




ABSTRACT
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and Electrical Engineering

We demonstrate that Domain Invariant Feature Learning (DIFL) can improve

the out-of-domain generalizability of a deep Tuberculosis screening algorithm.

It is well known that state of the art deep learning algorithms often have

difficulty generalizing to unseen data distributions due to “domain shift”. In the

context of medical imaging, this could lead to unintended biases such as the inability

to generalize from one patient population to another. We analyze the performance of

a ResNet-50 classifier for the purposes of Tuberculosis screening using the four most

popular public datasets with geographically diverse sources of imagery. We show

that without domain adaptation, ResNet-50 has difficulty in generalizing between

imaging distributions from a number of public Tuberculosis screening datasets with

imagery from geographically distributed regions.

However, with the incorporation of DIFL, the out-of-domain performance is

greatly enhanced. Analysis criteria includes a comparison of accuracy, sensitivity,



specificity and AUC over both the baseline, as well as the DIFL enhanced algo-

rithms. We conclude that DIFL improves generalizability of Tuberculosis screening

while maintaining acceptable accuracy over the source domain imagery when applied

across a variety of public datasets.

Keywords: Unsupervised Domain Adaptation, Domain Invariant Feature

Learning, TB Screening, Generative Adversarial Networks
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Chapter 1: Introduction

1.1 Domain Adaptation

Generalizability beyond the source domain, i.e. the domain upon which the

algorithm is trained on, is an important and difficult challenge for machine learn-

ing and deep learning. In medical imaging, it can have a major impact on clinical

trustworthiness, as it is unknown whether a deep learning algorithm trained on pa-

tients from one population will generalize to another without explicit and extensive

out-of-domain testing. All medical imaging datasets contain unique attributes such

as patient demographics, imaging procedures, labeling criteria, and the distribution

of scanner equipment and settings. It is possible for a machine learning or a deep

learning algorithm to overfit these criteria and thereby have difficulty in generalizing

to imagery in a new hospital institution or clinic which may have a different dis-

tribution of patient population, imaging procedures, equipment, settings, and truth

criteria.

One might think that performing cross validation might greatly mitigate the

problem of domain shift in medical imagery. However, this is not the case, as both

the train and test samples are ultimately drawn from the same dataset with the same

patient and imaging distribution. Therefore, it does not provide any indication of
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how well an algorithm might perform when applied to a different dataset without

access to labeled imagery, even if the target data represents the exact same diagnostic

task with a slightly different distribution of imagery.

A canonical example of the aforementioned problem in machine learning is the

difficulty of state-of-the-art deep learning networks, trained using the MNIST digits

dataset, to accurately predict the USPS zip-code digits dataset without retraining

or Domain Adaptation [1]. It is easy for a software developer to erroneously think

that a deep learning algorithm trained to predict MNIST digits could be applied

whole-cloth without reduced accuracy to handwriting recognition tasks in the wild

such as parsing of postal zip codes or handwritten checks, even though the task

remains the same.

Fortunately, many recent works have shown that unsupervised Domain Adap-

tation enables algorithms trained on the MNIST dataset to not only generalize to the

USPS dataset, but even to the more difficult Street View House Numbers (SVHN)

dataset, which contains images on which digits are typically printed and not hand-

written. This is done by first producing generalized features between the different

datasets, and then using these generalized features for the classification task at hand.

Hence, by using generalized features, the model mitigates the domain shift that is

present between the datasets, and can then be used for identical classification tasks

on other datasets.
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1.2 Tuberculosis Screening

Tuberculosis (TB) is a contagious bacterial infection of the lungs which is

widespread globally, thus affecting an estimated 25% of the world’s population. 90%

of those infected will never have symptoms, but 10% will progress to active TB which

frequently causes symptonms such as severe coughing, chest pain, and pulmonary

scarring. TB is known to develop more frequently in populations of developing

countries, with higher rates of infection in Low and Middle Income Countries (LMIC)

than High Income Countries (HIC). In particular, many countries in the African and

South American continents have high prevalence of TB infections.

TB can be diagnosed through a few ways, such as conducting a skin test, a

blood test, or also by analyzing a chest X-ray image of the patient to look for damage

to the lungs. However, the gold standard for diagnosing TB is through conducting

a microscopic examination of sputum and culture of bacteria to look for presence

of the Mycobacterium TB. This golden standard process is a very time-consuming

process, which can take up to months at times, and also requires a lot of resources,

such as a biosafety level 3 lab. These are not affordable in a large majority of places

and countries, and thus diagnosing TB accurately itself proves to a challenge.

It would be desirable to train a deep learning algorithm for TB screening that

can generalize to populations from around the world. This would have a huge impact

in the medical field, and would particularly find a place in providing much needed

assistance for triaging in hospitals across the globe. However, there are 2 major

problems that would prevent us from obtaining this ambitious goal.
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Firstly, there are not many publicly available TB datasets that can be used to

train deep learning algorithms. Deep learning algorithms gain power through looking

at large amounts of data, and a lack of accurately annotated TB data would mean

that a deep learning algorithm may not perform up to its full potential. Radiologists

are able to provide accurate readings of the chest X-ray images to diagnose TB most

of the times, which can be used to label TB data if necessary. However, due to the

complex nature of the disease, diagnosing TB from just chest X-ray images proves

to be a challenging task for even the most experienced radiologists. According to

a conducted study [2], it was found that expert radiologists from the top hospitals

around the world only have an accuracy of 68.7% in comparison to the gold standard.

This is largely due to the fact that the human eye is not sensitive enough to details in

the X-ray images to be able to identify TB areas. Apart from difficulty in obtaining

gold standard labelled TB data, difficulties in anonymization of patients’ data and

privacy concerns have led to a lack of public TB datasets that can be used for

training deep learning algorithms.

Secondly, the presence of domain shift in TB data would mean that standard

deep learning algorithms trained on labelled TB data may not perform well on out-

of-domain TB data. For example, a deep learning algorithm trained on a particular

TB dataset may only perform well on data from the same TB dataset, and not

on data from other TB datasets. In this paper, the impact of domain shift on

TB screening algorithms is explored, by utilizing four major public datasets that

are available for the identical task of TB screening from chest X-ray images. By

training AI models using regular deep learning algorithms on one dataset and cross-
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testing them on the other three datasets, we can evaluate the presence of bias (i.e.

the inability to generalize to other domains) in these AI models that arise due to

domain shift.

Three out of the four public datasets used are regional datasets, with chest

X-ray images originating wholly from a singular medical institution in Shenzhen

(China), New Delhi (India) and Montgomery County (USA). The last public dataset,

referred to as the TBX11K dataset, is a much more extensive dataset, containing a

large number of chest X-ray images taken from several medical institutions around

the world. As such, one might expect that a deep learning model trained using

the TBX11K dataset would be able to perform significantly well on identical TB

screening tasks using out-of-domain (in this case, non-TBX11K) data, such as the

three regional datasets. However, initial testing has revealed that even state-of-the-

art deep learning algorithms, such as the ResNet50 model, when trained only on the

TBX11K data, achieves greatly reduced out-of-domain accuracy when tested on the

other datasets.

