observable attributes or relationships.

3 MAPPING SENTAUR TO DATABASE SYSTEM
In this section, we describe how Sentaur schema, data, functions,
and queries are mapped/layered on the underlying database system.

3.1 Mapping Schema, Data, and Functions
Mapping Space Metadata. Sentaur space model defines the hier-
archical spatial extent including geographical bounds of buildings,
regions, and rooms. Sentaur creates special tables called Spatial
Metadata in the underlying database to store spatial metadata.
Mapping Temporal Relations. There are multiple options to map
temporal relations/observable attributes to the underlying database:

3135

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Peeyush Gupta et al.

SELECT * FROM Occupant AS O,
OccupantLocation AS OL,
RoomOccupancy AS RO

WHERE OL.id=O.id AND
((O.name=John AND Overlaps
([OL.start, OL.end], [2, 5])) AND
RO.id = OL.value AND RO.value > 50

(a) Query on temporal relations.

(b) Original query tree. (c) Query tree with translation operators.

x

x

x

x

1

2
3

4

5

6

(d) Query execution in blocks.
Figure 4: Query processing in Sentaur.

(1) Adding observable attributes to the table created for the entity
set; (2) Creating a table for each entity’s observable attributes, i.e.,
a table for each temporal map; (this is similar to the key-container
model of [4]) (3) Creating a table for each temporal relation. The
first design option will incur a very high space overhead since
the space will grow exponentially as the number of observable
attributes increases. The second design option can be useful if there
are fewer entities and/or most queries fetch data for a single entity
at a time. However, in IoT environments, the number of entities can
be large and the queries can be ad-hoc, asking for data for multiple
entities at the same time. This way, the second option will result in a
very large number of tables in most IoT scenarios. Hence, we opted
for the third option and create a table for each temporal relation.
Mapping Sensors and Sensor Data. Static information related to
sensors (i.e., sensor types, observation types, mobility) is stored in
Sensor Metadata tables. Potentially dynamic information related
to sensors (i.e., location and coverage area) is modeled as temporal
relations and mapped to the database as explained above (i.e., a
table per sensor type). Observations from all sensors generating the
same type of data (i.e., same observation type) are stored together
in one table. In our reference implementation (see [3]), to support
very high data rates, observations are first pushed to a message
queue before they are stored in the database system.
Mapping Functions. Sentaur currently supports Python and Java-
based observing and coverage functions. Sentaur also provides
a library for developers to wrap their existing sensor processing
code into observing functions. The metadata related to the observ-
ing functions (i.e., input sensor types, observable property that is
generated) is also stored in the Metadata tables.

3.2 Mapping Queries
In Sentaur, application developers pose queries directly on the
application-level semantic data (i.e., temporal relations) using the
OER model. For example, an application developer, using the OER
model shown in Figure 2, who is interested in finding out the occu-
pancy of all rooms that ‘John’ have visited between time interval [2,
5] could write the query in Figure 4a. The query involves temporal
relations for the observable properties location of occupants en-
tity set and occupancy of rooms entity set, i.e., OccupantLocation
(Table 1b) and RoomOccupancy (Table 2a), respectively.

It is possible that parts of temporal relations required to answer
the query are not computed yet (i.e., have MISSING values). Hence,
the query shown in Figure 4a with the corresponding query tree
shown in Figure 4b cannot be executed directly on the underly-
ing database. To fill the missing values during query execution,

Sentaur extends the set of relational operators with a new opera-
tor called translation operator denoted by 𝜏𝑝𝑗 . The translation
operator 𝜏𝑝𝑗 maps MISSING values in the temporal relation for ob-
servable property 𝑝𝑗 to sensor data and observing functions using
the spatial information, sensor metadata, and coverage functions.
The logic and layered implementation of the translation operator
will be explained in §4.1 and §3.2.1. Sentaur updates the original
query plan by placing translation operators above the selection
predicate on every temporal relation present in the query tree, so
that MISSING values of the temporal relations that are required to
answer the query are filled during query execution. Figure 4c shows
one possible query tree after placing translation operators 𝜏location
and 𝜏occupancy in the original query tree as shown in Figure 4b.
3.2.1 Query Execution. The new query plan cannot be directly
executed on the underlying database system as the translation oper-
ator is not a standard operator. To execute the query plan, Sentaur
divides it into query blocks such that a block contains either only
translation operators or only relational operators. Figure 4d shows
five query blocks created for the query plan shown in Figure 4c.
After creating the query blocks, Sentaur generates code for a stored
procedure called executor, that executes each block one by one. For
instance, the code for the executor stored procedure generated for
the query blocks shown in Figure 4d is as follows:
1. SELECT * FROM Occupant O, OccupantLocation OL WHERE O.id=OL.eid

