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Expander graphs are commonly studied objects in computer science and math-

ematics that are found in the proofs of many important theorems. The vast majority

of these theoretical uses of expanders rely on probabilistic statements of existence

and do not grapple with the challenge of creating expander graphs or validating

their expansion properties. In this paper, we will define expander graphs and de-

scribe different ways their expansion can be measured. We will discuss applications

of expander graphs and provide empirical evidence of how they can be used in prac-

tice. We will also outline the difficulties of computing exact expansion rates and

the hardness of estimating these rates, relating these problems to well-known re-

sults and conjectures in complexity theory. Using our own implementation of graph

creation and verification algorithms, we will gain an empirical understanding of

expander graphs, utilizing high-performance computing resources and repurposing

well-known statistical methods to analyze expansion. We will show that, given an ar-

bitrary graph, its potential to be used as an expander can be measured and bounded

by employing community detection algorithms that seek to maximize modularity.
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Chapter 1

Introduction

Expander graphs are highly connected graphs that are also, in some sense,

“sparse.” These two competing notions give rise to graphs with extremely interesting

properties. As such, expander graphs have been used to tackle many problems

in both theoretical computer science and mathematics, including network design,

coding theory, complexity theory, derandomization, cryptography, number theory,

and geometry [14, 24, 31, 45].

1.1 History

The first appearance of expander graphs was in a paper by Pinsker, who

gave a probabilistic existence argument for bipartite graphs with specific properties

[42]. Pinsker, like many of the mathematicians and computer scientists studying

expanders at the time, was interested in applications of expanders to switching

networks used for communication. In his seminal paper, Pinsker was primarily

focused on constructing graphs called “concentrators” with as few edges as possible.

The definition of a concentrator is as follows:

Definition 1. An (n,m)-concentrator is a bipartite graph with n inputs and m

outputs (where m < n) and where any k ≤ m inputs can be simultaneously connected

to some k outputs by non-intersecting paths. [42]
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Pinsker was able to construct a concentrator with 29n edges, the proof of

which relied on the existence of what came to be known as expander graphs [42].

In the late 1970s, Valiant was interested in determining how many logic gates it

would take to build a circuit that could compute linear transformations over a finite

field [48]. He conjectured that the graph layout of any circuit that computes such a

transformation would have to be a “super-concentrator,” defined as follows:

Definition 2. An n-superconcentrator is a graph with n inputs and n outputs such

that, for any set of inputs and any set of outputs of the same size, there exists a

set of vertex-disjoint paths that connect the inputs to the outputs in a one-to-one

manner. [11]

Valiant erroneously conjectured that any superconcentrator must have more

than Ω(n) edges, a belief which he later disproved using expander graphs [48]. As

these two examples illustrate, expanders are useful in a variety of unexpected fields

and applications.

1.2 In Practice

Although expander graphs enjoy wide usage in many disciplines, they are

almost never constructed explicitly; instead, probabilistic results about their ex-

istence are invoked. From a theoretical point of view, this is perfectly natural;

however, many of the theoretical applications of expanders also have quite prac-

tical analogues. For example, Dinur uses expander graphs in her construction of

probabilistically checkable proofs (PCPs), but, if one were to attempt to construct
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such a proof for a real-world problem, one would quickly realize that the numerous

and varied expander graphs needed for the PCP construction are not easy to find,

create, or validate [14].

Many of these theoretical results that rely on the aforementioned probabilistic

arguments are frequently constrained when it comes to using random bits; thus, in

a practical scenario, using randomly generated expanders would simply not be an

option. As a result, there has been a rich history of literature focused on finding ways

to efficiently generate infinite families of expander graphs. These constructions vary

wildly in complexity and in the characteristics of the resulting graphs, and as such,

not all are suitable in all circumstances. The downside to many of these explicit

graph construction algorithms is that the resulting graphs often have expansion

rates less than that of their randomly-generated counterparts, and on top of that,

many of them only work well for extremely large graphs.

1.3 Purpose

As discussed above, there exist probabilistic guarantees that, with very high

likelihood, a random d-regular graph is an expander with nice expansion properties.

However, that is far short of a guarantee. Furthermore, even if a randomly generated

graph were an expander, there is no efficient way to determine exactly (or even

approximately, to within a sub-logarithmic factor) how good the expansion is. Thus,

one of the primary goals of this work was to provide methods and techniques for

validating that a given graph does indeed have a high expansion rate. We examined
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methods for computing estimates of expansion rates, methods for computing values

that are correlated with expansion rate, and methods for making improvements

over existing theoretical bounds on graph expansion. We also explored specific

applications of expander graphs and provided empirical evidence for how they can

be used to recycle random bits and to implement hashing algorithms.

In order to perform the tests necessary to develop and validate these methods

and techniques, we have created a software suite for creating, manipulating, and

testing expander graphs. The majority of the software is written in Python and

makes extensive use of the numpy and scipy packages. We have also written a testing

framework for community detection algorithms testing in the statistical software R,

in which we make extensive use of the modMax package. Using a combination of

our software, open-source code, and high-performance computing resources, we were

able to explore and evaluate graph expansion and applications from an empirical

standpoint. Ultimately, we will show that, given an arbitrary graph, its expansion

rates can be measured and bounded by employing community detection algorithms

that seek to maximize modularity.

1.4 Organization

This paper is organized into a series of chapters. We will start by formally

defining expander graphs and talking about some of their characteristics, after which

we will provide a brief overview of a few applications of expander graphs. Next,

we discuss how different expansion measures are computed, the hardness of those
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computations, and different bounds for various types of expansion. After that, we

will analyze various approximation algorithms for graph expansion and assess their

complexity. Following that, we will talk about graph modularity and community

detection algorithms, detailing their relationship with graph expansion. We will

then describe methods for creating expander graphs, to include both random and

explicit constructions. We then outline the software we have written for analyzing

expander graphs, describe the various subset tests we have conducted, and assess

the empirical data that we have collected using our software. Next, we will discuss

the software we have written for performing community detection by maximizing

modularity and outline how we have used those algorithms to improve bounds on

expansion rates. Afterwards, we will provide empirical evidence of the usefulness

of expanders in various applications. Finally, we will discuss the implications that

our results have for practical uses of expander graphs and suggest some possible

directions for future work in this area.
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Chapter 2

Expander Graph Basics

Strictly speaking, every finite, connected graph (which can contain parallel

edges and/or self-loops) is an expander graph. However, not every graph will have

good expansion parameters, and not every graph is part of an expander family.

There are three primary notions of expansion that are regularly studied, which we

will describe in the subsequent section. Throughout this paper, all the graphs that

we will consider are undirected, unless explicitly stated otherwise.

2.1 Definitions

We will start by defining the edge and vertex boundary sets. These sets will

play an important role in calculating expansion rates.

Definition 3 (Edge Boundary). Given a graph G = (V,E), the edge boundary ∂S of

a given set of vertices S ⊆ V is the number of edges in E with exactly one endpoint

in S.

∂S = {(u, v) ∈ E : u ∈ S, v ∈ V \ S}. [31]

Definition 4 (Outer Vertex Boundary). Given a graph G = (V,E), the outer vertex

boundary ∂outS of a set S ⊆ V is the number of vertices in V \ S with at least one

neighbor in S.

∂outS = {v ∈ V \ S : ∃(u, v) ∈ E such that u ∈ S}. [31]

6



Definition 5 (Inner Vertex Boundary). Given a graph G = (V,E), the inner vertex

boundary ∂inS of a set S ⊆ V is the number of vertices in S with at least one

neighbor in V \ S.

∂inS = {v ∈ S : ∃(u, v) ∈ E such that u ∈ V \ S}. [31]

Now, with our boundary sets defined, we can outline the three expansion

notions mentioned in the chapter introduction, starting with edge expansion.

Definition 6 (Edge Expansion). Given a graph G = (V,E) on n vertices, the edge

expansion of G, h(G) is

h(G) = min
0<|S|≤n

2

∂S

|S|
. [31]

Intuitively speaking, we can understand edge expansion to represent the worst-

case ratio of the size of a subset’s edge boundary (the number of edges with exactly

one edge in the subset) to the size of the subset. Thus, in order for a graph to have

high edge expansion, every subset of vertices must have lots of edges in its boundary.

The definition of vertex expansion is very similar to that of edge expansion; however,

instead of using the edge boundary when calculating the ratio, we use the vertex

boundary instead.

Definition 7 (Vertex Expansion). Given a graph G = (V,E) on n vertices, the

outer vertex expansion of G, hout(G) is

hout(G) = min
0<|S|≤n

2

∂outS

|S|
. [31]

Similarly, the inner vertex expansion of G, hin(G) is

hin(G)) = min
0<|S|≤n

2

∂inS

|S|
. [31]
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If G is d-regular, we can see from these definitions that the two values, vertex

expansion and edge expansion, are related to one another in the sense that

hout(G) ≤ h(G) ≤ d · hout(G).

In later chapters, we will see that there are even more complex relationships between

these quantities and other graph expansion measures.

2.2 The Second Eigenvalue

While edge and vertex expansion provide a precise measurement of a graph’s

expansion properties, the eigenvalues of the adjacency matrix of an expander can

also shed some light on a graph’s expansion potential. Eigenvalues of the adjacency

matrix are considered almost exclusively in cases where the graph G is d-regular,

which means that each vertex in G is an endpoint of exactly d different edges.

This is mainly due to the fact that, with non-regular graphs, the situation is more

complicated and a modified version of the Laplacian matrix is required, as opposed

to simply using the adjacency matrix of the graph directly [47].

Using the adjacency matrix to estimate a graph’s expansion is known as com-

puting the spectral gap of the graph. Given a d-regular graph G, consider its adja-

cency matrix A. Since A is symmetric, the spectral theorem tells us that there exist

n eigenvalues λ1 > λ2 > · · · > λn of A such that λi ∈ R. Since G is regular, we also

know that the value of each eigenvalue falls between −d and d, inclusive, and that

the largest eigenvalue λ1, is equal to d [47]. Now, let λ(G) be defined as the second

largest eigenvalue (in absolute value) of A, which gives us λ(G) = |λ2|. We compute
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the spectral gap as follows:

Definition 8 (Spectral Gap). Given a d-regular graph G = (V,E) on n vertices,

the spectral gap of G is the difference between d and λ(G)

d− λ(G),

which is also sometimes referred to as the spectral expansion of G. Note that this is

the difference between the first and second eigenvalues of G’s adjacency matrix.

There are a number of results that show that the size of this spectral gap can

provide a good estimate for a graph’s expansion properties, but we will save the

details for a later chapter. As the size of the gap increases, the better the graph’s

expansion could potentially be. There has also been a significant amount of work

done on bounding the potential sizes of the spectral gap for various graph families,

which we will also discuss in a later chapter. Clearly, though, since we know that

the largest eigenvalue of a d-regular graph is d, we want expander graphs whose

second eigenvalue is as far away from d as possible. There are even some definitions

of expander graphs that require this value to be bounded away from d for explicitly

constructed sets of graphs. For instance, Reingold et al. define an “expander family”

as follows:

Definition 9 (Expander Family). An infinite family {Gn} of d-regular graphs is

an expander family if λ2 is bounded uniformly from above by d such that λ2 < d.

Equivalently, the normalized version of λ2 must be bounded away from 1. [45]

While this definition is not particularly useful for randomly generated ex-

panders and does not necessarily ensure good expansion, it should be noted that
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there is significant importance in developing and proving tight eigenvalue bounds,

a theme which we will revisit in Chapter 6.

Before we move onto talking about other characteristics of expander graphs,

we will present one final result that ties the second eigenvalue to the “randomness”

of a graph. This result is known as the Expander Mixing Lemma:

Lemma 1 (Expander Mixing Lemma). For all S, T ⊆ V :

∣∣∣∣|E(S, T )| − d|S||T |
n

∣∣∣∣ ≤ λ(G)
√
|S||T |,

where E(S, T ) is the number of edges between subset S and subset T. [31]

Examining this inequality, we see that the left side is simply comparing the

actual number of edges between S and T with the number of edges that would be

expected to exist between those two subsets in a random graph. Thus, when the

graph’s structure is similar to the what would be expected in a random graph, the

left side of the inequality is very small. Thus, when λ(G) is small (when the spectral

gap is large), the graph’s structure is very similar to that of a random graph [31].

We will see later that random graphs generally do, as this result suggests, have nice

expansion properties.

2.3 Random Walks on Expander Graphs

One important property of expander graphs is that taking a random walk of

length t looks very similar, probabilistically-speaking, to selecting t vertices from

the graph uniformly at random. At first, this might not sound very useful, but
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consider that taking such a random walk requires much fewer random bits than

selecting vertices at random, especially for graphs with lots of vertices. Thus, the

expansion property of the graph reduces the number of random bits that need to

be used to create specific probabilistic scenarios. We will formalize these notions in

the subsequent paragraphs.

First, we will start with the definition of a random walk as presented by Linial

and Wigderson [31].

Definition 10. A random walk over the vertices of a graph G is a stochastic process

defining a series of vertices (v1, v2, . . . ) in which the initial vertex is selected by some

initial distribution, and vertex vi+1 is selected from the neighbors of vi uniformly at

random.

Thus, since all but the first vertex are selected from the neighbors of the

preceding vertices, we see the process of selecting subsequent vertices is, in fact,

a Markov process. Furthermore, the transition matrix of the Markov chain that

represents a random walk of length t on G is precisely the normalized adjacency

matrix Ât of G [31]. Clearly then, we see that the stationary distribution of the

random walk is, in fact, the uniform distribution. Linial and Wigderson also prove

the following theorem:

Theorem 2.3.1. Let Ât be the normalized adjacency matrix of a graph G, let ~u

denote the uniform distribution, and let α denote the maximum of the absolute value

of the second-largest normalized eigenvalue and the absolute value of the smallest

normalized eigenvalue of the graph G. Then, ||Ât~p−~u||1 ≤
√
n·αt for any distribution
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vector ~p. [31]

Thus, regardless of the initial distribution vector ~p, after taking a logarithmic

number of steps, if G is an expander graph (meaning that α would necessarily be

bounded away from 1 for non-bipartite expanders) we would arrive at a distribution

that is within a polynomial factor of the uniform distribution [31]. Furthermore,

as α shows, the size of the second largest eigenvalue is actually a measure of how

quickly the random walk on G converges to a uniform-looking distribution [45].

Linial and Wigderson go on to show that, through the use of random walks

on expander graphs, the success probability of randomized algorithms can increase

[31]. One example of this being used in another theoretical application is in Dinur’s

proof of the probabilistically checkable proof (PCP) theorem. Instead of selecting

t vertices uniformly at random from a graph and checking to see whether or not

any of their associated constraints are violated, Dinur samples a t-step walk and

shows with high probability that such a walk will, in fact, pass through at least one

rejecting edge of the constraint graph, if one exists [14]. This example from Dinur is

also instructive because, in this case, the reason she does not simply select t vertices

uniformly at random is because the PCP theorem limits the number of random bits

that the PCP verifier can use. Thus, taking advantage of the uniform distribution

of a random walk on an expander graph is essential to her proof. Furthermore,

because the number of random bits that can be used is limited, constructing random

expander graphs on-the-fly would not be an option for Dinur. There are also many

other applications for expander graphs where random constructions simply cannot
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be used. We will explore methods for generating expander graphs in Chapter 8.

Now that we have explained some of the fundamental properties of expander

graphs, we will describe some common applications of these graphs. These exam-

ples will provide some motivation regarding our goal to accurately assess graph

expansion.
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Chapter 3

Expander Graph Applications

As outlined in the introduction, there are a number of different applications

for expander graphs in a wide variety of fields. Some are extremely theoretical, like

their use in Dinur’s proof of the PCP Theorem, while others are quite concrete, like

their use in building efficient communications networks [14, 42, 48]. In this paper,

we will discuss two specific applications of expander graphs in some detail. The first

is the use of expander graphs for probabilistic amplification, and the second is the

use of expander graph in cuckoo-style hashing algorithms.

3.1 Probabilistic Amplification

Randomness is a cornerstone in both the theory and practice of computer sci-

ence. In fact, randomized algorithms are frequently faster or much more simple than

their deterministic counterparts. There are also many situations that require ran-

domly sampling from a probability distribution, such as cryptographic applications

and scientific modeling [25]. Unfortunately, generating random bits is quite slow,

so computer scientists have developed various methods for preserving the usage of

random bits.
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3.1.1 Background and Motivation

One of the most frequently used means for recycling randomness is a pseudo-

random number generator. These pseudo-random number generators (PRNGs) take

a random “seed” and then, via a deterministic process, produce a much longer se-

quence of numbers that serves as a substitute for truly random numbers. Thus,

these PRNGs are one way that random bit usage can be reduced [25]. There has

been a very large body of work in this area, and it has been shown that cryp-

tographically secure pseudo-random number generators (CSPRNGs) exist and can

produce sequences of arbitrary lengths such that the next bit produced cannot be

predicted with probability of success better than 50% by any polynomial-time algo-

rithm [7, 50].

Building on this work, Impagliazzo and Zuckerman were able to create a PRNG

that can be constructed by taking random walks on expander graphs [25]. In fact,

they were able to create these generators by using random walks on the explicitly

constructed Gabber-Galil expanders (which will discuss in detail later) that strike

an almost ideal balance between the error probability and the amount of randomness

required by the generator; using r random bits and an error probability less than

1/2, their generator can reduce the error probability to 2−k using O(r + k) random

bits [20, 25]. Intuitively, the fact that taking random walks on expander graphs

can be used to produce good strings of random bits is not surprising. In fact,

we previously discussed results from Linial and Wigderson that show that random

walks on expanders converge quickly to the uniform distribution [31]. However,
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those proofs relied on the fact that G not be bipartite, which leads to a slightly

different analysis than that done by Impagliazzo and Zuckerman [21, 25, 31].

Expander graphs have also played a key role in the creation of randomness ex-

tractors. These extractors are essentially functions that can take sources of random

numbers with low minimum entropy and transform them into a source of random

numbers with minimum entropy arbitrarily close to 1 [23]. Much like the PRNG’s,

these extractors frequently also require a seed, but since the seeds can be as small as

O(log n) in length, it is usually feasible to simply enumerate all of the possibilities.

Thus, these extractors can simulate strong random sources using only weak random

sources and a very short seed [23].

We have performed empirical testing of probabilistic amplification in expander

graphs, the results and analysis of which can be found in Chapter 11.

3.2 Cuckoo Hashing

In recent years, there has been renewed interest in the hashing algorithms,

which was brought on by a paper by Azar et al., which showed that remarkably

low maximum loads could be achieved using multiple-choice hashing [6, 35]. In

multiple-choice hashing schemes, the available memory is divided into n buckets,

and each item is hashed d times, which provides d different potential locations for

the item to be stored. The item is then placed in the bucket with the smallest

load. The analysis of this scheme by Azar et al. showed that, for d ≥ 2, with

high probability, the maximum load grows like log log n/ log d+O(1), which, for all
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practical purposes, means that a bucket will never overflow [6]. Furthermore, only a

constant number of locations need to be checked when searching, and these searches

can run in parallel. From this work emerged the concept of cuckoo hashing.

3.2.1 Definition and Background

Cuckoo hashing was first introduced by Pagh and Rodler in 2001, and repre-

sents a natural extension to multiple-choice hashing techniques [41]. In the original

formulation of cuckoo hashing, there are exactly two hash functions, each of which is

applied to every item to be hashed, giving two possible locations for each item. On

insertion of an item, if one of its two possible locations is empty, it is simply stored

at that location. If both locations are already occupied, instead of simply failing to

insert, the hash table removes one of the items in the two locations, stores the new

item at that location, and then checks the other valid location (remember, there are

two possible locations for each item) for the item that was removed. If the other

location for that item is also full, then the algorithm again replaces that item with

the item that was pushed out of its location initially, and the process continues until

an empty position is found. In the event that the algorithm finds itself back in the

position it originally started when the insertion began with the same item it needs

to store, then the algorithm terminates, and the hash tables are re-built in place

with new hash functions. It has been shown that, when the load of cuckoo hash

tables is less than 1/2, the lengths of these insertion paths are O(log n). Thus in

most practical implementations, the algorithm simply terminates after c log n steps
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for some constant c if no open bucket can be found [35]. It is also easy to see that

a lookup using this type of cuckoo hashing requires checking exactly two places.

Since its introduction, cuckoo hashing has been generalized and extended in a

number of ways. One extension was to increase the number of hash functions (and

thus, the number of potential locations in the hash table for a single item) from

two to arbitrarily many. There are also variants of cuckoo hashing that allow for a

given location to house more than one item, which combines the concept of cuckoo

hashing with chaining to help resolve collisions [35]. If only one item can be stored in

a given location, in the case of cuckoo hashing with two hash functions, if there are

more than three items that all hash to the same location, the hash functions must

be thrown out and all the keys rehashed with new hash functions. Thus, building

in some form of collision detection is useful for avoiding costly rebuilds in real-world

situations, though the performance of searches drops. Of course, the lookups still

require checking only a constant number of positions in the hash table, but now,

each position cannot necessarily be searched in constant time.

It is also worth noting that, in the case of two hash functions, cuckoo hashing

has a very clear connection to random graphs. For instance, we can consider the

vertices of the graph to be the buckets where items can be stored, and then each

edge represents an item, with the two endpoints of that edge representing the two

possible locations where that item can be stored [35]. We could also have the edges

be directed to represent which of an edge’s two endpoints is where the item is stored.

Due to this neat correspondence, cuckoo hashing with two hash functions is very

well understood, since random graphs are well-studied. This relationship between
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random graphs and cuckoo hashing also extends to cases where there are more than

two hash functions, but instead of sharing similarities with random graphs where

each edge has exactly two endpoints, these hashing schemes correspond to random

hypergraphs, where a single edge can be adjacent to as many vertices as there are

hash functions. This scenario is much more complicated from a theoretical point of

view, and is currently the subject of significant research [35].

3.2.2 Random Walk Cuckoo Hashing

One aspect of cuckoo hashing that becomes much more complicated when

there are d > 2 has functions is the decision that needs to be made when an item

is being inserted into the table, but all d of its potential locations are filled. In

that scenario, one of the d items needs to be selected so that the new item can take

its place, and then that item’s d positions are examined for insertion. In the case

where there are only two hash functions, there is only one item that can be moved

during each iteration. However, if there are d possibilities, then there must be some

mechanism for deciding which item to move [35]. One option would be to perform

a search in the graph to find the shortest path that leads to an empty position that

is then filled, but that would obviously be extremely inefficient, since it would have

to be performed for every insertion.

Instead, a much more efficient strategy is to simply randomly select one of the

d items to be removed at each step, and then continuing to make random selections

until an empty position is found. In this way, the choices for which item to kick
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out and move can be seen as a random walk on the underlying graph structure of

the hash table. Experimental results have shown that this scheme might very well

have logarithmic performance, but due to the complexities of having to consider how

items’ placements are affected by other items, the current tightest proven bound is

polylogarithmic [35]. Frieze, Melsted, and Mitzenmacher were able to show that,

over the choices of the hashing algorithm, with high probability, an insertion will

take polylogarithmic time under reasonable loads and choices for d [19]. Work to

tighten this bound is currently ongoing.

Both of these expander graph applications rely on having graphs with good

expansion properties in order for them to work. Thus, developing a method for

evaluating a graph’s expansion rates is essential to using expander graphs in practice.
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Chapter 4

Calculating and Bounding Expansion

Although the definitions of the different types of expansion measures are fairly

straightforward, computing exact edge and vertex expansion rates for arbitrary

graphs is hard. The difficulty, of course, comes from the fact that the minimum

of the ratio of the boundary size to the subset size is taken over all subsets of size

n
2

or smaller. Thus, the number of subsets whose boundaries must be considered is(
n
n
2

)
+
(

n
n
2
−1

)
+· · ·+

(
n
2

)
+
(
n
1

)
= Ω(2n), which is exponential in the size of the graph. It

is a well-known result that computing edge expansion is NP-hard, as was shown by

Kaibel via a reduction from MaximumCut, a known NP-hard problem [26]. Proving

that vertex expansion is NP-hard can be accomplished with a fairly straightforward

reduction from edge expansion where all parallel edges are removed.

Now, we will prove that the problem of finding the subset with minimum edge

expansion (which allows us to calculate edge expansion) can be reduced to the prob-

lem of finding the sparsest cut of a multi-commodity flow problem, which is known

as the SparsestCut problem. Later, we will use this reduction to show that we

can approximate edge expansion by using methods that approximate SparsestCut.

Before we describe SparsestCut, we will first define a set of problems known as

multi-commodity flow problems (MFPs), which are a generalization of the typical

single-commodity network flow problem. In a MFP, there are k different commodi-
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ties, each of which has an associated demand Di, a source vertex si and a sink

vertex ti. Much like the normal single-commodity flow problem, each edge e has an

associated capacity c(e), such that no more than c(e) total units of any commodity

can traverse edge e. The goal of an MFP is to find a flow such that Di units of each

of the k commodities can be routed from si to ti without any of the edge capacity

constraints being violated [30].

A maximum flow for an MFP is slightly different than a maximum flow for a

single-commodity network. For example, if there is only enough capacity on a given

edge for one commodity’s demand to be satisfied, one would have to somehow rank

the commodities to decide which one would be part of a “max flow.” Instead, the

max flow of an MFP is usually defined by a fraction f, such that, for each demand

Di, fDi units of flow are able to travel from si to ti. The goal, then, is to find the

the flow that maximizes that fraction [30]. The minimum cut of an MFP is also

slightly different than the minimum cut of a standard flow problem. In fact, the

MFP equivalent of a minimum cut is the sparsest cut, which we can now define

formally.

SparsestCut: Let G = (V,E) be a weighted graph with edge weights ce ∈ R+

for all e ∈ E, and let P be a set containing k 2-tuples of vertices

{(u1, v1), (u2, v2), . . . , (uk, vk)},where ui, vi ∈ V

with demand Di between the two vertices in tuple i. Find the cut S∗ with minimum

sparsity, which is the cut that minimizes

Φ(S) =
c(S)

D(S)
,
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where

c(S) =
∑

e∈V s.t. e crossesS

c(e)

and

D(S) =
∑

(ui,vi)∈P s.t. S separatesui and vi

Di.

Now, the first thing to notice is that this definition of SparsestCut places no

restrictions on the demand values Di between vertices. However, for the reduction,

we will be reducing instances of edge expansion to a special case of SparsestCut,

known as uniform SparsestCut, where there is unit demand between every pair of

distinct vertices and where edge weights ce ∈ {0, 1}. Note that, when we have unit

demand between all pairs of distinct vertices, we know that there are |S| vertices

on one side of the cut and |V −S| vertices on the other side of the cut for a total of

|S||V − S| vertex pairs with unit demand that are separated by the cut. Thus, we

can re-examine our sparsity equation and see that the denominator, D(S), can be

rewritten as |S||V − S|. This gives us

Φ(S) =
c(S)

|S||V − S|
.

Without loss of generality, we can write this fraction as a minimization over

all cuts |S| ≤ n
2

such that

min
0<|S|≤n

2

c(S)

|S|
.

This minimization is equal to the true minimum sparsity up to a constant factor,

since n
2
≤ |V − S| ≤ n, but more importantly, the same cut that leads to the

minimum sparsity using the first form is the cut that will lead to the minimum in

the second form [30].
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Now, we can proceed with our reduction; we will present our own proof of the

hardness of SparsestCut.

Theorem 4.0.1. SparsestCut is at least as hard as computing edge expansion.

Proof. We will prove that finding the SparsestCut of a MFP is at least as hard as

computing a graph’s edge expansion rate by providing a polynomial-time reduction

from edge expansion to SparsestCut. The reduction will transform a graph into an

MFP; the vertices in the smaller half of the cut that leads to the minimum sparsity

of the MFP will be identical to the subset of vertices in the graph for which the

ratio of the edge boundary to the size of the subset (the graph’s edge expansion) is

minimized.

Given an undirected graph G, we are interested in finding its edge expansion

by identifying the subset R where ∂(R)/|R| is minimized over all subsets of size |V |
2
.

We will transform G into an MFP as follows. First, the underlying graph of the

MFP will be identical to G, containing the same vertices and edges. The set P will

contain a tuple for each pair of distinct vertices in the graph for a total of
(|V |

2

)
tuples.

Thus, there will be
(|V |

2

)
different commodities. Each of these commodities will have

unit demand, and the capacity of each edge will be 1. Clearly this construction takes

polynomial time.

Now that we have an MFP, we will let S∗ represent the cut of the MFP

that corresponds to the minimum sparsity of the network. We will show that this

minimum sparsity value is precisely equal to the edge expansion of the graph G.

First, we will let S ′ and V ′ be the sets of vertices into which S∗ divides the
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vertices of G. Without loss of generality, we assume that |S ′| < |V ′|, thus, |S| ≤ |V |
2
.

Now, since all the edges have unit capacity, we see that the numerator in the sparsity

fraction, c(S∗), is equal to the number of edges that cross the cut. Also, since

there is unit demand between all pairs of vertices, we can use the second form of

SparsestCut, meaning that, since we know that S∗ is the sparsest cut, we know

that S ′ minimizes

min
0<|S|≤n

2

c(S)

|S|
.

In this form, the relationship between SparsestCut and edge expansion is

clear. Since we have identified the set that minimizes

min
0<|S|≤n

2

c(S)

|S|
,

we know that the numerator is equivalent to the number of edges that cross the cut,

and the denominator is the size of the smaller half of the cut, this minimization is

identical to the edge expansion minimization; the subset S ′ is precisely the subset R

that we need to find the graph’s edge expansion. The size of the edge boundary of

S ′ is precisely equal to c(S ′), since the edges that leave the subset S ′ are the same

edges that cross the cut S∗ and all edges have unit capacity. Edge expansion then

divides that number by the size of the subset, which we also do in the case of the

second form of SparsestCut.