This problem is an ideal candidate for exploring the possibility of applying

DIFL methods in the context of medical imaging tasks. As mentioned earlier, DIFL

methods have found success in classification tasks such as handwritten digits recog-

nition or object recognition. However, not much research has been done in terms

of employing DIFL methods for relatively complex tasks, particularly in the med-

ical field, such as TB screening from chest X-ray images. As such, this paper sets

out to explore the viability of improving deep learning algorithms in the medical
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field through implementing DIFL methods, by specifically delving into the task of

screening TB from chest X-ray images.

1.3 Contributions

The crucial contributions from the research conducted in this thesis are as

follows:

1. Assessing and quantifying the presence of bias in standard AI models for

screening TB arising due to domain shift

2. Applying and evaluating the effectiveness of the Domain Invariant Feature

Learning (DIFL) method for the purpose of TB screening from chest X-ray

images across diverse patient populations

3. Discussing the effects of differing disease presentation across TB datasets when

employing the DIFL method

1.4 Thesis Statement

Utilizing Domain Invariant Feature Learning (DIFL) can enable a deep Tu-

berculosis screening model to adapt to changes in disease presentation that can be

observed over diverse populations, thus mitigating domain shift.
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Chapter 2: Related Work

While there has been interest and developments in the field of domain adap-

tation recently, it is still an area of machine learning that is yet to be fully explored.

Domain adaptation has found its place in a wide variety of applications, ranging

from being a part of a broader transfer learning routine [3, 4, 5, 6], explicitly mod-

elling the transformation between two or more domains [7, 8], and even in data

augmentation [9, 10]. With a wide variety of flavors to choose from, such as su-

pervised [11, 12, 13], semi-supervised [14, 15, 16], and unsupervised [17, 18, 19],

domain adaptation has been increasingly incorporated for an increasing number of

tasks, such as handwritten digit classification [20, 21], object recognition in images

acquired in different conditions [21, 22], 3D pose estimation [23], and a variety of

other tasks.

However, the application of domain adaptation has been relatively limited to

slightly simpler tasks, and work done in the field of domain adaptation in the context

of medical imaging has been relatively limited thus far. While there has been a

slight uptick in utilizing domain adaptation techniques for tasks relating to medical

imaging as of recent, none of them have been looked into the field of unsupervised

domain adaptation methods. Logically, unsupervised domain adaptation proves to
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be the most difficult to achieve in comparison to supervised/semi-supervised, in large

part due to the absence of classification labels in the target domain(s). Given the

relatively complex nature of machine learning done in the field of medical imaging,

i.e. the distribution of data is not as easily learnt as with other simpler tasks

such as handwritten digit classification, a large majority of domain adaptation work

done in the context of medical imaging has shied away from unsupervised domain

adaptation. Some of the closest related work are analysed in the upcoming sections.

[24] looks at how semi-supervised domain adaptation methods can be ap-

plied to improve the accuracy of the label classification across different domains

for the task of predicting Covid-19 from chest X-ray images. In their proposed

semi-supervised Open Set Domain Adversarial (SODA) network, they utilize an ad-

versarial semi-supervised method of training, such that the SODA network will be

able to learn features that are adaptable to the target domain. They have used the

ChextXray-14 dataset as the source dataset, and the COVID-ChestXray dataset as

the target dataset. As this is a semi-supervised approach, they have utilized 40% of

the labelled data in the target dataset for training the SODA network. While they

have achieved an AUC-ROC score of 0.82 on the target dataset without domain

adaptation, they were able to improve upon it by applying domain adaptation, and

achieved an AUC-ROC score of 0.90 on the target dataset.

[25], very similarly, looks at the potential of semi-supervised domain adap-

tation methods to increase the accuracy of label classification on different domains

for the task of predicting cardiac abnormalities from chest X-ray images. As with

the previous paper, this paper also utilizes a semi-supervised approach, which uses
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a limited amount of labelled data from the target dataset as part of training. The

source dataset utilized in this paper was the NIH PLCO dataset, and the target

dataset was the Indiana University dataset. The authors achieved an accuracy of

0.73 on without domain adaptation, but achieved an improved accuracy of 0.85 with

domain adaptation.

[26] has looked at the potential of using domain adaptation methods for

the task of lung segmentation from chest X-ray images. They have tested both

unsupervised and supervised versions of their domain adaptation algorithm. The

Montgomery TB dataset was used as the source, while the JSRT & Pneumoconiosis

datasets were used as the target datasets. Without utilizing domain adaptation,

they were able to achieve a Dice score of 0.896 and 0.882 on the target datasets

respectively. With the supervised version of the domain adaptation, the Dice scores

improved to 0.965 and 0.949, while with the unsupervised version of domain adap-

tation, the Dice score achieved was 0.958 and 0.933.

Next, [27] has also implemented domain adaptation for the task of lung seg-

mentation from chest X-ray images. They have implemented an unsupervised ver-

sion of domain adaptation, by using the Montgomery TB dataset as the source,

and the JSRT dataset as the target. Without domain adaptation, they achieved a

Dice score of 0.82 and 0.77 for the right and left lung respectively. However, with

unsupervised domain adaptation, the Dice score significantly improved to 0.95 and

0.93.

Lastly, unlike the previous papers we have looked at, [28] looks at applying

domain adaptation across data from different modalities, for the task of whole heart
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segmentation. They have utilized an unsupervised approach, with the source dataset

consisting of MR heart images, and the target dataset consisting of CT heart images.

Without domain adaptation, they achieved a Dice score of 0.17, which was greatly

improved to a Dice score of 0.73 with domain adaptation.

After looking through the closest relevant work, we are unaware of any research

that has looked into the potential of applying unsupervised domain adaptation meth-

ods, particularly for the task of TB classification, as we have done in this paper.

Most of the work done in the space of unsupervised domain adaptation seems to

be related to the task of segmentation, rather than classification. The work done

in [24] and [25], as looked at previously, are the closest in terms of research goals

and alignment to the work done in this thesis. However, the methods implemented

in both of these papers utilize a semi-supervised approach, which assumes the avail-

ability of partially labelled data in the target dataset. In reality, such labelled data

might not be available in the field of medical imaging (mainly pertaining to chest

X-ray images), due to two main factors: difficulty and slowness in obtaining proper

ground truths for the chest X-ray images and privacy concerns regarding disclosure

of patients’ information. As such, un-labelled and un-annotated data is more easily

obtainable, which raises the question of whether unsupervised domain adaptation

methods would be as effective as semi-supervised domain adaptation methods for

the same/similar tasks.