And Overlaps ([OL.start , OL.end], [2, 5]) INTO Temp1

2. Translator(Temp1 , 'location ', Temp3)

3. SELECT * FROM Room R, RoomOccupancy RO WHERE R.id=RO.eid

And Overlaps ([RO.start , RO.end], [2, 5]) INTO Temp2

4. SELECT * FROM Temp2 ,Temp3 WHERE Temp2.id=Temp3.value INTO Temp4

5. Translator(Temp4 , 'occupancy ', Temp5)

6. SELECT * FROM Temp5 WHERE Temp5.value > 50 INTO Answer

Note that the query blocks without translation operators are
simply executed as a query on the underlying database. The output
of these queries is stored in temporary tables that are later used by
other query blocks. The query blocks containing only translation
operators are executed using a stored procedure that implements
the translation operator4 and takes a temporary relation (output
of downstream query block) as input and fills all missing values
for a particular observable attribute in it (§4.1 provides details of
translation operator). In this query execution strategy, a block can-
not be executed unless all its child blocks are completely executed,
making it a blocking strategy. Making it non-blocking, however
possible, is not straightforward and is out of the scope of this paper.
4Implementing the translation operator as a UDF is not possible since it adds/updates rows of
temporal relations (which is not possible for UDFs). Hence, Sentaur implements the translation
operator as a stored procedure.

3136

Sentaur: Sensor Observable Data Model for Smart Spaces CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

ID Start End Value

1 0 10 MISSING

1 10 100 25

2 0 35 MISSING

2 35 40 50

2 40 100 MISSING

3 0 100 MISSING

(a) RoomOccupancy

Entity
ID

Start End Observing
Function

Sensors

1 0 10 CamFunction1 Cam2

2 0 30 WiFiFunction1 WiFi30

2 30 35 CamFunction2 Cam2,Cam3

2 40 50 CamFunction1 Cam3

(b) Translation Plan

Table 2: Translation Plan.

4 SENTAUR TRANSLATION
In this section we describe how the translation operator transforms
sensor data to compute MISSING values.

4.1 Translation Operator
Translation operator 𝜏𝑝𝑗 , for an observable property 𝑝𝑗 , takes as
input a time interval 𝐼 , a set of entities {𝑒} for which the values
of 𝑝𝑗 is missing and a set of regions {Γ} that need to be covered
to generate the value of 𝑝𝑗 to meet the query’s requirement. It
generates and executes a translation plan, 𝑝𝑙𝑎𝑛(𝜏𝑝𝑗), that fills all
the missing values of 𝑝𝑗 for all the entities in {𝑒} for the interval 𝐼 .
Note that the entities input to 𝜏𝑝 𝑗

could be a set of entities, or it could
be ALL, representing the entire set of entities in the corresponding
temporal relation. Likewise, the spatial regions in the input to
translate could be ALL referring to any region in the extent.

Example 4.1 Consider RoomOccupancy temporal relation (for
occupancy property) as shown in Table 2(a). Consider also that for
a given query, we need to fill the MISSING values in the temporal
relation for tuples corresponding to rooms with id 1 and 2 for time
interval [0, 50]. Table 2(b) shows a sample translation plan gen-
erated by the translation operator, viz., 𝜏𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 ([0,50], {room1,
room2}, {room1, room2}). Note that, in RoomOccupancy, the entity
itself represents a spatial region, therefore the set of regions to be
covered, in this case, is also room 1, room 2. The translation plan
shows that the value of occupancy for entity room 1 in interval
[0, 10] can be computed through CamFunction1 using data from
sensor Cam2. Likewise, it shows plans to capture occupancy for
room 2 for the interval [0,30] and for intervals [30, 35] and [40, 50].
Note that the translation plan for an entity can involve different
combinations of functions and sensors for different time intervals if
this is deemed as the best plan by Sentaur. To fetch occupancy of all
rooms in interval [0, 50] the translation operator can be invoked as
𝜏𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 ([0,50], ALL, ALL). This invocation will fill the missing
occupancy values for all the rooms (i.e., rooms 1, 2, and 3). ■