Thus, after creating a MFP from our original graph and finding the sparsest

cut, we then take the subset of vertices in the smaller half of the sparsest cut, and

we have shown that this subset is the subset for which the edge expansion of G is

minimized. Clearly, this identity mapping of the subset from the MFP back to the
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original graph G takes polynomial time.

Thus, we have now shown that finding the SparsestCut is at least as hard

as finding the subset of a graph which minimizes its edge expansion, which means

that SparsestCut is NP-hard. More importantly, however, this reduction from edge

expansion to SparsestCut means that, any method that can be used to estimate

SparsestCut can also be used to estimate edge expansion. Since we have shown that

there is no efficient way to compute a graph’s expansion rate, the natural next step

is to determine how difficult it would be to create an accurate estimate for graph

expansion. We will use this fact that edge expansion reduces to SparsestCut to

develop one method for approximating edge expansion. For additional information

on reductions to and from expansion-related problems, see Raghavendra et al. [44].
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Chapter 5

Hardness of Approximating Graph Expansion

In the previous chapter, we proved that exact expansion rates for arbitrary

graphs are difficult to compute. Thus, the natural question that arises is whether

or not there are polynomial-time algorithms that can provide good approximations

of expansion rates. Ideally, we would like a polynomial-time approximation scheme

that will allow us to compute expansion rates to within arbitrarily small constant fac-

tors greater than 1. Unfortunately, no such approximation algorithms are currently

known [30, 32, 43]. Furthermore, if P = NP, then the Unique Games Conjecture

(UGC) can be used to show that it is NP-hard to approximate these expansion rates

to within any constant factor [32, 43].

However, all is not lost. Although there is likely no way to approximate edge

expansion efficiently up to a constant factor, there are algorithms that will allow us

to approximate these values to within a logarithmic factor [30]. In this chapter, we

will describe the Unique Games Conjecture (UGC) and connect the hardness of the

UGC with the hardness of approximating graph expansion. We will also describe

and explain the logarithmic approximation algorithm for graph expansion.
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5.1 Unique Games Conjecture

The Unique Games Conjecture (UGC) was published by Khot in 2002 and

continues to be one of the most important open problems related to the hardness

of approximation [27, 28]. Khot’s original conjecture was in the form of examining

the power of 2-prover systems; we will give a slightly more concrete formulation.

Consider a graph G where each vertex must be assigned a color and where each

edge has a set of ordered pairs of colors that constrain which colorings are valid.

The constraints themselves must also be unique, meaning that there cannot be

more than one ordered pair constraint at a given edge that represents assigning the

same color to the same node. This problem is known as the label cover with unique

constraints problem [27, 36]. More formally, an instance of such a problem can be

represented by an alphabet of size m, an undirected graph, and a set of permutations

Πe : [m]→ [m], one for each edge e ∈ E.

Note that these constraints are extremely robust. When trying to find a satis-

fying assignment of colors to the vertices in the graph, after selecting an initial vertex

and a color, the colors of all of the other vertices are immediately fixed, due to the

uniqueness of the constraints on each edge. Thus, if a satisfying assignment exists,

finding such an assignment can easily be computed in polynomial time. However, if

the problem instance, or “game,” is unsatisfiable, it is very difficult to compute the

maximum fraction of constraints, the value of the game, that can be satisfied.

The gap-version formulation of the UGC is the problem of distinguishing be-

tween the following two cases, given a pair of constants (ε, δ) and an instance of the
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unique label cover problem:

• (1− ε) satisfiability - There exists an assignment of colors to the vertices of G

such that a (1− ε) fraction of edges have satisfied constraints.

• δ non-satisfiability - There does not exist an assignment of colors to the vertices

of G such that more than a δ fraction of edges have satisfied constraints. [27]

Now, with the gap-version of the problem completely defined, we can state the

conjecture directly.

Conjecture 1 (Unique Games Conjecture [27]). For all constants ε and δ, there

exists some constant R such that the gap-version of the label cover with unique

constraints problem over an alphabet of size R is NP-hard to compute.

Intuitively, the conjecture is simply stating that, regardless of how one select

the constants ε and δ, there is a version of the label cover with unique constraints

problem for which the two cases above cannot be distinguished, namely, when the

alphabet (i.e. the number of colors) is of size at least R.

Since the UGC was postulated, it has been successfully shown to imply optimal

inapproximability results for a number of problems, including MaxCut, VertexCover,

and SparsestCut, among others [28]. One of the most interesting aspects of the

UGC is that there is no clear consensus as to the likelihood of the UGC being true or

false. Recently, Arora, Barak, and Steurer demonstrated subexponential algorithms

that improved the best known approximations for a number of problems, including

MaxCut, SparsestCut, and SmallSetExpansion [4]. As we will see in the next
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section, the hardness of these problems is directly related to the hardness of UG.

This result does not refute the UGC outright, but does suggest that it is significantly

easier than other NP-hard problems like 3-SAT and Vertex Cover [4].

Regardless of the ultimate resolution of the UGC, there has been a significant

amount of literature in recent years that has been used to prove results about the

relationship between the UGC and the hardness of approximating various graph

expansion measures.

5.2 Approximating Small Set Expansion

Recall the definition of edge expansion, h(G), that we stated earlier. This

optimal measurement is quite coarse in the sense that it represents only the worst

case edge expansion of the graph over subsets of all different sizes since it is a global

minimum. For instance, consider a “typical” graph, such as a random d-regular

graph (which we will discuss at great length in subsequent chapters) and the effect

that the size of the subset considered has on its expansion rate. All sets S of size

δn in a random, d-regular graph have expansion of approximately 1 − 2
d
, whereas

the conductance ΞG of the whole graph is about 1
2

[43]. Thus, instead of trying

to approximate the value of h(G) directly, there has been significant work done in

describing the difficulty of approximating the expansion profile of a regular graph

G, given as

ΞG(δ) = min
µ(S)=δ

Ξ(S) ∀δ ∈
[
0,

1

2

]
,
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where µ(S) is the size, or volume, of set S. This gave rise to what is known as the

SmallSetExpansion Hypothesis (SSE):

Hypothesis 1 (SmallSetExpansion Hypothesis, [43]). For every constant η > 0,

there exists sufficiently a small δ > 0 such that, given a graph G = (V,E), it is

NP-hard to distinguish between the two cases:

• Yes: There exists a set S ⊆ V with volume µ(S) = δ and expansion Ξ(S) ≤ η

• No: There does not exist a set S ⊆ V with volume µ(S) = δ that has expansion

Ξ(S) < 1− η

Although the SSE might seem initially like a more esoteric problem than simple

edge expansion, it actually has very close ties to the UGC. For instance, Raghaven-

dra and Steurer were able to prove that the SSE problem actually reduces to the

UGC, illustrating that small set expansion approximation plays a central role in the

combinatorial inner workings of Unique Games problems [43]. Moreover, this also

means that a refutation of the UGC would provide new algorithms for approximat-

ing edge expansion. Raghavendra and Steurer also proved that, under a modified

UGC, approximating small set expansion is UG-hard [43].

5.3 Unique Games, Small Set Expansion, and Graph Expansion

There has also been a significant amount of work done in the area of trying

to reduce the UGC to edge and vertex expansion approximation. However, due

to the nature of the UGC instances (namely, their lack of expansion), reducing
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directly from the UGC is impractical. Instead, a slightly stronger statement of the

UGC is used, one which comes from the SSE hypothesis and assumes that fairly

reasonable expansion occurs (by having sufficiently small sets have conductance

close to 1) [32, 43]. This slightly modified version of the UGC has, in fact, been

shown by Louis, Reghavendra, and Vempala to reduce to vertex expansion by way

of an intermediate reduction through a problem called Balanced Analytic Vertex

Expansion [32]. Their work showed that it is SSE-hard to differentiate between the

cases where a graph has vertex expansion < ε for some ε > 0 or whether the vertex

expansion is at least an absolute constant [32]. This result is interesting in that it

suggests that approximating vertex expansion is harder than approximating edge

expansion, since Cheeger’s inequality can be used to determine whether a graph has

constant edge expansion [1].

Thus, we have shown that approximating edge and vertex expansion is at least

as hard as the UGC, which is, in turn, at least as hard as SSE. If the UGC is true,

then this would prove that it is NP-hard to find good (within a constant factor)

approximations for edge and vertex expansion; however, despite the difficulty of

finding a good approximation for these values, there has been significant work in

the area of creating approximation algorithms for these problems.
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Chapter 6

Algorithms for Approximating Graph Expansion

6.1 Cheeger’s Inequality and the Second Eigenvalue

As was outlined in the second chapter, one of the first (and simplest) methods

for approximating edge expansion was examining the size of the spectral gap of a

graph’s adjacency matrix. Alon and Milman, using this fact, were able to prove

a discrete form of the Cheeger inequality that involves using the second largest

eigenvalue to bound edge expansion [1, 2, 9]. They proved the following:

Theorem 6.1.1 (Cheeger’s Inequality [1, 2]). If λ2 denotes the second largest eigen-

value of the adjacency matrix of a d-regular graph G then,

d− λ2
2
≤ h(G) ≤

√
2d(d− λ2).

Thus, since the second eigenvalue can be computed quickly, this inequality

provides an approximation for edge expansion. However, the bounds provided by

the Cheeger inequality are not very tight (as we will see explicitly in subsequent

chapters), especially when the expansion rate is low. Relationships between the

spectral gap and vertex expansion have also been shown, such as

hout(G) ≤ (
√

4(d− λ2) + 1)2 − 1

and

hin(G) ≤
√

8(d− λ2) [8].
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Using the second eigenvalue is useful for getting a rough idea of the expansion rates

of a graph, but it does not provide a good means for approximating edge expansion.

6.2 SparsestCut Relaxation

In 1999, Leighton and Rao revolutionized the approximation algorithm for

edge expansion by introducing a relaxation to the SparsestCut problem (which we

showed before was NP-hard) that provides a O(log n) approximation algorithm for

computing the value of the true sparsest cut in a multi-commodity flow problem. As

we saw in our reduction from SparsestCut to edge expansion, the sparsest cut of an

MFP is itself an approximation for h(G) to within a constant factor [30]. Thus, this

relaxation also allows for edge expansion to be approximated to within a logarithmic

factor. In order to understand how this relaxation works, we must first introduce

the concept of a cut metric.

Definition 11 (Cut Metric). Given a cut S ⊆ V of a graph G, the cut metric

associated with S is δS, where

δS(x, y) =


0, if x, y ∈ S or x, y ∈ V \ S

1, otherwise

Note that we can associate vectors in R(n
2) with any n-point metric, where each

coordinate represents a pair of vertices in the corresponding metric space. Now, we

can restate SparsestCut in terms of cut metrics and dot products:

min
all cut metrics S

c · δS
D · δS
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where c is the vector with one coordinate per 2-tuple of vertices in V, which represents

the capacity of the edge between the two vertices in the 2-tuple. Similarly, D

represents the demand vector of the set of vertices. From this point, it is fairly

straightforward to see that the set of all cut metrics is a subset of the `1 metrics. Of

course, since we know that SparsestCut is NP-hard, taking the minimum over only

the set of `1 metrics is intractable. However, the observation made by Leighton and

Rao was that this problem can be relaxed by taking the minimum over all possible

metrics, since a cut S already defines a semi-metric over V since dS is symmetric,

since the distance between a vertex and itself is 0, and since the triangle inequality

holds [30]. Thus, the relaxed form minimizes over the set {d ∈ {V × V → R} :

d is a semi-metric}. Now, we can approximate sparsest cut as follows:

min
d semi-metric

c · δS
D · δS

Now, we can re-write this as a linear program where the ci,j values are elements

of c and the di,j values are elements of δS. Moreover, since we are computing edge

expansion and not SparsestCut, we know that there is uniform demand between

all pairs of vertices, which further allows us to simply our program. We now have:

min ci,jdi,j

subject to di,j ≤ di,k + dk,j ∀i, j, k ∈ V∑
i,j
di,j =

|V |2

2|E|

di,j ≥ 0 ∀i, j ∈ V

There are a few things to notice about this linear program. First, we can

arbitrarily scale any semi-metric by multiplying all distances by a fixed constant.
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Hence, we are able to remove the denominator by scaling δS such that the sum

of its components is |V |
2

2|E| [30]. Second, although the formulation is clean and the

program can be solved in polynomial time, the triangle inequality constraints alone

represent 3
(
n
3

)
unique constraints, which for n = 1000 is already approximately

108 constraints. Thus, using this method for approximating the edge expansion

of very large graphs is infeasible from a memory and time point of view, which

was acknowledged by Leighton and Rao themselves [30]. Finally, the last point is

about the accuracy of the estimation for edge expansion produced by this program.

Leighton and Rao were able to show that the solution to this linear program, LR(G),

is within a logarithmic factor of the true sparsest cut such that

LR(G) ≤ Φ(G) ≤ O(log |V |) · LR(G). [30, 47]

In our reduction of edge expansion to SparsestCut, we proved that the minimum

sparsity is within a constant factor of h(G), the graph’s edge expansion. In subse-

quent sections, we will use this linear program to estimate the edge expansion rates

of graphs. A proof of this logarithmic bound on the approximation can be found in

Leighton and Rao’s paper, which also includes a discussion about the dual of the

preceding linear program [30].

One goal of this work was to develop and use an implementation of the

Leighton-Rao relaxation linear program to compute actual estimates for the ex-

pansion rates of graphs. We wrote code that implements this linear program and

uses the scipy.optimize package to find the optimal solution. A list of pairs of dis-

tinct vertices and a list of 3-tuples of vertices (which are used to formulate the
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triangle inequality constraints) are generated using the itertools Python package.

Unfortunately, due to the relaxation relying on the aforementioned triangle inequal-

ity constraints, 3
(
n
3

)
different constraints are required for a graph on n vertices. For

a graph with 100 vertices, that is approximately 160, 000 constraints, which was be-

yond the computational resources we had available. This difficulty is not surprising,

as, in their paper, Leighton and Rao themselves note that “linear programming is

not very fast for large multi-commodity flow problems in practice” [30].

There are also newer algorithms that improve upon the O(log n) approxi-

mation. For example, in 2004, Arora, Rao, and Vazirani used semidefinite pro-

gramming to find an O(
√

log n) approximation algorithm [5]. More pessimistically,

Ambühl, Mastrolilli, and Svensson showed that both vertex expansion and edge ex-

pansion have no polynomial-time approximation schemes if SAT does not have a

sub-exponential time algorithm [3]. Thus, although approximations for edge and

vertex expansion do exist, it is very unlikely that there will ever be a way to ap-

proximate these values to within a constant factor.

We have now shown that, given a graph, it is very difficult to determine how

good its expansion properties are by either trying to compute the expansion rates

directly or by trying to estimate the rates to within a constant factor. In fact, we

have seen that estimating the rates to within a logarithmic factor is also intractable

in most cases. Thus, we will now explore some other methods for beating the the-

oretical bounds on expansion rates, which then narrows the bounds on the possible

expansion rates of a given graph.
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Chapter 7

Graph Modularity

Many interesting datasets can be represented as a graph consisting of vertices

and edges, including communication networks, the Internet, and ecological data,

among countless others. Thus, the study of these networks and their structure has

been the subject of significant research in statistics, mathematics, and computer

science [39, 40]. In an attempt to understand the structure of these graphs and derive

meaning from their topological properties, the concept of community detection has

come to the forefront. In general terms, the goal of community detection is to

find clusters of vertices within a network that have dense connections with other

members of the cluster, but which are much more sparsely connected to vertices

outside of the cluster [10, 13, 22, 39, 40]. This problem of detecting communities is

similar to various graph partitioning algorithms studied by computer scientists, but

the major difference is that many graph partitioning algorithms rely on being given

a fixed number of communities into which the graph should be divided. However,

if the goal of detecting communities is to derive meaning from the graph structure,

then it makes little sense to forcibly divide the graph into some arbitrary number of

pieces [39]. Furthermore, if a graph cannot be divided into well-defined communities,

graph partitioning algorithms will still find a valid partitioning, but a more sensible

approach would be to use an algorithm that could identify cases where there is no
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“good” separation of the network. To resolve this dilemma, most modern community

detection algorithms work by maximizing a value known as the graph’s modularity,

which was first introduced by Newman in 2003 [40].

7.1 Definition and Motivation

Intuitively, maximizing a graph’s modularity is equivalent to finding a divi-

sion of the graph into communities such that, from a probabilistic point of view,

the number of edges traversing communities is minimized when compared to what

would be expected in a randomly generated graph with vertices of the same de-

gree. As Newman puts it, “true community structure in a network corresponds to

a statistically surprising arrangement of edges, [which can] be quantified using the

measure known as modularity” [39].

There are a few different, but equivalent, ways to precisely express a modu-

larity measure. The first is a sum over the communities detected by the modularity

maximizing algorithm, and can be written as

Q =
∑
i

(eii − a2i ),

where the sum is taken over each community i, eii represents the fraction of edges

in the graph that are internal to community i (that is, those edges whose endpoints

are both in community i), and ai is the fraction of edges that have at least one

endpoint in community i [10, 39].

Alternatively, we can write a formula for modularity using indicator variables

that sum over all of the unordered pairs of vertices. We will define A to be the
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adjacency matrix of the network, ki to be the degree of vertex i, and m as the total

number of edges in the network [10, 39]. We will also let δci,cj be the Kronecker delta

symbol, which is 0 if ci and cj are distinct communities, and 1 otherwise. Then, we

can write modularity as

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δci,cj . (7.1)

In a random graph, it is easy to see that the expected number of edges between

vertices i and j would be precisely
kikj
2m
. Thus, the quantity being summed is, again,

the difference between the actual number of edges between vertices i and j and

the expected number of edges between those two vertices. This definition can be

extended to handle arbitrarily many communities, but the notation is somewhat

unwieldy.

As these two formulations indicate, the actual modularity value can be positive

or negative with a maximum value of 1. Modularity values around 0 indicate that

the community structure found by the algorithm is no more statistically significant

than a corresponding structure in a random graph with similar vertex degrees. On

the other hand, modularity values that approach 1 indicate that the graph can be

divided well into distinct communities, and negative modularity values indicate a

worse-than-random community structure, given the degrees of the vertices in the

network [10, 39]. This definition and comparison of edge counts within communi-

ties to expected edge counts is very intuitive, but it is not necessarily clear that

an algorithm that divides a network with the goal of maximizing modularity will

find good communities. However, in empirical studies performed by Guimerá and
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Amaral and by Danon et al., it was shown that community detection using modu-

larity maximization performed significantly better than other community detection

methods, and since then, has been the de-facto means for detecting communities

[13, 22]. These tests used simulated annealing to maximize modularity, which is sim-

ply too computationally intensive to be used in practice [39]. Thus, a wide range of

algorithms have been developed that aim to maximize the modularity of a network

using a variety of different approaches.

7.2 Algorithms

As mentioned in the previous section, the first modularity maximization algo-

rithms used simulated annealing, which is a well-known procedure for locating good

approximations of local optima [10, 13]. This method starts with some arbitrary

partitioning of the vertices into communities, and then, at each step, it selects a

node and a (possibly empty) community, and recalculates the modularity of the

network if the node were moved from its current community into the new commu-

nity. If the modularity increases, the move is accepted. Unfortunately, due to the

relatively slow convergence rates of simulated annealing algorithms, it simply was

not suitable to be used for maximizing modularity in most practical cases [39].

There are also a number of greedy algorithms that can be used for maximizing

modularity [37]. These algorithms also start with an initial partitioning of the

vertices into communities, which can then be combined in numerous ways. In the

most basic version of these algorithms, each vertex starts in its own community,
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but there are also versions where random walkers traverse some percentage of the

graph, and the initial communities are populated based on the vertices traversed

in those walks [10]. There are also versions that use subgraph similarity, versions

that use refinement methods, and versions that allow for the initial community

structure to be specified if there is pre-existing knowledge of the network topology

[46]. At a high level, these algorithms work by, at each step, simply merging pairs of

communities together, computing the modularity of the new community structure,

and then selecting the merge that results in the highest change in modularity.

A slightly different variant of the traditional greedy algorithm for maximiz-

ing modularity, the Louvain algorithm, is also frequently used in practice. This

algorithm is a divided into two stages that repeat iteratively until changes to the

structure no longer improve the modularity. The algorithm starts with each vertex

in its own community, and in the first phase, merges between neighboring com-

munities are considered in some canonical ordering [10]. The merge that leads to

the highest modularity improvement is then selected, and the algorithm transitions

to the second phase. During this phase, the algorithm constructs a new network

based on the community structure found in the first phase, where each node in the

new meta-network represents an entire community in the structure of the original

network. Vertices in this meta-network are connected by an edge if there are edges

that connect nodes in the corresponding communities of the original network. After

this new network is constructed, the algorithm transitions back to the first phase

and attempts to maximize the modularity of the synthetically constructed network.

Once no more improvements can be made, the algorithm terminates. This algorithm
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typically requires only a few iterations, and thus, its complexity grows linearly in

the number of edges of the graph [10].

Another class of modularity maximization algorithms uses a technique known

as spectral optimization. Rather than using the spectrum of the adjacency matrix

directly, most of these algorithms use the spectrum of a matrix known as the mod-

ularity matrix [10, 38]. In order to understand these methods, we must first take a

slight detour in order to properly define the modularity matrix.

First, we wil re-write the formulation for modularity in equation 7.1 using an

index vector s where si is 1 if vertex i is in community si, and −1 otherwise. Then,

we see that

1

2
(sisj + 1)

is equal to 0 if si and sj are different communities (that is, when vertex i and vertex

j are in different communities), and 1 otherwise [38]. Thus, we can write

Q =
1

4m

∑
ij

[Aij −
kikj
2m

](sisj + 1)

=
1

4m

∑
ij

[Aij −
kikj
2m

](sisj)

Now, we can simply rewrite this formulation using matrices as follows:

Q =
1

4m
sTBs.

Here, we have that s is the index vector and B is the matrix whose entries are

Bij = Aij −
kikj
2m

,

which we refer to as the modularity matrix. Now that the modularity matrix has

been defined, we can use its spectrum to attempt to maximize the modularity of
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the network. The most simple way to do this is to simply find the eigenvector

of the matrix with the largest positive eigenvalue, and then use the signs of the

elements of the eigenvector to divide the network into two groups. Thus, the division

of the network into communities is accomplished by choosing an index vector s

that is proportional to the leading eigenvector of the modularity matrix [10, 38].

After dividing the initial network into two groups, the algorithm continues to divide

the newly identified communities until the change in modularity resulting from the

division is no longer positive. There are also other variations of spectral optimization

algorithms that use the Laplacian matrix, but the approach is essentially the same

[10].

In addition to simulated annealing, greedy, and spectral optimization algo-

rithms, there are also extremal optimization, sampling, and genetic algorithms for

performing community detection through maximizing modularity. The work in this

paper is heavily focused on the greedy algorithm and its variants, but further de-

tails on other algorithms can be found in Chen et al., Schelling and Hui, and various

papers by Newman [10, 38, 39, 46].

7.3 Relationship with Graph Expansion

Now that we have some intuition about graph modularity and how maximiz-

ing modularity is an effective means of detecting communities, we can examine the

relationship between community detection and graph expansion. Recalling the def-

inition of edge and vertex expansion, we see that the problem of directly computing
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graph expansion requires finding the set of vertices (of size less than or equal to half

the total number of vertices) where the ratio of the size of the set’s boundary to

the set’s size is smallest. Of course, then, this set would necessarily have a very low

number of edges (or vertices, depending on the type of expansion) that have one

endpoint within the set and one endpoint outside the set, since those vertices are

precisely those in the set’s boundary. So, if we want to find the set with the smallest

boundary to size ratio, it seems logical that community detection algorithms using

modularity maximization could be useful, since it will identify sets of vertices with

very small boundaries. In fact, that is precisely what a graph’s modularity repre-

sents; it is a measure of how many external connections a set has as compared to

what would be expected in a randomly generated graph. Thus, the communities

found by a modularity maximization algorithm should be good exemplar subsets for

the worst-case scenario subset that we are looking for when computing expansion.

One potential drawback, however, is that modularity calculations are not weighted

based on the sizes of the communities it finds. In other words, the modularity of

a graph is based solely on comparing actual percentages of external connections to

expected percentages of external connections; the size of the communities found by

the algorithm do not affect the modularity calculations directly. In the cases of edge

and vertex expansion, we want communities that have both small boundaries and

large size. Thus, finding communities that maximize a network’s modularity is not

exactly the same as finding communities with the worst expansion, but certainly,

having much fewer connections between a given community and the vertices out-

side that community is a necessary, but not sufficient, condition for having a low
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expansion rate.

Having identified one potential method for narrowing the bounds of expansion

rates of graphs, we will now describe some of the ways expander graphs are gener-

ated. Afterwards, we will describe and discuss our empirical testing of expansion

estimation and evaluation.
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Chapter 8

Generating Expander Graphs

Due to the wide applicability of expander graphs, it is natural to want to find

ways of efficiently constructing graphs with good expansion properties. In general,

there are two main classes of methods for creating expander graphs. The first way

is through randomly generating graphs that are, with high likelihood, expanders.

This strategy is the fastest and most straightforward, but the downside is that

many applications of expander graphs in theoretical computer science have a limited

amount of randomness available and wish to conserve the number of random bits

used. Thus, exhausting precious random bits to generate a large expander graph

defeats the purpose of creating it in the first place. The second class of methods for

generating expander graphs is through explicit construction. There are a number of

different expander constructions, but many of them are limited to only being able to

produce expander graphs that fall within a narrow range of certain characteristics.

8.1 Random Generation

If there is no restriction on the amount of randomness that can be used in a

particular application, randomly generating expander graphs is the fastest and eas-

iest way for producing graphs with good expansion rates. In 1973, Pinsker showed,

using probabilistic arguments, that almost all d-regular graphs are expander graphs,
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in the sense of vertex expansion [42]. Alon then extended this work to conjectures

about eigenvalue bounds for random regular graphs, suggesting that, for any ε > 0

and d, the second largest eigenvalue of the vast majority of random regular graphs

is less than or equal to 2
√
d− 1 + ε [1]. Friedman was later able to prove this result,

and was also able to show what remains to this day as the best known bound on

the eigenvalues of random d-regular graphs with d even, which is that the second

largest eigenvalue is at most 2√
d

+O( log d
d

) [16, 18]. Alon and Boppana later showed

that the best possible eigenvalue bound for an infinite family of d-regular expander

graphs is 2
√
d− 1 [2]. Graphs whose second eigenvalue is less than 2

√
d− 1 are

known as Ramanujan graphs.

It should also be noted that there are different methods for producing a random

d-regular graph. Perhaps the most common construction is that used by Friedman,

which involves creating d
2

permutations on {1 . . . n} uniformly and independently

[16]. Each of these d
2

permutations represents the creation of n edges. Given one

such permutation P = {p1, p2, . . . , pn}, the following edges are added to the graph:

{(1, p1), (2, p2), . . . , (n, pn)}, where 1 to n represent the n vertices in the graph under

some canonical ordering. One thing that should be noted about this method is that,

when one of the random permutations matches a vertex to itself, a single self-loop is

added. This increases the degree of the vertex with the self-loop by two instead of by

one, which is expected. However, in order for the adjacency matrix of an undirected

graph to have d as an eigenvalue (which occurs if and only if a graph is d-regular),

self-loops should only add one to the corresponding position in the matrix diagonal.

Another method for generating random regular graphs was introduced by Kim
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and Vu [29]. Their method greedily selects “suitable” pairs of vertices and creates

edges based on the pairs that were selected. Their algorithm proceeds as follows:

Random Regular Graph Generation Algorithm [29]

(I) Start with a set U of nd points (nd even) partitioned into n groups of size d.

(II) Repeat the following until no suitable pair can be found: Choose two random

points i and j in U and if ij is suitable, pair i with j and delete them from U.

(III) Create a graph G with an edge from r to s if and only if there is a pair

containing points in the rth and sth groups. If G is regular, output it, otherwise

return to step (I).

Essentially, this algorithm provides a “bin” of d half-edges for each vertex in

the graph that are then matched up with other half-edges. Much like the previous

algorithm, if half-edges from the same bin are selected, two half-edges for that

vertex are removed, but only 1 is added to the corresponding position in the graph’s

adjacency matrix. This will ensure that the degree of every vertex is d, and that

the eigenvalues of the adjacency matrix are representative of a d-regular graph.

Either of these methods can be used to generate random regular graphs. While

there is no guarantee that the resulting graph will always have good expansion, the

probabilistic eigenvalue bounds proved by Pinsker, Friedman, and Alon can be used

to show that, with high probability, they will have good expansion rates [2, 17, 42].
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8.2 Explicit Generation

As was previously mentioned, many of the applications that use expander

graphs have a limited amount of randomness to work with. Thus, generating ex-

pander graphs randomly is simply not an option. This has lead to a significant

amount of research focused on developing methods for generating families of ex-

pander graphs with nice expansion properties (and frequently also with constant

degree).

8.2.1 Early Work

The first explicit construction was published by Margulis, who used the fol-

lowing definition of bipartite expander. [Note: In this section, and this section only,

we will use the traditional (n, k, w) notation for bipartite expanders, where n is half

the total number of vertices in a graph (since there are n inputs and n outputs), as

opposed to the total number of vertices.]