In this paper, we seek to investigate this hypothesis, i.e. how effective would

unsupervised domain adaptation methods be in the context of medical imaging

10



tasks. This is explored by applying unsupervised domain adaptation methods for

the particular task of screening for TB from chest X-ray images.
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Chapter 3: Methodology

3.1 Overview

In this section, the developed Domain Invariant Feature Learning (DIFL)

model will be explained in detail.

The implemented DIFL model draws inspiration from the Generative Adver-

sarial Network (GAN) architecture, as discussed in [29]. The two main components

of a basic GAN architecture include the generator network, and the discriminator

network. These two networks have opposing goals, with the generator trying to

manipulate the input data in a way such that the discriminator fails to successfully

categorize the output of the generator into the possible classes, i.e. the generator

attempts to “fool” the discriminator, while the discriminator attempts to perform

accurate classification. As such, both of these networks have custom loss functions

that are adjusted according to the exact function that they serve. A simplified

example of the GAN architecture is shown in Figure 3.1.

In the following discussion, an input image is represented by the variable x ∈ X

where X is the set of all input images, and their corresponding classification labels

are defined by the variable y ∈ Y , where Y is the set of all classification labels. The

set of images and classification labels are also subdivided into source and target
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Figure 3.1: Simplified GAN Architecture

domains, which are denoted by the subscript S and the subscript T respectively. As

such, we use the variables xS to denote images from the set of all source domain

images XS, where xS ∈ XS ⊆ X, and likewise we use the variable xT to denote

images from the set of all target domain images XT , where xT ∈ XT ⊆ X. Similarly,

we define the variables yS and yT to denote the classification labels from the set of

all source classification labels YS and the set of all target classification labels YT

respectively, where yS ∈ YS ⊆ Y and yT ∈ YT ⊆ Y . However, it is to be noted

that the target classification labels YT are unobserved, and hence they are not used

for training the DIFL model. Hence, the proposed method in this paper is called

unsupervised DIFL.

Additionally, to differentiate between the source and the target domains, a

domain label is added for each image x ∈ X. The domain labels are denoted by the

variable d ∈ D, where D is the set of all domain labels. The variable dS denotes

domain labels taken from the set of all domain labels DS, such that dT ∈ DT ⊆ D,

and the variable dT denotes domain labels taken from the set of all domain labels

DT , such that dS ∈ DS ⊆ D. In a similar fashion to classification labels, domain

labels can be of any trivial type, as they are only used to differentiate the possible

13



domains any particular image x could be taken from. Thus, for the purposes of this

paper, the source domain labels dS ∈ DS for all source images are set to the value

of 0, while the target domain labels dT ∈ DT for all target images are set to the

value of 1.

A detailed overview of the DIFL model architecture is shown in Figure 3.2,

and explained in the following discussion. The DIFL model, and its training process

is explained in the following sections.

Figure 3.2: Detailed Overview of the DIFL Model

3.2 Training the DIFL Model

The ultimate aim of the DIFL model is to learn generalized feature representa-

tions of the images x ∈ X, i.e. from both the source and target domains, while also

performing successful label classification on the source images xS ∈ XS. This overall
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task is accomplished by training 3 separate neural networks simultaneously: a label

classifier network, indicated by C, a domain invariant feature generator network,

indicated by G, and a domain discriminator network, indicated by D.

In the ideal scenario, the DIFL model would be able to learn and produce

perfectly generalizable features of the images x ∈ X, in which case the label classifier

network, which has been trained to correctly classify the generalized features of the

source images xS ∈ XS, can also be utilized to make accurate classifications on

the generalized features of the unlabeled target domain images xT ∈ XT , as the

task is unchanged between the source and target domains. Thus, the DIFL model

will be able to perform equivalently well on both source and out-of-domain data, a

feat which is not able to be achieved by conventional classification models that are

trained using data from a singular domain.

Training the DIFL model would involve training all 3 networks G, C and D.

Each network has its own respective purpose, and hence, is trained through custom

methods. Broadly, the training process of the DIFL model can be subdivided into

two major steps: a label classification step, and a domain invariance step. The

DIFL model is trained by conducting these aforementioned steps simultaneously

until convergence of the DIFL model is observed.

3.2.1 Label Classification Step

In the label classification step, image and classification label tuples (xS, yS)

from the source domain are used to train a part of the DIFL model. The input

15



images xS are passed through the domain invariant feature generator network G to

produce G(xS), the domain invariant features of the input images xS. These features

are then passed through the label classifier network C, to obtain C(G(xS)), which

are the predicted classification labels of the images xS. We define a variable ŷS to

represent the predicted classification labels of the source images, as follows:

ŷS = C(G(xS)) (3.1)

The predicted classification labels ŷS are then compared with the true classi-

fication labels yS, through an appropriate loss function to produce the classification

loss, `C. Due to the binary nature of the classification labels, the Binary Cross

Entropy loss function is utilized to calculate `C. This can be represented mathemat-

ically using the following formula, where the variable N indicates the total number

of images in the batch used for training, and the superscript i is used to denote each

individual image:

`C = − 1

N

N∑
i=1

yis × log (ŷis) + (1− yis)× log (1− ŷis) (3.2)

This loss value `C is used to update the weights of the domain invariant feature

generator G and the label classifier C, by differentiating the loss value with respect to

the weights of the respective networks, and then multiplying the resulting gradients

with a appropriate learning rate before using the resulting values to update the

networks themselves. In the following discussions, this particular learning rate is

referred to as the classification learning rate, and represented by the variable αC.
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3.2.2 Domain Invariance Step

In the domain invariance step, image and domain label tuples (x, d) from both

the source and target domains are used to train a part of the DIFL model. The

input images x are passed through the domain invariant feature generator network

G to produce G(x), the domain invariant features of the input images x. These

features are then passed through the domain discriminator network D, to obtain

D(G(x)), which are the predicted classification labels of the images x. We define a

variable d̂ to represent the predicted domain labels of the images, as follows:

d̂ = D(G(x)),where x ∈ X (3.3)

As the domain invariant feature generator network G and domain discriminator

network D are set up in a GAN-like fashion, updating these networks in the domain

invariance step is also done in a similar method as with regular GANs. Let us

analyze the functions of these two networks in this particular domain invariance

step to logically derive the loss functions that should be used to update these two

networks.

Regular GANs utilize the minimax loss function to update the generator and

discriminator networks, which was first introduced in (Goodfellow et al., 2014), the

same paper that proposed the original GAN structure. The minimax loss function,

represented by the value function V (G,D) is as follows:

min
G

max
D

V (G,D) = Ex[log(D(z1))] + Ez[log(1−D(G(z2)))] (3.4)
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While the loss function for the domain invariant feature generator network G

and domain discriminator D in the domain invariance step would be similar, it need

not necessarily be identical to the above minimax loss function. Let us analyze the

functions of these networks in closer detail to set up their respective loss functions.

