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Chromatin dynamics are central to the regulation of gene expression and genome stability. In order to
improve understanding of the factors regulating chromatin dynamics, the genes encoding these factors
are deleted and the differential gene expression profiles are determined using approaches such as RNA-
sequencing. Here, we analyzed a gene expression dataset aimed at uncovering the function of the relatively
uncharacterized chromatin regulator, Set4, in the model system Saccharomyces cerevisiae (budding yeast).
The main theme of this paper focuses on identifying the highly differentially-expressed genes in cells deleted
for Set4 (referred to as Set4∆ mutant dataset) compared to the wild type yeast cells. The Set4∆ mutant data
produce a spiky distribution on the log fold changes of their expressions, and it is reasonably assumed that
genes which are not highly differentially-expressed come from a mixture of two normal distributions. We
propose an adaptive local false discovery rate (FDR) procedure, which estimates the null distribution of the
log fold changes empirically. We numerically show that, unlike existing approaches, our proposed method
controls FDR at the aimed level (0.05) and also has competitive power in finding differentially expressed
genes. Finally, we apply our procedure to analyzing the Set4∆ mutant dataset.
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ing

Supporting Information for this article is available from the author or on the WWW under
http://dx.doi.org/10.1022/bimj.XXXXXXX (please delete if not applicable)

1 Introduction

In gene expression studies, the abundance of product (different RNA species) from individual genes is
measured in response to a particular perturbance of cells, such as the incorporation of a mutation into a
master regulator of gene expression or treatment with a chemical or cellular stress stimulant. Often, this
perturbance results in a very specific pattern of gene expression changes, in which a relatively small subset
of the genes tested exhibit high differential expression. It is of interest to identify genes that experience
highly differentiated expression as a direct consequence of the genetic or chemical change. The endeavor
of identifying these genes from among many thousand candidates presents a multiple testing problem
where some common statistic is used as a measure of differentiation. In addition, the sheer number of
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hypotheses that need to be tested makes false discovery rate (FDR) a reasonable error rate to consider.
The BH procedure based on p-values in Benjamini and Hochberg (1995) is a typical approach in multiple
testing problems that controls false discovery rate (FDR).

A local FDR method by Efron (2004) uses the empirical Bayes approach in order to estimate relevant
parameters in the null distribution of test statistics. In Efron, the null distribution is assumed to be normal
with unknown parameters. Both the BH procedure and the local FDR procedure may fail in controlling a
given error rate if any of the assumptions on the null distribution is violated.

In the motivating study, our investigation focused on the gene expression consequences of removing the
chromatin regulator Set4 from Saccharomyces cerevisiae yeast cells (Tran et al.,2018). The Set4 protein
contains a common signature of chromatin-associated proteins and previous work has shown it plays an
important role in regulating gene expression in response to stress (Serratore et al., 2018). Notably, Set4 is a
conserved protein (Zhang et al., 2017), with human counterparts that contribute to both cancer progression
and neurodevelopmental disorders (Deliu et al., 2018) and this type of study in yeast frequently improves
our understanding of how these chromatin regulators control gene expression in the pathological conditions
(Tran and Green, 2019). The study involves the examination of about 8,600 coding and non-coding genes
in order to identify highly differentiated candidate genes using the logfold change statistic. This statistic
measures the extent by which each gene changes from their wild type when Set4 is absent from cells.
Highly positive or negative logfold values are indicative of the strongly differentiatially-expressed genes
that provide important biological insight.