Since the coverage of sensors can change with time, Sentaur first
divides the time interval 𝐼 into smaller equi-sized sub-intervals of
size Δ and generates an optimal sub-plan for each Δ. Δ is chosen
to be small enough such that the coverage of sensors is expected
to be stable (not changing) in its duration.5 For each Δ, Sentaur
generates two types of plans: entity-based and region-based plans;
and of the plans generated, it selects the one with a lowest cost.
4.1.1 Entity-Based Plan . Recall that entity-based sensors al-
ways observe a particular entity irrespective of the space they are
in. To generate an entity-based plan, Sentaur, for each entity in the
input to the translate operator, finds the minimum cost observing
function and the entity-based sensor that can observe the given
entity for the entire Δ. We generate this plan only when the entities
5If the coverage changes (e.g., a sensor becomes available/unavailable during a Δ interval), then
Sentaur may select a non-optimal plan; e.g., a better plan might be possible by dividing Δ into
smaller values and choosing different plans for the two different parts of the Δ interval.

(a) Plan Space (b) Selected Plan

S1𝜞

S3

S2
S4

S5 S5

S1

S2

𝜞

Figure 5: Region-based plan generation.

are explicitly listed on the input, i.e., not ALL, or if the region-based
plan is not feasible.6

4.1.2 Region-Based Plan . Sentaur generates plans using space-
based sensors, i.e., sensors that cover all entities in a particular
region of the space. Here, Sentaur generates a plan for each region
in the queried set of regions. To do so, for each region Γ𝑖 in {Γ}, a
plan space that includes all possible plans is generated from which
a minimum cost plan will be selected.
Plan Space: To generate the plan space, Sentaur calls Coverage−1
function (discussed in §2.5.2) on the space Γ𝑖 and a time point 𝑡
from time interval Δ .7 Recall that the Coverage−1 function returns
a set of pairs having the observing function 𝑓𝑙 and a set of sensors
𝑆 . Consider Γ𝑆 as the sub-region of Γ𝑖 that can be covered by the set
of sensors 𝑆 using observing function 𝑓𝑙 in time interval Δ. Note
that different sets of sensors may cover overlapping sub-regions
inside Γ𝑖 . For example, Figure 5a represents one such plan space and
shows a region Γ with different sets of sensors covering different
overlapping sub-regions of Γ.
Plan Selection: Executing all the observing functions (with the
corresponding sensors) included in the plan space will result in
redundant translation work, since multiple sets of sensors might
cover overlapping sub-regions of the given region. Sentaur selects
a minimum cost subset of the plan space such that the subset cov-
ers the entire region. This subset is called a translation plan. The
condition to select a translation plan is formally defined as:

argmin
plan

∑︁
(𝑓𝑙 ,𝑆) ∈plan

Cost (𝑓𝑙 (𝑆)) |
⋃

(𝑓𝑙 ,𝑆) ∈𝑃𝑙𝑎𝑛
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑓𝑙 , 𝑆, 𝑡) ⊇ Γ𝑖

where Cost (𝑓𝑙 (𝑆)) denotes the estimated amount of time spent in
executing 𝑓𝑙 on data generated by sensors in 𝑆 for the time interval
Δ and 𝑡 is any time point in Δ.

The problem of finding the minimum cost plan that covers a
region of interest is related the problem of covering a polygon with
a set of rectangles which is NP-complete [35]. Thus, to generate the
minimum cost translation plan we use a greedy algorithm. First,
we sort the plan space based on the ratio of the cost of the function
and the area of the sub-region covered, i.e., Cost (𝑓𝑙 (𝑆))/𝑎𝑟𝑒𝑎(Γ𝑆)
(denoted as the rank of S). We select the entry, (𝑓𝑙 , 𝑆), with the
lowest rank from the plan space and add it to the translation plan.
Note that selecting 𝑆 will reduce the benefit (i.e., will increase the
rank) of other sensors 𝑆 ′ that are covering regions overlapping
with the region covered by 𝑆 , since parts of the regions covered
by 𝑆 ′, are now covered by 𝑆 . Therefore, we adjust the rank of all
other 𝑆 ′ in the plan space as Cost (𝑓𝑙 (𝑆 ′))/(𝑎𝑟𝑒𝑎(Γ′𝑆) − 𝑎𝑟𝑒𝑎(Γ′′

𝑆
))

where Γ′′
𝑆

is the region of 𝑆 ′ overlapping with 𝑆 . Next, we remove
the region covered by 𝑆 i.e., Γ𝑆 , from those regions of Γ𝑖 which are
not already covered by current sets of sensors in the translation
6Note that we could generate an entity-based plan for situations when the input contains ALL, but
since number of entities can be arbitrarily large, such plans would be expensive.