The domain invariant feature generator network G attempts to produce do-

main invariant feature representations G(x) of the source and target images x ∈ X,

such that the domain discriminator network D is unable to correctly identify which

domain the images are taken from. The domain discriminator network D takes G(x)

as input and aims to accurately classify them into their appropriate domains, i.e.

correctly predict their domain labels.

Thus, the loss function for the domain discriminator network D can be set

up in a straightforward manner; the predicted domain labels d̂ can be compared

together with the actual domain labels d through an appropriate loss function to

produce a loss value, represented by the variable `D. For the purposes of this paper,

due to the binary nature of the domain labels (the image can only either belong to

the source domain or the target domain), the Binary Cross Entropy loss function

is used calculate the loss value `D. This can be represented mathematically using

the following formula, where the variable N indicates the total number of images in

the batch used for training, and the superscript i is used to denote each individual

image:

`D = − 1

N

N∑
i=1

di × log (d̂i) + (1− di)× log (1− d̂i) (3.5)
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Setting up the loss function for the domain invariant feature generator net-

work G requires us to examine its purpose in closer detail. Let us first define the

term domain invariant. We can say that the feature representations of a particular

image are domain invariant, i.e. the feature representations are highly generalized,

when the domain discriminator D is unable to distinguish which domain the image

originates from. Mathematically, this statement can be interpreted in the following

manner: the domain discriminator D assigns an equal probability for the image to

be from the source and the target domain.

Thus, the domain invariant feature generator network’s goal would be for the

domain discriminator network’s output, the predicted domain labels d̂, to indicate

a probability of 0.5 for both the source and target domains. These are termed as

the ideal domain labels for the domain invariant feature generator network G, and

are represented by the variable d̂gen.

Hence, the loss for the domain invariant feature generator network G, rep-

resented by the variable `G, can be calculated by comparing the actual predicted

domain labels d̂ with the ideal domain labels d̂gen through an appropriate loss func-

tion. As with the domain discriminator network, due to the binary nature of the

domain prediction subtask, the Binary Cross Entropy loss function is used calculate

the loss value `G. This can be represented mathematically using the following for-

mula, where the variable N indicates the total number of images in the batch used

for training, and the subscript i is used to denote each individual image:
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`G = − 1

N

N∑
i=1

d̂gen × log (d̂i) + d̂gen × log (1− d̂i)

= − 1

N

N∑
i=1

0.5× log (d̂i) + 0.5× log (1− d̂i)

= − 1

N

N∑
i=1

0.5×
(

log (d̂i) + log (1− d̂i)
)

The generator loss value `G is used to update the weights of the domain in-

variant feature generator network `G, while the domain discriminator loss value lD

is utilized to update the weights of the domain discriminator network D. This

is done by differentiating the respective loss values with respect to the weights of

the corresponding networks, and then multiplying the resulting gradients with an

appropriate learning rate before using the resulting values to update the networks

themselves. In the following discussions, this particular learning rate is referred to

as the domain invariance learning rate, and represented by the variable αDI.

3.2.3 Importance of Hyperparameters

Based on the architecture of the DIFL model, there are many hyperparameters

that one would be able to adjust, such as the input image size, batch size, addition

of any intermediate layers and many more. However, there are two very crucial

parameters that will directly impact performance of the DIFL model; namely, they

are the learning rates of the label classification step (αC) and the domain invariance

step (αDI) respectively.

It is crucial to find an ideal ratio between αC and αDI, as both of the la-
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bel classification and domain invariance steps update the domain invariant feature

generator G directly. The label classification step tries to make sure the domain

invariant feature generator G extracts features that are crucial for label classifica-

tion, i.e. TB identification, while the domain invariance step tries to ensure that

the extracted features are as generalizable as possible between the source and target

domains.

These two steps may update the domain invariant feature generator G in

slightly opposing directions, and thus it is crucial to consider the exact ratio be-

tween αC and αDI. If the value of αC is set to be too high, while the value of αDI is

set to be too low, then we will likely observe a situation where the DIFL model will

perform well on the source domain, but perform significantly worse on the target

domain. This is due to the fact that the label classification step is given a higher

priority than the domain invariance step, and thus the domain invariant feature gen-

erator G will give a higher importance to extracting features relevant to the label

classification instead of domain invariance.

Conversely, if the value of αC is set to be too low, while the value of αDI is

set to be too high, then we will likely observe a situation where the DIFL model

underperforms on the source domain, but achieves a similar performance on both

the source and the target domains. This is due to the fact that the domain invari-

ance step is given a higher priority than the label classification step, and thus the

domain invariant feature generator G will give a higher importance to producing

generalized features between the source and target domains instead of extracting

features relevant to label classification.
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Both of these aforementioned scenarios are not ideal, and instead we want a

situation where we can maintain a high performance on the source domain, while

also maintaining a comparable performance on the target domain. Obtaining the

ideal values for these two hyperparameters might involve some initial testing and

adjustment, and while the ratio of these two hyperparameters are crucial, the mag-

nitude of the hyperparameters is a factor that we need to keep in mind as well. As

such, special attention must be given when choosing the two hyperparameters, αC

and αDI.
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Chapter 4: Experimental Design

We now detail the experimental design that was undertaken to develop the

final domain invariant feature learning (DIFL) model.

4.1 Datasets

The datasets used for the purpose of testing and evaluating the models are

listed in this section. All the datasets comprise of chest X-ray scans, which were

taken for the primary purpose of detecting TB.

Two public TB datasets were obtained from [30]. The first dataset consists of

chest X-ray scans collected at Shenzhen No.3 People’s Hospital, Guangdong Medical

College, Shenzhen, China, and this dataset consists of 326 healthy cases and 336 TB

cases, having a total of 662 X-ray images. The second dataset comprises of chest

X-ray scans taken through the cooperation of Department of Health and Human

Services, Montgomery County, Maryland, USA, and this dataset has a total of 138

X-ray images, of which 80 are healthy cases and the remaining 58 are TB cases.

The third dataset was obtained from [31], which has chest X-ray scans taken from

the National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India.
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This dataset has a total of 176 chest X-ray images, of which 102 are healthy cases

and the remaining 74 are TB cases.

Finally, the fourth dataset to be used was obtained from [2], who had pro-

posed the TBX11K dataset, an extensive dataset comprising of chest X-ray images

collected from the top hospitals around the world. However, the TBX11K dataset is

divided into 3 categories: healthy, sick but non-TB, and TB cases. For the purposes

of this paper, the “sick but non-TB” category has been merged together with the

“healthy” category, with the resulting TBX11K dataset containing only 2 classes of

images, TB cases and non-TB cases. This is done so as to match with the afore-

mentioned 3 public TB datasets, which also only have 2 binary classifications of the

data.