Definition 12 (Bipartite Expander [34]). A bipartite (n, k, w) expander is a graph

with n inputs, n outputs, at most kn edges, and where, for every subset X of inputs,

|ΓX | ≥ [1 + w(1− |X|/n)]|X|, where ΓX is the set of outputs connected to X.

Margulis used group representation theory to construct explicit bipartite ex-

panders {Gn} for n = m2, m = 1, 2, . . . , and proved the following:

Theorem 8.2.1 (Margulis [34]). There exists a constant w > 0 such that for m =

1, 2, . . . , and n = m2, Gn is a bipartite (n, 5, w) expander.
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One huge downside to Margulis’s result was that the constant w was not

known. Years later, Gabber and Galil improved the construction and simplified its

analysis. They were able to generate a family of expanders with similar properties

with a constant value of w = (2 −
√

3)/4 [20]. Their construction is exceedingly

simple and proceeds as follows:

Definition 13 (Gabber and Galil Construction [20]). Let n = m2 and let Am be

{0, 1, . . . ,m− 1}× {0, 1, . . . ,m− 1}. The bipartite graphs Gn are obtained from five

permutations on Am. The permutations are:

σ0(x, y) = (x, y),

σ1(x, y) = (x, x+ y),

σ2(x, y) = (x, x+ y + 1),

σ3(x, y) = (x+ y, y),

σ4(x, y) = (x+ y + 1, y),

where the + is modulo m.

Thus, using this straightforward construction, it is possible to create expander

graphs with 2n = 2m2 vertices, at most 5n edges, and with |ΓX | ≥ [1 + ((2 −
√

3)/4)(1−|X|/n)]|X| [20]. Although the methodology it simple, it is also clear that

the types of expanders that can be created using these permutations are somewhat

limited.
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It is also important to note that, since these graphs are not randomly gener-

ated, Alon’s proof of the upper bound of the second eigenvalue being 2
√
d− 1 + ε

no longer holds [1]. However, Alon also has another proof that shows that the up-

per bound of the second eigenvalue of the adjacency matrix for a regular, bipartite

(n, k, w) expander is

nk − w2

1024 + 2w2
[1]

For the Gabber-Galil graphs, we know that the expanders produced are (n, 5, w0)

expanders, where w0 = (2 −
√

3)/4 [20]. Unfortunately, since this value of d is so

small, the upper bound on this eigenvalue is not very tight. Thus, doing eigenvalue

testing on these graphs would likely not be very interesting. Thankfully, the bounds

derived from the Cheeger inequalities for edge and vertex expansion rates are still

valid for these graphs, so we can simply use those figures to benchmark expansion

[9].

Later, families of Ramanujan graphs were able to be constructed explicitly due

to work by Lubotzky, Phillips, and Sarnak [33]. For many of these constructions,

the neighbors of all the vertices in the resulting graphs can be computed in constant

time due to the explicitness of their generation. However, the eigenvalue bound

analysis for the resulting graphs was extremely complicated, and thus, it is difficult

to get an intuitive understanding of why the graphs are expanders [45]. Recently, a

breakthrough in explicitly constructing expander graphs, the zig-zag graph product,

has been published; we will describe this product in detail in the next section.
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8.2.2 The Zig-Zag Graph Product: Preliminaries

In 2001, Reingold, Vadhan, and Wigderson introduced a new method for com-

bining graphs, which they called the zig-zag product [45]. The method computes the

product of two input graphs to generate a single output graph that inherits many of

the properties, including expansion rates, of the inputs. Thus, by performing multi-

ple iterations of zig-zag products, new constant-degree expanders can be generated

from existing expanders.

In order to understand the construction of zig-zag products, we must first

provide a few definitions used by Reingold et al.

Definition 14. An (n, d, λ)-graph is any d-regular graph on n vertices, whose nor-

malized adjacency matrix has second largest (in absolute value) eigenvalue at most

λ. [45]

Here, the term “normalized adjacency matrix” simply corresponds to the stan-

dard adjacency matrix of a d-regular graph having all of its entries divided by d.

Reingold et al. also use objects called rotation maps to keep track of canonical

orderings of edges at each vertex, which helps provide the maximum amount of

notational generality to their final construction [45].

Definition 15. For a d-regular, undirected graph G, the rotation map RotG : [N ]×

[d] → [N ]× [d] is defined as follows: RotG(v, i) = (w, j) if the i’th edge incident to

v leads to w, and this edge is the j’th edge incident to w. [45]

These rotational maps are used to specify graphs in the graph operations that
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we will describe next. The zig-zag product itself is composed of two fairly standard

graph operations: graph squaring and graph tensoring.

The first operation, graph squaring (or powering) works as follows. The

t’th power of a d-regular graph G is a dt-regular graph Gt, whose rotation map

is RotGt(v0, (k1, k2, . . . , kt)) = (vt, (`t, `t−1, . . . , `1)), where (vi, `i) = RotG(vi−1, ki)

[45]. From this definition, it is easy to see that, if G is an (n, d, λ) graph, then Gt is

an (n, dt, λt) graph. This is because the powering operation simply multiplies copies

of G’s adjacency matrix by itself, thus powering the number of edges in the graph,

as well as scaling the eigenvalues by the same power, but keeping the number of

vertices the same.

The second operation, graph tensoring, is slightly more complicated. In order

to define it, we will start with two graphs, G1 and G2. Let G1 be a d1-regular

graph on vertex set [n1] and let G2 be a d2-regular graph on vertex set [n2]. Now

we define the tensor product G1 ⊗ G2 to be the (d1d2)-regular graph on vertex

set [n1] × [n2] given by RotG1⊗G2((v, w), (i, j) = ((v′, w′), (i′, j′)), where (v′, i′) =

RotG1(v, i) and (w′, j′) = RotG2(w, j) [45]. From this definition, we see that, if G1 is

an (n1, d1, λ1)-graph and G2 is a (n2, d2, λ2)-graph, then the tensor product G1⊗G2

is a (n1n2, d1d2,max(λ1, λ2))-graph [45]. Thus, the number of vertices in the tensor

product is the sum of the number of vertices in the two factor graphs. Furthermore,

the total number of edges increases from n1d1
2

+ n2d2
2

to n1n2d1d2
2

.
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8.2.3 The Zig-Zag Graph Product: Definition and Recursion

Now that we have defined graph powering and graph tensoring, we can present

the definition of the zig-zag product itself, which we will reproduce directly from

Reingold et al. [45].

Definition 16. If G1 is a d1-regular graph on [n1] with rotation map RotG1 and

G2 is a d2-regular graph on [d1] with rotation map RotG2 , then their zig-zag product

G1 z©G2 is defined to be the d22-regular graph on [n1] × [d1] whose rotation map

RotG1 z©G2 is as follows:

RotG1 z©G2((v, k), (i, j)) :

1. Let (k′, i′) = RotG2(k, i).

2. Let (w′, `′) = RotG1(v, k
′).

3. Let (`, j′) = RotG2(`
′, j).

4. Output ((w, `), (j′, i′)). [45]

Essentially, the zig-zag product is taking the vertices of G1 and expanding

them into a set of d1 vertices, one corresponding to each edge of G1 that is incident

on v in the product graph. Furthermore, every edge in G1 is associated with two

vertices in the zig-zag product graph, one in each of the two vertex clouds that

correspond to the endpoints of the edge in G1.

Now, the main theorem proved by Reingold regarding these maps is as follows:

Theorem 8.2.2. If G1 is an (n1, d1, λ1)-graph and G2 is a (d1, d2, λ2) graph, then
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G1 z©G2 is a (n1d1, d
2
2, f(λ1, λ2))-graph, where

f(λ1, λ2) =
1

2
(1− λ22)λ1 +

1

2

√
(1− λ22)2λ21 + 4λ22

and f(λ1, λ2) < 1 when λ1, λ2 < 1 [45].

This theorem shows that the second eigenvalue of the zig-zag product is

bounded above by reasonable parameters. Thus, although the normalized spec-

tral gap will be smaller for zig-zag product graphs than their factor graphs, they

still retain much of the expansion properties of those factor graphs.

Now, the question that remains is how this zig-zag product can be used to

explicitly generate expander graphs. The answer lies in a recursive construction

that involves all three graph operations that we have seen thus far: graph powering,

tensor products, and the zig-zag product. The recursive method starts with an

initial graph H which must be a (d8, d, λ) graph for some d and some λ that is

sufficiently small (to ensure good expansion) [45]. Reingold et al. suggest picking

an H with λ ≤ 1
5
. With that graph in hand, the recursive construction for generating

a set of graphs {Gt} starts by setting G1 = H2 and G2 = H ⊗H. Then, for t > 2,

Gt = (Gd t−1
2
e ⊗Gb t−1

2
c)

2 z© H.

Using this construction, Reingold et al. were able to prove that, for every

t ≥ 0, Gt is an (d8t, d2, λt)-graph with λt = λ + O(λ2) [45]. This shows that by

using the recursive construction outlined above and starting with a sufficiently good

H, it is possible to use the zig-zag graph product to generate an infinite family of

expander graphs that get larger in size but whose spectral gaps only decrease by a
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modest amount. The best eigenvalue bounds on the graphs constructed using the

zig-zag method are O(1/d1/3), which is good, but still does not meet the Ramanujan

bound [45].

8.2.4 The Zig-Zag Graph Product: In Practice

Although the recursive formulation of the expander graph generation using

the zig-zag product is fairly straightforward, using the zig-zag product for real-world

scenarios is much more difficult. For instance, consider the third graph produced

by the zig-zag recurrence, G3. From the definition of the recursive construction, we

know that G3 is a (d24, d2, λ3) graph. Thus, even for a small value of d, such as

d = 3, G3 will have approximately 282 billion vertices. Clearly, the computational

power and storage space needed to generate and manipulate these graphs, even for

modest values of d and t, are simply too great for the zig-zag construction to be

useful in practical applications.

Reingold et al. also provide a means for constructing a starting graph H

directly [45]. Unfortunately, this construction is also computationally infeasible. It

starts with a graph over the vertex set of F2
q, where q is a prime power, which is the

set of all 2-tuples over the finite field Fq. This alone is manageable, but constructing

H from that initial graph requires one tensor product of the graph with itself,

followed by five rounds of recursively using the zig-zag product, which again will

cause the number of vertices to increase enormously [45].

We implemented code that computes zig-zag products of graphs, as described
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in Reingold et al. [45]. To our knowledge, this is one of the first implementations

of the zig-zag product. It uses array functions from the numpy Python package

to provide the adjacency matrix powering, and a helper script is used to compute

tensor products of adjacency matrices. The zig-zag process itself, as well as the

tensoring, are handled using generalized rotation maps, as outlined by Reingold et

al. [45]. However, instead of imposing an arbitrary canonical ordering on the edges

in order to generate a rotation map, we simply use a given edge’s position in the

row representing the source vertex as its index in the rotation map. For instance,

if a vertex v is connected to vertices 4, 5, and 7, and if vertex 5 is connected to

vertices 1, 2, 6, and v, then (v, 1) → (5, 3) would be in the rotation map for the

graph, since, the second edge in the row of the adjacency matrix corresponding to

vertex v is 5 (the rotation map is zero-indexed), and that edge corresponds to the

fourth edge in the row of the adjacency matrix corresponding to vertex 5. Despite

the fact that we have implemented this algorithm, since the construction itself is

not useful for creating expander graphs with a relatively small number of vertices

(in the hundreds), we were not able to use it for testing graph expansion.

8.3 Expander Construction Summary

Although randomly generated expander graphs are not useful for many the-

oretical applications, they result in graphs with better expansion parameters than

their explicitly constructed counterparts. There is simply not yet an explicit con-

struction that can match the upper bound on the second largest eigenvalue that
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has been proven probabilistically for randomly generated d-regular graphs. Many of

the methods for explicitly creating expander graphs are fairly straightforward, but

either lead to creating a hamstrung family of expanders or are not able to be used in

practice. In the next chapter, we will describe one potential method for developing

a measure that can be used to compare the expansion rates of graphs.
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Chapter 9

Graph Generation, Eigenvalue Testing, and Expansion Evaluation

As the previous chapters have illustrated, expander graphs are extremely im-

portant to many different fields, but they are also difficult to use in practice. While

probabilistic existence proofs show that they are abundant, it is hard to verify, or

even approximate, a graph’s expansion rate. In order to help make it easier to

understand and use expander graphs in practical applications, we have written a

software suite in Python using the numpy and scipy packages that provides tools

for expander graph generation (both random and explicit constructions), eigenvalue

testing, empirical expansion testing, and expansion approximation. We used this

software to perform significant testing and analysis of random graph generation and

graph expansion. We will provide a brief discussion of the software, after which

will describe our experiments and methodology, provide our data, and analyze our

findings.

9.1 Graph Generation and Evaluation

The first pieces of software in the suite are graph generation scripts. The

script for generating random graphs implements the graph generation algorithm

described in Friedman [17]. This algorithm creates random d-regular graphs on n

vertices by selecting d
2

permutations on the set {1, 2, . . . n} uniformly at random.
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Each permutation p can be thought of as the image of a map from the set of vertices

in some canonical order {1, 2, . . . , n} to p; thus, each permutation defines n edges.

The script accepts n and d as parameters, and will generate a graph for all valid

parameter values. The graph itself is stored in a numpy array in adjacency matrix

form, which is then written in binary format (as required by numpy) to a file. For

the cases where d is odd, we use a combination of Friedman’s method and the half-

edge method found in Kim and Vu [17, 29]. Those graph files can then be loaded

and read by numpy in follow-on programs.

In addition to random graph generation, we also have written code that im-

plements the explicit construction found in Gabber and Galil [20]. As is required

by their algorithm, n must be a perfect square. Similar to the random generation

script, the output graph is stored in a numpy array that is written to disk. For

uses of the Gabber-Galil (GG) graphs that do not require the adjacency matrix, we

also have utility functions that can be used to calculate vertex adjacencies for GG

graphs in constant time.

We have also written additional scripts to generate “bad” graphs that we cre-

ated that have known bad expansion. One example of this is a script that generates

a cycle graph on n vertices, which also accepts a d parameter (where d ≥ 2). If d is

larger than two, then a self-loop is added to each vertex, but the vertices themselves

are only connected to the two neighbors next to them in the cycle.

After writing programs for generating graphs, we also wrote a utility module

that computes the eigenvalues of a graph’s adjacency matrix. After computing

the eigenvalues, it sorts them in descending order and then takes their absolute
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values, showing the ten largest eigenvalues. As mentioned extensively throughout

the paper, the absolute value of the second largest eigenvalue of a graph’s adjacency

matrix is a good way to estimate the graph’s expansion capabilities. This script was

used in combination with the random graph generation script (it takes a binary file

containing a numpy array as input) to enable our testing, which we will discuss in

the analysis section.

Before describing the various tests we performed, we will first outline how we

used our software to generate expanders. We started by first generating graphs for

various values of n and d, saving a handful at each combination for further testing.

For n = 100, we generated 5, 000 graphs each for d = 2, d = 4, and d = 6. For

each of these three values, we computed the second largest eigenvalue for every

graph generated and computed the median and mean of the second eigenvalues.

We also saved the graphs corresponding to the lowest and highest eigenvalue for

each combination, as well as three other randomly selected graphs, for a total of 15

graphs. We then repeated this process for n = 200; we generated 15, 000 graphs

total and saved another 15. The results of this generation can be found in Tables 9.1

and 9.2. After generating the graphs and using their calculated eigenvalues to save

the best graph, worst graph, and three other graphs for each n and d combination,

we started performing some empirical expansion testing.
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Table 9.1: Graph Generation Results

d n #Graphs Min Max Average Median 2
√
d− 1

4 100 5000 3.28804 4.00000 3.45528 3.44783 3.46410
6 100 5000 4.19232 5.02061 4.44508 4.43706 4.47214
8 100 5000 4.94387 6.37714 5.24823 5.24280 5.29150
4 200 5000 3.36599 4.00000 3.45932 3.45442 3.46410
6 200 5000 4.29392 4.99664 4.45581 4.45105 4.47214
8 200 5000 5.08165 6.37413 5.26645 5.26107 5.29150

Table 9.2: Graph Generation Results (Cont’d)

d n Min (norm) Max (norm) 2
√
d−1
d Ramanujan Diff. (norm)

4 100 0.82201 1.00000 0.86603 0.04402
6 100 0.69872 0.83677 0.74536 0.04664
8 100 0.61798 0.79714 0.66144 0.04345
4 200 0.84150 1.00000 0.86603 0.02453
6 200 0.71565 0.83277 0.74536 0.02970
8 200 0.63521 0.79677 0.66144 0.02623

9.1.1 Data

9.1.2 Analysis

Tables 9.1 and Table 9.2 contain statistics related to the collections of random

graphs that we generated. The first two columns of both tables show the values of

d and n that were used to generate the graphs. For each combination of d and n,

we generated 5, 000 graphs and recorded information about the second eigenvalues

of those graphs. In addition to tracking the minimum second eigenvalue (which,

intuitively, should correspond to higher expansion), we also tracked the maximum,

average and median eigenvalue. The column on the far right of Table 9.1 contains

the value of the expression 2
√
d− 1 for the d that represents the graphs in each
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row. This is the value that was proved by Friedman to bound the second largest

eigenvalue of most random regular graphs [18]. Thus, comparing the Min column to

the far right column gives us an idea of how far the best second eigenvalue was from

this upper bound. It might seem surprising initially that the rows for the n = 200

graphs have slightly worse eigenvalues, but that is likely due to the fact that, for

relatively small values of d, a graph with 200 vertices is simply too large for the edge

boundaries of vertex sets to scale in size with the sizes of those sets.

In the second of these two generation-related tables, Table 9.2, we normalized

the minimum, maximum, and Friedman bound for each set of graphs by dividing

them by d, which conveniently maps them into the interval [0,1], since we know

the second eigenvalue can be at most d. The far right column is simply the differ-

ence between the normalized minimum and the normalized Friedman bound. As

we discussed earlier, a graph whose second eigenvalue is less than the normalized

Friedman bound is said to be a Ramanujan graph; thus, this difference represents

the distance the optimal eigenvalue for a given set of graphs is from this bound.

As the first table showed, the n = 200 graphs are slightly closer to the bound than

their n = 100 counterparts, due to the increase in the number of vertices without a

corresponding increase in d. Also, as we would expect, as the value of d increased,

for a given value of n, the minimum and maximum eigenvalues decreased, indicating

improved expansion.
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9.2 Vertex Expansion Testing

One of the initial goals for using our software to empirically analyze expander

graphs was to simply sample various subsets of randomly generated graphs and

compare the observed vertex expansion rates of those subsets to the theoretical

expectations for vertex expansion. Instead of computing vertex expansion directly,

we simply computed the size of the neighborhood of a given subset, which consists

of all the vertices in the subset, along with any other vertices in the graph that are

adjacent to a vertex in the subset.

For a given vertex in a d-regular graph with n vertices, it is straightforward to

see that the likelihood that it will not be adjacent to another vertex, s, is
(
n−1
n

)d
.

In the more general case, we are interested in the likelihood that a given vertex will

not be adjacent to any vertex in some subset S ⊆ V. We will let ε represent the size

of the subset S as a percentage of n such that |S| = nε. Thus, we now have that,

for a given vertex v and a given subset S in the graph G, the odds that v is not

adjacent to any vertex in S is (
n− 1

n

)dεn
.

From here, we see that

lim
n→∞

(
1− 1

n

)dεn
= e−dε.

Now, for each vertex Vi /∈ S, we can create a random variable Xi such that

Xi =


1 if vertex vi is adjacent to some vertex in S.

0 otherwise.
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Thus, the number of vertices outside of S that are connected to S is simply
∑

vi /∈S Xi.

We can then use the linearity of expectation as follows:

E

∑
vi /∈S

Xi

 =
∑
Vi /∈S

E(Xi)

≈
∑
Vi /∈S

1− e−dε

= n(1− ε)(1− e−dε)

Now, we see that we can calculate the expected size of a neighborhood, which is

simply |S|+ n(1− ε)(1− e−dε), or, the size of the neighborhood plus the size of the

expected number of vertices outside of S that are adjacent to a vertex in S. Table

9.3 shows these expected sizes for the values of d, n, and ε that were also tested

empirically. The empirical results can be found in Tables 9.4 and 9.5.

Table 9.3: Neighborhood Sizes – Theoretical Expectation

d n ε Expected Neighb. Size

4 100 0.25 72.409
6 100 0.25 83.265
8 100 0.25 89.850
4 200 0.125 93.857
6 200 0.125 117.336
8 200 0.125 135.621

As these results show, the average neighborhood size observed in our testing

was slightly larger than the theoretically expected neighborhood size. This discrep-

ancy can likely be attributed to a couple different factors. First, since the random

graphs we generated were d-regular, the possible configurations of the graphs are

much more restricted than if a graph were generated truly randomly. Although
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Table 9.4: Neighborhood Sizes – Empirical; n = 100

d n ε λ(G) Trials Min Max Average Median

4 100 0.25 3.288 250000 61 90 76.716 77
4 100 0.25 4.000 250000 60 90 76.170 76
4 100 0.25 3.475 250000 61 90 76.214 76
4 100 0.25 3.420 250000 60 90 76.366 76
4 100 0.25 3.373 250000 62 90 76.727 77
6 100 0.25 4.192 250000 73 98 86.933 87
6 100 0.25 5.021 250000 71 98 86.373 87
6 100 0.25 4.486 250000 73 98 86.344 87
6 100 0.25 4.290 250000 73 98 86.974 87
6 100 0.25 4.496 250000 73 98 87.017 87
8 100 0.25 4.944 250000 80 100 92.794 93
8 100 0.25 6.377 250000 80 100 92.233 93
8 100 0.25 5.373 250000 80 100 92.090 92
8 100 0.25 5.289 250000 79 100 92.431 93
8 100 0.25 5.297 250000 80 100 92.578 93

Table 9.5: Neighborhood Sizes – Empirical; n = 200

d n ε λ(G) Trials Min Max Average Median

4 200 0.125 3.366 250000 80 115 97.882 98
4 200 0.125 4.000 250000 77 115 96.710 97
4 200 0.125 3.419 250000 79 114 97.221 97
4 200 0.125 3.436 250000 78 114 97.410 98
4 200 0.125 3.436 250000 78 114 97.553 98
6 200 0.125 4.294 250000 103 143 122.191 122
6 200 0.125 4.997 250000 101 144 121.178 122
6 200 0.125 4.402 250000 101 142 121.848 122
6 200 0.125 4.478 250000 101 141 121.118 121
6 200 0.125 4.392 250000 100 143 121.744 122
8 200 0.125 5.082 250000 118 162 140.545 141
8 200 0.125 6.374 250000 117 159 139.449 140
8 200 0.125 5.283 250000 119 161 139.924 140
8 200 0.125 5.282 250000 119 160 139.739 140
8 200 0.125 5.423 250000 119 160 139.994 140

we took the d-regularity into account from the point of view of calculating adja-

cency probabilities to develop the expected values, there is no straightforward way
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to tweak the expected values to account for the more restricted and uniform graph

possibility space. Second, although the methods we used for generating random

graphs are those most commonly found in the literature, it is possible that using

the d
2

permutations method yields a slightly different distribution of possible graphs

than what would be expected from a truly random d-regular graph generator [17].

Examining our empirical data in Tables 9.4 and 9.5, it is also interesting to

note that higher observed neighborhood sizes are closely correlated with smaller

second eigenvalues. As we have described before, the size of the second eigenvalue

determines the size of the spectral gap of the graph’s adjacency matrix. As the size

of this gap increases, we expect the corresponding graphs to have better expansion

properties. Thus, our results show that this is indeed the case in practice. Graphs

that demonstrated, on average, the best vertex expansion (based on the observed

neighborhood sizes), also tended to have smaller second eigenvalues. Thus, we can

conclude that the distribution of random graphs produced by Friedman’s method

is not quite flat, but is relatively close. We have also shown that sampling graph

subsets and averaging their vertex expansion rates provides a set of values that is

correlated with the second eigenvalue of the graph’s adjacency matrix, which means

that it is also correlated with the true overall expansion rate of the graph. After

completing this testing, we performed additional empirical tests that sought to find

an alternative way to evaluation graph expansion rates, which we discuss in the next

section.
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9.3 Subset Testing

Since, as we have discussed in the preceding chapters, it is NP-hard to com-

pute exact edge and vertex expansion rates, as well as UG-hard to approximate

expansion to within a constant factor, we developed a novel method of assessing

graph expansion. Rather than simply randomly selecting subsets and determining

their expansion rates, we identify a set of “marked” vertices, and then randomly se-

lect subsets and determine the size of the intersection between the neighborhoods of

the subsets and the marked vertices. In this way, we have significantly reduced the

chance of selecting only “good” subsets for testing expansion, since we are no longer

concerned with just the size of a given subset’s neighborhood. Since the marked

vertices are selected at random (and since we repeat the experiments with many

different sets of marked vertices), a graph that only expands well in certain places

will have a much smaller intersection in cases where vertices in the poorly expanding

areas are marked. Thus, the average size of this intersection, or, alternatively, the

expected number of marked vertices in the neighborhood of a subset, can be used

to compare one graph’s expansion to another. This method does not provide an

actual estimation for edge or vertex expansion; rather, it provides a value that can

be used to compare expansion behavior.

After developing this model, we wrote Python scripts to enable the empirical

testing of graphs using this method in an attempt to differentiate good expanders

from poor expanders. This method works as follows: first, a certain number (user-

specified as an argument) of vertices are marked as “red” vertices (we will use
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“marked” and “red” interchangeably to refer to these vertices). Next, a random

subset of vertices of a user-defined size is selected from amongst all the graph vertices

(red and otherwise). The script then calculates the number of unique red vertices

amongst the neighbors of the vertices in the selected subset, as well as the number of

red vertices in the subset itself. The number of red vertices found in this manner is

recorded for each subset sample across multiple selections of marked vertices. After

all of the testing is performed, the program prints, for each possible count of red

vertices in a sample, the percentage of the sampled subsets with that count. It then

calculates the expected number of red vertices by taking a dot product of these

percentages with the set of natural numbers.

This empirical testing might seem slightly unintuitive at first, but by tweak-

ing the number of marked vertices and the size of the subsets we sample, we can

essentially test how much expansion we can get from a random subset of the graph.

Checking all the subsets is what makes this problem NP-hard in the first place, so

we simply sample a portion of subsets of various sizes and for various percentages

of marked vertices. Since expander graphs are supposed to be well-connected, we

would expect, for instance, that the neighborhoods of subsets of expander graphs

would have a larger intersection with the set of marked vertices than neighborhoods

of subsets of a non-expanders. We will discuss the results of this testing in subse-

quent sections.
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9.3.1 Expansion Evaluation Methodology

In the first type of empirical test, we used a red vertex count size of 20 for

the n = 100 graph and size 40 for the n = 200 graphs. We randomly selected

500 different red vertex subsets, and for each subset, we sampled all of the size 1

subsets and determined how many red neighbors were contained in the neighbors

of the selected vertex and the vertex itself. For example, for the n = 100 graphs,

we calculated how many red vertices were found in the neighborhoods of all n

possible single-vertex subsets. The results of this testing can be found in Table

A.3 in Appendix A; Table 9.6 contains a summarization of the results. For the

n = 200 graphs, we performed the same singleton subset checking, except now 200

single-vertex subsets had to be sampled for each of the 500 red vertex subsets. The

data from these tests can be found in Table A.4 in Appendix A; Table 9.7 contains

the summarized results. After tabulating all of the counts from all of the subset

checking, we calculated the observed percentage for each possible number of red

vertices found. We then used those percentages to calculate the expected number

of red vertices that we would see in the neighborhood of a single vertex subset.

In addition to checking single-vertex subsets, we also performed checking of

multi-vertex subsets. Specifically, for the n = 100 graphs, we again selected 500

subsets of 20 red vertices, and then, for each of those 500 subsets, we sampled 500

subsets of size 25 and counted how many red vertices were in that set or the neighbors

of that set. Much like the single-vertex cases, we calculated the percentages for each

possible count of red vertices found, and then used that to calculate the expected
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number of red vertices (as a weighted average) in the neighborhood of a 25 vertex

subset. We were also able to use the theoretical results about neighborhood sizes (in

Table 9.3) to compute the theoretically expected number of red vertices that would

be found in each neighborhood. The full testing results can be found in Table A.5

in Appendix A; an abbreviated version of the results is presented in Table 9.8. For

the n = 200 graphs, we performed the exact same subset sampling tests using the

same subset sample size of 25 vertices. Those results can be found in Table A.6 in

Appendix A; abbreviated results are presented in Table 9.9. In the next section, we

provide the data collected during our testing. Following that, we provide an analysis

and discussion of the data.