7We could run Coverage−1 for any point of time Δ since Δ is small enough such that the coverage
of sensors does not change for any time point in its duration.

3137

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Peeyush Gupta et al.

Sensor No. Rows
(M)

Size (GB) Observing Functions (Cost)

WiFi 300 80 76 location(room:150ms,region:10ms)
occupancy(room:100ms, region:8ms)

WeMo 1,400 37 4 energy(room:20ms)
Hvac 250 15 10 energy(region:50ms)
Camera 1,400 20 840 location(room:200ms); occupancy(room:120ms)
GPS 5,000 50 10 building-location (5ms)
Watch 5,000 50 20 vitals (18ms)

Table 3: Sensor Dataset and Functions.

plan. We maintain such regions of Γ𝑖 as a set of regions called
Γ𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 (initially containing the entire Γ𝑖). To remove a covered
region Γ𝑆 from Γ𝑖 , we simply subtract Γ𝑆 from Γ𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 . We keep
on iterating the above-mentioned steps until the entire region Γ𝑖 is
covered or there are no more entries left in the plan space.

5 SENTAUR DEPLOYMENT AND EVALUATION
We have deployed Sentaur at the UC Irvine campus. Sentaur col-
lects WiFi connectivity data from access points in more than 30
buildings, as well as, camera data, WeMo devices [14], and HVAC
sensors instrumented in the Computer Science buildings, and GPS
data from smartphones of a few users. Sentaur collects more than 31
million events per daywith data rates as high as 5,000 events/second
during peak hours. Sentaur abstracts the collected sensor data into
semantically meaningful information to support a variety of appli-
cations/services including: locating individuals/groups in real-time,
finding most frequently met persons and most frequently visited
locations, monitoring occupancy of different parts of a building and
analyzing building usage over time, finding energy usage of differ-
ent regions of a building over time, analyzing correlation of between
faculty-student interaction, course attendance to grades. The most
extensively used applications supported by Sentaur create aware-
ness during COVID-19 pandemic. In particular, they empower: 1)
Campus administrators to make informed decisions based on dy-
namic building occupancy; 2) Individuals to decide about visiting
(parts of) a building by monitoring the number of unique visitors
that have passed through a given region; and 3) Individuals to
monitor if they could have been exposed to COVID-19 by being in
locations reported as infectious by UCI. Sentaur’s support for rapid
application prototyping enabled us to quickly develop such apps
which were used operationally for over year for this purpose [13].
Each of these applications can be accessed at [10].

5.1 Impact & Benefits
To evaluate the benefits of Sentaur for smart space application
developers, we consider the essential functionality required by
most of the applications in our deployment: inferring the location
of a person during a given time interval.
Eval 1 - Lines of Code:We evaluate first the benefit of Sentaur
in simplifying application development. To this end, we wrote the
previous functionality with Sentaur and without it (i.e., directly
on sensor data). In Sentaur this functionality corresponded to a
simple SQL query "SELECT * FROM Occupant O, OccupantLocation
OL WHERE O.name=‘?’ AND OL.id=O.id AND Overlaps ([start,end],
[10,50])" . In contrast, coding this directly over sensor data required
over 500 lines of code,8 and that code, while it supported multi-
sensor reasoning, was still not fault-tolerant when sensors could
fail/change. This example illustrates clearly the power provided by
Sentaur in building sensor-based applications.
8This code is listed in the longer version of the paper [3].

0 10 20
Regions

0.00

0.25

0.50

0.75

1.00

Tr

an
sla

tio
n

Pl
an

s

1e6

Figure 6: Possible
translation plans.

EID Start End Observing
Function

Sensors

3 50 80 WiFiFunc1 WiFi30

3 80 120 CamFunc1 Cam2

3 120 130 CamFunc1 Cam3

3 130 200 WiFiFunc1 WiFi31

(a) Plan version 1 (b) Plan version 2

EID Start End Observing
Function

Sensors

3 100 130 WiFiFunc1 WiFi30

3 130 180 WiFiFunc1 Cam2

3 180 210 CamFunc1 Cam3

3 210 250 WiFiFunc1 WiFi30

Figure 7: Sample translation plans.