Correspondingly, the TBX11k dataset had 7600 images of non-TB cases, and

800 images of TB cases. Due the high imbalance of data between the two binary

classes, data augmentation was done to increase the number of TB images. We

applied slight augmentation in the form of rotation with rotation angles limited to

5° so that the appearance of the X-ray images is not severely altered. Through

this method, the number of TB images in the TBX11K dataset was increased to

7520 images, which is approximately proportionate to the 7600 non-TB images.

Consequently, the final TBX11K dataset which was used has a total of 15120 images.

As a side note, the above method of data augmentation is not ideal, as it may

lead to possible data leakages between the train and test splits, wherein augmentated

data of the same image may be present in both of the train and test splits of the

TBX data. As such, deep learning models will be able to classify such images in
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the test splits with ease, as they have already seen the same images in the training

split. While this will not drastically impact the performance of the models trained

on the TBX dataset, there may be a slight overestimation in performance of the

model in the case of testing models on the TBX dataset itself. However, the out-

of-domain performance would be unaffected, as data from outside the TBX dataset

is not used at all in the training of the models. As the research is mainly focused

on out-of-domain performance rather than in-domain performance, this factor does

not affect any of the results or discussion presented in the following sections.

Throughout this paper, these aforementioned datasets shall be referred to as

the China Dataset, US Dataset, India Dataset and the TBX11K dataset. The

datasets that are used for training and testing the models listed in this paper utilize

a 80:20 train-test split, both for the source and target domain datasets. Therefore,

only 80% of the dataset is used for training, while the other 20% of the data is not

seen by the model until the final testing stage.

Samples images of the 4 datasets, from both the TB positive and TB negative

classes, are shown in Figure 4.1.

4.2 Evaluation Metrics

Several measures were used to evaluate the performance of the DIFL model

and its effectiveness at the task of domain adaptation. These measures are detailed

in the following discussion.
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Figure 4.1: Sample of Chest X-ray images from the four respective datasets

4.2.1 Accuracy

Accuracy of label classification is one of the most crucial measures of evaluating

the DIFL model, as it can give us a direct idea of how well it can perform in its

primary task of TB prediction. Calculating the accuracy of the DIFL model is

straightforward. Input images and their corresponding classification labels (x, y) are

sampled from any domain, i.e. either source or target domain. The input images are

passed through the domain invariant feature generator network G, and to produce

the domain invariant features, G(x). These features are then passed through the

label classifier network C, to produce C(G(x)), the predicted classification label,

which can also be represented as ŷ. This predicted label is compared with the true

classification label y.

The above process is repeated for all data in the domain, and a confusion

matrix is built, consisting of the number of true positives (TP), false positives (FP),
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true negatives (TN) and false negatives (FN). The accuracy of the DIFL model for

this particular domain can then be calculated using to the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

The resulting accuracy value would be a great indicator of how well the DIFL

model is able to correctly classify the input data. However, considering a single

performance metric would not be a good enough basis to fully evaluate a model’s

performance. Hence, additional metrics are also used to supplement our analysis.

4.2.2 Sensitivity (True Positive Rate) and Specificity (True Negative

Rate)

Another metric which can be utilized to analyze the DIFL model is sensitivity.

Evaluating the sensitivity can be done in a similar fashion as with accuracy, by first

building the confusion matrix. The sensitivity value is then calculated using the

following formula:

Sensitivity =
TP

TP + FN
(4.2)

The sensitivity value provides a good measure of how well the model can

correctly classify the TB positive instance. Essentially, it represents the proportion

of TB positive cases that were correctly predicted as TB positive by the model as

well, and hence this value is also known as the true positive rate.

Apart from sensitivity, the specificity is also a possible metric that can be
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used to evaluate the DIFL model. Using the confusion matrix, the specificity value

is calculated using the following formula:

Specificity =
TN

TN + FP
(4.3)

The specificity value is similar to the sensitivity value, but instead indicates

how well the model can correctly classify the TB negative instances, i.e. it represents

the proportion of TB negative cases that were correctly predicted as TB negative

by the model. Thus, this value is also known as the true negative rate.

4.2.3 ROC - AUC Measure

The Receiver Operating Characteristic (ROC) curve is a graphical plot that

visualizes the classification ability of a binary classifier model, by varying its dis-

crimination threshold and evaluating its performance on the data. This is done by

plotting a graph of its True Positive Rate (Sensitivity) against its False Positive

Rate (1-Specificity) as its discrimination threshold is varied from 0 to 1. While the

ROC curve enables one to visualize a model’s performance, the graph alone does

not however provide a concrete method to objectively compare the performance of

different models.

To supplement the analysis of a model’s ROC curve, an additional metric,

known as the Area Under Curve (AUC) value, can be calculated and used to judge

the performance of the binary classifier model. The AUC value can be determined

trivially by taking the area under the ROC curve (this can be obtained by integrating
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with respect to the ROC curve), and provides a simple but effective way of directly

comparing the performances of different models.

As the True Positive Rate and False Positive Rate ranges from a minimum

value 0 to a maximum value of 1, the maximum AUC value possible would be

1×1 = 1, which is only obtainable by a model that is able to perform perfect binary

classification at all possible discrimination thresholds. A random binary classifier

is expected to achieve an AUC value of 0.5, as it can perform correct predictions

about approximately only half of the time. As the AUC value tends closer to 1,

we can infer that the model is able to better classify the instances of the data, and

hence is indicative of better model performance.
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Chapter 5: Results and Discussion

5.1 Overview

In this section, the obtained results from the aforementioned experiments will

be detailed and discussed.

In order to assess and quantify the domain shift in TB datasets when utilizing

standard deep learning algorithms, two non-DIFL models were implemented. These

non-DIFL models were trained on a single dataset of the four TB datasets, and then

tested on all four datasets to evaluate their performance on in-domain testing and

out-of-domain testing.

Firstly, a simple non-DIFL model was trained on each of the four datasets.

The simple non-DIFL model’s architecture constists of a single Convolution Neural

Network, which has a couple of convolutional layers followed by some dense layers.

The results obtained from evaluating the performance of this simple non-DIFL model

on all four of the datasets are presented in Figures 5.1-5.4, and Tables 5.1-5.4.

Next, a more advanced non-DIFL model was trained on each of the four

datasets. The advanced non-DIFL model’s architecture consists of a ResNet50 net-

work at the start, a VGG19 network in the middle, and a few dense layers at the

end. The results obtained from evaluating the performance of this advanced non-

30



DIFL model on all four of the datasets are presented in Figure 5.5-5.8, and Tables

5.5-5.8.