9.3.2 Data
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Table 9.6: Singleton, |S| = 1; n = 100

d n # trials # red |S| λ(G) E(Reds)

4 100 500 20 1 3.288 0.99220
4 100 500 20 1 4.000 0.98440
4 100 500 20 1 3.475 0.98000
4 100 500 20 1 3.420 0.98350
4 100 500 20 1 3.373 0.99220
6 100 500 20 1 4.192 1.37362
6 100 500 20 1 5.021 1.35840
6 100 500 20 1 4.486 1.34764
6 100 500 20 1 4.290 1.37216
6 100 500 20 1 4.496 1.37814
8 100 500 20 1 4.944 1.75554
8 100 500 20 1 6.377 1.72698
8 100 500 20 1 5.373 1.70852
8 100 500 20 1 5.289 1.72878
8 100 500 20 1 5.297 1.74006

Table 9.7: Singleton, |S| = 1; n = 200

d n # trials # red |S| λ(G) E(Reds)

4 200 500 40 1 3.288 0.99604
4 200 500 40 1 4.000 0.98193
4 200 500 40 1 3.475 0.98841
4 200 500 40 1 3.420 0.98984
4 200 500 40 1 3.373 0.99178
6 200 500 40 1 4.192 1.39205
6 200 500 40 1 5.021 1.37607
6 200 500 40 1 4.486 1.38618
6 200 500 40 1 4.290 1.37306
6 200 500 40 1 4.496 1.38385
8 200 500 40 1 4.944 1.78098
8 200 500 40 1 6.377 1.76715
8 200 500 40 1 5.373 1.76237
8 200 500 40 1 5.289 1.76839
8 200 500 40 1 5.297 1.75842



Table 9.8: Subset Sampling, |S| = 25; n = 100

d n # trials # red # subsets |S| λ(G) E(reds) Theor. reds

4 100 500 20 500 25 3.288 15.347 14.482
4 100 500 20 500 25 4.000 15.250 14.482
4 100 500 20 500 25 3.475 15.247 14.482
4 100 500 20 500 25 3.420 15.276 14.482
4 100 500 20 500 25 3.373 15.339 14.482
6 100 500 20 500 25 4.192 17.389 16.653
6 100 500 20 500 25 5.021 17.283 16.653
6 100 500 20 500 25 4.486 17.270 16.653
6 100 500 20 500 25 4.290 17.398 16.653
6 100 500 20 500 25 4.496 17.402 16.653
8 100 500 20 500 25 4.944 18.557 17.970
8 100 500 20 500 25 6.377 18.446 17.970
8 100 500 20 500 25 5.373 18.414 17.970
8 100 500 20 500 25 5.289 18.483 17.970
8 100 500 20 500 25 5.297 18.519 17.970

Table 9.9: Subset Sampling, |S| = 25; n = 200

d n # trials # red # subsets |S| λ(G) E(reds) Theor. reds

4 200 500 40 500 25 3.366 19.572 18.771
4 200 500 40 500 25 4.000 19.354 18.771
4 200 500 40 500 25 3.419 19.440 18.771
4 200 500 40 500 25 3.436 19.498 18.771
4 200 500 40 500 25 3.436 19.515 18.771
6 200 500 40 500 25 4.294 24.431 23.467
6 200 500 40 500 25 4.997 24.227 23.467
6 200 500 40 500 25 4.402 24.371 23.467
6 200 500 40 500 25 4.478 24.213 23.467
6 200 500 40 500 25 4.392 24.356 23.467
8 200 500 40 500 25 5.082 28.107 27.124
8 200 500 40 500 25 6.374 27.897 27.124
8 200 500 40 500 25 5.283 27.988 27.124
8 200 500 40 500 25 5.282 27.951 27.124
8 200 500 40 500 25 5.423 27.992 27.124



9.3.3 Singleton Subset Testing Analysis

Table A.3 and Table A.4 contain the statistics related to checking all n single-

vertex subsets for each graph tested. Here, the number of trials refers to the number

of different red vertex selections that were made. For each such selection, all n

subsets were checked, for a total of 50, 000 subsets for the n = 100 graphs in Table

A.3. The λ(G) column is the second largest eigenvalue (in absolute value) of the

graph’s adjacency matrix. To the right of that column, the “1 red,” “2 red,” etc.

columns denote the percentage of the 50, 000 subsets tested where the number of

distinct red vertices present in the singleton subset and amongst the neighbors of

that vertex equaled the number at the top of the column. Thus, for these singleton

subsets, there could be at most d + 1 red vertices for a given subset, which would

represent the case where the selected vertex and all of its neighbors were red. The

column on the far right, E(REDS), is the expected number of reds we would find

amongst a single vertex and its neighbors. The values in this column are calculated

by simply taking the cross product of the percentages in the preceding columns with

set of non-negative integers, [0, 1, 2, . . . ].

Now, examining Table A.3 more closely, we will consider each set of five rows

with the same d value. For the d = 4 graphs, we see that the graph with the best

(smallest) second eigenvalue has the highest expected number of reds out of the

five, although one of the three randomly selected graphs has the same expectation.

The graph with the worst second eigenvalue does not have the lowest expected

number of reds, although it does have the highest percentage of 0 red subsets.
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Likewise, with the d = 6 graphs, the best second eigenvalue has a significantly

higher expected number of reds than the worst, but it is beaten slightly by one of

the randomly selected graphs. For the d = 8 graphs, the graph with the best second

eigenvalue does have the highest expected number of reds, but the lowest number

of expected reds does not come from the graph with the worst second eigenvalue.

Now, examining the table as a whole, we see that the expected number of reds

increased as d increased, which is to be expected, since it increases the maximum

number of neighbors that a given vertex can have. This data suggests that there is

a correlation between the second eigenvalue and the expansion rate (which we are

measuring using the expected number of reds based on our sampling), but clearly,

there is not a direct correlation. The best eigenvalue does not necessarily always

correspond to the highest expected number of reds. This is likely due to the fact

that, since we are only examining subsets of size 1, we are not able to observe the

true effects of the graphs’ expansion properties.

Table A.4 has similar contents to Table A.3, except now we are dealing with

the n = 200 graphs. Much like the n = 100 graphs, we see here that, for a given value

of d, the graph with the best eigenvalue also has the highest number of expected

reds, what is exactly what we would anticipate. For d = 4, we see an even stronger

relationship, which is that the five graphs’ expectations are ordered inversely to the

size of their eigenvalue. Again, like the n = 100 graphs, we see that the number of

expected reds rises as d increases. One very interesting thing to note is that, when

comparing the expected number of reds in Table A.4 with the expected number of

reds in Table A.3, we see that the n = 200 graphs have slightly higher expectations
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than their n = 100 counterparts. For instance, the highest expectation for d = 4

amongst the n = 200 graphs is 0.99604, whereas the highest expectation for d = 4

amongst the n = 100 graphs is 0.99220. For d = 6, we have 1.39205 as compared to

1.37362, and for d = 8, we have 1.78098 versus 1.75554. These results are somewhat

interesting in that, even though the percentage of red vertices are the same in both

the n = 100 and n = 200 graphs, the n = 200 graphs appear to have observably

better expansion. This is somewhat surprising due to the fact that, as Table 9.1

and Table 9.2 indicated, the n = 200 graphs have a smaller Ramanujan difference

and smaller normalized minimum than their n = 100 counterparts. Thus, we might

expect that the number of expected reds would be slightly higher in the n = 100

graphs; however, our empirical testing clearly indicates that there are more factors

at play. It is possible that the discrepancy can be attributed to the fact that the size

of the subset we are testing is smaller relative to the size of the graph for n = 200.

9.3.4 Subset Sampling Testing Analysis

The next table, Tables A.5, illustrates the results of our subset sampling tests

for graphs with 100 vertices. For these graphs, we performed 500 subset samplings,

each of size 25 for each of 500 different selections of 20 red vertices, for a total of

250, 000 samples per graph. Since the size of the sampled subset was larger, the

maximum number of red vertices that could be found within the subset and the

neighbors of the subset is |S|+ d|S|+ 1, which, for the case of |S| = 25, is obviously

larger than 20. Note that, since all of the results could not fit onto a single page,
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Table A.5 is spread across two pages.

Now, examining the first five rows of the table, which represent the d = 4

case, we see that the expected number of reds appears to be well-correlated with

the value of the second eigenvalue. The graph with the smallest eigenvalue has the

highest expected number of reds, and that number goes down as the eigenvalues

increase. For the d = 6 cases, the graph with the smallest eigenvalue again has a

higher number of expected reds than the graph with the worst eigenvalue, but there is

slightly more fluctuation in the correlation. The same is true for the d = 8 graphs; in

fact, the graph with the smallest second eigenvalue actually has the highest number

of expected reds out of all the graphs that were tested. Also, examining the table

as a whole, we again see that the number of expected reds increases as d increases,

which is exactly what we would expect. Having a larger value of d increases the size

of the neighborhood of the subset we are sampling, thus increasing the potential

number of other vertices that are checked.

The next table, Tables A.6, contains the results of subset sampling tests for

the n = 200 graphs. For these tests, we again used the same number of red vertex

subsets, but instead of marking 20 vertices as red, we marked 40 vertices as red in

order to keep the percentage of red vertices constant. This table also spans multiple

pages.

For the d = 4 graphs, the graph with the lowest eigenvalue again had the

highest number of expected reds. The same also held true for the d = 6 and d = 8

graphs, with an overall trend of having lower eigenvalues associated with higher

expectations, though the relationship is not perfect. We also see that, as with the
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n = 100 graphs, the number of expected reds is increasing as d increases, which is

what we expect to happen. We also see that the number of expected reds is higher,

for the same values of d, than the expectation of their n = 100 counterparts, though

the percentage of reds is significantly lower. This indicates that, for relatively small

values of d, increasing the size of the graph does not necessarily lead to a higher

expectation.

It is also interesting to note that, for both the n = 100 and n = 200 graphs,

the empirically expected number of red vertices were very close to the theoretical

number of red vertices that we would expect to find in neighborhoods of similar size.

This shows that our method for randomly generating graphs works reasonably well,

and also demonstrates the existence of some expansion properties.

9.4 Conclusion

In the previous sections, we have described multiple methods for empirically

analyzing expander graphs. In the first section, we showed how our testing indicated

that the distribution of random graphs generated by the Friedman method is likely

not quite flat due to the discrepancies between the observed neighborhood sizes

and expected neighborhood sizes [17]. We also saw that the average neighborhood

sizes correlated strongly with the second eigenvalue of graph adjacency matrices,

illustrating that neighborhood size testing is a viable means for assessing graph

expansion. It is also worth noting, that, if we were to subtract the size of the subset

from the size of its neighborhood and then divide by the size of the subset, we
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could use the minimum value over all of the tests as a new lower bound on vertex

expansion. We will see a similar idea used in the next chapter to improve lower

bounds on expansion rates.

In the second section, our results also indicated that we developed another

measure that is well-correlated with the second eigenvalue of graph adjacency ma-

trices. Thus, we can also use this expected number of red vertices to compare one

graph’s expansion rate to another. However, this method is far from perfect, and

most importantly, it does not provide an actual estimation for the graph’s true ex-

pansion rate. In the following chapter, we will discuss another method for assessing

graph expansion that does provide actual bounds on the true expansion rates of

graphs.
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Chapter 10

Graph Modularity Testing and Results

As outlined in Chapter 7, community detection algorithms that maximize

modularity are potentially useful in identifying subsets with poor expansion. If low

expansion subsets can be identified by modularity maximization algorithms, then

they can be used to improve upper bounds on the overall vertex and edge expansion

of the graph in question. In order to test this theory, we performed empirical

testing of these algorithms on a number of different expander graphs, both those

that are randomly generated and those that are created via explicit constructions.

We computed the expansion of the subsets identified by the community detection

algorithms and then compared the lowest expansion rates found with the theoretical

upper and lower bounds for expansion.

10.1 Methodology

The first step in performing testing of modularity maximization algorithms

was to generate the graphs that would serve as input to the community detection

algorithms. First, we used our random graph generation algorithm (which uses the

d
2

random permutations on {1, . . . n} for even d, and combines that method with the

half-edge method for odd d) to generate ten 5-regular graphs, one for each multiple

of 100 from 100 up to 1000 [16, 29]. After creating the randomly generated graphs,

81



we used the Gabber-Galil (GG) construction to create nine additional graphs [20].

The values of m used for these graphs were the odd numbers from 7 through 23,

inclusive. For a given value of m, the corresponding GG graph contains 2m2 vertices,

so the graphs we generated ranged in vertex count from 98 to 1058 to provide a

similar range between the randomly generated and explicitly constructed graphs.

It should also be noted that we selected all of the randomly generated graphs to

be 5-regular since the GG construction we utilized can only be used to generate

5-regular graphs. These graphs were created as numpy adjacency matrix objects,

which were then written to disk so that they could be read into follow-on scripts.

The actual community detection algorithms were run using the statistical soft-

ware R. The open-source modMax package in R contains implementations of all of

the major community detection algorithms that use modularity maximization and,

when applicable, includes the ability to tweak the parameters of the algorithms [46].

In order for the graphs to be loaded into R, we wrote a helper script in Python

that loaded numpy matrices and then wrote them back to files as comma-separated

values, which could then be loaded into R as an adjacency matrix, where they were

then transformed into a graph object from the igraph R package [12]. These objects

were then passed as parameters to the various community detection algorithms.

After generating the graphs and developing a workflow for loading the graphs

into R, we started our testing by evaluating the various modularity maximization

algorithms that are available in the modMax package to get an idea of their run

times and their potential for identifying bad communities. For this testing, we used

the small, 100-vertex randomly generated graph, since we figured that even the slow
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algorithms would be able to converge to a network clustering fairly quickly.

For this research, we used the UMBC High Performance Computing Facil-

ity’s maya cluster, which contains over 300 nodes, seventy-two of which have two

eight-core 2.6 GHz Intel E5-2650v2 Ivy Bridge CPUs and 64 GB memory. Nineteen

of the seventy-two are hybrid nodes that contain two NVIDIA K20 graphics pro-

cessing units, and another ten of which contain two 60-core Intel Xeon Phi 5110P

accelerators. All of the cluster’s nodes are connected to over 750 TB of storage via

InfiniBand.

The algorithms that we benchmarked using the 100-vertex graph were ex-

tremalOptimization, geneticAlgorithm, greedy, simulatedAnnealing, and spectralOp-

timization [46]. For each algorithm, we kept track of the total number of commu-

nities the algorithm discovered and the average size of the communities. We also

calculated the vertex and edge expansion of each community using functions from

the igraph package, and we kept track of the worst expansion rates over the en-

tire community structure and the number of vertices in that worst community. It

should also be noted that, in the cases where the algorithm found a community

that contained more than half of the vertices in the graph, instead of processing the

community itself, we inverted the community and considered all the vertices not in

the original community to be their own community. This was done to ensure that

the expansion rates of the communities could be valid edge and vertex expansion

rates, and the definitions of those rates only considers communities that contain

no more than half of the vertices in a graph. Additional statistics, like the median

expansion rates, and calculated values, like the Cheeger upper bound for vertex
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expansion and the spectral bounds for vertex expansion were also computed and

output by our testing script. Finally, we calculated the percentage improvement

that the worst community’s edge expansion provides over the spectral upper bound.

Since the actual edge expansion rate is a minimum taken over all subsets of vertices

that contains at most half of the total number of vertices in the graph, if one of the

community detection algorithms finds a community whose edge expansion is worse

than the theoretical spectral bound, then we have improved that upper bound since

the edge expansion of the graph cannot be more than the edge expansion of the

community that was identified.

Table 10.1: Community Detection – Algorithm Timing

n gen
type

λ2 algorithm # comms Average
comm.
size

min
v. exp.

min
e. exp.

time (secs)

100 random 3.7618 extremalOptimization 23 4.35 3.00 3.33 4082.37
100 random 3.7618 geneticAlgorithm 42 2.38 2.60 2.67 1569.67
100 random 3.7618 greedy 8 12.50 1.81 1.94 12.88
100 random 3.7618 simulatedAnnealing 100 1.00 3.00 3.00 2.53
100 random 3.7618 spectralOptimization 20 5.00 2.6 3.67 116.46

The results of these initial benchmarks can be found in Table 10.1, from which

we made a number of interesting observations. First, the extremalOptimization and

geneticAlgorithm experiments took an extremely long time, 68 minutes and 26 min-

utes, respectively, especially when considering the modest size of the graph and the

power of the nodes on which these experiments were running. Second, of the five

algorithms, the greedy and geneticAlgorithm tests performed significantly better

than the others when it came to finding communities with low vertex and edge ex-

pansion. Third, even though the simulated annealing algorithm ran very quickly,
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an examination of the number and size of the communities it found reveals that

the algorithm simply terminated without merging any of the communities from the

initial structure where every vertex is in its own community. The alpha and beta

parameters for the simulatedAnnealing run were 1.005 and half the number of ver-

tices, respectively, which are the standard values. We did some further exploration

and tweaking of these algorithms, but the results remained unimpressive and their

run times quickly increased. Thus, based on these results, we decided to focus on

using the greedy method of modularity maximization since it performed the best of

all the algorithms we tested and it ran in a reasonable amount of time.

Once we settled on greedy algorithms, we began benchmarking various greedy

algorithm variants that were also contained in the modMax package [46]. These

variants included greedy, which is the standard Clauset-Newman-Moore algorithm;

rgplus, which identifies core groups to create an initial partitioning; msgvm, which

performs multiple merges in a given step and uses greedy refinement; cd, which

performs complete greedy refinement iteratively and then moves vertices based on a

provided probability to avoid landing in local optima; Louvain, which was described

earlier in a previous section; and mome, which uses a combination of coarsening

and uncoarsening phases to reconstruct community structure [46]. Much like the

initial algorithm testing, these greedy algorithm benchmark tests were performed

using the 100-vertex randomly generated graph. The statistics for these tests can

be found in Table 10.2.

Examining Table 10.2, we see that the best-performing algorithms were greedy,

rpgplus, and Louvain. It is also interesting to note that the mome algorithm con-
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Table 10.2: Community Detection – Greedy Algorithm Timing

n gen
type

λ2 algorithm # comms Average
comm.
size

min
v. exp.

min
e. exp.

time (secs)

100 random 3.7618 greedy 8 12.5 1.8095 1.9412 9.4609
100 random 3.7618 rgplus 7 14.2857 1.5000 1.7273 29.5869
100 random 3.7618 msgvm 6 16.6667 1.4583 1.7500 270.4000
100 random 3.7618 cd 10 10 2.0909 2.2727 2505.1517
100 random 3.7618 Louvain 2 50 0.7959 1.1633 110.2937
100 random 3.7618 mome 1 100 NA NA 20.0359

verged to selecting only a single community that contained all 100 vertices. Behavior

like this is not uncommon with modularity maximization algorithms and is known

as the resolution limit problem [10]. We also note that the cd algorithm took an

order of magnitude longer than the other variants, likely because the time required

to perform a complete greedy refinement on every partition along its path to con-

vergence is quite significant. Based on these results, we settled on using the greedy,

rgplus, and Louvain variants for our testing; however, after doing some more bench-

marking tests, we began to run into issues where the function call to the rgplus

algorithm would be issued properly and then return an error code internal to the

modMax library, so we were forced to restrict our testing to the greedy and the

Louvain algorithms.

Next, we set out to explore the parameter space of the greedy algorithm and

then, after developing a sufficient number of tests, running all of the tests over all

of our graphs. The two main parameters to the greedy algorithm we examined were

q and initial. The q parameter is used to tell the algorithm which variant of the

standard modularity measure to use, if any. If q is set to “general’,’ then the normal
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modularity measure is used. If it is set to “danon,” then the value that is maximized

is a normalized version of the traditional modularity measure based on the number of

edges in a a community, and if q is set to one of “wakita1,” “wakita2,” or “wakita3,”

the algorithm maximizes the product of the consolidation ratio with the standard

modularity measure [46]. The initial parameter is used to tell the algorithm how

the initial partition of the graph into communities should be performed. The five

options available for this parameter are “general,” “prior,” “walkers,” “adclust,”

“subgraph,” and “own.” The “general” version has every vertex start in its own

community, whereas the “prior” and “own” options allow the user to direct the

algorithm to perform the clustering based on previous knowledge about the structure

of the network. The “walkers” option directs the algorithm to place random walkers

on the graph and create the initial clustering based on the vertices traversed by

these random walkers; the “adclust” option performs fast greedy refinement on

the general structure and then applies the refinement again after every merge of

communities. Finally, the “subgraph” option directs the algorithm to find an initial

community structure based on similarities of subgraphs of the network structure

[46]. For purposes of our testing, since we have no prior expectations about the

structure of networks in these graphs (in fact, we expect that identifying any good

communities at all would be difficult), we did not use the “prior” or “own” options in

our testing. Thus, with five options for q and four options for initial, we had twenty

total tests for the greedy algorithm. We also had a single test for the Louvain

variant, which does not take any additional command line arguments.

After narrowing down our testing to these twenty-one tests, we began running
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each of the tests on each of the graphs. Thanks to size of the maya cluster, we were

able to run tests on each graph in parallel, which greatly reduced the time it took

for the tests to be performed. Unfortunately, after queueing up the tests on each

graph, we noticed them some tests were starting to fail. Digging into the R error

logs, we discovered that, despite running these tests on maya batch nodes, we were

running into out-of-memory errors when using the “adclust” option on moderately-

sized graphs (around 300 vertices or more) and when using the “subgraph” option

on large graphs (800 vertices or more). Since the “adclust” variant adds refine-

ment steps at each merging event, as the sizes of the communities and graphs get

larger, it is understandable that this particular option could lead to memory er-

rors; similarly, with sufficiently large graphs, attempting to use subgraph similarity

to create initial partitions was simply too computationally intensive. Some of the

smaller graphs were able to make it through all twenty-one tests, however. Table

10.3 shows these results for the 100-node randomly generated graph. As this ta-

ble illustrates, the results for the “wakita1,” “wakita2,” and “wakita3” tests were

identical. The consolidation ratios in the wakita variants are used to control the

sizes of the communities being merged, and since we do not wish to restrict the

algorithm’s ability to find the best communities, regardless of size, we made the

decision to remove the “wakita2” and “wakita3” tests [10, 49]. Furthermore, for

regular graphs, “wakita1” and “wakita3” will produce identical results, since one

uses a heuristic based on the number of vertices in a community, and the other is

based on the sum of the degrees of the vertices in a community. Thus, before run-

ning our tests over all nineteen graphs again, we removed those tests that used the
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“adclust” option, those that used the “subgraph” option, and those that used the

“wakita2” or “wakita3” options. This left us with a total of seven tests: a “general”

and a “walkers” version of each of the “general,” “danon,” and “waikita1” variants,

and a single Louvain algorithm test. With these changes in place, we were able to

start out tests in parallel.

Table 10.3: Community Detection – Greedy Tests for n = 100 random graph

algorithm q initial #
comms

Average
comm.
size

# ver-
tices
in

comm.
with
worst
exp.

min
v. exp.

min
e. exp.

median
v. exp.

median
e. exp.

Cheeger
upper
bound

spectral
lower
bound

spectral
upper
bound

%
improv.
over
upper
bound

%
above
lower
bound

time
(secs)

Louvain N/A N/A 2 50 49 0.7959 1.1633 0.7959 1.1633 9.4036 0.6191 3.5188 66.9410 87.9012 111.1219
greedy general general 8 12.5 21 1.8095 1.9412 2.1381 2.2500 9.4036 0.6191 3.5188 44.8335 213.5565 9.7352
greedy general walkers 8 12.5 23 1.6957 1.8696 2.2898 2.3750 9.4036 0.6191 3.5188 46.8686 201.9892 21.4187
greedy general subgraph 9 11.1111 20 1.8000 2.0000 2.0833 2.3333 9.4036 0.6191 3.5188 43.1618 223.0583 46.7899
greedy general adclust 9 11.1111 15 1.7333 1.9333 2.2222 2.3333 9.4036 0.6191 3.5188 45.0564 212.2897 2323.5021
greedy danon general 8 12.5 15 1.8667 2.0667 2.1538 2.3077 9.4036 0.6191 3.5188 41.2672 233.8269 14.3571
greedy danon walkers 9 11.1111 16 1.7500 2.0000 2.3333 2.5000 9.4036 0.6191 3.5188 43.1618 223.0583 22.6941
greedy danon subgraph 9 11.1111 20 1.8000 2.0000 2.0000 2.3333 9.4036 0.6191 3.5188 43.1618 223.0583 48.5408
greedy danon adclust 8 12.5 17 1.5294 1.7059 2.1364 2.2727 9.4036 0.6191 3.5188 51.5203 175.5497 2164.7540
greedy wakita1 general 8 12.5 21 1.8095 1.9412 2.1381 2.2500 9.4036 0.6191 3.5188 44.8335 213.5565 13.7886
greedy wakita1 walkers 8 12.5 23 1.6957 1.8696 2.2898 2.3750 9.4036 0.6191 3.5188 46.8686 201.9892 23.0443
greedy wakita1 subgraph 9 11.1111 20 1.8000 2.0000 2.0833 2.3333 9.4036 0.6191 3.5188 43.1618 223.0583 49.1804
greedy wakita1 adclust 9 11.1111 15 1.7333 1.9333 2.2222 2.3333 9.4036 0.6191 3.5188 45.0564 212.2897 2184.6411
greedy wakita2 general 8 12.5 21 1.8095 1.9412 2.1381 2.2500 9.4036 0.6191 3.5188 44.8335 213.5565 11.3278
greedy wakita2 walkers 8 12.5 23 1.6957 1.8696 2.2898 2.3750 9.4036 0.6191 3.5188 46.8686 201.9892 23.0482
greedy wakita2 subgraph 9 11.1111 20 1.8000 2.0000 2.0833 2.3333 9.4036 0.6191 3.5188 43.1618 223.0583 49.2500
greedy wakita2 adclust 9 11.1111 15 1.7333 1.9333 2.2222 2.3333 9.4036 0.6191 3.5188 45.0564 212.2897 2189.7384
greedy wakita3 general 8 12.5 21 1.8095 1.9412 2.1381 2.2500 9.4036 0.6191 3.5188 44.8335 213.5565 14.1587
greedy wakita3 walkers 8 12.5 23 1.6957 1.8696 2.2898 2.3750 9.4036 0.6191 3.5188 46.8686 201.9892 31.9514
greedy wakita3 subgraph 9 11.1111 20 1.8000 2.0000 2.0833 2.3333 9.4036 0.6191 3.5188 43.1618 223.0583 48.4612
greedy wakita3 adclust 9 11.1111 15 1.7333 1.9333 2.2222 2.3333 9.4036 0.6191 3.5188 45.0564 212.2897 2146.2282

10.2 Data

The results of running these seven tests on each of our nineteen graphs can be

found in Tables A.9 and A.10 in Appendix A, both of which occupy multiple pages.

We have also created Table 10.4, which illustrates the overall performance of each

of the seven algorithms on the nineteen graphs.
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10.3 Results

We will start our discussion of the data in Tables A.9 and A.10 by examin-

ing how the community detection algorithms performed on the randomly generated

graphs. Generally speaking, all of the algorithmic variants provided some improve-

ment over the spectral upper bound on edge expansion for each of the eleven random

graphs. That is, the community with the worst expansion in each of the algo-

rithms’ partitionings consistently had a lower expansion rate than the theoretical

upper bound on the expansion rate. The greedy trials with q =“general” and ini-

tial=“walkers” were frequently the best, and their performance was often mirrored

by the “wakita1” with “walkers” trials. This shows that the optimal communities to

join based on a modularity delta were proportional to the the size of the communi-

ties involved in the join, which is not surprising for regular graphs. The dominance

of the variants that chose an initial partitioning of the vertices using random walkers

is also unsurprising. Since these graphs do not have a strong underlying community

structure, when the greedy algorithm starts with each vertex in its own community,

the modularity improvements that result from merging such small communities are

all quite small, and the algorithm is simply unable to escape local optima and reach

a more globally optimal partitioning. However, by using random walkers, the initial

partitioning generally consists of larger communities of vertices that are within a

short distance of one another, which provides a much better starting point for the

algorithm and prevents it from being bogged down trying to merge tiny communi-

ties. We also noticed some very interesting results with the Louvain algorithm; as
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the size of the graph got bigger, the algorithm tended to lump all of the vertices

together in a single community. The Louvain method is known for having resolution

limit issues that cause it to fail to detect small communities, which is likely what

happened in our testing [15].

Generally speaking, as the sizes of the graphs got larger, the percentage im-

provement (the difference between the theoretical bound and the empirical bound,

divided by the theoretical bound) of the empirical edge expansion upper bound

that we observed using community detection decreased slightly, but remained close

to 40%. In fact, the average percentage improvement of the edge expansion upper

bound for the randomly generated graphs was 41.66%, meaning that the new upper

bounds were a little less than 60% of the old bounds. These improvements are quite

large, and illustrate the fact that the theoretical upper bounds on edge expansion

are extremely loose. That said, the empirical observations were still an average of

255.47% above the theoretical lower bound. This means that the observed expan-

sion rate is over twice as large as the theoretical lower bound. Thus, while we have

made a significant improvement over the previous upper bound, the gap between

the lower bound and the new upper bound is still quite large.

The results for the explicitly generated GG graphs are similar to those of the

randomly generated graphs, with a few notable differences. Once again, we notice

that the variants that use the random walker initializations vastly outperform their

counterparts. In the GG graphs, this difference is even more pronounced, likely

attributable to the fact that having each vertex start in its own community in a

bipartite graph is a significantly worse starting position than using a similar strat-
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egy in the randomly generated case. In fact, for some of the large GG graphs, the

communities with the worst expansion found by some of the algorithms were not

able to beat the spectral upper bound, which provides a clear indication of just

how poorly the general initialization works for these graphs. The Louvain algorithm

had slightly more success with the GG graphs than with the random graphs, but

even in the cases where it found non-trivial partitionings, the communities found

by the other algorithms were superior. It is also worth noting that the variants of

the algorithm that maximized the “danon” version of modularity performed slightly

better on some of the smaller GG graphs than what was observed with the randomly

generated graphs. Since the “danon” modularity is normalized based on the number

of edges internal to communities, those variants are closer to the “general” modu-

larity variants for the GG graphs since the bipartite nature of the graph means that

communities will typically have fewer internal edges than in a randomly generated

graph.