Eval 2 - Extensibility: Porting application functionality to dif-
ferent smart spaces or conditions might require completely differ-
ent code depending on the available sensors/observing functions.
Sentaur hides such complexities from developers by dynamically
adapting to the available resources. A developer using Sentaur does
not have to change the application code beyond making simple
parameter changes in their queries. We evaluate the benefit of Sen-
taur in supporting extensibility and portability. Particularly, we
consider a small change in the time range parameter of the running
example query/functionality. Version 1 and 2 of the query choose
different time ranges ((50, 200) and (100, 250), respectively). Such
a small change in the query results in totally different translation
plans as shown in Figure 7 (generated to fill the missing values in
OccupantLocation temporal relation). Without Sentaur, the appli-
cation developer would have to write the code required for each
plan involved in variations of the same functionality.
Eval 3 - Translation Plan Space Complexity: Sentaur creates a
translation plan space per query (representing all possible plans), be-
fore selecting the best one, thus hiding the complexity of generating
and iterating over possible translation plans from the applications.

The number of plans considered by Sentaur is an indicator of
the simplification the system offers - without using Sentaur the
developer would need to reason about such plans. Figure 6 shows
the number of possible translation plans for the sample query in-
volving a building with 25 regions. Note that there are more than
1 million possible plans in this case which increase exponentially
with the increase in the number of regions to be covered.

5.2 Performance Evaluation
Another motivation for Sentaur, is to improve performance by ex-
ploring query-time translation. Before, deploying Sentaur, we built
few applications using a traditional approach based on abstracting
sensor data at insertion time. This approach was not able to sus-
tain data rates at peak hours (in the order of 5,000 events/second).
Processing, for instance, WiFi events to generate localization infor-
mation using a machine learning method [29] took 200 seconds for
data collected in just 1 second.With Sentaur’s deployment, using its
query time translation, the data ingestion is almost instantaneous
and data is available for analysis without any delay.

In the following, we evaluate the performance and scalability
of Sentaur in our deployment. For reproducibility purposes and to
provide performance results on standardized data, we use synthetic
sensor data for this experiment since the real sensor data captured
in the campus cannot be shared. We generate synthetic sensor data,
for a campus with 25 buildings for a month, using the sensor data
generation tool provided in the IoT database benchmark Smart-
Bench [23]. Table 3 shows the number of instances of each sensor
type, the number of rows, and the size of the generated sensor data.
Experimental Setup.We select ten representative queries ranging
from simple selection queries (e.g., to find the location of a person

3138

Sentaur: Sensor Observable Data Model for Smart Spaces CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Entity Set Occupants Rooms
Property location vitals contacts occupancy energy
Time(days) 70 8 17 34 12

Table 4: Exp 1 - Eager translation.

or occupancy of a room in a given time interval) to more complex
queries involving multiple joins and aggregations (e.g., to find all
“health” individuals who visited locations in which an “unhealthy”
person had been before or to find the average time spent by users
in different types of rooms). Detailed description of each query
is provided in the longer version of the paper [3]. All queries are
expressed on the semantic model referring to entities and their ob-
servable (or not) attributes. During the evaluation we set the value
of the time interval parameter to be 30 minutes unless explicitly
stated. We use observing functions from our deployment to com-
pute building location/occupancy from GPS data, region and room
location/occupancy from WiFi data, and room location/occupancy
from camera data. Similarly, the energy usage of a room is com-
puted using WeMo data and at region level using HVAC data. We
use smartwatch data (i.e., heart rate, 𝑂2 level) to generate a health
report of a person. The cost of each function is given in Table 3.
The experiments were performed on a server with 16 core 2.50GHz
Intel i7 CPU, 64GB RAM, and 1TB SSD. Both the sensor data and
the temporal relations were stored in PostgreSQL. We note that the
use of Timeseries DBMSs [12, 16, 30] to manage sensor data could
further improve Sentaur’s performance.
Exp 1 - Eager Evaluation: As we mentioned before, processing/-
translating the entire sensor data to generate meaningful observa-
tions as it arrives is not practical. Table 4 shows the time required
to process sensor data at ingest using the functions with cost men-
tioned in Table 3. The results show that processing one month of
sensor data requires ≈141 days, which is not practical.
Exp 2 - Query Processing in Sentaur: Table 5 plots query ex-
ecution time using Sentaur with a database in a cold start (i.e.,
none of the data has been processed using any of the observing
functions). Query execution times range from 13s to ≈6 minutes
(for a complex query to retrieve all rooms with occupancy above
a threshold). Table 5 further shows the percentage of the total
time spent in translation, generating translation plans, and ex-
ecuting queries on the underlying database.9 The time spent in
running observing functions (i.e., “Translation” in Table 5) is com-
puted by subtracting the rest of the costs from the total time. Note
that executing observing functions consumes 70%-95% of Sentaur
execution time while planning and executing queries in the un-
derlying database takes a small fraction of it. This indicates that