Lastly, the DIFL models were implemented, which are described in further

detail in the upcoming sections.
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5.2 Simple Non-DIFL Model Results

5.2.1 Simple Non-DIFL Model: Trained on China Dataset

Figure 5.1: ROC Curve: Simple Non-DIFL Model trained on China Dataset

Dataset Accuracy AUC

China 0.84 ± 0.01 0.88 ± 0.01

India 0.55 ± 0.02 0.62 ± 0.04

US 0.57 ± 0.03 0.65 ± 0.04

TBX 0.59 ± 0.01 0.66 ± 0.01

Table 5.1: Accuracy and AUC: Simple Non-DIFL Model trained on China Dataset
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5.2.2 Simple Non-DIFL Model: Trained on India Dataset

Figure 5.2: ROC Curve: Simple Non-DIFL Model trained on India Dataset

Dataset Accuracy AUC

China 0.49 ± 0.03 0.48 ± 0.05

India 0.77 ± 0.02 0.74 ± 0.03

US 0.60 ± 0.03 0.63 ± 0.04

TBX 0.54 ± 0.02 0.53 ± 0.03

Table 5.2: Accuracy and AUC: Simple Non-DIFL Model trained on India Dataset
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5.2.3 Simple Non-DIFL Model: Trained on US Dataset

Figure 5.3: ROC Curve: Simple Non-DIFL Model trained on US Dataset

Dataset Accuracy AUC

China 0.53 ± 0.02 0.64 ± 0.03

India 0.46 ± 0.03 0.64 ± 0.03

US 0.86 ± 0.04 0.88 ± 0.04

TBX 0.53 ± 0.02 0.63 ± 0.02

Table 5.3: Accuracy and AUC: Simple Non-DIFL Model trained on US Dataset
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5.2.4 Simple Non-DIFL Model: Trained on TBX Dataset

Figure 5.4: ROC Curve: Simple Non-DIFL Model trained on TBX Dataset

Dataset Accuracy AUC

China 0.48 ± 0.02 0.48 ± 0.03

India 0.58 ± 0.01 0.61 ± 0.02

US 0.57 ± 0.02 0.61 ± 0.01

TBX 0.98 ± 0.01 0.99 ± 0.01

Table 5.4: Accuracy and AUC: Simple Non-DIFL Model trained on TBX Dataset

35



5.3 Advanced Non-DIFL Model Results

5.3.1 Advanced Non-DIFL Model: Trained on China Dataset

Figure 5.5: ROC Curve: Advanced Non-DIFL Model trained on China Dataset

Dataset Accuracy AUC

China 0.84 ± 0.02 0.87 ± 0.02

India 0.46 ± 0.01 0.47 ± 0.02

US 0.59 ± 0.01 0.59 ± 0.03

TBX 0.56 ± 0.02 0.59 ± 0.04

Table 5.5: Accuracy and AUC: Advanced Non-DIFL Model trained on China
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5.3.2 Advanced Non-DIFL Model: Trained on India Dataset

Figure 5.6: ROC Curve: Advanced Non-DIFL Model trained on India Dataset

Dataset Accuracy AUC

China 0.52 ± 0.03 0.47 ± 0.04

India 0.83 ± 0.02 0.83 ± 0.02

US 0.53 ± 0.05 0.56 ± 0.02

TBX 0.57 ± 0.02 0.57 ± 0.04

Table 5.6: Accuracy and AUC: Advanced Non-DIFL Model trained on India Dataset
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5.3.3 Advanced Non-DIFL Model: Trained on US Dataset

Figure 5.7: ROC Curve: Advanced Non-DIFL Model trained on US Dataset

Dataset Accuracy AUC

China 0.46 ± 0.01 0.37 ± 0.05

India 0.50 ± 0.03 0.51 ± 0.03

US 0.93 ± 0.01 0.93 ± 0.02

TBX 0.48 ± 0.02 0.52 ± 0.05

Table 5.7: Accuracy and AUC: Advanced Non-DIFL Model trained on US Dataset
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5.3.4 Advanced Non-DIFL Model: Trained on TBX Dataset

Figure 5.8: ROC Curve: Advanced Non-DIFL Model trained on TBX Dataset

Dataset Accuracy AUC

China 0.56 ± 0.02 0.55 ± 0.04

India 0.54 ± 0.04 0.56 ± 0.04

US 0.48 ± 0.04 0.59 ± 0.05

TBX 0.99 ± 0.01 0.99 ± 0.01

Table 5.8: Accuracy and AUC: Advanced Non-DIFL Model trained on TBX Dataset
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5.4 Non-DIFL Model Results - Discussion

From the results obtained through both the simple and the advanced non-

DIFL models, it is evident that standard deep learning models, regardless of how

advanced they are, are unable to generalize to other domains.

In all the cases seen above, the non-DIFL model achieves good performance on

the dataset it was trained on, as evident from the ROC curve and the significantly

higher accuracy and AUC scores, with values as high as around 0.8. However, when

tested on the other datasets, the performance drops close to random guessing, with

accuracy and AUC scores in the region of 0.5-0.6, and the ROC curve observed to

be close to the diagonal. This confirms the presence of domain shift and its effect of

preventing conventional models to fail when tested on datasets other than the one

they have been trained on.

One interesting observation is that even standard models trained on the TBX

dataset, which is a significantly larger dataset with images from hospitals all over

the world, are unable to generalize to the regional datasets. (While the in-domain

performance of the non-DIFL models trained on the TBX dataset might be slightly

overestimated, as noted in Section 4.1, the out-of-domain performance would not

be affected, which is the key point in this discussion.) As such, we can infer that

population diversity is not the only factor that contributes to domain shift. If that

was the case, it is expected that a standard model trained on the TBX dataset

would perform well on the three other regional datasets.

Thus, the above set of results highlight the need for domain adaptation meth-
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ods, particularly in the case where out-of-domain performance and capability of

generalization across differing datasets is necessary.

5.5 DIFL Model Results

In this section, we look at the results obtained from implementing the DIFL

approach.

As part of the experimentation, the three regional datasets were used, with

each of the China, India and US datasets being utilized as the source dataset, while

one of the remaining datasets was used as the target dataset. There are six such

possible combinations of source and target datasets by using these three regional

datasets. For the sake of simplifying labels, the X → Y nomenclature is used to

define the source and target datasets, where X is the source dataset, and Y is the

target dataset.

In each trial per combination, three different types of models are trained and

evaluated accordingly: the first model is a non-DIFL model, which is trained on

the source dataset, and then tested on the target dataset. This model, as expected,

does not achieve good performance measures, due to the presence of domain shift.

As such, the performance scores achieved by this model are used as a minimum

baseline, and hence this model is termed as the lower baseline model.

The second model is a non-DIFL model, wherein the model is directly trained

on the target dataset, and consequently tested on the target dataset. As it is being

directly trained on the data upon which it is also tested, this model is expected to
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perform well. The performance scores from this model provide an “upper bound”

to which the results from the experimental DIFL model can be compared against,

and thus this model is termed as the upper baseline model.