Some studies that have also dealt with logfold change in the same context of gene differentiation assume
the distribution of this statistic to be approximately Normal (Kammers et al., 2015), making standard tests
such as the student’s t-test applicable (McCarthy and Smyth, 2009). For multiple testing, this implies
that Efron’s local FDR procedure is likewise applicable. However, at least in the particular situation of the
Set4∆ mutant data set, assuming normality of the logfold change does not seem to be reasonable. Cells
often have very specific responses to genetic or chemical disruptions, and the majority of the genes in the
genome will not show differential expression following the perturbance compared to standard conditions.
This means that many of the genes are expected to have logfold change values that are very close to zero.
However, there is also often a subset of genes that show small changes, most likely due to indirect con-
sequences of genetically or chemically perturbing the cell. Either group is not of interest to the biologist
and so belong to the null distribution. Thus, the resulting null distribution of the test statistic is heavily
concentrated around zero, making the distribution have a very high peak, and is a mixture of two distribu-
tions. It is assumed that each component retains the general assumption of normality for logfold change
data, and so this mixture is considered to be a mixture of two normal distributions. Since Efron’s local
FDR procedure is based on a single distribution for the null distribution, it is not directly applicable to
the motivating dataset where there are two different sources of insignificant genes. Efron’s approach may
lead the local FDR procedure to fail in controlling a given error rate. Given the biological context leading
experimenters to believe in two sources of undifferentiated genes, the null distribution is modelled as a
mixture of two normal distributions. Nonetheless, for this estimation of the null distribution, an interval
type zero assumption initially used in the work of Efron (2004) can still be applied. In particular, the work
of Park et al.(2011) expanded this assumption for use in estimating a mixture of two normal distributions.
Specifically, they used an adaptive procedure to model the null distribution as a mixture of two normal
distributions based on the assumption that for some interval around the center of the data, all data in the
interval came purely from the null distribution. The choice of this interval is critical since a selected in-
terval affects the estimation of the null distribution. The method in Park et al.(2011) is based on selecting
an interval in which the data are used for estimating the null distribution. The choice of the optimal in-
terval is based on widening interval and the calculation of some criterion corresponding to the data in the
interval. This approach may be sensitive and unstable for the case of high-peaked data since a very small
increase of interval causes a dramatic change of data in the interval leading to unstable estimation of the
null distribution. From our simulations shown later, we see that the method in Park et al.(2011) performs
very conservatively.
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When we use the idea of widening interval from the center of the whole data, any desirable criterion for
selecting an optimal interval should be sensitive at detecting a change from purely null to mixture of null
and alternative distributions.

Using the idea of widening interval, Gauran et al.(2018) proposed a criterion based on change-point
detection to identify the point where behavior of the criterion indicates contamination of data from the al-
ternative distribution. One main idea of this paper is that we modify the criterion of change-point detection
considering the very spiky peaked phenomenon to have more stable estimation procedures. Furthermore,
we also improve the method in Park et al.(2011) to avoid serious conservative decisions.

The remainder of the article is organized as follows. In Section 2, a brief background on the existing
methods and their limitations are provided. Section 3 describes a framework for the newly proposed
methods including three algorithms. Section 4 highlights the simulation studies for a variety of cases while
Section 5 shows the real application of the methods to the Set4∆ mutant data set.

2 Development of local FDR Method

2.1 Original Method

In this section, we briefly review the FDR procedure and provide our model and its estimation procedure.
When multiple hypotheses are tested simultaneously, control over type I error becomes an important issue
(Benjamini and Hochberg, 2011). Different type I error controlling procedures have been developed to
address this issue (Storey and Tibshirani, 2003). For example, family-wise error rate (FWER) seeks
to control the probability of encountering at least one false discovery at a given nominal rate (Aickin
and Gensler, 1996). Procedures that control this error rate, such as the Bonferroni Procedure or Holm’s
procedure are typically conservative (Shaffer, 1995).

On the other hand, false discovery rate (FDR) is the expected proportion of falsely rejected null hy-
potheses. Multiple testing procedures controlling FDR are likely to reject more hypotheses than those con-
trolling FWER. Benjamini and Hochberg (1995) developed the procedure controlling FDR for independent
p-values while the procedure in Benjamini and Yekutieli (2011) is valid under arbitrary dependence. Efron
(2004) constructed the local FDR procedure which are based on the posterior probability of the observed
data from the view point of empirical Bayes. When there are z1, . . . , zn, it is of interest to test the following
hypotheses simultaneously: for 1 ≤ i ≤ n,

H0i : zi ∼ f0 vs. H1i : zi ∼ f1. (1)