10 20 30 40 50 60
Time interval (mins)

100

200

300

400

Ex
ec

ut
io

n
tim

e(
s)

Figure 8: Exp 3 - Effect of
query selectivity.

queries will become significantly
faster when queries are executed
over data that has been partially
processed using observing func-
tions, since the dominant cost of
execution is that of executing such
functions.
Exp 3 - Effect of Selectivity:We
study the effect of the query selec-
tivity on Sentaur’s query execution
time. Figure 8 shows execution time
for Q1 in Table 5 when we increase its time interval parameter. The
9Executing a query in Sentaur may result in multiple queries on the underlying
database as mentioned in §3.2.1.

Queries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Total Time 240s 17s 13s 350s 275s 25s 275s 280s 38s 89s
Translation 85% 83% 70% 88% 83% 81% 95% 84% 82% 91%
Planning 12% 15% 15% 9% 12% 17% 4% 14% 15% 8%
DB Queries 3% 2% 5% 3% 5% 2% 1% 2% 3% 1%
Table 5: Exp 2 - Cost breakdown for queries in Sentaur.

execution time (and hence the translation cost) increases linearly
with increasing duration of the time interval. This is expected given
that the overhead of translation is minimal and the dominant cost
is that of executing observing functions.

6 FUTURE DEPLOYMENTS AND DISCUSSION
We next discuss two early stage deployments of Sentaur.10 The
assisted living smart space setting, part of the CareDEX project [2],
aims to ensure safety of older adults who require personalized care.
Information generated from in-situ motion sensors and WiFi access
points are merged with mobile fall detection or wander alert sensors
carried by residents in Sentaur to create improved awareness appli-
cations for caregivers. Sentaur applications will support analysis to
pinpoint unsafe regions where most falls have taken place, identify
isolated residents who exhibit low levels of interaction with others,
and track residents who are an elopement risk and at danger of
leaving the facility. Another novel use of Sentaur is in the context of
Prescribed Fire Monitoring in the SPARx-Cal project [11]. Prescribed
fires run the risk of escaping; fast and accurate monitoring of their
progress is critical. In SPARx, thermal and RGB images from drones
and insitu cameras are analyzed for fire presence, flame length, and
fire intensity in different regions. Wind sensors (wind direction and
speed), air quality sensors (levels of particulate matter and smoke),
and humidity sensors provide local environmental conditions that
dictate fire progress. GPS devices carried by personnel are used for
crew location to direct them to regions where attention is required
for ignition or control. Through a Sentaur deployment, an analyst
will be able to pose queries to better monitor the burn (identify
regions with fire presence/absence, determine regions with unfavor-
able wind/humidity conditions, locations of fuel with low humidity)
and control further data collection through drone path planning.

We expect Sentaur to provide similar benefits in these contexts
as in the UCI smart space deployment. It will enable us to develop
these use cases by writing applications at the semantic level, leaving
complex sensor translation logic, dealing with sensor heterogeneity
and multiplicity, as well as ways to tolerate sensor failures, to the
Sentaurmiddleware. Nonetheless, the two new application contexts
pose several new challenges that we anticipate having to address. In
Sentaur, query-time translation mitigates the large ingestion delay
but it can cause queries to take a long time to complete, specially
during the cold start phase. Increased query latency could result in
unacceptable application performance, especially when query re-
sults drive real-time control as in drone planning the prescribed fire
domain. We will need to explore variety of optimizations to reduce
the translation cost and therefore the query execution time. For
example, we can exploit the query semantics and place translation
operators optimally to remove redundant translations.

ACKNOWLEDGMENTS
This work was partially funded by the research sponsored by DARPA un-
der agreement number FA8750-16-2-0021, NSF Grants 1952247, 2133391,
2032525, and 2008993, and UC Office of the President Grant LFR-20-653572.

10More details and proof of concept applications are available in [3].

3139

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Peeyush Gupta et al.