The final model is the DIFL model, which is trained on the source dataset,

and tested on the target dataset utilizing the DIFL algorithm. The performance of

this model can be evaluated by comparing it against the previously mentioned lower

and upper baseline models.
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5.5.1 Source Domain: China, Target Domain: India

Figure 5.9: ROC Curve: Source Domain - China, Target Domain - India

Type of Model Accuracy AUC

Lower Baseline Model 0.47 ± 0.01 0.48 ± 0.01

DIFL Model 0.68 ± 0.02 0.70 ± 0.01

Upper Baseline Model 0.84 ± 0.01 0.83 ± 0.02

Table 5.9: Accuracy and AUC: Source Domain - China, Target Domain - India
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5.5.2 Source Domain: China, Target Domain: US

Figure 5.10: ROC Curve: Source Domain - China, Target Domain - US

Type of Model Accuracy AUC

Lower Baseline Model 0.59 ± 0.01 0.57 ± 0.02

DIFL Model 0.71 ± 0.01 0.68 ± 0.04

Upper Baseline Model 0.93 ± 0.02 0.93 ± 0.02

Table 5.10: Accuracy and AUC: DIFL Model Source Domain - China, Target Do-

main - US
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5.5.3 Source Domain: India, Target Domain: China

Figure 5.11: ROC Curve: Source Domain - India, Target Domain - China

Type of Model Accuracy AUC

Lower Baseline Model 0.50 ± 0.02 0.47 ± 0.04

DIFL Model 0.73 ± 0.02 0.77 ± 0.01

Upper Baseline Model 0.83 ± 0.01 0.86 ± 0.01

Table 5.11: Accuracy and AUC: Source Domain - India, Target Domain - China
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5.5.4 Source Domain: India, Target Domain: US

Figure 5.12: ROC Curve: Source Domain - India, Target Domain - US

Type of Model Accuracy AUC

Lower Baseline Model 0.49 ± 0.03 0.57 ± 0.02

DIFL Model 0.63 ± 0.04 0.68 ± 0.04

Upper Baseline Model 0.93 ± 0.02 0.93 ± 0.02

Table 5.12: Accuracy and AUC: Source Domain - India, Target Domain - US
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5.5.5 Source Domain: US, Target Domain: China

Figure 5.13: ROC Curve: Source Domain - US, Target Domain - China

Type of Model Accuracy AUC

Lower Baseline Model 0.45 ± 0.01 0.33 ± 0.04

DIFL Model 0.80 ± 0.01 0.84 ± 0.04

Upper Baseline Model 0.82 ± 0.01 0.86 ± 0.01

Table 5.13: Accuracy and AUC: Source Domain - US, Target Domain - China
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5.5.6 Source Domain: US, Target Domain: India

Figure 5.14: ROC Curve: Source Domain - US, Target Domain - India

Type of Model Accuracy AUC

Lower Baseline Model 0.52 ± 0.02 0.52 ± 0.03

DIFL Model 0.63 ± 0.02 0.63 ± 0.02

Upper Baseline Model 0.83 ± 0.01 0.83 ± 0.02

Table 5.14: Accuracy and AUC: Source Domain - US, Target Domain - India
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5.6 DIFL Model Results - Discussion

In the following sections, the DIFL model results presented above are explained

in detail.

5.6.1 Accuracy Scores

The accuracy scores of all three of these models, for each of the six possible

combinations amongst the regional datasets, are detailed in Tables 5.9-5.14.

It is observed that in all the six combinations, the non-DIFL lower baseline

model is only able to achieve accuracy scores of around 0.5, signifying that these

models are not performing any better than random guessing. The upper baseline

model, as expected, achieves high accuracy scores in the region of 0.8-0.9.

Looking at the DIFL models, it is observed that they achieve significantly

higher accuracy scores than their respective lower baseline models, by approximately

0.2. While it is not able to achieve accuracy scores as high as the upper baseline

models, it does come close in one combination, particularly the US → China case,

wherein the DIFL model achieves an accuracy score of 0.80 (which is a great increase

from the lower baseline model’s accuracy of 0.45), while the upper baseline model

achieves an accuracy score of 0.82. The case of India → China also achieves a

relatively good DIFL model performance, achieving an accuracy score of 0.73, which

is a significant increase from the lower baseline model’s accuracy score of 0.50, and

falling just short of the upper baseline model’s accuracy score of 0.83.

Hence, while the DIFL model is not able to outperform the upper baseline
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model, it can be said that in some cases, it has the capability to achieve a similar

performance as that of the upper baseline model in certain conditions.

5.6.2 ROC Curves

ROC curves can further aid in visualizing and comparing the performance

amongst the three types of models stated above. These ROC curves are presented

in Figures 5.9-5.14.

Each ROC graph corresponds to a particular combination of the regional

datasets. In the graphs, a consistent color scheme is utilized for easier compari-

son and analysis. The lower baseline model is represented by the green curve, the

upper baseline model is represented by the blue curve, and the DIFL model is rep-

resented by the red curve. Additionally, a region of one standard deviation is also

shaded in a lighter color to represent the margin of deviation of each curve.

It is observed that in all six cases, the non-DIFL lower baseline model has a

ROC curve that is rather similar to the diagonal, which is once again indicative of

the fact that the lower baseline model is only able to achieve a performance that

is similar to random guessing. The upper baseline model is able to achieve good

results, as indicated by the ROC curve’s shape which is highly directed towards the

top left corner.

Looking at the DIFL model’s ROC curve, it is observed that the DIFL model

is able to significantly outperform the non-DIFL lower baseline model, as noted

by the significant shift in the ROC curve towards the upper left corner. When
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comparing the DIFL model’s ROC curve with the upper baseline model’s ROC

curve, the latter seems to perform better in most cases. However, in one particular

combination, namely the US → China case, the DIFL model’s performance seems

to be on par with the upper baseline model’s performance. The case of India →

China also has comparable performances between the DIFL model and the upper

baseline model. This observation corroborates the evidence that the DIFL model

has the potential to perform as well as the model that was directly trained on the

target dataset.

Thus, analyzing the ROC curves brings more evidence to the fact that the

DIFL model always significantly outperforms the lower baseline model, and in cer-

tain conditions, can perform as well as the upper baseline model as well.

5.6.3 AUC Scores

AUC scores are used to quantify the performance of the models from the ROC

curves. The AUC scores of all three models, for each of the six possible combinations

amongst the regional datasets, are detailed in Tables 5.9-5.14.

It is observed that in all the six combinations, the non-DIFL lower baseline

model is only able to achieve AUC scores of around 0.5, signifying that these models

are not performing any better than random guessing. The upper baseline model, as

expected, achieves high AUC scores in the region of 0.8-0.9.