Unlike the randomly generated graphs, as the GG graphs got larger, there was

not a clear decline in the percentage improvement provided by the edge expansion

rates of the communities over the theoretical upper bounds on edge expansion. For

the GG graphs, the average percentage improvement was 52.98%, which is signifi-

cantly higher than the improvements we saw with the random graphs. However, the

empirical observations of the GG graphs were an average of 558.72% above the the-

oretical lower bound, which is much, much higher than the 255.47% of the random

graphs. A further inspection of the theoretical bounds shows that the spectral lower

bounds for the GG graphs are much, much smaller than their random graph counter-
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parts. The average second largest eigenvalue of the GG graphs is 4.77, whereas the

random graphs have an average second largest eigenvalue of 3.91, which means that

the spectral gap of the GG graphs is much smaller than that of the random graphs.

Since the upper and lower bounds on edge expansion are based solely on d (which

was 5 for both the GG and random graphs) and the second largest eigenvalue, this

difference in the spectral gap explains the large difference in the theoretical bounds.

Thus, even though, on a percentage basis, larger improvements were made with

the upper bounds on edge expansion for the GG graphs than the random graphs,

both the theoretical upper and lower bounds for the GG graphs are inherently less

tight, which also explains the gap between our observed expansion rates and the

theoretical lower bounds.

In terms of comparing the greedy algorithmic variants themselves, Table 10.4

contains information about average improvements and average modularity values

for each of the algorithms. As the table shows, the greedy variants that used ran-

dom walker community initialization far outperformed their general counterparts,

especially for the GG graphs. The greedy algorithm that maximized the standard

modularity value and used random walker initialization also was the best algorithm

(of the ones tested) on the most number of graphs, both for the random graphs and

for the GG graphs. In examining the modularity values themselves, we see that

they were fairly consistent across all the graphs. The average modularity value seen

for the random graphs was 0.4369, and the average modularity for the GG graphs

was 0.4943. The higher modularities for the GG graphs is expected, since, by virtue

of being explicitly constructed, they are structured less like random graphs than
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the randomly generated networks. It is also interesting to note that the algorithms

whose community structure had the highest (or close to the highest) average mod-

ularity were also the algorithms that saw the most improvement. For example, the

“greedy: general, walkers” and the “greedy: wakita1, walkers” algorithms had the

highest average modularity for the GG graphs amongst all of the algorithms, and

those variants were also the best, in terms of improving the upper bound on edge ex-

pansion, for eight out of the nine GG graphs. Thus, it is clear that those algorithms

that are the best at maximizing modularity are also the best at detecting communi-

ties with poor expansion, which justifies our use of this method for improving upper

bounds on edge expansion.

Table 10.4: Community Detection – Algorithm Comparison

Algorithm Avg. % Improv. Rand. Avg. % Improv. GG Avg. % Improv. Avg. Mod Rand. Avg. Mod GG Avg. Mod Best Rand. Best GG Best

Louvain 66.941 24.974 33.368 0.280 0.413 0.386 1 0 1
greedy: general, general 37.981 6.499 23.068 0.442 0.462 0.452 2 0 2
greedy: general, walkers 39.446 52.101 45.440 0.439 0.542 0.488 7 8 15
greedy: danon, general 34.051 0.060 17.950 0.437 0.459 0.447 0 0 0
greedy: danon, walkers 33.895 46.331 39.786 0.438 0.534 0.484 0 4 4
greedy: wakita1, general 37.981 6.499 23.068 0.442 0.462 0.452 2 0 2
greedy: wakita1, walkers 39.446 52.101 45.440 0.439 0.542 0.488 7 8 15

Now, with the capability to use modularity maximization algorithms to assess

graph expansion, we will revisit some of the expander graph applications discussed

earlier. We will provide some empirical evidence for how expanders can be used to

recycle random bits, as well as provide an outline for how expanders can be used to

implement cuckoo-like hashing.
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Chapter 11

Expander Graph Application Testing and Results

As described in Chapter 3, two applications of expander graphs that we have

studied are probabilistic amplification and implementing cuckoo-like hashing algo-

rithms. In this chapter, we will outline our testing methodology for assessing prob-

abilistic amplification, as well as provide and analyze the data from our tests. We

will also describe one possible implementation of cuckoo-like hashing using expander

graphs.

11.1 Probabilistic Amplification

11.1.1 Testing Methodology

The first step in testing the amount of probabilistic amplification we could

achieve with random walks was generating the graphs on which we would be per-

forming the walks. As outlined in Chapter 2, since showing that random walks on

randomly generated graphs could amplify probability would not be an interesting

result, we used explicit Gabber-Galil expanders for experimentation. We tested a

total of twenty-one graphs, one for each odd integer from 7 to 49. These integers

represent the m value in the Gabber-Galil construction, where |V | = 2m2. Thus,

the sizes of the graphs we tested ranged from 98 vertices to 4, 802 vertices. Since the

neighbors of a given vertex in a Gabber-Galil graph can be computed in constant
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time, we did not actually have to store an adjacency matrix, or even adjacency lists

for the graph. Rather, for a given value of m, we could simply walk through the

graph, computing neighbors as we progressed from one vertex to the next.

After identifying and creating the graphs we wanted to test, we determined

that we would compare random walks to the traditional use case of random bits,

which is using log |V | bits to select a graph vertex uniformly at random, and then

keeping track of how frequently each vertex in the graph is selected. For purposes of

our testing, we also looked at the neighboring vertices of the nodes selected in this

manner and tracked their counts as well. In order for the comparison of random

samples to random walking to be fair, the same amount of random bits must be used

in each case; otherwise, one method would have a clear advantage over the other.

Thankfully, we were able to accomplish this in a rather straightforward manner.

First, note that, in order to select t vertices from a graph uniformly at random

using vertex sampling, it would take t · log |V | random bits. Second, for the case

of random walking, we see that it takes log d steps at each vertex to randomly

determine the next vertex to visit in a d-regular graph. Thus, if we take logd |V |

steps, we use

logd |V | log d =
log |V |
log d

log d = log |V |

bits of randomness. It also takes log |V | bits to choose the starting point for the

random walk. Thus, since it takes t · log |V | random bits to sample t vertices, we can

take (t−1) logd |V | steps in a random walk in order to use the same number of random

bits. Since we wanted to compare the performance of the sampling method to the
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performance of the random walk method across a variety of percentages of random

bit usage, we performed eighteen different pairs of tests on each of the twenty-one

graphs, each test sampling a different percentage of the vertices. Each pair consisted

of a sampling test that sampled t = k|V | vertices uniformly at random, and a random

walk that took (t−1) logd |V | steps. The eighteen different values of k we chose were

5%−15%, inclusive, with 1% increments, along with 20%, 25%, 30%, 40%, 50%, 60%,

and 70%.

After selecting the percentages of vertices to sample, we began running the

tests. For each value of t for each of the twenty-one graphs, we ran 1, 000 trials of

sampling t vertices and 1, 000 trials of taking a random walk of length (t−1) logd |V |.

As previously mentioned, for the sampling, we selected t vertices uniformly at ran-

dom, and then also visited all of the neighbors of that vertex. Similarly, during

the random walk, we would visit each vertex along the walk, as well as all the

neighbors of each selected vertex. Since the graph is explicitly constructed, we can

do this without fear of gaining an “unfair” advantage over the sampling methods,

since there is no randomness inherent in the graph’s structure, combining the idea

of neighbor sampling with random walks [31].

Thus, in the case of taking t random samples on a d-regular graph, the max-

imum number of unique vertices that could be seen is max{t(d + 1), |V |}. In the

case of the a random walk with (t − 1) logd |V | steps, the math is somewhat more

complicated. For each step, a maximum of (d − 1) new vertices can be seen, since

one of the d vertices (namely, the vertex the walk is currently at), was a neighbor of

the previous vertex on the walk, and thus should not be double-counted. However,
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the vertex chosen at the start point and its d neighbors must also be accounted for,

so the maximum number of unique vertices that could be seen by a random walk of

(t− 1) logd |V | steps is max{1 + d+ (d− 1)(t− 1) logd |V |, |V |}. Thus, theoretically

speaking, the random walk method has the potential to find more unique vertices.

Now, for each set of 1, 000 trials, we computed the median and average number

of unique vertices that were explored by both the sampling and random walk tests.

We then computed these as percentages of the number of vertices, and then com-

puted the difference between the two percentages to gauge the relative performance

of the two algorithms.

11.1.2 Data

The complete results from the testing can be found in Table A.11 in Appendix

A. A sample of the output, representing the tests for just one graph, can be found

below in Table 11.1. A second chart, Table 11.2, contains results for all of the

k = 15% tests for each of the twenty-one graphs, providing a horizontal cross-section

of the results.

11.1.3 Results

The results of our probability amplification tests were extremely interesting.

As the rightmost column indicates, for all twenty-one graphs, every one of the eigh-

teen tests resulted in the random walk method visiting more unique vertices. The

difference percentages also followed a similar pattern for each of the graphs; typically,
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Table 11.1: Probability Amplification – Test Results; m = 17

m |V | trials t k (%) # steps walk avg walk median sample avg sample median % walk % sample % diff

17 578 1000 29 5 110 220.57 223 145.61 146 0.382 0.252 0.130
17 578 1000 35 6 134 255.48 258 170.79 171 0.442 0.295 0.147
17 578 1000 41 7 158 285.42 290 194.58 195 0.494 0.337 0.157
17 578 1000 47 8 181 310.03 314 217.16 217 0.536 0.376 0.161
17 578 1000 53 9 205 334.31 337 237.69 238 0.578 0.411 0.167
17 578 1000 58 10 225 355.14 360 254.50 255 0.614 0.440 0.174
17 578 1000 64 11 248 375.28 379 273.17 273 0.649 0.473 0.177
17 578 1000 70 12 272 394.05 398 291.50 292 0.682 0.504 0.177
17 578 1000 76 13 296 410.03 413 307.40 307 0.709 0.532 0.178
17 578 1000 81 14 316 422.14 425 320.98 321 0.730 0.555 0.175
17 578 1000 87 15 339 436.45 441 335.56 336 0.755 0.581 0.175
17 578 1000 116 20 454 487.03 490 396.76 397 0.843 0.686 0.156
17 578 1000 145 25 569 518.81 523 441.70 442 0.898 0.764 0.133
17 578 1000 174 30 683 538.13 540 476.66 477 0.931 0.825 0.106
17 578 1000 232 40 912 559.78 562 520.27 520 0.968 0.900 0.068
17 578 1000 289 50 1138 568.99 571 545.08 545 0.984 0.943 0.041
17 578 1000 347 60 1367 572.81 575 559.32 560 0.991 0.968 0.023
17 578 1000 405 70 1596 575.13 577 567.48 568 0.995 0.982 0.013

Table 11.2: Probability Amplification – Test Results; k = 15%

m |V | trials t k (%) # steps walk avg walk median sample avg sample median % walk % sample % diff

7 98 1000 15 15 39 60.80 62 56.01 56 0.620 0.572 0.049
9 162 1000 25 15 75 108.66 110 94.17 94 0.671 0.581 0.089
11 242 1000 37 15 122 168.68 171 140.32 140 0.697 0.580 0.117
13 338 1000 51 15 180 242.78 245 195.68 196 0.718 0.579 0.139
15 450 1000 68 15 254 334.22 336 261.33 261 0.743 0.581 0.162
17 578 1000 87 15 339 436.45 441 335.56 336 0.755 0.581 0.175
19 722 1000 109 15 441 556.86 561 420.94 421 0.771 0.583 0.188
21 882 1000 133 15 556 690.90 694 514.22 514 0.783 0.583 0.200
23 1058 1000 159 15 683 838.48 843 617.56 618 0.793 0.584 0.209
25 1250 1000 188 15 828 1002.60 1008 730.31 731 0.802 0.584 0.218
27 1458 1000 219 15 986 1178.85 1183 853.03 853 0.809 0.585 0.223
29 1682 1000 253 15 1163 1377.56 1383 984.90 985 0.819 0.586 0.233
31 1922 1000 289 15 1353 1585.52 1591.5 1126.22 1126 0.825 0.586 0.239
33 2178 1000 327 15 1556 1809.53 1815.5 1275.97 1275.5 0.831 0.586 0.245
35 2450 1000 368 15 1779 2051.87 2056 1438.44 1439 0.837 0.587 0.250
37 2738 1000 411 15 2016 2306.50 2310 1606.28 1606.5 0.842 0.587 0.256
39 3042 1000 457 15 2272 2577.09 2582 1786.39 1787 0.847 0.587 0.260
41 3362 1000 505 15 2542 2865.92 2873 1976.14 1977 0.852 0.588 0.265
43 3698 1000 555 15 2827 3165.81 3172 2174.52 2175 0.856 0.588 0.268
45 4050 1000 608 15 3132 3483.83 3491 2381.75 2381 0.860 0.588 0.272
47 4418 1000 663 15 3452 3814.15 3819 2597.98 2599 0.863 0.588 0.275
49 4802 1000 721 15 3792 4168.62 4174 2826.91 2828 0.868 0.589 0.279

for low values of k%, the random walk method would be about 10-15 percentage

points higher than the sampling method in terms of the proportion of unique vertices

visited. As the value of k increased, so would the differences in the percentages, up to
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the point where k was about 15%−20%. At those sampling percentages, the random

walk method was significantly more effective than the sampling method, reaching

about 30 percentage points of difference. Generally speaking, as the graphs got

larger, this performance gap also tended to get bigger. Thus was somewhat unex-

pected, since it is clear that the sampling method would have much fewer collisions

when the graphs are larger; however, due to the nice expansion properties of the

GG graphs, there are also fewer collisions with the random walks on larger graphs,

which more than made up for the difference.

For values of k that are around 40% and higher, the differences between the

two methods began to shrink. Since all of the GG graphs are 5-regular, and since we

are examining the neighbors of the sampled points and the neighbors of the points

on the walk, by the time k got into the 40%+ range, our data shows that over

95% of all the vertices in the graph were being visited by both algorithms. Thus,

even though the random walk method significantly out performs random sampling

when the percentage of vertices sampled is fairly small, as that percentage grows,

the returns diminish greatly.

Thus, these results show that it is indeed possible, and in fact, very wise,

to use random walks on expander graphs to amplify probability. Using the same

number of random bits, it is possible to reach significantly more vertices from the

graph using this method. For instance, if one were to use enough random bits to

select 7% of the vertices as samples, using the random walk method would allow for

over half of the graph’s vertices (for graphs of moderate to large size) to be visited,

as opposed to only about a third of the vertices if using random sampling alone.
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11.2 Cuckoo Hashing and Expander Graphs

As described by Mitzenmacher, cuckoo hashing with two hash functions is

similar to a random graph where the edges represent the items stored in the hash

[35]. However, cuckoo hashing on regular expander graphs can also be viewed in

another way. Instead of considering the edges to be items, we simply consider

the vertices of a graph to be positions in a hash table, and we have a single hash

function whose image is the entire set of vertices. The valid locations for an item

to be stored in the hash are the vertex to where it is hashed, in addition to the

d neighbors of that vertex. Thus, insertion into the hash would work as follows:

first, a hash function is applied to the key being stored, and that hash produces an

index that corresponds to a vertex in the graph. If no other object already occupies

that node, then the item is simply stored there. If there is another object, then

the neighbors of that vertex are checked in some canonical ordering. If any one of

the neighboring vertices is empty, the item is stored at that vertex. If all of the

neighboring vertices are already occupied by an item, then one of the neighbors is

selected at random, the item being inserted is placed at that neighbor’s position,

and the item that was previously stored at that neighboring vertex is then hashed,

and the process continues. Thus, similar to cuckoo hashing, keys being inserted can

push out previously placed keys, which is then attempted to be placed back in the

hash itself. Similar to traditional cuckoo hashing, searching for a key can be done

in O(d) time by simply hashing the key and then checking the resulting vertex and

its d neighbors. In this scheme, similar to the traditional cuckoo hashing method, if
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there are d+ 2 keys that all map to the same vertex, then a new hash function will

have to be used and all the keys will need to be rehashed.

In terms of implementing the algorithm itself, the information stored at each

vertex would consist of the following: one bit to indicate whether an item is currently

stored at that vertex, d bits to indicate whether any item that has hashed to the

vertex has migrated to a neighboring vertex, one bit to indicate whether or not

the item stored at this vertex hashed to this vertex, and d bits to indicate which

neighboring vertex (if any) the item in the current vertex came from (hashed to

originally). Then, when searching for a key, the d bits indicating whether anyone

has migrated can be shifted d times, and if a set bit shifts into the carry, then that

neighbor will have to be checked for the item in question (assuming it’s not stored

at the first vertex checked). The bit indicating whether or not the item stored at a

vertex actually hashed to that vertex, in addition to the d bits for migrations, can

also be used to quickly determine whether or not a new hash functions needs to be

selected; if that bit is set for a given vertex and the d bits for the outgoing edges

are all set, then it is clear that there are more than d+ 1 keys that all hashed to the

same vertex.

Now that we have described how our cuckoo-like hashing algorithm can be

implemented using expander graphs, we can discuss the merits of using random

expanders versus explicitly constructed expanders.

One of the main benefits to using explicitly constructed expanders, such as

the Gabber-Galil expanders, is that the graph itself does not need to be stored in

memory [20]. This is because the neighbor relations of any vertex in the graph can
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be computed on the fly in O(d) without having any additional information stored.

For the GG construction, and many other explicit expander constructions, the edge

relationships often involve computations that are performed modulo the number of

vertices. Knowing this, we can speed up the modular arithmetic process by simply

choosing the number of vertices in the graph to be a power of two. In that case,

calculating the mod of a number could be performed simply by bit-shifting the

number the proper number of digits.

Conversely, using a randomly generated expander would yield better perfor-

mance under similar loads as compared to explicit expanders, but that increased

performance comes at the cost of having to generate the entire graph ahead of time

and then storing that graph so that the neighbors of each vertex can be retrieved

when needed. However, there is a also a middle option, which is where the under-

lying expander graph is pseudo-random. In that case, the hashing algorithm could

use pre-defined seeds for each vertex that would be used to prime a pseudo-random

number generator to compute the neighbors of a given vertex. By using these seeds

on a per-vertex basis, it would be possible to guarantee that the algorithm would

compute the same neighbors for a vertex every time, which would mean that the

entire graph itself would not have to be stored. Instead, of course, the seeds them-

selves would need to be stored, and, in order for this method to be a replacement for

storing the entire graph, the pseudo-randomness properties of the algorithm that

uses the seeds would have to be thoroughly verified. This a clear case of a time

versus space trade-off, where, as more information about the graph is stored, fewer

computations would be required to compute the neighboring vertices. Some form of
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pseudo-random graphs with seeds would likely yield better performance than using

this cuckoo-like hashing on explicitly constructed expanders, simply due to better

expansion rates.

To get an idea of how this hashing scheme might work in practice, we can

simply consider a hash table created using this scheme that has a load factor less

than 1/2. In that case, we see that the set of vertices that currently store an item

would have size less than 1
2
n, meaning that the community would have a vertex

expansion rate at least as big as the lower bound on vertex expansion. Throughout

our testing of randomly generated graphs, the lowest vertex expansion rate we came

across was 0.79 for a 100-vertex graph. Thus, on average, close to 80% of the vertices

in our hash that have items stored in them will have an edge that connects to a

neighbor that does not have any item stored at it. Thus, if a new item is being

stored in the table, there is a very high likelihood that there will be a place for it,

either at the position to which it hashed or at one of the neighbors of that position.

If all of the positions are filled, then, as previously hashed items are pushed out, it

is clear that, with high probability, an available space would be found within three

of four iterations.

As this analysis shows, d-regular expander graphs can be used to implement d-

choice cuckoo hashing using only a single hash function. If the load factor of the hash

table is less than 1
2
, bounds on the vertex expansion of graph subsets can guarantee

that we would not expect many collisions. That said, much like traditional cuckoo

hashing, if more than d+ 1 items hash to the same vertex, a new hash function will

have to be used, and all of the existing keys will need to be rehashed.
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Chapter 12

Conclusions

Expander graphs are extremely versatile objects with many applications, both

practical and theoretical, across mathematics and computer science. We have de-

scribed and discussed two such applications, probability amplification and hashing.

We performed empirical tests to measure probabilistic amplification, the results of

which showed that using random walks on explicitly constructed expanders can help

preserve a substantial number of random bits as compared to simply drawing sam-

ples uniformly at random from a population. We also outlined how expanders can be

used to implement cuckoo-like hashing algorithms, where the vertices of a random

graph represent possible locations where items can be stored in a hash table.

Unfortunately, we have also shown that, given a random regular graph, it

is very difficult to get a good idea of that graph’s expansion rate. We’ve shown

theoretical results proving that calculating exact expansion rates is NP-hard, as well

as theoretical results that prove that it is NP-hard to provide a good estimation of

a graph’s expansion rate. We have also discussed the deep ties that the difficulty of

estimating a graph’s expansion rate has to the Unique Games Conjecture and other

problems related to the hardness of approximation.

Despite these computational difficulties, we also know that, with high prob-

ability, any random d-regular graph is an expander. Thus, in order to assure that
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a given graph is a good expander, it becomes necessary to develop methods to try

and assess expansion rates. Methods like the linear programming approximation

of SparsestCut can provide some information about a graph’s expansion rate, but

due to the computational infeasibility of running the linear programming relaxation

on large graphs and the constants hidden in front of the approximations, it is not a

practical solution for the general case. The spectral gap of a graph is also correlated

to its expansion rate, but that relationship is inconsistent, and, as we have shown,

the bounds on expansion that the spectral gap provides are very loose.

To address this shortcoming in evaluating graph expansion, we have developed

multiple methods for empirically evaluating a graph’s expansion. One method was

to randomly sample subsets of a fixed size and compute the average observed ex-

pansion rate. These averages were closely correlated with the second eigenvalue of

the corresponding graphs’ adjacency matrices, which illustrates that they are a good

measure for comparing the expansion rates of graphs. Other methods for evaluating

expansion used community detection algorithms that maximize a graph’s modular-

ity in order to find well-defined communities of vertices. These communities are

subsets of vertices that have very few connections to vertices not in the community,

and thus, correspond to clusters of vertices with bad expansion.

Based on the data from our community detection experiments, we have clearly

shown that the spectral upper bound on edge expansion is an extremely loose bound

for randomly generated d-regular graphs, and for graphs that were explicitly con-

structed using the Gabber-Galil method. Similarly, we believe that the lower spec-

tral bound is also quite loose, especially in the case of the GG graphs and other
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graph families that have a relatively small spectral gap. Thus, we believe the actual

expansion rates of randomly generated graphs to be much closer to the minimum

expansion found via community detection testing than to the spectral lower bound.

Our data clearly illustrates that, given an expander graph, using community detec-

tion algorithms can help significantly narrow the range of the graph’s true expansion

rate and provide some evaluation of a graph’s true expansion rate.
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Chapter 13

Future Work

There are a number of different directions for future work in the areas of

expander graphs and approximating expansion rates. First, performing more mod-

ularity maximization testing with larger graphs would help make the relationship

between expansion rates and modularity more clear. It would also be interesting to

test large non-random expanders that were created using a different explicit con-

struction than that of Gabber and Galil. There are also additional modularity max-

imization algorithms that could be tested, as well as methods that we did test whose

parameter spaces could be more fully explored in testing. More generally, there are

also other community detection algorithms besides modularity maximization algo-

rithms that could be tested. For example, some sort cosine similarity algorithm that

uses the network’s adjacency matrix could potentially be used to find communities

with low expansion. In fact, some of these alternative measures might be more

closely aligned with finding communities with low expansion, as opposed to finding

communities with significantly more internal connections that external connections,

which is the primary goal of modularity maximization.

Repeating the vertex expansion sampling outlined in Section 9.2 using larger

graphs, more trials, and testing subsets of different sizes would help create a clearer

connection between the second eigenvalue and the expected vertex expansion of an
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arbitrarily chosen subset. Our results established a link between the two, but until

a larger number of sizes of subsets are tested, it is not clear how reliably the two

values are correlated. With more empirical observations, statistical methods could

be used to quantify the strength of this relationship.

Implementing the cuckoo-like hashing algorithms described in Section 11.2 and

then performing empirical tests to see how its performance compares to existing

hashing implementations would be very interesting. This would also enable the

exploration of the space versus time tradeoff that was discussed regarding using

random regular graphs as the underlying structure of the hash.

Given enough compute power and time, it would also be worthwhile to re-

examine the zig-zag product and potentially create expanders using the zig-zag con-

struction (and other explicit construction methods). Once the graphs have been con-

structed, the same modularity maximization and community detection algorithms

could be used to empirically measure their expansion rates. Additional computing

resources would also make it possible to revisit the linear programming implementa-

tion of the SparsestCut approximation algorithm and run that program over dozens

of both randomly generated and explicitly constructed expander graphs.
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Appendix A

Tables and Charts

Table A.1: Neighborhood Sizes – Theoretical Expectation

d n ε Expected Neighb. Size

4 100 0.25 72.409
6 100 0.25 83.265
8 100 0.25 89.850
4 200 0.125 93.857
6 200 0.125 117.336
8 200 0.125 135.621

Table A.2: Graph Generation Results

d n #Graphs Min Max Average Median 2
√
d− 1

4 100 5000 3.28804 4.00000 3.45528 3.44783 3.46410
6 100 5000 4.19232 5.02061 4.44508 4.43706 4.47214
8 100 5000 4.94387 6.37714 5.24823 5.24280 5.29150
4 200 5000 3.36599 4.00000 3.45932 3.45442 3.46410
6 200 5000 4.29392 4.99664 4.45581 4.45105 4.47214
8 200 5000 5.08165 6.37413 5.26645 5.26107 5.29150

Table A.2: Graph Generation Results (Cont’d)

d n Min (norm) Max (norm) 2
√
d−1
d Ramanujan Diff. (norm)

4 100 0.82201 1.00000 0.86603 0.04402
6 100 0.69872 0.83677 0.74536 0.04664
8 100 0.61798 0.79714 0.66144 0.04345
4 200 0.84150 1.00000 0.86603 0.02453
6 200 0.71565 0.83277 0.74536 0.02970
8 200 0.63521 0.79677 0.66144 0.02623
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Table A.3: Singleton, |S| = 1 searching; n = 100

d n # trials # red |S| λ(G) 0 red 1 red 2 red 3 red 4 red 5 red 6 red

4 100 500 20 1 3.288 32.38000 41.74600 20.68800 4.65800 0.51600 0.01200
4 100 500 20 1 4.000 32.76800 41.57600 20.60800 4.57600 0.44000 0.03200
4 100 500 20 1 3.475 32.68200 42.07800 20.29800 4.45800 0.46800 0.01600
4 100 500 20 1 3.420 32.64000 41.88800 20.47800 4.48400 0.49600 0.01400
4 100 500 20 1 3.373 32.28800 41.80400 20.80600 4.61800 0.47000 0.01400
6 100 500 20 1 4.192 20.99400 37.27000 28.12800 10.92400 2.37400 0.29200 0.01800
6 100 500 20 1 5.021 21.11000 37.98800 27.75400 10.54400 2.32800 0.25600 0.02000
6 100 500 20 1 4.486 21.51400 38.05200 27.45000 10.42200 2.27800 0.27000 0.01400
6 100 500 20 1 4.290 20.32400 38.10800 28.48400 10.50200 2.29200 0.27400 0.01600
6 100 500 20 1 4.496 20.41200 37.68200 28.50200 10.78200 2.34400 0.26200 0.01600
8 100 500 20 1 4.944 13.19000 31.19400 31.28800 17.15400 5.75400 1.21800 0.19800
8 100 500 20 1 6.377 13.69600 31.50200 31.39000 16.66600 5.47000 1.12400 0.14600
8 100 500 20 1 5.373 13.83000 32.20000 30.96200 16.63800 5.18600 1.03600 0.14600
8 100 500 20 1 5.289 13.70600 31.76200 30.75800 16.96400 5.53200 1.10600 0.15400
8 100 500 20 1 5.297 13.37200 31.53800 31.34800 16.71400 5.70800 1.14800 0.14600
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Table A.3: Singleton, |S| = 1 searching; n = 100
(continued from previous page)

d n # trials # red |S| λ(G) 7 red 8 red 9 red E(Reds)