REFERENCES
[1] [Online; accessed May-2022]. AWS IoT. https://aws.amazon.com/iot/
[2] [Online; accessed May-2022]. Enabling Disaster Resilience in Aging Communities

via a Secure Data Exchange. https://sites.uci.edu/caredex/
[3] [Online; accessed May-2022]. Extended version. https://github.com/ucisharadlab/

tdb
[4] [Online; accessed May-2022]. GridDB. https://griddb.net/en/
[5] [Online; accessed May-2022]. Nest. http://www.iot-nest.com/
[6] [Online; accessed May-2022]. Oracle ERP. https://www.oracle.com/erp/
[7] [Online; accessed May-2022]. Oracle Financials. https://www.oracle.com/erp/

financials-cloud/
[8] [Online; accessed May-2022]. Salesforce CRM. https://www.salesforce.com/crm/
[9] [Online; accessed May-2022]. SAP S4/Hana ERP. https://www.sap.com/products/

s4hana-erp.html
[10] [Online; accessed May-2022]. Sentaur Applications. https://tippersweb.ics.uci.

edu/covid19/d/IwAc1O9Wk/covid-19-effort-at-uc-irvine?orgId=1
[11] [Online; accessed May-2022]. SPARx Cal: Smart Practices and Architectures for

Rx fire in California. https://sites.uci.edu/sparxcal/
[12] [Online; accessed May-2022]. Timescale system. https://www.timescale.com/
[13] [Online; accessed May-2022]. UCI Uses Campus Wi-Fi to Test COVID-19 Contact

Tracing App. https://healthitanalytics.com/news/uci-uses-campus-wi-fi-to-test-
covid-19-contact-tracing-app

[14] [Online; accessed May-2022]. WEMO. https://www.wemo.com
[15] Hotham Altwaijry, Sharad Mehrotra, and Dmitri V. Kalashnikov. 2015. QuERy: A

Framework for Integrating Entity Resolution with Query Processing. PVLDB 9, 3
(2015).

[16] Michael P Andersen and David E Culler. 2016. Btrdb: Optimizing storage system
design for timeseries processing. In 14th USENIX Conference on File and Storage
Technologies (FAST 16).

[17] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuelle Della VALLE,
and Michael Grossniklaus. 2010. C-SPARQL: a continuous query language for
RDF data streams. International Journal of Semantic Computing 4, 01 (2010).

[18] Mike Botts, George Percivall, Carl Reed, and John Davidson. 2006. OGC sensor
web enablement: Overview and high level architecture. In Int. Conf. on GeoSensor
Networks. 175–190.

[19] Jean-Paul Calbimonte, Oscar Corcho, and Alasdair JG Gray. 2010. Enabling
ontology-based access to streaming data sources. In International Semantic Web
Conference.

[20] Bruno Costa, Paulo F Pires, and Flávia C Delicato. 2016. Modeling iot applica-
tions with sysml4iot. In 42th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA).

[21] Stella Giannakopoulou, Manos Karpathiotakis, and Anastasia Ailamaki. 2020.
Cleaning Denial Constraint Violations through Relaxation. In ACM SIGMOD
International Conference on Management of Data (SIGMOD ’20).

[22] Michael Goodchild, Robert Haining, and Stephen Wise. 1992. Integrating GIS
and spatial data analysis: problems and possibilities. International journal of
geographical information systems 6, 5 (1992), 407–423.

[23] Peeyush Gupta, Michael J Carey, Sharad Mehrotra, and Roberto Yus. 2020. Smart-
bench: A benchmark for data management in smart spaces. Proceedings of the
VLDB Endowment 13, 12 (2020).

[24] Ralf Hartmut Güting. 1994. An introduction to spatial database systems. the
VLDB Journal 3, 4 (1994), 357–399.

[25] A. Haller et al. 2018. The modular SSN ontology: A joint W3C and OGC stan-
dard specifying the semantics of sensors, observations, sampling, and actuation.
Semantic Web 10 (2018), 9–32.

[26] Jan Janak and Henning Schulzrinne. 2016. Framework for rapid prototyping of
distributed IoT applications powered by WebRTC. In 2016 Principles, Systems and
Applications of IP Telecommunications (IPTComm). IEEE, 1–7.

[27] Danh Le-Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, andManfred Hauswirth.
2011. A native and adaptive approach for unified processing of linked streams
and linked data. In International Semantic Web Conference.

[28] Shenghong Li, Mark Hedley, Keith Bengston, David Humphrey, Mark Johnson,
and Wei Ni. 2019. Passive localization of standard WiFi devices. IEEE Systems
Journal 13, 4 (2019), 3929–3932.

[29] Yiming Lin, Daokun Jiang, Roberto Yus, Georgios Bouloukakis, Andrew Chio,
Sharad Mehrotra, and Nalini Venkatasubramanian. 2020. LOCATER: Cleaning
WiFi Connectivity Datasets for Semantic Localization. Proc. VLDB Endow. 14, 3
(2020).