Looking at the DIFL models, it is observed that they achieve significantly

higher AUC scores than their respective lower baseline models, by approximately
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0.1-0.2. While it is not able to achieve AUC scores higher than the upper baseline

models, it does come close in one combination, particularly the US → China case,

wherein the DIFL model achieves an AUC score of 0.84 (great increase from the

lower baseline model’s AUC score of 0.33), while the upper baseline model achieves

an AUC score of 0.86. Also, the India → China case also achieves relatively good

DIFL model performance, achieving a AUC score of 0.77 (significant increase from

the lower baseline model’s AUC score of 0.47), which is just slightly less than the

upper baseline model’s AUC score of 0.86.

Thus, evaluating the AUC scores brings us to a similar conclusion as when

evaluating on the previous performance metrics. While the DIFL model is not able

to outperform the upper baseline model, it can be said that in some cases, it has

the capability to achieve a similar performance as that of the upper baseline model

in certain conditions.

5.6.4 Discussion of Disease Presentation

One interesting observation from the conducted experiments was the case of

using the US dataset as the source dataset, and the Chinese dataset as the target

dataset. This particular combination saw the highest improvement in performance

from the lower baseline model, and the closest performance in comparison to the

upper baseline model. Another combination that produced relatively good results

was the case where the India dataset was used as the source dataset, and the China

dataset was used as the target dataset. As such, we notice that the DIFL algorithm
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is able to generalize particularly well to the China dataset. This can be attributed

to differences in disease presentation among the three regional datasets.

There are a variety of factors that can affect disease presentation in patients,

particularly in the case of screening for TB from chest X-ray images. These fac-

tors include, but are not limited to: X-ray exposure, X-ray quality, position of the

patient, and other medical equipment configurations.

Additionally, it is known that TB is a progressive disease, and as such, there

may be differing levels of manifestations in patients affected with TB. Some TB

patients may have a more serious manifestation of TB, while others may have a

less severe manifestation of TB. As such, the severity of the disease itself, can cause

differing disease presentation in patient populations, as it will directly affect the

extent to which the lung is damaged as a result of being affected by TB.

The varying disease presentation in each of the three regional datasets is the

main reason as to why we observe relatively better results when employing the DIFL

method and using the China dataset as the target dataset. Upon further inspection

of the chest X-ray images by certified radiologists, it was observed that some of

the images in the China dataset do have different disease presentation of TB, when

compared with the other datasets. While all of the three regional datasets themselves

had varying disease presentations, the China dataset had disease presentation that

was largely different from the images in the US or India datasets.

Thus, to achieve ideal performance of the DIFL model, the disease presentation

should be considered when choosing the source and target datasets. Certain source

datasets allow for better extracting of generalized features, and thus can achieve
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better generalization across target datasets. As evidenced by the results we saw

before, by analyzing disease presentation and choosing the right combination of the

source and target datasets, the DIFL model would have the potential to produce

ideal results that are comparable to training directly on labelled data from the target

dataset.

As such, it is crucial to consider the nature of the datasets, particularly in the

task of screening for TB from chest X-ray images, when employing the DIFL ap-

proach. Due to the complex nature of TB, the disease presentation factor may affect

the effectiveness of the DIFL approach, and thus, in order to achieve peak DIFL

model performance, the disease presentation of the datasets should be analyzed

whenever possible before deciding on the source and target datasets.
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Chapter 6: Conclusion

It is apparent that conventional non-DIFL models are unable to generalize to

domains on which they were not trained on, even if the actual classification task is

identical. This is largely due to the presence of domain shift, which causes a non-

DIFL model trained on a source dataset to underperform when tested on other target

datasets. Utilizing a DIFL approach mitigates this problem by using unlabeled data

from the target dataset to produce more generalized features from the source and

target dataset, upon which the classification task is then conducted. As such, the

DIFL approach enables us to perform classification tasks on the target dataset, with

a much better performance than standard non-DIFL deep learning algorithms, even

when the data from the target dataset is unlabeled.

It is observed that the DIFL model performs significantly better than non-

DIFL models. Additionally, there are circumstances in which the DIFL model has

the potential to perform equivalently as the non-DIFL models which are directly

trained on the target dataset. However, achieving such ideal results is largely de-

pendent on the disease presentation among the datasets that are utilized, and choos-

ing the optimal source and target dataset is key in achieving optimal DIFL model

performance.
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In the context of specific datasets that were used in this research, it is ob-

served that the DIFL model achieves relatively good performance when the US or

India dataset is used as the source dataset, and the China dataset is used as the

target dataset. When these DIFL models were tested on the target dataset (China),

they achieved results that were almost comparable to that of standard non-DIFL

algorithms trained directly on the China dataset. However, while these two combi-

nations produced near-ideal results, all DIFL models significantly outperform their

non-DIFL counterparts when trained on the source dataset and tested on the target

dataset.
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Chapter 7: Future Work

The field of DIFL, and domain adaptation in general, has a huge potential

for many purposes, and further refinement would enable it to be applied to a large

number of other purposes. This section discusses a few of the possible extensions

through which one could continue the work that has been done in this paper.

The main facet of this experiment which could be improved to achieve better

results would be hyperparameter tuning, particularly that of the classification step

learning rate and the domain invariance step learning rate. Deciding the appropriate

classification step and domain invariance step learning rates was done by conducting

a few trial and error test runs, to decide which set of values would provide the best

set of results. However, instead of using trial and error to determine the best set

of values for these hyperparameters, one could take a more systematic approach,

by using linear algebra to solve for the ideal values of these hyperparameters, by

including them along with the mathematical functions of the neural networks. This

can be done by accounting for the ideal step sizes within the architecture of the

DIFL model, and cleverly manipulating the loss functions that are used. While this

might make the DIFL neural network architecture more complex, it would produce
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better results as it would ensure that the DIFL model is achieving the right balance

of generalization and learning classification features.

Apart from utilizing DIFL algorithms for classification of TB from chest X-

rays, one could also attempt to implement similar DIFL algorithms for classification

of other diseases, such as lung cancer, pneumonia, and even CoViD-19. Additionally,

instead of limiting ourself to chest X-rays, domain adaptation techniques can be

implemented on other types of medical imaging modalities, such as mammograms,

CT scans and MR images to name a few.

Lastly, another aspect which could be experimented with would be evaluating

the effectiveness of the DIFL algorithm when multiple source datasets or multiple

target datasets are involved. While it is shown in this paper that the DIFL algo-

rithm, in the context of TB screening from chest X-rays, can generalize and mitigate

the domain shift between a single source dataset and a single target dataset, its ef-

fectiveness in dealing with multiple source or target datasets is unknown. This

would be a relevant extension to the research done in this thesis, as in reality, one

may have access to multiple source and target datasets. The DIFL model could be

modified slightly to make this change possible, and experiments could be conducted

to assess how using multiple source or target datasets affects the end result.
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