Each zi is modeled as

f(z) = p0f0(z) + (1− p0)f1(z) (2)

where f0(z) = 1
σ0
φ((z − µ0)/σ0) for φ(z) = 1√

2pi
e−

z2

2 and p0 = P (H0i) for all 1 ≤ i ≤ n. Based on
Efron (Efron, 2004), the local false discovery rate for a given statistic z is defined as

fdr(z) =
p0f0(z)

f(z)
(3)

which requires the estimates of (f0, f, p0). f(z) can be estimated using Poisson-regression or splines.
f0(z) is estimated using the “zero-assumption,” which states that elements found around the central peak
of the distribution come exclusively from the null distribution. With this assumption and the assumption
that the null distribution is normal, quadratic splines can be used in order to accomplish the estimation.
Finally, the estimates of f(z) and f0(z) can be used to estimate p0. With these estimates, the local FDR at
any value of the statistic can be computed and may be interpreted as the average number of false discoveries
that would occur if hypotheses associated with this statistic are rejected.
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2.2 Misspecification of the Null Distribution

Misspecification of the null distribution poses a serious problem in any simultaneous inference approach
(Efron, 2004). Despite of this, limited research was found on examining the general validity of the local
FDR assumption that the null distribution of test statistics is normal. Schwartzman (2008) addressed the
misspecification problem for the null distribution by extending Efron’s procedure to fit the null to expo-
nential families in general. However, this extension is also insufficient if the null does not belong to the
exponential family. Robin et al. (2007) and Jeong et al. (2018) used semiparametric methods to model
the mixture distribution for purposes of application in the local FDR procedure but retained the null distri-
bution as normal. Other studies were also found that modified Efron’s local FDR procedure according to
the demands of particular research contexts such as functional MRI data (Lee et al., 2016) or soil content
data (Chauveau et al.,2014). Efron’s local FDR procedure uses a more flexible null distribution; a fam-
ily of normal distributions with empirically estimated parameters instead of a theoretical null distribution
such as a standard normal distribution. However, such an extension of the null distribution may not be
enough in many practical situations where the null distribution is more complicated based on the experi-
mental context. In particular, we consider an additional extension based on scientific reason that the null
distribution is a mixture of two normal distributions which is suitable for the Set4∆ mutant data. Park
et al.(2011) used a mixture of two normal distributions for the null distribution to explain a heavy tailed
null distribution with a couple of estimation procedures for relevant parameters. They highlighted that a
mixture of two normal distribution has some advantage in fitting a heavy-tailed null distribution than a
normal distribution. On the other hand, the data from Set4∆ mutant data are mostly centered around zero
due to the high-peaked phenomenon which may cause some difficulties in the estimation of all relevant
parameters in local FDR procedures. It will be demonstrated that the existing method is unstable in fitting
the spiky data with mixture of very small variance and wider one and produce fairly conservative decisions
under such data. We will address some difficulties and then propose three methodologies to overcome the
difficulties or improve some existing procedure in the following sections.

3 Proposed model and estimation Procedure

In Efron’s local FDR procedure, a single normal distribution is used for f0 in (2) (Efron, 2004), however
f0 may have a more complicated form such as a mixture of two distributions for some scientific reason as
in the case of Set4∆ mutant data described in the introduction. Instead of a single normal distribution for
f0, we consider a mixture of two normal distributions as follows:

f0(z) = ηφ1(z) + (1− η)φ2(z) (4)

where φ1 and φ2 are each the densities of normal distributions with corresponding parameters (µ1, σ
2
1) and

(µ2, σ
2
2). The type of high-peaked data is explained by a normal distribution with a small variance, say

σ1 << σ2, so that φ1 corresponding to σ1 represents a ”spiky” distribution with almost a zero-inflation
phenomenon observed at the center of data. Regarding f1 in (2), it is not necessary to assume anything on
f1 if we estimate f directly, however we put a condition called the zero assumption as follows:

f(z) = p0f0(z) for z ∈ [−c, c] (5)

which is also used in other studies (Efron, 2004; Park et al., 2011; Gauran et al., 2018). From the zero
assumption in (5), we can avoid the issue of identifiability in the mixture model of f0 and f1 since the
support of f1 is (−∞,−c) ∪ (c,∞). More importantly, it is not of interest to distinguish between the
different types of undifferentiated genes from φ1 and φ2 found in [−c, c]. Instead, we need only to estimate
f0 for calculating fdr(z) in (3). Regarding c, c in (5) is unknown in practice, however Efron (2004) used
an ad-hoc choice of c which may affect the estimation of parameters in the null distribution. Thus, in the
calculation of local FDR, a good estimate of unknown c is needed to have desirable properties of multiple
testing procedure since both underestimating or overestimating c is problematic. Underestimating c can
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cause instability of parameter estimates while overestimating c can lead to a considerable loss of power. In
the following sections, we identify and address some difficulties in estimating c for the spiky distributed
data set in local FDR procedure and provide (i) estimation of (f0, f, p0) for a given c and (ii) estimation
of c itself.