4 100 500 20 1 3.288 0.99220
4 100 500 20 1 4.000 0.98440
4 100 500 20 1 3.475 0.98000
4 100 500 20 1 3.420 0.98350
4 100 500 20 1 3.373 0.99220
6 100 500 20 1 4.192 0.00000 1.37362
6 100 500 20 1 5.021 0.00000 1.35840
6 100 500 20 1 4.486 0.00000 1.34764
6 100 500 20 1 4.290 0.00000 1.37216
6 100 500 20 1 4.496 0.00000 1.37814
8 100 500 20 1 4.944 0.00400 0.00000 0.00000 1.75554
8 100 500 20 1 6.377 0.00600 0.00000 0.00000 1.72698
8 100 500 20 1 5.373 0.00200 0.00000 0.00000 1.70852
8 100 500 20 1 5.289 0.01800 0.00000 0.00000 1.72878
8 100 500 20 1 5.297 0.02600 0.00000 0.00000 1.74006
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Table A.4: Singleton, |S| = 1 searching; n = 200

d n # trials # red |S| λ(G) 0 red 1 red 2 red 3 red 4 red 5 red 6 red

4 200 500 40 1 3.288 32.81500 40.91500 20.73700 4.93700 0.57600 0.02000
4 200 500 40 1 4.000 33.36100 41.14500 20.07800 4.79700 0.59400 0.02500
4 200 500 40 1 3.475 32.85100 41.44300 20.32000 4.81200 0.54800 0.02600
4 200 500 40 1 3.420 32.73200 41.48900 20.43700 4.77700 0.53500 0.03000
4 200 500 40 1 3.373 32.57900 41.64300 20.39100 4.82800 0.52600 0.03300
6 200 500 40 1 4.192 20.74000 37.11900 27.80700 11.28100 2.66800 0.35400 0.03000
6 200 500 40 1 5.021 21.30100 37.29800 27.33000 11.03800 2.65800 0.34700 0.02800
6 200 500 40 1 4.486 20.98700 36.96100 27.83600 11.24900 2.61900 0.32700 0.02000
6 200 500 40 1 4.290 21.27500 37.31200 27.56500 10.92500 2.55000 0.35000 0.02200
6 200 500 40 1 4.496 20.80500 37.43000 27.66300 11.19500 2.52100 0.35700 0.02800
8 200 500 40 1 4.944 13.18900 30.65300 30.82200 17.47000 6.20500 1.41700 0.22200
8 200 500 40 1 6.377 13.19100 30.94800 31.09600 17.23700 6.00500 1.30900 0.19900
8 200 500 40 1 5.373 13.60000 30.75900 30.95300 17.02700 6.05300 1.38800 0.20100
8 200 500 40 1 5.289 13.42800 30.90900 30.68400 17.24700 6.08500 1.42700 0.19700
8 200 500 40 1 5.297 13.80700 30.81100 30.55400 17.21700 6.02200 1.36800 0.20400
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Table A.4: Singleton, |S| = 1 searching; n = 200
(continued from previous page)

d n # trials # red |S| λ(G) 7 red 8 red 9 red E(Reds)

4 200 500 40 1 3.288 0.99604
4 200 500 40 1 4.000 0.98193
4 200 500 40 1 3.475 0.98841
4 200 500 40 1 3.420 0.98984
4 200 500 40 1 3.373 0.99178
6 200 500 40 1 4.192 0.00100 1.39205
6 200 500 40 1 5.021 0.00000 1.37607
6 200 500 40 1 4.486 0.00100 1.38618
6 200 500 40 1 4.290 0.00100 1.37306
6 200 500 40 1 4.496 0.00100 1.38385
8 200 500 40 1 4.944 0.02200 0.00000 0.00000 1.78098
8 200 500 40 1 6.377 0.01500 0.00000 0.00000 1.76715
8 200 500 40 1 5.373 0.01900 0.00000 0.00000 1.76237
8 200 500 40 1 5.289 0.02000 0.00300 0.00000 1.76839
8 200 500 40 1 5.297 0.01600 0.00100 0.00000 1.75842
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Table A.5: Subset sampling, |S| = 25; n = 100

d n # trials # red # subsets |S| λ(G) 0 red 1 red 2 red 3 red 4 red 5 red

4 100 500 20 500 25 3.288 0.000 0.000 0.000 0.000 0.000 0.000
4 100 500 20 500 25 4.000 0.000 0.000 0.000 0.000 0.000 0.000
4 100 500 20 500 25 3.475 0.000 0.000 0.000 0.000 0.000 0.000
4 100 500 20 500 25 3.420 0.000 0.000 0.000 0.000 0.000 0.000
4 100 500 20 500 25 3.373 0.000 0.000 0.000 0.000 0.000 0.000
6 100 500 20 500 25 4.192 0.000 0.000 0.000 0.000 0.000 0.000
6 100 500 20 500 25 5.021 0.000 0.000 0.000 0.000 0.000 0.000
6 100 500 20 500 25 4.486 0.000 0.000 0.000 0.000 0.000 0.000
6 100 500 20 500 25 4.290 0.000 0.000 0.000 0.000 0.000 0.000
6 100 500 20 500 25 4.496 0.000 0.000 0.000 0.000 0.000 0.000
8 100 500 20 500 25 4.944 0.000 0.000 0.000 0.000 0.000 0.000
8 100 500 20 500 25 6.377 0.000 0.000 0.000 0.000 0.000 0.000
8 100 500 20 500 25 5.373 0.000 0.000 0.000 0.000 0.000 0.000
8 100 500 20 500 25 5.289 0.000 0.000 0.000 0.000 0.000 0.000
8 100 500 20 500 25 5.297 0.000 0.000 0.000 0.000 0.000 0.000
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Table A.5: Subset sampling, |S| = 25; n = 100
(continued from previous page)

d n λ(G) 6 red 7 red 8 red 9 red 10 red 11 red 12 red 13 red 14 red 15 red

4 100 3.288 0.001 0.004 0.021 0.126 0.462 1.562 4.188 9.034 15.527 20.663
4 100 4.000 0.000 0.005 0.026 0.135 0.556 1.793 4.656 9.717 16.029 20.792
4 100 3.475 0.000 0.002 0.026 0.147 0.509 1.804 4.673 9.770 15.966 20.819
4 100 3.420 0.000 0.003 0.023 0.141 0.523 1.746 4.539 9.493 15.910 20.816
4 100 3.373 0.000 0.003 0.028 0.120 0.465 1.578 4.184 9.153 15.513 20.756
6 100 4.192 0.000 0.000 0.000 0.000 0.004 0.029 0.141 0.678 2.454 6.998
6 100 5.021 0.000 0.000 0.000 0.001 0.007 0.045 0.210 0.879 2.940 7.893
6 100 4.486 0.000 0.000 0.000 0.001 0.004 0.028 0.212 0.862 3.032 7.934
6 100 4.290 0.000 0.000 0.000 0.000 0.003 0.024 0.143 0.678 2.486 6.977
6 100 4.496 0.000 0.000 0.000 0.002 0.003 0.021 0.128 0.692 2.481 7.017
8 100 4.944 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.014 0.164 0.888
8 100 6.377 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.034 0.216 1.146
8 100 5.373 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.040 0.234 1.268
8 100 5.289 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.032 0.193 1.066
8 100 5.297 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.029 0.172 0.981
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Table A.5: Subset sampling, |S| = 25; n = 100
(continued from previous page)

d n λ(G) 16 red 17 red 18 red 19 red 20 red E(reds) Theor. Reds

4 100 3.288 21.212 15.867 8.306 2.646 0.381 15.347 14.482
4 100 4.000 20.691 15.178 7.639 2.434 0.348 15.250 14.482
4 100 3.475 20.860 15.144 7.572 2.360 0.347 15.247 14.482
4 100 3.420 20.768 15.376 7.771 2.524 0.367 15.276 14.482
4 100 3.373 21.160 15.871 8.145 2.635 0.389 15.339 14.482
6 100 4.192 15.169 24.414 26.714 17.826 5.572 17.389 16.653
6 100 5.021 16.140 24.624 25.600 16.641 5.019 17.283 16.653
6 100 4.486 16.360 24.674 25.557 16.502 4.834 17.270 16.653
6 100 4.290 15.172 24.025 26.745 18.052 5.694 17.398 16.653
6 100 4.496 15.065 23.959 26.774 18.078 5.781 17.402 16.653
8 100 4.944 3.744 12.029 26.203 35.268 21.688 18.557 17.970
8 100 6.377 4.627 13.616 27.482 33.760 19.116 18.446 17.970
8 100 5.373 5.010 14.062 27.447 33.418 18.518 18.414 17.970
8 100 5.289 4.432 13.057 27.022 34.051 20.143 18.483 17.970
8 100 5.297 4.090 12.593 26.554 34.684 20.890 18.519 17.970
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Table A.6: Subset sampling, |S| = 25; n = 200

d n # trials # red # subsets |S| λ(G) 0 red 1 red 2 red 3 red 4 red 5 red 6 red 7 red 8 red

4 200 500 40 500 25 3.366 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004
4 200 500 40 500 25 4.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.007
4 200 500 40 500 25 3.419 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.008
4 200 500 40 500 25 3.436 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004
4 200 500 40 500 25 3.436 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002
6 200 500 40 500 25 4.294 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 200 500 40 500 25 4.997 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 200 500 40 500 25 4.402 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 200 500 40 500 25 4.478 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 200 500 40 500 25 4.392 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 200 500 40 500 25 5.082 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 200 500 40 500 25 6.374 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 200 500 40 500 25 5.283 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 200 500 40 500 25 5.282 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 200 500 40 500 25 5.423 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table A.6: Subset sampling, |S| = 25; n = 200
(continued from previous page)

d n λ(G) 9 red 10 red 11 red 12 red 13 red 14 red 15 red 16 red 17 red 18 red 19 red 20 red

4 200 3.366 0.013 0.062 0.178 0.500 1.148 2.292 4.128 6.477 9.309 11.658 13.297 13.298
4 200 4.000 0.016 0.082 0.220 0.594 1.323 2.643 4.552 7.159 9.853 12.268 13.382 13.042
4 200 3.419 0.024 0.080 0.220 0.542 1.206 2.540 4.384 6.871 9.592 11.972 13.298 13.295
4 200 3.436 0.021 0.066 0.193 0.493 1.161 2.440 4.293 6.778 9.520 11.832 13.248 13.281
4 200 3.436 0.021 0.072 0.215 0.532 1.165 2.357 4.191 6.673 9.479 11.810 13.243 13.412
6 200 4.294 0.000 0.000 0.000 0.001 0.008 0.027 0.091 0.241 0.568 1.184 2.434 4.316
6 200 4.997 0.000 0.000 0.000 0.002 0.010 0.031 0.085 0.296 0.680 1.440 2.773 4.745
6 200 4.402 0.000 0.000 0.000 0.002 0.008 0.027 0.082 0.251 0.581 1.333 2.555 4.447
6 200 4.478 0.000 0.001 0.001 0.003 0.010 0.041 0.110 0.296 0.678 1.431 2.754 4.753
6 200 4.392 0.000 0.000 0.001 0.004 0.009 0.034 0.096 0.260 0.618 1.356 2.571 4.482
8 200 5.082 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.008 0.032 0.101 0.237
8 200 6.374 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.012 0.038 0.113 0.304
8 200 5.283 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.012 0.032 0.102 0.287
8 200 5.282 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.008 0.048 0.118 0.272
8 200 5.423 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.016 0.033 0.102 0.266
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Table A.6: Subset sampling, |S| = 25; n = 200
(continued from previous page)

d n λ(G) 21 red 22 red 23 red 24 red 25 red 26 red 27 red 28 red 29 red 30 red 31 red

4 200 3.366 11.935 9.702 6.913 4.440 2.527 1.241 0.558 0.208 0.078 0.025 0.006
4 200 4.000 11.550 9.054 6.367 3.904 2.159 1.090 0.458 0.188 0.055 0.020 0.009
4 200 3.419 11.787 9.309 6.546 4.130 2.283 1.122 0.504 0.205 0.059 0.017 0.004
4 200 3.436 11.876 9.472 6.666 4.232 2.356 1.212 0.548 0.207 0.071 0.020 0.005
4 200 3.436 11.838 9.453 6.738 4.345 2.372 1.238 0.526 0.214 0.076 0.020 0.004
6 200 4.294 6.861 9.365 11.940 13.494 13.510 11.966 9.568 6.568 4.051 2.178 1.027
6 200 4.997 7.319 10.036 12.429 13.541 13.197 11.496 8.983 6.083 3.599 1.914 0.870
6 200 4.402 6.889 9.773 11.924 13.480 13.349 11.915 9.340 6.440 3.926 2.140 0.962
6 200 4.478 7.360 10.096 12.460 13.655 13.130 11.555 8.912 5.949 3.552 1.905 0.845
6 200 4.392 7.067 9.557 11.932 13.428 13.505 11.828 9.272 6.384 3.973 2.076 0.984
8 200 5.082 0.573 1.333 2.556 4.714 7.421 10.532 13.031 14.426 13.872 11.870 8.765
8 200 6.374 0.755 1.562 3.104 5.185 8.123 10.888 13.407 14.293 13.667 11.201 8.128
8 200 5.283 0.661 1.437 2.840 4.965 7.750 10.846 13.370 14.411 13.722 11.400 8.364
8 200 5.282 0.681 1.508 2.967 5.156 7.840 10.982 13.182 14.341 13.584 11.428 8.266
8 200 5.423 0.670 1.501 2.883 5.022 7.830 10.702 13.109 14.287 13.652 11.548 8.513
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Table A.6: Subset sampling, |S| = 25; n = 200
(continued from previous page)

d n λ(G) 32 red 33 red 34 red 35 red 36 red 37 red 38 red 39 red 40 red E(Red) Theor. Reds

4 200 3.366 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 19.572 18.771
4 200 4.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 19.354 18.771
4 200 3.419 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 19.440 18.771
4 200 3.436 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 19.498 18.771
4 200 3.436 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 19.515 18.771
6 200 4.294 0.415 0.132 0.038 0.011 0.003 0.000 0.000 0.000 0.000 24.431 23.467
6 200 4.997 0.324 0.106 0.027 0.011 0.001 0.000 0.000 0.000 0.000 24.227 23.467
6 200 4.402 0.403 0.131 0.030 0.010 0.001 0.000 0.000 0.000 0.000 24.371 23.467
6 200 4.478 0.350 0.114 0.032 0.005 0.001 0.000 0.000 0.000 0.000 24.213 23.467
6 200 4.392 0.385 0.126 0.040 0.010 0.002 0.000 0.000 0.000 0.000 24.356 23.467
8 200 5.082 5.550 2.934 1.378 0.478 0.144 0.036 0.006 0.001 0.000 28.107 27.124
8 200 6.374 4.882 2.597 1.158 0.412 0.132 0.029 0.004 0.000 0.000 27.897 27.124
8 200 5.283 5.185 2.728 1.260 0.456 0.131 0.033 0.005 0.000 0.000 27.988 27.124
8 200 5.282 5.085 2.714 1.210 0.433 0.130 0.037 0.005 0.001 0.000 27.951 27.124
8 200 5.423 5.238 2.763 1.246 0.453 0.118 0.034 0.007 0.001 0.000 27.992 27.124
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Table A.7: Community Detection – Algorithm Timing

n gen
type

λ2 algorithm #
comms

Average
comm.
size

# ver-
tices
in

comm.
with
worst
exp.

min
v. exp.

min
e. exp.

median
v. exp.

median
e. exp.

Cheeger
upper
bound

spectral
lower
bound

spectral
upper
bound

%
improv.
over
upper
bound

%
above
lower
bound

time
(secs)

100 random 3.7618 extremalOptimization 23 4.3478 4 3 3.3333 3.6667 4 9.4036 0.6191 3.5188 5.2696 438.4304 4082.3736
100 random 3.7618 geneticAlgorithm 42 2.381 5 2.6 2.6667 5 5 9.4036 0.6191 3.5188 24.2157 330.7443 1569.6727
100 random 3.7618 greedy 8 12.5 21 1.8095 1.9412 2.1381 2.25 9.4036 0.6191 3.5188 44.8335 213.5565 12.8817
100 random 3.7618 simulatedAnnealing 100 1 1 3 3 5 5 9.4036 0.6191 3.5188 14.7427 384.5874 2.5343
100 random 3.7618 spectralOptimization 20 5 20 2.6 3.6667 4.3333 4.7292 9.4036 0.6191 3.5188 -4.2034 492.2735 116.4646
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Table A.8: Community Detection – Greedy Algorithm Variant Timing

n gen
type

λ2 algorithm #
comms

Average
comm.
size

# ver-
tices
in

comm.
with
worst
exp.

min
v. exp.

min
e. exp.

median
v. exp.

median
e. exp.

Cheeger
upper
bound

spectral
lower
bound

spectral
upper
bound

%
improv.
over
upper
bound

%
above
lower
bound

time
(secs)

100 random 3.7618 greedy 8 12.5 21 1.8095 1.9412 2.1381 2.2500 9.4036 0.6191 3.5188 44.8335 213.5565 9.4609
100 random 3.7618 rgplus 7 14.2857 22 1.5000 1.7273 1.8125 2.1250 9.4036 0.6191 3.5188 50.9125 179.0049 29.5869
100 random 3.7618 msgvm 6 16.6667 24 1.4583 1.7500 1.9786 2.0362 9.4036 0.6191 3.5188 50.2666 182.6760 270.4000
100 random 3.7618 cd 10 10 11 2.0909 2.2727 2.4222 2.6000 9.4036 0.6191 3.5188 35.4111 267.1117 2505.1517
100 random 3.7618 Louvain 2 50 49 0.7959 1.1633 0.7959 1.1633 9.4036 0.6191 3.5188 66.9410 87.9012 110.2937
100 random 3.7618 mome 1 100 0 N/A N/A N/A N/A 9.4036 0.6191 3.5188 N/A N/A 20.0359
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Table A.9: Community Detection – Random Graph Testing Results

n algorithm q initial λ2 #
comms

Average
comm.
size

# ver-
tices
in

comm.
with
worst
exp.

modularity min
v. exp.

min
e. exp.

median
v. exp.

median
e. exp.

Cheeger
upper
bound

spectral
lower
bound

spectral
upper
bound

%
improv.
over
upper
bound

%
above
lower
bound

time
(secs)

100 Louvain N/A N/A 3.7618 2 50 49 0.2800 0.7959 1.1633 0.7959 1.1633 9.4036 0.6191 3.5188 66.9410 87.9012 109.0601
100 greedy general general 3.7618 8 12.5 21 0.4100 1.8095 1.9412 2.1381 2.2500 9.4036 0.6191 3.5188 44.8335 213.5565 7.7694
100 greedy general walkers 3.7618 8 12.5 23 0.4000 1.6957 1.8696 2.2898 2.3750 9.4036 0.6191 3.5188 46.8686 201.9892 21.7350
100 greedy danon general 3.7618 8 12.5 15 0.4100 1.8667 2.0667 2.1538 2.3077 9.4036 0.6191 3.5188 41.2672 233.8269 8.1405
100 greedy danon walkers 3.7618 9 11.1111 16 0.4000 1.7500 2.0000 2.3333 2.5000 9.4036 0.6191 3.5188 43.1618 223.0583 22.1263
100 greedy wakita1 general 3.7618 8 12.5 21 0.4100 1.8095 1.9412 2.1381 2.2500 9.4036 0.6191 3.5188 44.8335 213.5565 8.5010
100 greedy wakita1 walkers 3.7618 8 12.5 23 0.4000 1.6957 1.8696 2.2898 2.3750 9.4036 0.6191 3.5188 46.8686 201.9892 22.3027

200 Louvain N/A N/A 3.8805 1 200 0 N/A N/A N/A N/A N/A 8.7100 0.5597 3.3458 N/A N/A 319.3290
200 greedy general general 3.8805 8 25 33 0.4500 1.6364 1.9062 1.9030 2.0770 8.7100 0.5597 3.3458 43.0262 240.5655 16.3802
200 greedy general walkers 3.8805 9 22.2222 35 0.4400 1.6000 1.8000 2.2222 2.3636 8.7100 0.5597 3.3458 46.2018 221.5832 87.9230
200 greedy danon general 3.8805 9 22.2222 30 0.4400 1.8000 2.0000 2.1200 2.2000 8.7100 0.5597 3.3458 40.2242 257.3147 21.1902
200 greedy danon walkers 3.8805 11 18.1818 27 0.4400 1.8148 1.8889 2.2308 2.3529 8.7100 0.5597 3.3458 43.5451 237.4639 91.8731
200 greedy wakita1 general 3.8805 8 25 33 0.4500 1.6364 1.9062 1.9030 2.0770 8.7100 0.5597 3.3458 43.0262 240.5655 20.9406
200 greedy wakita1 walkers 3.8805 9 22.2222 35 0.4400 1.6000 1.8000 2.2222 2.3636 8.7100 0.5597 3.3458 46.2018 221.5832 92.2740

300 Louvain N/A N/A 3.9131 1 300 0 N/A N/A N/A N/A N/A 8.5180 0.5435 3.2969 N/A N/A 499.6951
300 greedy general general 3.9131 11 27.2727 42 0.4400 1.9048 2.1190 2.1935 2.3333 8.5180 0.5435 3.2969 35.7255 289.9123 28.8947
300 greedy general walkers 3.9131 12 25 35 0.4300 2.0571 2.1724 2.2703 2.4390 8.5180 0.5435 3.2969 34.1068 299.7318 218.2100
300 greedy danon general 3.9131 13 23.0769 31 0.4300 2.0968 2.2564 2.3684 2.4737 8.5180 0.5435 3.2969 31.5590 315.1875 43.4904
300 greedy danon walkers 3.9131 13 23.0769 30 0.4400 2.0000 2.1852 2.3571 2.4783 8.5180 0.5435 3.2969 33.7194 302.0818 231.8493
300 greedy wakita1 general 3.9131 11 27.2727 42 0.4400 1.9048 2.1190 2.1935 2.3333 8.5180 0.5435 3.2969 35.7255 289.9123 42.5169
300 greedy wakita1 walkers 3.9131 12 25 35 0.4300 2.0571 2.1724 2.2703 2.4390 8.5180 0.5435 3.2969 34.1068 299.7318 231.0450

400 Louvain N/A N/A 3.9204 1 400 0 N/A N/A N/A N/A N/A 8.4745 0.5398 3.2857 N/A N/A 753.2198
400 greedy general general 3.9204 12 33.3333 46 0.4500 1.8696 2.0217 2.1909 2.3448 8.4745 0.5398 3.2857 38.4689 274.5362 43.5309
400 greedy general walkers 3.9204 12 33.3333 47 0.4500 1.8723 1.9787 2.1775 2.2866 8.4745 0.5398 3.2857 39.7781 266.5674 445.1850
400 greedy danon general 3.9204 12 33.3333 50 0.4400 1.9600 2.1064 2.1644 2.3727 8.4745 0.5398 3.2857 35.8928 290.2169 76.3948
400 greedy danon walkers 3.9204 14 28.5714 30 0.4400 2.1000 2.2667 2.2969 2.4183 8.4745 0.5398 3.2857 31.0146 319.9102 468.9196
400 greedy wakita1 general 3.9204 12 33.3333 46 0.4500 1.8696 2.0217 2.1909 2.3448 8.4745 0.5398 3.2857 38.4689 274.5362 71.2310
400 greedy wakita1 walkers 3.9204 12 33.3333 47 0.4500 1.8723 1.9787 2.1775 2.2866 8.4745 0.5398 3.2857 39.7781 266.5674 470.3922

500 Louvain N/A N/A 3.9217 1 500 0 N/A N/A N/A N/A N/A 8.4671 0.5392 3.2838 N/A N/A 1052.7817
500 greedy general general 3.9217 12 41.6667 80 0.4400 1.7750 2.0000 2.2752 2.4220 8.4671 0.5392 3.2838 39.0951 270.9401 60.0907
500 greedy general walkers 3.9217 11 45.4545 71 0.4400 1.8873 2.0141 2.2564 2.3478 8.4671 0.5392 3.2838 38.6662 273.5523 779.1507
500 greedy danon general 3.9217 14 35.7143 76 0.4500 1.8289 2.0526 2.4131 2.4643 8.4671 0.5392 3.2838 37.4924 280.7017 119.0351
500 greedy danon walkers 3.9217 15 33.3333 48 0.4400 2.0000 2.2500 2.3750 2.4815 8.4671 0.5392 3.2838 31.4820 317.3076 806.3766
500 greedy wakita1 general 3.9217 12 41.6667 80 0.4400 1.7750 2.0000 2.2752 2.4220 8.4671 0.5392 3.2838 39.0951 270.9401 101.2741
500 greedy wakita1 walkers 3.9217 11 45.4545 71 0.4400 1.8873 2.0141 2.2564 2.3478 8.4671 0.5392 3.2838 38.6662 273.5523 730.3919
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Table A.9: Community Detection – Random Graph Testing Results
(continued from previous page)

n algorithm q initial λ2 #
comms

Average
comm.
size

# ver-
tices
in

comm.
with
worst
exp.

modularity min
v. exp.

min
e. exp.

median
v. exp.

median
e. exp.

Cheeger
upper
bound

spectral
lower
bound

spectral
upper
bound

%
improv.
over
upper
bound

%
above
lower
bound

time
(secs)

600 Louvain N/A N/A 3.9428 1 600 0 N/A N/A N/A N/A N/A 8.3414 0.5286 3.2514 N/A N/A 1277.8239
600 greedy general general 3.9428 12 50 79 0.4400 1.8734 2.0886 2.1727 2.3297 8.3414 0.5286 3.2514 35.7627 295.1369 78.9809
600 greedy general walkers 3.9428 12 50 89 0.4400 1.6854 1.8764 2.2616 2.3981 8.3414 0.5286 3.2514 42.2892 254.9909 1266.0886
600 greedy danon general 3.9428 16 37.5 71 0.4400 1.9718 2.1268 2.4259 2.5180 8.3414 0.5286 3.2514 34.5893 302.3549 183.1218
600 greedy danon walkers 3.9428 13 46.1538 55 0.4400 2.0364 2.2364 2.2955 2.4182 8.3414 0.5286 3.2514 31.2183 323.0904 1382.3912
600 greedy wakita1 general 3.9428 12 50 79 0.4400 1.8734 2.0886 2.1727 2.3297 8.3414 0.5286 3.2514 35.7627 295.1369 167.8138
600 greedy wakita1 walkers 3.9428 12 50 89 0.4400 1.6854 1.8764 2.2616 2.3981 8.3414 0.5286 3.2514 42.2892 254.9909 1347.2672

700 Louvain N/A N/A 3.9301 1 700 0 N/A N/A N/A N/A N/A 8.4170 0.5349 3.2709 N/A N/A 1500.2534
700 greedy general general 3.9301 12 58.3333 86 0.4500 1.8372 2.0353 2.2193 2.3988 8.4170 0.5349 3.2709 37.7761 280.4672 102.0198
700 greedy general walkers 3.9301 12 58.3333 95 0.4400 1.8632 2.0244 2.3168 2.4339 8.4170 0.5349 3.2709 38.1095 278.4289 1930.4046
700 greedy danon general 3.9301 16 43.75 68 0.4400 2.0735 2.2308 2.4553 2.5174 8.4170 0.5349 3.2709 31.8000 317.0083 263.0628
700 greedy danon walkers 3.9301 17 41.1765 67 0.4400 2.0746 2.2090 2.4545 2.5385 8.4170 0.5349 3.2709 32.4669 312.9305 2050.2926
700 greedy wakita1 general 3.9301 12 58.3333 86 0.4500 1.8372 2.0353 2.2193 2.3988 8.4170 0.5349 3.2709 37.7761 280.4672 234.7615
700 greedy wakita1 walkers 3.9301 12 58.3333 95 0.4400 1.8632 2.0244 2.3168 2.4339 8.4170 0.5349 3.2709 38.1095 278.4289 2062.4834

800 Louvain N/A N/A 3.9483 1 800 0 N/A N/A N/A N/A N/A 8.3089 0.5259 3.2430 N/A N/A 2333.7424
800 greedy general general 3.9483 15 53.3333 106 0.4400 1.9151 2.0805 2.3958 2.4792 8.3089 0.5259 3.2430 35.8476 295.6365 129.4126
800 greedy general walkers 3.9483 16 50 90 0.4500 1.9333 2.0667 2.3358 2.4610 8.3089 0.5259 3.2430 36.2729 293.0135 2701.4665
800 greedy danon general 3.9483 16 50 81 0.4400 1.9877 2.2346 2.3638 2.4484 8.3089 0.5259 3.2430 31.0956 324.9429 375.7258
800 greedy danon walkers 3.9483 15 53.3333 85 0.4400 2.0706 2.1529 2.3462 2.4483 8.3089 0.5259 3.2430 33.6126 309.4201 3077.3684
800 greedy wakita1 general 3.9483 15 53.3333 106 0.4400 1.9151 2.0805 2.3958 2.4792 8.3089 0.5259 3.2430 35.8476 295.6365 307.8351
800 greedy wakita1 walkers 3.9483 16 50 90 0.4500 1.9333 2.0667 2.3358 2.4610 8.3089 0.5259 3.2430 36.2729 293.0135 2855.7331

900 Louvain N/A N/A 3.9561 1 900 0 N/A N/A N/A N/A N/A 8.2625 0.5220 3.2309 N/A N/A 2551.9475
900 greedy general general 3.9561 13 69.2308 108 0.4500 1.9537 2.1368 2.2237 2.3385 8.2625 0.5220 3.2309 33.8633 309.3950 159.6610
900 greedy general walkers 3.9561 15 60 94 0.4500 1.9362 2.0532 2.3226 2.4151 8.2625 0.5220 3.2309 36.4524 293.3684 3883.7847
900 greedy danon general 3.9561 17 52.9412 71 0.4400 2.1972 2.3333 2.3913 2.4762 8.2625 0.5220 3.2309 27.7818 347.0405 497.7236
900 greedy danon walkers 3.9561 17 52.9412 70 0.4500 2.2143 2.3143 2.3750 2.4545 8.2625 0.5220 3.2309 28.3713 343.3912 4577.0117
900 greedy wakita1 general 3.9561 13 69.2308 108 0.4500 1.9537 2.1368 2.2237 2.3385 8.2625 0.5220 3.2309 33.8633 309.3950 413.5222
900 greedy wakita1 walkers 3.9561 15 60 94 0.4500 1.9362 2.0532 2.3226 2.4151 8.2625 0.522 3.2309 36.4524 293.3684 4290.0652

1000 Louvain N/A N/A 3.9563 1 1000 0 N/A N/A N/A N/A N/A 8.2612 0.5218 3.2306 N/A N/A 3299.9272
1000 greedy general general 3.9563 15 66.6667 104 0.4500 1.9712 2.0865 2.3594 2.4773 8.2612 0.5218 3.2306 35.4137 299.8378 196.2924
1000 greedy general walkers 3.9563 13 76.9231 130 0.4500 1.8692 2.0769 2.1757 2.3647 8.2612 0.5218 3.2306 35.7114 297.9952 5181.5289
1000 greedy danon general 3.9563 16 62.5 91 0.4400 2.1538 2.3000 2.3935 2.4766 8.2612 0.5218 3.2306 28.8063 340.7429 630.9505
1000 greedy danon walkers 3.9563 16 62.5 74 0.4500 2.1216 2.2500 2.3473 2.4513 8.2612 0.5218 3.2306 30.3540 331.1615 5769.7194
1000 greedy wakita1 general 3.9563 15 66.6667 104 0.4500 1.9712 2.0865 2.3594 2.4773 8.2612 0.5218 3.2306 35.4137 299.8378 552.6951
1000 greedy wakita1 walkers 3.9563 13 76.9231 130 0.4500 1.8692 2.0769 2.1757 2.3647 8.2612 0.5218 3.2306 35.7114 297.9952 5580.5825
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Table A.10: Community Detection – Explicit Graph Testing Results

n algorithm q initial λ2 #
comms

Average
comm.
size

# ver-
tices
in

comm.
with
worst
exp.

modularity min
v. exp.

min
e. exp.

median
v. exp.

median
e. exp.