[30] Syeda Noor Zehra Naqvi, Sofia Yfantidou, and Esteban Zimányi. 2017. Time series
databases and influxdb. Studienarbeit, Université Libre de Bruxelles 12 (2017).

[31] Ferry Pramudianto, Carlos Alberto Kamienski, Eduardo Souto, Fabrizio Borelli,
Lucas L Gomes, Djamel Sadok, and Matthias Jarke. 2014. Iot link: An internet of
things prototyping toolkit. In IEEE 11th Int. Conf. on Ubiquitous Intelligence and
Computing and IEEE 11th Int. Conf. on Autonomic and Trusted Computing and
IEEE 14th Int. Conf. on Scalable Computing and Communications and Its Associated
Workshops.

[32] Richard Snodgrass et al. 1986. Temporal databases. Computer 19, 09 (1986),
35–42.

[33] Richard T Snodgrass. 2012. The TSQL2 temporal query language. Vol. 330. Springer
Science & Business Media.

[34] Knut Stolze. 2003. SQL/MM spatial: The standard to manage spatial data in a rela-
tional database system. In BTW 2003–Datenbanksysteme für Business, Technologie
und Web, Tagungsband der 10. BTW Konferenz. Gesellschaft für Informatik eV.

[35] Yu G Stoyan, Tatiana Romanova, Guntram Scheithauer, and A Krivulya. 2011.
Covering a polygonal region by rectangles. Computational Optimization and
Applications 48, 3 (2011), 675–695.

[36] David Toman. 1998. Point-based temporal extensions of SQL and their efficient
implementation. In Temporal databases: research and practice. Springer, 211–237.

[37] David Toman. 2000. SQL/TP: a temporal extension of SQL. InConstraint Databases.
Springer, 391–399.

[38] Ankit Toshniwal et al. 2014. Storm@ twitter. In SIGMOD ’14.
[39] Itorobong S Udoh and Gerald Kotonya. 2018. Developing IoT applications: chal-

lenges and frameworks. IET Cyber-Physical Systems: Theory & Applications 3, 2
(2018), 65–72.

[40] Roberto Yus, Georgios Bouloukakis, Sharad Mehrotra, and Nalini Venkatasub-
ramanian. 2019. Exploring Fairness in Participatory Thermal Comfort Control
in Smart Buildings. In 6th ACM International Conference on Systems for Energy-
Efficient Built Environments (BuildSys ’19).

[41] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. 2012.
Discretized Streams: An Efficient and Fault-tolerant Model for Stream Processing
on Large Clusters. In 4th USENIX Conference on Hot Topics in Cloud Ccomputing
(HotCloud’12).

3140

https://aws.amazon.com/iot/
https://sites.uci.edu/caredex/
https://github.com/ucisharadlab/tdb
https://github.com/ucisharadlab/tdb
https://griddb.net/en/
http://www.iot-nest.com/
https://www.oracle.com/erp/
https://www.oracle.com/erp/financials-cloud/
https://www.oracle.com/erp/financials-cloud/
https://www.salesforce.com/crm/
https://www.sap.com/products/s4hana-erp.html
https://www.sap.com/products/s4hana-erp.html
https://tippersweb.ics.uci.edu/covid19/d/IwAc1O9Wk/covid-19-effort-at-uc-irvine?orgId=1
https://tippersweb.ics.uci.edu/covid19/d/IwAc1O9Wk/covid-19-effort-at-uc-irvine?orgId=1
https://sites.uci.edu/sparxcal/
https://www.timescale.com/
https://healthitanalytics.com/news/uci-uses-campus-wi-fi-to-test-covid-19-contact-tracing-app
https://healthitanalytics.com/news/uci-uses-campus-wi-fi-to-test-covid-19-contact-tracing-app
https://www.wemo.com

	Blank coversheet.pdf
	3511808.3557147
	Abstract
	1 Introduction
	2 Sentaur Data Model
	2.1 Running Example: A Smart Campus
	2.2 Spatial Extent Layer
	2.3 Semantic Layer
	2.4 Sensor Layer
	2.5 Glue Layer

	3 Mapping Sentaur To Database System
	3.1 Mapping Schema, Data, and Functions
	3.2 Mapping Queries

	4 Sentaur Translation
	4.1 Translation Operator

	5 Sentaur Deployment and Evaluation
	5.1 Impact & Benefits
	5.2 Performance Evaluation

	6 Future Deployments and Discussion
	Acknowledgments
	References