Cheeger
upper
bound

spectral
lower
bound

spectral
upper
bound

%
improv.
over
upper
bound

%
above
lower
bound

time
(secs)

98 Louvain N/A N/A 4.5647 1 98 0 N/A N/A N/A N/A N/A 4.3805 0.2177 2.0865 N/A N/A 74.3549
98 greedy general general 4.5647 9 10.8889 18 0.3700 0.8889 1.1111 2.0000 2.2000 4.3805 0.2177 2.0865 46.7468 410.4619 6.6807
98 greedy general walkers 4.5647 5 19.6 28 0.4800 0.7143 0.7143 1.3913 1.6957 4.3805 0.2177 2.0865 65.7658 228.1541 10.4485
98 greedy danon general 4.5647 8 12.25 12 0.3700 1.1667 1.5000 1.7054 2.0000 4.3805 0.2177 2.0865 28.1082 589.1235 7.3523
98 greedy danon walkers 4.5647 5 19.6 28 0.4800 0.7143 0.7143 1.4091 1.7273 4.3805 0.2177 2.0865 65.7658 228.1541 10.6526
98 greedy wakita1 general 4.5647 9 10.8889 18 0.3700 0.8889 1.1111 2.0000 2.2000 4.3805 0.2177 2.0865 46.7468 410.4619 7.5768
98 greedy wakita1 walkers 4.5647 5 19.6 28 0.4800 0.7143 0.7143 1.3913 1.6957 4.3805 0.2177 2.0865 65.7658 228.1541 10.5747

162 Louvain N/A N/A 4.6766 3 54 80 0.3900 0.6750 0.8750 1.1667 1.3333 3.5687 0.1617 1.7985 51.3474 441.0464 165.3681
162 greedy general general 4.6766 11 14.7273 11 0.4200 1.0000 1.3636 1.8750 2.0000 3.5687 0.1617 1.7985 24.1777 743.1892 12.3224
162 greedy general walkers 4.6766 7 23.1429 28 0.5100 0.7143 0.7143 1.8333 1.9167 3.5687 0.1617 1.7985 60.2836 341.6705 29.0774
162 greedy danon general 4.6766 9 18 16 0.4300 1.0000 1.2500 1.8000 1.8000 3.5687 0.1617 1.7985 30.4962 672.9234 14.6975
162 greedy danon walkers 4.6766 8 20.25 28 0.5100 0.7143 0.7143 1.6795 1.9231 3.5687 0.1617 1.7985 60.2836 341.6705 29.5313
162 greedy wakita1 general 4.6766 11 14.7273 11 0.4200 1.0000 1.3636 1.8750 2.0000 3.5687 0.1617 1.7985 24.1777 743.1892 14.5764
162 greedy wakita1 walkers 4.6766 7 23.1429 28 0.5100 0.7143 0.7143 1.8333 1.9167 3.5687 0.1617 1.7985 60.2836 341.6705 29.7984

242 Louvain N/A N/A 4.7385 3 80.6667 90 0.4100 0.8333 1.2000 0.9286 1.2857 3.0914 0.1307 1.6171 25.7910 817.8292 249.1278
242 greedy general general 4.7385 12 20.1667 18 0.4600 1.1111 1.3333 1.8818 2.0000 3.0914 0.1307 1.6171 17.5456 919.8103 20.2857
242 greedy general walkers 4.7385 9 26.8889 28 0.5300 0.7143 0.7143 1.8333 1.9333 3.0914 0.1307 1.6171 55.8280 446.3269 70.1923
242 greedy danon general 4.7385 10 24.2 36 0.4500 1.0556 1.2778 1.8661 1.9286 3.0914 0.1307 1.6171 20.9812 877.3182 26.4625
242 greedy danon walkers 4.7385 11 22 28 0.5200 0.7143 0.7143 2.0357 2.1200 3.0914 0.1307 1.6171 55.8280 446.3269 71.3528
242 greedy wakita1 general 4.7385 12 20.1667 18 0.4600 1.1111 1.3333 1.8818 2.0000 3.0914 0.1307 1.6171 17.5456 919.8103 26.2353
242 greedy wakita1 walkers 4.7385 9 26.8889 28 0.5300 0.7143 0.7143 1.8333 1.9333 3.0914 0.1307 1.6171 55.8280 446.3269 71.7402

338 Louvain N/A N/A 4.7772 3 112.6667 144 0.4000 0.7222 1.0417 0.9262 1.2131 2.7794 0.1114 1.4927 30.2157 835.0102 384.2354
338 greedy general general 4.7772 14 24.1429 42 0.4600 1.1429 1.4286 2.0000 2.0909 2.7794 0.1114 1.4927 4.2959 1182.2998 32.0778
338 greedy general walkers 4.7772 9 37.5556 49 0.5400 0.7755 0.9184 1.6667 1.9048 2.7794 0.1114 1.4927 38.4759 724.3356 163.4707
338 greedy danon general 4.7772 14 24.1429 16 0.4700 1.0000 1.2500 1.8819 1.9375 2.7794 0.1114 1.4927 16.2589 1022.0123 51.7382
338 greedy danon walkers 4.7772 11 30.7273 30 0.5300 0.7000 0.8000 1.9286 2.1818 2.7794 0.1114 1.4927 46.4057 618.0879 171.9044
338 greedy wakita1 general 4.7772 14 24.1429 42 0.4600 1.1429 1.4286 2.0000 2.0909 2.7794 0.1114 1.4927 4.2959 1182.2998 49.5417
338 greedy wakita1 walkers 4.7772 9 37.5556 49 0.5400 0.7755 0.9184 1.6667 1.9048 2.7794 0.1114 1.4927 38.4759 724.3356 173.6838

450 Louvain N/A N/A 4.8034 1 450 0 N/A N/A N/A N/A N/A 2.5601 0.0983 1.4022 N/A N/A 572.2092
450 greedy general general 4.8034 17 26.4706 46 0.4900 1.2826 1.4348 1.9286 2.0000 2.5601 0.0983 1.4022 -2.3251 1359.5145 47.6842
450 greedy general walkers 4.8034 8 56.25 70 0.5500 0.6714 0.8286 1.4138 1.6064 2.5601 0.0983 1.4022 40.9083 742.8539 341.2379
450 greedy danon general 4.8034 14 32.1429 48 0.4700 1.2083 1.4167 1.8711 2.0839 2.5601 0.0983 1.4022 -1.0331 1341.0863 94.6713
450 greedy danon walkers 4.8034 11 40.9091 40 0.5400 0.8000 0.9000 1.8868 2.0500 2.5601 0.0983 1.4022 35.8142 815.5137 354.5796
450 greedy wakita1 general 4.8034 17 26.4706 46 0.4900 1.2826 1.4348 1.9286 2.0000 2.5601 0.0983 1.4022 -2.3251 1359.5145 86.5155
450 greedy wakita1 walkers 4.8034 8 56.25 70 0.5500 0.6714 0.8286 1.4138 1.6064 2.5601 0.0983 1.4022 40.9083 742.8539 356.7103
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Table A.10: Community Detection – Explicit Graph Testing Results
(continued from previous page)

n algorithm q initial λ2 #
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578 Louvain N/A N/A 4.8222 1 578 0 N/A N/A N/A N/A N/A 2.3976 0.0889 1.3333 N/A N/A 871.4070
578 greedy general general 4.8222 11 52.5455 74 0.4800 1.1757 1.4000 1.7500 1.8611 2.3976 0.0889 1.3333 -5.0015 1475.0435 71.7547
578 greedy general walkers 4.8222 7 82.5714 117 0.5700 0.5641 0.6581 1.3913 1.6327 2.3976 0.0889 1.3333 50.6403 640.4051 662.8636
578 greedy danon general 4.8222 15 38.5333 46 0.4900 1.1522 1.5217 1.8889 1.9444 2.3976 0.0889 1.3333 -14.1320 1612.0038 165.7118
578 greedy danon walkers 4.8222 13 44.4615 40 0.5400 0.8000 0.9000 1.6829 1.8800 2.3976 0.0889 1.3333 32.4991 912.5280 671.0379
578 greedy wakita1 general 4.8222 11 52.5455 74 0.4800 1.1757 1.4000 1.7500 1.8611 2.3976 0.0889 1.3333 -5.0015 1475.0435 141.2943
578 greedy wakita1 walkers 4.8222 7 82.5714 117 0.5700 0.5641 0.6581 1.3913 1.6327 2.3976 0.0889 1.3333 50.6403 640.4051 658.6821

722 Louvain N/A N/A 4.8364 1 722 0 N/A N/A N/A N/A N/A 2.2725 0.0818 1.2791 N/A N/A 1557.1319
722 greedy general general 4.8364 15 48.1333 84 0.4700 1.5357 1.7600 2.0455 2.1250 2.2725 0.0818 1.2791 -37.5938 2051.3684 102.2198
722 greedy general walkers 4.8364 7 103.1429 150 0.5600 0.5267 0.6133 1.5625 1.7500 2.2725 0.0818 1.2791 52.0507 649.7193 1145.3087
722 greedy danon general 4.8364 15 48.1333 52 0.4700 1.3462 1.5000 2.0625 2.1250 2.2725 0.0818 1.2791 -17.2674 1733.5526 270.0365
722 greedy danon walkers 4.8364 10 72.2 100 0.5600 0.5900 0.7400 1.6526 1.8405 2.2725 0.0818 1.2791 42.1481 804.5526 1225.1693
722 greedy wakita1 general 4.8364 15 48.1333 84 0.4700 1.5357 1.7600 2.0455 2.1250 2.2725 0.0818 1.2791 -37.5938 2051.3684 223.5113
722 greedy wakita1 walkers 4.8364 7 103.1429 150 0.5600 0.5267 0.6133 1.5625 1.7500 2.2725 0.0818 1.2791 52.0507 649.7193 1177.1231

882 Louvain N/A N/A 4.8474 4 220.5 270 0.4500 0.8778 1.3274 1.1193 1.4398 2.1730 0.0763 1.2353 -7.4565 1639.7318 1937.0702
882 greedy general general 4.8474 15 58.8 112 0.5000 1.0446 1.3571 1.9375 2.0000 2.1730 0.0763 1.2353 -9.8614 1678.6686 149.4956
882 greedy general walkers 4.8474 6 147 198 0.5700 0.5051 0.6061 1.1989 1.4920 2.1730 0.0763 1.2353 50.9391 694.3018 2165.2580
882 greedy danon general 4.8474 17 51.8824 60 0.4900 1.3500 1.6333 1.9342 2.1290 2.1730 0.0763 1.2353 -32.2192 2040.6433 477.1742
882 greedy danon walkers 4.8474 10 88.2 115 0.5700 0.6000 0.7739 1.4645 1.7871 2.1730 0.0763 1.2353 37.3513 914.2888 2650.0855
882 greedy wakita1 general 4.8474 15 58.8 112 0.5000 1.0446 1.3571 1.9375 2.0000 2.1730 0.0763 1.2353 -9.8614 1678.6686 400.8865
882 greedy wakita1 walkers 4.8474 6 147 198 0.5700 0.5051 0.6061 1.1989 1.4920 2.1730 0.0763 1.2353 50.9391 694.3018 2355.2239

1058 Louvain N/A N/A 4.8562 1 1058 0 N/A N/A N/A N/A N/A 2.0919 0.0719 1.1991 N/A N/A 2637.1348
1058 greedy general general 4.8562 11 96.1818 214 0.5100 0.7897 0.9533 1.4841 1.8571 2.0919 0.0719 1.1991 20.5026 1225.9250 209.8204
1058 greedy general walkers 4.8562 7 151.1429 214 0.5700 0.4766 0.5514 1.4040 1.6225 2.0919 0.0719 1.1991 54.0162 666.9566 3919.4795
1058 greedy danon general 4.8562 16 66.125 142 0.4900 1.2535 1.5667 1.9958 2.1125 2.0919 0.0719 1.1991 -30.6510 2079.1100 775.3061
1058 greedy danon walkers 4.8562 11 96.1818 158 0.5600 0.5506 0.7089 1.5840 1.8320 2.0919 0.0719 1.1991 40.8851 885.9695 4667.6648
1058 greedy wakita1 general 4.8562 11 96.1818 214 0.5100 0.7897 0.9533 1.4841 1.8571 2.0919 0.0719 1.1991 20.5026 1225.9250 577.6686
1058 greedy wakita1 walkers 4.8562 7 151.1429 214 0.5700 0.4766 0.5514 1.404 1.6225 2.0919 0.0719 1.1991 54.0162 666.9566 4312.958
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Table A.11: Probability Amplification – Test Results

m |V | trials t k (%) # steps walk
avg

walk
median

sample
avg

sample
median

% walk % sample % diff

7 98 1000 5 5 11 27.35 28 24.20 25 0.279 0.247 0.032
7 98 1000 6 6 14 32.55 33 28.35 29 0.332 0.289 0.043
7 98 1000 7 7 17 36.36 37 32.17 32 0.371 0.328 0.043
7 98 1000 8 8 19 39.72 41 35.92 36 0.405 0.367 0.039
7 98 1000 9 9 22 43.42 44 39.15 39 0.443 0.399 0.044
7 98 1000 10 10 25 47.31 49 42.34 43 0.483 0.432 0.051
7 98 1000 11 11 28 50.84 52 45.69 46 0.519 0.466 0.053
7 98 1000 12 12 31 53.45 55 48.36 48 0.545 0.493 0.052
7 98 1000 13 13 34 56.32 58 51.23 51 0.575 0.523 0.052
7 98 1000 14 14 37 59.21 60 53.60 54 0.604 0.547 0.057
7 98 1000 15 15 39 60.80 62 56.01 56 0.620 0.572 0.049
7 98 1000 20 20 54 71.46 73 66.18 66 0.729 0.675 0.054
7 98 1000 25 25 68 78.03 79 74.28 74 0.796 0.758 0.038
7 98 1000 30 30 82 83.20 84 79.79 80 0.849 0.814 0.035
7 98 1000 40 40 111 89.84 91 87.70 88 0.917 0.895 0.022
7 98 1000 49 50 136 92.61 94 91.59 92 0.945 0.935 0.010
7 98 1000 59 60 165 94.68 96 94.29 94 0.966 0.962 0.004
7 98 1000 69 70 193 95.79 97 95.80 96 0.977 0.978 0.000
9 162 1000 9 5 25 54.54 56 43.65 44 0.337 0.269 0.067
9 162 1000 10 6 28 58.51 60 47.66 48 0.361 0.294 0.067
9 162 1000 12 7 34 67.63 69 55.16 55 0.417 0.340 0.077
9 162 1000 13 8 37 71.25 73 58.91 59 0.440 0.364 0.076
9 162 1000 15 9 44 79.62 82 65.61 66 0.491 0.405 0.086
9 162 1000 17 10 50 86.75 89 72.33 73 0.535 0.446 0.089
9 162 1000 18 11 53 88.84 91 75.01 75 0.548 0.463 0.085
9 162 1000 20 12 60 96.04 98 80.94 81 0.593 0.500 0.093
9 162 1000 22 13 66 101.32 103 86.45 87 0.625 0.534 0.092
9 162 1000 23 14 69 104.72 107 89.06 89 0.646 0.550 0.097
9 162 1000 25 15 75 108.66 110 94.17 94 0.671 0.581 0.089
9 162 1000 33 20 101 124.13 125 110.20 110 0.766 0.680 0.086
9 162 1000 41 25 126 134.56 136 122.80 123 0.831 0.758 0.073
9 162 1000 49 30 151 141.80 143 132.24 132 0.875 0.816 0.059
9 162 1000 65 40 202 150.48 152 144.65 145 0.929 0.893 0.036
9 162 1000 81 50 252 155.37 157 151.93 152 0.959 0.938 0.021
9 162 1000 98 60 306 158.30 159 156.14 156 0.977 0.964 0.013
9 162 1000 114 70 357 159.62 161 158.63 159 0.985 0.979 0.006
11 242 1000 13 5 40 83.79 86 63.69 64 0.346 0.263 0.083
11 242 1000 15 6 47 95.56 97 71.82 72 0.395 0.297 0.098
11 242 1000 17 7 54 103.86 106 79.81 80 0.429 0.330 0.099
11 242 1000 20 8 64 115.29 119 90.78 91 0.476 0.375 0.101
11 242 1000 22 9 71 125.75 127.5 97.74 98 0.520 0.404 0.116
11 242 1000 25 10 81 134.89 137 107.74 108 0.557 0.445 0.112
11 242 1000 27 11 88 141.88 145 113.59 114 0.586 0.469 0.117
11 242 1000 30 12 98 152.59 154.5 122.30 123 0.631 0.505 0.125
11 242 1000 32 13 105 157.16 159 128.16 128 0.649 0.530 0.120
11 242 1000 34 14 112 161.97 164 133.04 134 0.669 0.550 0.120
11 242 1000 37 15 122 168.68 171 140.32 140 0.697 0.580 0.117
11 242 1000 49 20 163 191.47 193 165.29 165 0.791 0.683 0.108
11 242 1000 61 25 204 206.68 208 183.78 184 0.854 0.759 0.095
11 242 1000 73 30 245 216.37 218 197.89 198 0.894 0.818 0.076
11 242 1000 97 40 327 228.42 230 216.98 217 0.944 0.897 0.047
11 242 1000 121 50 409 234.68 236 227.50 228 0.970 0.940 0.030
11 242 1000 146 60 494 237.57 239 233.66 234 0.982 0.966 0.016
11 242 1000 170 70 576 239.38 241 237.16 237 0.989 0.980 0.009
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13 338 1000 17 5 57 118.08 121 84.69 85 0.349 0.251 0.099
13 338 1000 21 6 72 139.47 143 101.30 101 0.413 0.300 0.113
13 338 1000 24 7 83 154.88 158 112.97 113 0.458 0.334 0.124
13 338 1000 28 8 97 172.56 176 127.83 128 0.511 0.378 0.132
13 338 1000 31 9 108 182.81 186 138.27 138 0.541 0.409 0.132
13 338 1000 34 10 119 194.61 197 148.12 148 0.576 0.438 0.138
13 338 1000 38 11 133 208.81 212 160.49 161 0.618 0.475 0.143
13 338 1000 41 12 144 216.39 219 168.80 169 0.640 0.499 0.141
13 338 1000 44 13 155 225.81 229 177.46 177 0.668 0.525 0.143
13 338 1000 48 14 170 237.08 238 188.14 188 0.701 0.557 0.145
13 338 1000 51 15 180 242.78 245 195.68 196 0.718 0.579 0.139
13 338 1000 68 20 242 274.05 276 230.35 230 0.811 0.682 0.129
13 338 1000 85 25 303 295.02 298 257.69 258 0.873 0.762 0.110
13 338 1000 102 30 365 307.20 309 277.25 277 0.909 0.820 0.089
13 338 1000 136 40 488 322.44 325 303.61 304 0.954 0.898 0.056
13 338 1000 169 50 607 329.51 331 317.94 318 0.975 0.941 0.034
13 338 1000 203 60 730 332.90 335 326.43 327 0.985 0.966 0.019
13 338 1000 237 70 853 335.15 337 331.54 332 0.992 0.981 0.011
15 450 1000 23 5 83 169.05 172 114.74 115 0.376 0.255 0.121
15 450 1000 27 6 98 188.54 192 131.14 132 0.419 0.291 0.128
15 450 1000 32 7 117 214.00 217 151.05 152 0.476 0.336 0.140
15 450 1000 36 8 132 232.54 236 166.46 167 0.517 0.370 0.147
15 450 1000 41 9 151 251.27 254 183.19 183 0.558 0.407 0.151
15 450 1000 45 10 167 267.93 270 196.95 197 0.595 0.438 0.158
15 450 1000 50 11 185 284.85 288 213.11 213 0.633 0.474 0.159
15 450 1000 54 12 201 295.99 299.5 224.64 225 0.658 0.499 0.159
15 450 1000 59 13 220 312.15 316 238.55 239 0.694 0.530 0.164
15 450 1000 64 14 239 324.37 326 251.68 252 0.721 0.559 0.162
15 450 1000 68 15 254 334.22 336 261.33 261 0.743 0.581 0.162
15 450 1000 90 20 337 372.31 375 307.25 307 0.827 0.683 0.145
15 450 1000 113 25 425 398.08 401 343.15 344 0.885 0.763 0.122
15 450 1000 135 30 508 414.99 418 369.68 370 0.922 0.822 0.101
15 450 1000 180 40 679 433.36 436 404.43 404.5 0.963 0.899 0.064
15 450 1000 225 50 850 441.12 443 423.87 424 0.980 0.942 0.038
15 450 1000 270 60 1021 445.12 447 435.20 435 0.989 0.967 0.022
15 450 1000 315 70 1191 447.26 449 441.57 442 0.994 0.981 0.013
17 578 1000 29 5 110 220.57 223 145.61 146 0.382 0.252 0.130
17 578 1000 35 6 134 255.48 258 170.79 171 0.442 0.295 0.147
17 578 1000 41 7 158 285.42 290 194.58 195 0.494 0.337 0.157
17 578 1000 47 8 181 310.03 314 217.16 217 0.536 0.376 0.161
17 578 1000 53 9 205 334.31 337 237.69 238 0.578 0.411 0.167
17 578 1000 58 10 225 355.14 360 254.50 255 0.614 0.440 0.174
17 578 1000 64 11 248 375.28 379 273.17 273 0.649 0.473 0.177
17 578 1000 70 12 272 394.05 398 291.50 292 0.682 0.504 0.177
17 578 1000 76 13 296 410.03 413 307.40 307 0.709 0.532 0.178
17 578 1000 81 14 316 422.14 425 320.98 321 0.730 0.555 0.175
17 578 1000 87 15 339 436.45 441 335.56 336 0.755 0.581 0.175
17 578 1000 116 20 454 487.03 490 396.76 397 0.843 0.686 0.156
17 578 1000 145 25 569 518.81 523 441.70 442 0.898 0.764 0.133
17 578 1000 174 30 683 538.13 540 476.66 477 0.931 0.825 0.106
17 578 1000 232 40 912 559.78 562 520.27 520 0.968 0.900 0.068
17 578 1000 289 50 1138 568.99 571 545.08 545 0.984 0.943 0.041
17 578 1000 347 60 1367 572.81 575 559.32 560 0.991 0.968 0.023
17 578 1000 405 70 1596 575.13 577 567.48 568 0.995 0.982 0.013
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19 722 1000 37 5 147 288.89 294 185.59 186 0.400 0.257 0.143
19 722 1000 44 6 175 326.89 333 215.25 216 0.453 0.298 0.155
19 722 1000 51 7 204 364.76 369 242.84 243 0.505 0.336 0.169
19 722 1000 58 8 233 395.04 399 269.35 270 0.547 0.373 0.174
19 722 1000 65 9 261 426.10 430 293.39 294 0.590 0.406 0.184
19 722 1000 73 10 294 456.89 461 320.15 320 0.633 0.443 0.189
19 722 1000 80 11 323 479.59 484 342.24 342 0.664 0.474 0.190
19 722 1000 87 12 351 501.04 504 362.71 363 0.694 0.502 0.192
19 722 1000 94 13 380 522.47 526 383.15 383 0.724 0.531 0.193
19 722 1000 102 14 413 540.86 544.5 404.32 405 0.749 0.560 0.189
19 722 1000 109 15 441 556.86 561 420.94 421 0.771 0.583 0.188
19 722 1000 145 20 588 617.59 621 496.84 498 0.855 0.688 0.167
19 722 1000 181 25 736 654.92 658 552.15 552 0.907 0.765 0.142
19 722 1000 217 30 883 678.02 681 594.79 594 0.939 0.824 0.115
19 722 1000 289 40 1177 701.24 705 650.05 650 0.971 0.900 0.071
19 722 1000 361 50 1472 712.21 714 681.41 682 0.986 0.944 0.043
19 722 1000 434 60 1770 716.80 719 699.31 700 0.993 0.969 0.024
19 722 1000 506 70 2065 719.19 721 709.04 709 0.996 0.982 0.014
21 882 1000 45 5 185 362.69 368 226.94 227 0.411 0.257 0.154
21 882 1000 53 6 219 405.73 412 260.90 261 0.460 0.296 0.164
21 882 1000 62 7 257 453.04 458 296.15 297 0.514 0.336 0.178
21 882 1000 71 8 294 497.26 502 330.08 330 0.564 0.374 0.190
21 882 1000 80 9 332 535.30 540 361.63 362 0.607 0.410 0.197
21 882 1000 89 10 370 569.33 574 391.79 392 0.645 0.444 0.201
21 882 1000 98 11 408 600.86 604 420.54 420 0.681 0.477 0.204
21 882 1000 106 12 442 623.93 628 443.34 444 0.707 0.503 0.205
21 882 1000 115 13 480 647.64 652 469.19 469 0.734 0.532 0.202
21 882 1000 124 14 518 669.34 674 493.06 493 0.759 0.559 0.200
21 882 1000 133 15 556 690.90 694 514.22 514 0.783 0.583 0.200
21 882 1000 177 20 741 763.90 768 607.05 607 0.866 0.688 0.178
21 882 1000 221 25 927 807.54 811 675.99 676 0.916 0.766 0.149
21 882 1000 265 30 1112 833.34 837 727.68 727 0.945 0.825 0.120
21 882 1000 353 40 1483 860.63 864 795.52 796 0.976 0.902 0.074
21 882 1000 441 50 1854 871.86 874 832.70 832.5 0.989 0.944 0.044
21 882 1000 530 60 2229 876.73 879 854.53 855 0.994 0.969 0.025
21 882 1000 618 70 2600 878.89 881 866.45 867 0.996 0.982 0.014
23 1058 1000 53 5 225 438.68 444 267.97 268 0.415 0.253 0.161
23 1058 1000 64 6 272 502.85 509 314.45 315 0.475 0.297 0.178
23 1058 1000 75 7 320 563.65 568.5 358.50 359 0.533 0.339 0.194
23 1058 1000 85 8 363 607.26 612 396.14 397 0.574 0.374 0.200
23 1058 1000 96 9 411 653.42 656 434.37 434 0.618 0.411 0.207
23 1058 1000 106 10 454 694.94 699 468.21 468 0.657 0.443 0.214
23 1058 1000 117 11 501 726.94 731 503.15 503 0.687 0.476 0.212
23 1058 1000 127 12 545 760.69 765 533.16 533 0.719 0.504 0.215
23 1058 1000 138 13 592 790.89 794.5 563.56 564 0.748 0.533 0.215
23 1058 1000 149 14 640 816.12 821 592.90 593 0.771 0.560 0.211
23 1058 1000 159 15 683 838.48 843 617.56 618 0.793 0.584 0.209
23 1058 1000 212 20 913 924.96 931 728.60 729 0.874 0.689 0.186
23 1058 1000 265 25 1142 974.51 978 811.97 812 0.921 0.767 0.154
23 1058 1000 318 30 1371 1005.59 1008 874.15 874 0.950 0.826 0.124
23 1058 1000 424 40 1830 1035.70 1039 954.72 955 0.979 0.902 0.077
23 1058 1000 529 50 2284 1047.69 1050 999.87 1000 0.990 0.945 0.045
23 1058 1000 635 60 2743 1052.74 1055 1025.16 1025 0.995 0.969 0.026
23 1058 1000 741 70 3202 1055.20 1057 1039.45 1040 0.997 0.982 0.015
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25 1250 1000 63 5 274 531.59 538 319.08 319 0.425 0.255 0.170
25 1250 1000 75 6 327 602.42 607 369.99 370.5 0.482 0.296 0.186
25 1250 1000 88 7 385 670.92 677 422.27 423 0.537 0.338 0.199
25 1250 1000 100 8 438 729.95 735 467.00 467 0.584 0.374 0.210
25 1250 1000 113 9 496 784.85 791 513.66 514 0.628 0.411 0.217
25 1250 1000 125 10 549 831.55 836 553.65 554 0.665 0.443 0.222
25 1250 1000 138 11 607 872.28 877 594.11 595 0.698 0.475 0.223
25 1250 1000 150 12 660 908.40 915 630.93 631 0.727 0.505 0.222
25 1250 1000 163 13 717 944.49 950 666.88 667 0.756 0.534 0.222
25 1250 1000 176 14 775 979.17 986 701.25 702 0.783 0.561 0.222
25 1250 1000 188 15 828 1002.60 1008 730.31 731 0.802 0.584 0.218
25 1250 1000 250 20 1103 1101.77 1106 860.65 861 0.881 0.689 0.193
25 1250 1000 313 25 1382 1159.32 1163 960.87 961 0.927 0.769 0.159
25 1250 1000 375 30 1657 1193.52 1197 1033.22 1033 0.955 0.827 0.128
25 1250 1000 500 40 2210 1227.14 1230 1128.23 1128 0.982 0.903 0.079
25 1250 1000 625 50 2764 1239.44 1242 1181.38 1182 0.992 0.945 0.046
25 1250 1000 750 60 3318 1244.47 1247 1211.55 1211.5 0.996 0.969 0.026
25 1250 1000 875 70 3872 1247.00 1249 1228.10 1228 0.998 0.982 0.015
27 1458 1000 73 5 325 629.99 636 370.20 370 0.432 0.254 0.178
27 1458 1000 88 6 393 714.99 720 434.64 435 0.490 0.298 0.192
27 1458 1000 103 7 461 801.61 807 494.04 495 0.550 0.339 0.211
27 1458 1000 117 8 525 869.34 872 546.86 547 0.596 0.375 0.221
27 1458 1000 132 9 592 932.91 938.5 599.40 599 0.640 0.411 0.229
27 1458 1000 146 10 656 978.96 986.5 646.89 647 0.671 0.444 0.228
27 1458 1000 161 11 724 1035.88 1039 694.32 695 0.710 0.476 0.234
27 1458 1000 175 12 787 1076.59 1084 735.77 736 0.738 0.505 0.234
27 1458 1000 190 13 855 1117.38 1123 778.40 778 0.766 0.534 0.232
27 1458 1000 205 14 923 1152.43 1158 817.69 818 0.790 0.561 0.230
27 1458 1000 219 15 986 1178.85 1183 853.03 853 0.809 0.585 0.223
27 1458 1000 292 20 1317 1294.81 1300 1006.31 1007 0.888 0.690 0.198
27 1458 1000 365 25 1647 1360.10 1364 1121.14 1122 0.933 0.769 0.164
27 1458 1000 438 30 1977 1399.41 1403 1205.83 1206 0.960 0.827 0.133
27 1458 1000 584 40 2638 1433.94 1437 1316.46 1317 0.983 0.903 0.081
27 1458 1000 729 50 3295 1447.32 1450 1378.64 1379 0.993 0.946 0.047
27 1458 1000 875 60 3955 1452.92 1455 1414.15 1414 0.997 0.970 0.027
27 1458 1000 1021 70 4616 1455.34 1457 1433.06 1433 0.998 0.983 0.015
29 1682 1000 85 5 387 745.08 749 431.96 432 0.443 0.257 0.186
29 1682 1000 101 6 461 843.41 849 499.38 499 0.501 0.297 0.205
29 1682 1000 118 7 539 930.93 938 567.45 567 0.553 0.337 0.216
29 1682 1000 135 8 618 1013.16 1018 631.97 632 0.602 0.376 0.227
29 1682 1000 152 9 696 1086.03 1093 691.96 692 0.646 0.411 0.234
29 1682 1000 169 10 775 1152.51 1158 748.16 749 0.685 0.445 0.240
29 1682 1000 186 11 853 1210.79 1214.5 802.71 803 0.720 0.477 0.243
29 1682 1000 202 12 927 1253.97 1259 850.09 850 0.746 0.505 0.240
29 1682 1000 219 13 1006 1301.49 1308 897.64 898 0.774 0.534 0.240
29 1682 1000 236 14 1084 1340.29 1345 942.89 943 0.797 0.561 0.236
29 1682 1000 253 15 1163 1377.56 1383 984.90 985 0.819 0.586 0.233
29 1682 1000 337 20 1550 1505.07 1511 1161.19 1161 0.895 0.690 0.204
29 1682 1000 421 25 1938 1574.91 1580 1293.53 1294 0.936 0.769 0.167
29 1682 1000 505 30 2326 1617.60 1621 1392.09 1392 0.962 0.828 0.134
29 1682 1000 673 40 3101 1657.46 1661 1519.58 1520 0.985 0.903 0.082
29 1682 1000 841 50 3876 1671.39 1674 1591.01 1591 0.994 0.946 0.048
29 1682 1000 1010 60 4656 1676.91 1679 1631.06 1631 0.997 0.970 0.027
29 1682 1000 1178 70 5431 1679.19 1681 1652.92 1653 0.998 0.983 0.016
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31 1922 1000 97 5 451 863.98 870 493.30 494 0.450 0.257 0.193
31 1922 1000 116 6 540 981.51 987 574.19 574 0.511 0.299 0.212
31 1922 1000 135 7 629 1083.88 1090 650.28 650 0.564 0.338 0.226
31 1922 1000 154 8 718 1176.09 1184 721.80 722 0.612 0.376 0.236
31 1922 1000 173 9 808 1255.23 1262 789.38 790 0.653 0.411 0.242
31 1922 1000 193 10 902 1332.32 1339 856.51 857 0.693 0.446 0.248
31 1922 1000 212 11 991 1391.14 1394 916.72 916 0.724 0.477 0.247
31 1922 1000 231 12 1080 1450.06 1457 972.05 973 0.754 0.506 0.249
31 1922 1000 250 13 1169 1504.07 1507.5 1025.83 1025 0.783 0.534 0.249
31 1922 1000 270 14 1263 1549.00 1553 1078.69 1079 0.806 0.561 0.245
31 1922 1000 289 15 1353 1585.52 1591.5 1126.22 1126 0.825 0.586 0.239
31 1922 1000 385 20 1804 1733.22 1738 1328.79 1329 0.902 0.691 0.210
31 1922 1000 481 25 2255 1808.34 1812 1477.78 1478 0.941 0.769 0.172
31 1922 1000 577 30 2706 1856.03 1859 1591.65 1592 0.966 0.828 0.138
31 1922 1000 769 40 3608 1896.46 1900 1737.15 1737 0.987 0.904 0.083
31 1922 1000 961 50 4510 1911.04 1914 1818.74 1819 0.994 0.946 0.048
31 1922 1000 1154 60 5416 1916.93 1919 1864.20 1864 0.997 0.970 0.027
31 1922 1000 1346 70 6318 1919.37 1921 1889.52 1890 0.999 0.983 0.016
33 2178 1000 109 5 515 986.50 994 555.60 556 0.453 0.255 0.198
33 2178 1000 131 6 620 1124.26 1132.5 648.58 649 0.516 0.298 0.218
33 2178 1000 153 7 725 1245.67 1252 736.97 737 0.572 0.338 0.234
33 2178 1000 175 8 830 1350.01 1358 820.15 820 0.620 0.377 0.243
33 2178 1000 197 9 936 1444.62 1450 898.42 898.5 0.663 0.412 0.251
33 2178 1000 218 10 1036 1523.68 1532 968.96 969 0.700 0.445 0.255
33 2178 1000 240 11 1141 1597.23 1603 1038.61 1039 0.733 0.477 0.256
33 2178 1000 262 12 1246 1662.18 1668.5 1103.37 1104 0.763 0.507 0.257
33 2178 1000 284 13 1351 1713.65 1718 1166.02 1165 0.787 0.535 0.251
33 2178 1000 305 14 1451 1763.91 1771 1222.88 1222 0.810 0.561 0.248
33 2178 1000 327 15 1556 1809.53 1815.5 1275.97 1275.5 0.831 0.586 0.245
33 2178 1000 436 20 2077 1971.11 1976.5 1506.13 1506 0.905 0.692 0.213
33 2178 1000 545 25 2597 2058.25 2062 1676.56 1676.5 0.945 0.770 0.175
33 2178 1000 654 30 3118 2108.15 2112 1804.21 1803 0.968 0.828 0.140
33 2178 1000 872 40 4159 2151.49 2155 1969.29 1970 0.988 0.904 0.084
33 2178 1000 1089 50 5195 2167.25 2170 2061.67 2062 0.995 0.947 0.048
33 2178 1000 1307 60 6237 2172.61 2175 2112.66 2113 0.998 0.970 0.028
33 2178 1000 1525 70 7278 2175.26 2177 2141.18 2141 0.999 0.983 0.016
35 2450 1000 123 5 591 1130.80 1135 626.51 627 0.462 0.256 0.206
35 2450 1000 147 6 707 1273.24 1281 729.62 730 0.520 0.298 0.222
35 2450 1000 172 7 829 1412.77 1421 830.32 831 0.577 0.339 0.238
35 2450 1000 196 8 945 1530.04 1536 920.47 920 0.625 0.376 0.249
35 2450 1000 221 9 1066 1635.90 1641 1009.20 1009 0.668 0.412 0.256
35 2450 1000 245 10 1183 1730.19 1735.5 1090.26 1090 0.706 0.445 0.261
35 2450 1000 270 11 1304 1810.21 1817 1169.21 1169 0.739 0.477 0.262
35 2450 1000 294 12 1420 1882.39 1891 1241.30 1242 0.768 0.507 0.262
35 2450 1000 319 13 1541 1946.46 1951 1310.68 1310 0.794 0.535 0.260
35 2450 1000 344 14 1663 2007.35 2014 1378.42 1378 0.819 0.563 0.257
35 2450 1000 368 15 1779 2051.87 2056 1438.44 1439 0.837 0.587 0.250
35 2450 1000 490 20 2371 2227.73 2233 1694.55 1694 0.909 0.692 0.218
35 2450 1000 613 25 2967 2322.07 2327 1886.44 1887 0.948 0.770 0.178
35 2450 1000 735 30 3559 2375.46 2380 2028.84 2029 0.970 0.828 0.141
35 2450 1000 980 40 4746 2422.55 2426 2215.74 2216 0.989 0.904 0.084
35 2450 1000 1225 50 5934 2438.47 2441 2319.04 2319 0.995 0.947 0.049
35 2450 1000 1470 60 7122 2444.82 2447 2377.24 2378 0.998 0.970 0.028
35 2450 1000 1715 70 8310 2447.20 2449 2409.19 2409 0.999 0.983 0.016
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37 2738 1000 137 5 668 1278.02 1288 699.07 699 0.467 0.255 0.211
37 2738 1000 165 6 806 1445.37 1455 818.78 819 0.528 0.299 0.229
37 2738 1000 192 7 939 1598.70 1606 926.99 928 0.584 0.339 0.245
37 2738 1000 220 8 1077 1729.95 1737 1033.39 1034 0.632 0.377 0.254
37 2738 1000 247 9 1209 1843.93 1851 1129.90 1130 0.673 0.413 0.261
37 2738 1000 274 10 1342 1946.05 1952 1220.06 1221 0.711 0.446 0.265
37 2738 1000 302 11 1480 2039.90 2047 1308.40 1309 0.745 0.478 0.267
37 2738 1000 329 12 1613 2116.13 2124 1388.46 1388 0.773 0.507 0.266
37 2738 1000 356 13 1745 2188.20 2195 1465.86 1466 0.799 0.535 0.264
37 2738 1000 384 14 1883 2252.65 2259 1539.67 1539 0.823 0.562 0.260
37 2738 1000 411 15 2016 2306.50 2310 1606.28 1606.5 0.842 0.587 0.256
37 2738 1000 548 20 2690 2497.90 2504 1896.53 1897 0.912 0.693 0.220
37 2738 1000 685 25 3363 2604.14 2609 2110.12 2110 0.951 0.771 0.180
37 2738 1000 822 30 4037 2659.43 2663 2270.10 2270 0.971 0.829 0.142
37 2738 1000 1096 40 5385 2710.00 2714 2477.27 2478 0.990 0.905 0.085
37 2738 1000 1369 50 6727 2726.82 2729.5 2592.63 2593 0.996 0.947 0.049
37 2738 1000 1643 60 8075 2732.58 2735 2656.86 2657 0.998 0.970 0.028
37 2738 1000 1917 70 9422 2735.13 2737 2692.45 2693 0.999 0.983 0.016
39 3042 1000 153 5 757 1436.24 1444 781.88 782 0.472 0.257 0.215
39 3042 1000 183 6 906 1623.62 1631 909.27 910 0.534 0.299 0.235
39 3042 1000 213 7 1056 1794.54 1802 1029.33 1030 0.590 0.338 0.252
39 3042 1000 244 8 1210 1938.39 1944 1146.71 1147 0.637 0.377 0.260
39 3042 1000 274 9 1360 2070.28 2077 1254.85 1255 0.681 0.413 0.268
39 3042 1000 305 10 1514 2188.17 2196 1358.29 1359 0.719 0.447 0.273
39 3042 1000 335 11 1664 2285.50 2295.5 1453.35 1453 0.751 0.478 0.274
39 3042 1000 366 12 1818 2370.94 2379 1545.18 1546 0.779 0.508 0.271
39 3042 1000 396 13 1968 2450.78 2455 1630.23 1630 0.806 0.536 0.270
39 3042 1000 426 14 2117 2514.30 2519.5 1710.79 1711 0.827 0.562 0.264
39 3042 1000 457 15 2272 2577.09 2582 1786.39 1787 0.847 0.587 0.260
39 3042 1000 609 20 3029 2786.92 2793 2107.30 2109 0.916 0.693 0.223
39 3042 1000 761 25 3787 2899.55 2904 2343.72 2345 0.953 0.770 0.183
39 3042 1000 913 30 4544 2961.19 2967 2523.08 2524 0.973 0.829 0.144
39 3042 1000 1217 40 6059 3013.89 3018 2752.91 2753 0.991 0.905 0.086
39 3042 1000 1521 50 7574 3031.23 3034 2880.39 2881 0.996 0.947 0.050
39 3042 1000 1826 60 9094 3037.14 3039 2952.26 2952 0.998 0.970 0.028
39 3042 1000 2130 70 10609 3039.59 3041 2992.00 2992 0.999 0.984 0.016
41 3362 1000 169 5 847 1602.35 1610 863.65 864 0.477 0.257 0.220
41 3362 1000 202 6 1014 1814.40 1824 1004.42 1005.5 0.540 0.299 0.241
41 3362 1000 236 7 1185 2000.89 2010.5 1140.47 1141 0.595 0.339 0.256
41 3362 1000 269 8 1352 2163.60 2170 1266.47 1266 0.644 0.377 0.267
41 3362 1000 303 9 1523 2305.25 2310 1385.74 1386 0.686 0.412 0.274
41 3362 1000 337 10 1695 2435.34 2441 1501.31 1501 0.724 0.447 0.278
41 3362 1000 370 11 1861 2539.78 2546.5 1605.88 1606 0.755 0.478 0.278
41 3362 1000 404 12 2033 2637.91 2644 1708.09 1708 0.785 0.508 0.277
41 3362 1000 438 13 2204 2728.12 2731 1803.71 1804 0.811 0.536 0.275
41 3362 1000 471 14 2371 2798.26 2804 1892.77 1893 0.832 0.563 0.269
41 3362 1000 505 15 2542 2865.92 2873 1976.14 1977 0.852 0.588 0.265
41 3362 1000 673 20 3390 3091.90 3098 2329.43 2329 0.920 0.693 0.227
41 3362 1000 841 25 4238 3211.99 3217 2593.98 2595 0.955 0.772 0.184
41 3362 1000 1009 30 5085 3276.90 3282 2788.51 2789 0.975 0.829 0.145
41 3362 1000 1345 40 6781 3332.88 3337 3042.60 3043 0.991 0.905 0.086
41 3362 1000 1681 50 8476 3351.04 3354 3184.70 3185 0.997 0.947 0.049
41 3362 1000 2018 60 10176 3356.85 3359 3262.93 3263 0.998 0.971 0.028
41 3362 1000 2354 70 11871 3359.55 3361 3306.77 3307 0.999 0.984 0.016
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Table A.11: Probability Amplification – Test Results
(continued from previous page)

m |V | trials t k (%) # steps walk
avg

walk
median

sample
avg

sample
median

% walk % sample % diff

43 3698 1000 185 5 939 1778.61 1785 946.64 947 0.481 0.256 0.225
43 3698 1000 222 6 1128 2013.62 2021 1104.70 1106 0.545 0.299 0.246
43 3698 1000 259 7 1316 2218.76 2228 1253.91 1254 0.600 0.339 0.261
43 3698 1000 296 8 1505 2399.17 2402 1393.40 1394 0.649 0.377 0.272
43 3698 1000 333 9 1694 2555.00 2564 1524.45 1524 0.691 0.412 0.279
43 3698 1000 370 10 1883 2695.74 2702 1649.18 1650 0.729 0.446 0.283
43 3698 1000 407 11 2072 2812.42 2822 1768.51 1768 0.761 0.478 0.282
43 3698 1000 444 12 2261 2919.75 2925 1877.55 1878 0.790 0.508 0.282
43 3698 1000 481 13 2450 3011.72 3020 1982.15 1983 0.814 0.536 0.278
43 3698 1000 518 14 2639 3096.03 3102 2081.50 2081 0.837 0.563 0.274
43 3698 1000 555 15 2827 3165.81 3172 2174.52 2175 0.856 0.588 0.268
43 3698 1000 740 20 3772 3414.73 3420 2561.82 2562 0.923 0.693 0.231
43 3698 1000 925 25 4716 3542.15 3547 2852.63 2853.5 0.958 0.771 0.186
43 3698 1000 1110 30 5661 3611.41 3616 3068.45 3069 0.977 0.830 0.147
43 3698 1000 1480 40 7549 3668.79 3672 3348.12 3349 0.992 0.905 0.087
43 3698 1000 1849 50 9433 3686.49 3689 3503.27 3503 0.997 0.947 0.050
43 3698 1000 2219 60 11322 3692.85 3695 3588.89 3589 0.999 0.970 0.028
43 3698 1000 2589 70 13210 3695.63 3697 3637.65 3638 0.999 0.984 0.016
45 4050 1000 203 5 1042 1966.22 1973 1038.49 1039 0.485 0.256 0.229
45 4050 1000 243 6 1248 2222.55 2230 1209.95 1210 0.549 0.299 0.250
45 4050 1000 284 7 1460 2452.11 2459 1375.50 1375 0.605 0.340 0.266
45 4050 1000 324 8 1667 2644.20 2651 1526.05 1526 0.653 0.377 0.276
45 4050 1000 365 9 1878 2816.30 2824 1672.83 1673 0.695 0.413 0.282
45 4050 1000 405 10 2085 2966.28 2974 1808.29 1807.5 0.732 0.446 0.286
45 4050 1000 446 11 2296 3103.39 3108 1937.81 1938 0.766 0.478 0.288
45 4050 1000 486 12 2503 3215.93 3222.5 2056.98 2057 0.794 0.508 0.286
45 4050 1000 527 13 2714 3319.92 3323 2174.02 2173 0.820 0.537 0.283
45 4050 1000 567 14 2921 3400.76 3408 2279.92 2280 0.840 0.563 0.277
45 4050 1000 608 15 3132 3483.83 3491 2381.75 2381 0.860 0.588 0.272
45 4050 1000 810 20 4175 3745.60 3752 2808.43 2808 0.925 0.693 0.231
45 4050 1000 1013 25 5223 3886.08 3892.5 3125.82 3126 0.960 0.772 0.188
45 4050 1000 1215 30 6265 3958.68 3962 3359.64 3360.5 0.977 0.830 0.148
45 4050 1000 1620 40 8355 4019.97 4023 3667.69 3669 0.993 0.906 0.087
45 4050 1000 2025 50 10446 4038.37 4041 3837.12 3837 0.997 0.947 0.050
45 4050 1000 2430 60 12536 4045.32 4047 3931.91 3932 0.999 0.971 0.028
45 4050 1000 2835 70 14626 4047.68 4049 3984.24 3984 0.999 0.984 0.016
47 4418 1000 221 5 1147 2164.33 2173.5 1132.37 1133 0.490 0.256 0.234
47 4418 1000 266 6 1382 2454.72 2464 1323.28 1324 0.556 0.300 0.256
47 4418 1000 310 7 1611 2696.70 2706 1500.79 1502 0.610 0.340 0.271
47 4418 1000 354 8 1840 2905.74 2914.5 1667.55 1668 0.658 0.377 0.280
47 4418 1000 398 9 2070 3095.80 3104.5 1825.32 1824.5 0.701 0.413 0.288
47 4418 1000 442 10 2299 3259.03 3263 1973.19 1974 0.738 0.447 0.291
47 4418 1000 486 11 2529 3401.19 3408 2112.77 2113 0.770 0.478 0.292
47 4418 1000 531 12 2764 3530.32 3537 2247.77 2248 0.799 0.509 0.290
47 4418 1000 575 13 2993 3634.55 3642 2370.78 2371 0.823 0.537 0.286
47 4418 1000 619 14 3222 3728.82 3738 2487.55 2487 0.844 0.563 0.281
47 4418 1000 663 15 3452 3814.15 3819 2597.98 2599 0.863 0.588 0.275
47 4418 1000 884 20 4604 4097.41 4103 3063.42 3063 0.927 0.693 0.234
47 4418 1000 1105 25 5757 4244.94 4251 3408.80 3409 0.961 0.772 0.189
47 4418 1000 1326 30 6910 4323.99 4329 3667.63 3669 0.979 0.830 0.149
47 4418 1000 1768 40 9215 4386.84 4391 4002.40 4004 0.993 0.906 0.087
47 4418 1000 2209 50 11515 4406.10 4409 4186.64 4187 0.997 0.948 0.050
47 4418 1000 2651 60 13820 4412.99 4415 4288.84 4289 0.999 0.971 0.028
47 4418 1000 3093 70 16125 4415.68 4417 4345.83 4346 0.999 0.984 0.016
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Table A.11: Probability Amplification – Test Results
(continued from previous page)

m |V | trials t k (%) # steps walk
avg

walk
median

sample
avg

sample
median

% walk % sample % diff

49 4802 1000 241 5 1264 2375.36 2384 1234.41 1235 0.495 0.257 0.238
49 4802 1000 289 6 1516 2685.68 2691.5 1439.70 1439 0.559 0.300 0.259
49 4802 1000 337 7 1769 2950.07 2955 1633.39 1634 0.614 0.340 0.274
49 4802 1000 385 8 2022 3187.51 3194 1813.41 1814 0.664 0.378 0.286
49 4802 1000 433 9 2275 3384.66 3392.5 1986.99 1987 0.705 0.414 0.291
49 4802 1000 481 10 2528 3558.65 3565 2147.50 2147 0.741 0.447 0.294
49 4802 1000 529 11 2780 3712.07 3720 2300.38 2300 0.773 0.479 0.294
49 4802 1000 577 12 3033 3853.75 3864 2443.89 2443 0.803 0.509 0.294
49 4802 1000 625 13 3286 3971.12 3979 2579.30 2580 0.827 0.537 0.290
49 4802 1000 673 14 3539 4069.91 4074 2705.31 2706 0.848 0.563 0.284
49 4802 1000 721 15 3792 4168.62 4174 2826.91 2828 0.868 0.589 0.279
49 4802 1000 961 20 5056 4467.31 4472 3331.66 3331 0.930 0.694 0.236
49 4802 1000 1201 25 6320 4623.62 4629 3706.82 3706 0.963 0.772 0.191
49 4802 1000 1441 30 7584 4703.37 4709 3986.92 3987 0.979 0.830 0.149
49 4802 1000 1921 40 10112 4770.80 4774 4350.09 4351 0.994 0.906 0.088
49 4802 1000 2401 50 12640 4790.69 4793 4550.39 4551 0.998 0.948 0.050
49 4802 1000 2882 60 15174 4797.24 4799 4662.55 4663 0.999 0.971 0.028
49 4802 1000 3362 70 17702 4799.56 4801 4723.98 4724 0.999 0.984 0.016
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[22] R. Guimerá and L. A. N. Amaral. Functional cartography of complex metabolic
networks. Nature, 433:895–900, 2005.

[23] V. Guruswami, C. Umans, and S. P. Vadhan. Unbalanced expanders and ran-
domness extractors from parvaresh-vardy codes. In Proceedings of the IEEE
Conference on Computational Complexity, pages 96–108, 2007.

[24] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(4):439–561, 2006.

[25] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proceedings
of the 30th Annual IEEE Symposium on the Foundations of Computer Science,
pages 248–253, 1989.

[26] V. Kaibel. On the expansion of graphs of 0/1-polytopes. In M. Grøtschel,
editor, The Sharpest Cut: The Impact of Manfred Padberg and His Work, pages
199–216. SIAM, 2004.

[27] S. Khot. On the power of unique 2-prover 1-round games. In Proc. of the Thirty-
Fourth Annual ACM Symposium on Theory of Computing (STOC), Montreal,
Quebec, Canada, 2002.

[28] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability
results for max-cut and other 2-variable csps? SIAM Journal on Computing,
37(1):319–357, 2007.

137



[29] J. Kim and V. Vu. Generating random regular graphs. In Proc. of the Thirty-
Fifth Annual ACM Symposium on Theory of Computing (STOC), San Diego,
California, 2003.

[30] F. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. Journal of the ACM,
46(6):787–832, 1999.

[31] N. Linial and A. Wigderson. Expander graphs and their applications. Lecture
notes from a course. 2003.

[32] A. Louis, P. Raghavendra, and S. Vempala. The complexity of approximating
vertex expansion. In Proc. of the IEEE 54th Annual Symposium on Foundations
of Computer Science (FOCS), pages 360–369, Berkeley, California, 2013.

[33] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

[34] G. Margulis. Explicit constructions of expanders. Problemy Peredachi Infor-
matsii, 9(4):71–80, 1973.

[35] M. Mitzenmacher. Some open questions related to cuckoo hashing. In Pro-
ceedings of the 17th Annual European Symposium on Algorithms, pages 1–10,
2009.

[36] D. Moshkovitz and R. Raz. Two query pcp with sub-constant error. In Proc.
of the IEEE 49th Annual Symposium on Foundations of Computer Science
(FOCS), pages 314–323, 2008.

[37] M. E. J. Newman. Fast algorithm for detecting community structure in net-
works. Physical Review E, 69(066133), 2004.

[38] M. E. J. Newman. Finding community structure in networks using the eigen-
vectors of matrices. Physical Review E, 74(036104), 2006.

[39] M. E. J. Newman. Modularity and community structure in networks. In Pro-
ceedings of the National Academy of Sciences, volume 103, pages 8577–8582,
2006.

[40] M.E. J. Newman and M. Girvan. Finding and evaluating community structure
in networks. Physical Review E, 69(026113), 2004.

[41] A. Pagh and F. Rodler. Cuckoo hashing. In Proceedings of the 9th Annual
European Symposium on Algorithms, pages 121–133, 2001.

[42] M. Pinsker. On the complexity of a concentrator. In Proc. of the 7th Annual
Teletraffic Conference, pages 318/1–318/4, Stockholm, Sweden, 1973.

138



[43] P. Raghavendra and D. Steurer. Graph expansion and the unique games con-
jecture. In Proc. of the Forty-Second Annual ACM Symposium on Theory of
Computing (STOC), Cambridge, Massachusettes, 2010.

[44] P. Raghavendra, D. Steurer, and M. Tulsiani. Reductions between expansion
problems. Computing Research Repository (CoRR), abs/1011.2586, 2010.

[45] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag
graph product, and new constant-degree expanders. Annals of Mathematics,
155(1):157–187, 2002.

[46] M. Schelling and C. Hui. modMax: Community Structure Detection via Modu-
larity Maximization, 2015. R package version 1.1.

[47] L. Trevisan. Expansion, sparsest cut, and spectal graph theory. Lecture notes
from a course. 2014.

[48] L. Valiant. Graph-theoretic properties in computational complexity. Journal
of Computer and System Sciences, 13(3):278–285, 1976.

[49] K. Wakita and T. Tsurumi. Finding community structure in mega-scale social
networks. In 16th International Conference on World Wide Web (WWW ‘07),
pages 1275–1276.

[50] A. Yao. Theory and applications of trapdoor functions. In 23rd Annual IEEE
Symposium on the Foundations of Computer Science, 1982.

139




	List of Tables
	List of Abbreviations
	Introduction
	History
	In Practice
	Purpose
	Organization

	Expander Graph Basics
	Definitions
	The Second Eigenvalue
	Random Walks on Expander Graphs

	Expander Graph Applications
	Probabilistic Amplification
	Background and Motivation

	Cuckoo Hashing
	Definition and Background
	Random Walk Cuckoo Hashing


	Calculating and Bounding Expansion
	Hardness of Approximating Graph Expansion
	Unique Games Conjecture
	Approximating Small Set Expansion
	Unique Games, Small Set Expansion, and Graph Expansion

	Algorithms for Approximating Graph Expansion
	Cheeger's Inequality and the Second Eigenvalue
	SparsestCut Relaxation

	Graph Modularity
	Definition and Motivation
	Algorithms
	Relationship with Graph Expansion

	Generating Expander Graphs
	Random Generation
	Explicit Generation
	Early Work
	The Zig-Zag Graph Product: Preliminaries
	The Zig-Zag Graph Product: Definition and Recursion
	The Zig-Zag Graph Product: In Practice

	Expander Construction Summary

	Graph Generation, Eigenvalue Testing, and Expansion Evaluation
	Graph Generation and Evaluation
	Data
	Analysis

	Vertex Expansion Testing
	Subset Testing
	Expansion Evaluation Methodology
	Data
	Singleton Subset Testing Analysis
	Subset Sampling Testing Analysis

	Conclusion

	Graph Modularity Testing and Results
	Methodology
	Data
	Results

	Expander Graph Application Testing and Results
	Probabilistic Amplification
	Testing Methodology
	Data
	Results

	Cuckoo Hashing and Expander Graphs

	Conclusions
	Future Work
	Tables and Charts
	Bibliography