3.1 Estimation of (f0, f, p0) for a fixed c

When c in (5) is known, estimation procedure is based on truncated data, zi ∈ I = {zi : |zi| ≤ c}.
The parameters in f0 are estimated using the EM algorithm based on the conditional distribution of f0(z)
given |z| ≤ c. More specifically, we use the conditional density of z given |z| ≤ c and estimate all pa-
rameters (µ1, σ1, µ2, σ2, η) in f0,c(z) = f0(z)∫ c

−c
f0(z)dz

as in Dempster et al. (1977) where f0(z) is defined

in (2). Regarding the estimation of f , any nonparametric density estimation procedure such as poisson
regression may be used. Specifically, a method using splines that is included in the local FDR procedure
of Efron (2004) was used. This is implemented by the locfdr function of the locfdr R-package,
https://cran.r-project.org/web/packages/locfdr/locfdr.pdf. Finally for estimat-
ing p0, we utilize the estimators of f and f0 and use an estimator of p0 by integrating both sides in (5)
leading to the following restricted estimator of p0,

p̂0 = min

(
1,

F̂ (c)− F̂ (−c)
F̂0(c)− F̂0(−c)

)
, (6)

where F̂ and F̂0 are the cumulative distribution functions from estimated f̂ and f̂0, respectively.

3.2 Choice of c

The remaining step is to estimate the zero-assumption interval [−c, c] or simply c. In this regard, Efron
(2004) used the prefixed interval which makes a strong assumption that may not be applicable in all situa-
tions. In the high-peaked data set, there are several problems in selection of c. Park et al. (2011) proposed
a couple of methods to choose c based on comparison of the estimate of p0 and the relative frequencies
in [−c, c] for different c values. One of those methods is based on the idea of goodness-of-fit (GoF) test
selecting the best interval with the largest p-value from GoF tests for different intervals. In high-peaked
data, a large portion of the data are concentrated around the spiky part which dominates other observations
including the differentiated expressions. Our simulation studies later will demonstrate that this procedure
is fairly conservative so there is a room for improvement.

On the other hand, Gauran et al. (2018) proposed a loglikelihood-based criteria using the idea of
change point detection in multiple testing problem for discrete data. For different cis with ci−1 < ci for
i = 1, 2, ..., I and c0 = 0, [−ci, ci] can either contain points only from f0 or from the mixture of f0 and
f1.

For the data z ∈ [−c, c], the correct likelihood is obtained from f0(z) which is larger than f(z) due to
the zero assumption, f(z) = p0f0(z) < f0(z) and 0 < p0 < 1. Conversely, the correct likelihood of the
data from the outside of [−c, c] is f(z) which tends to be larger than f0(z). From this idea, the sign of
log f0(z)

f(z) can be an indication of whether z belongs to either inside or outside of [−c, c]. The cumulative
sum of log ratio corresponding to the data in [−c, c] tends to increase and then starts to decrease when the
data from outside of [−c, c] start to be included.

Based on this criterion and the predetermined grid points of ci for i = 1, . . . , I , Gauran et al. (2018)
used the EM algorithm to have estimates (p̂0,ci , f̂0,ci , f̂) for each ci and then considered the following
criterion

c∗ = argmaxci:i=1,...,IL(ci) (7)

© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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for L(c) =
∑
zj :|zj |≤c log

f̂0,ci (zj)

f̂(zj)
.

Note that f0 and p0 are estimated for different intervals [−ci, ci], so in fact, f̂0 and p̂0 depend on a
given interval, say f̂0 = f̂0,ci and p̂0 = p̂0,ci corresponding to [−ci, ci] while f̂ is estimated with the
whole data one time. We suppress ci in f̂0,ci and p̂0,ci for notational simplicity. For the criterion in (7)
to be working well, it is necessary that f̂0 = f̂0,ci for different ci < c should be similar so that L(ci) is
monotone increasing in ci < c. Figure 1 illustrates unstable estimates of p0 and f0 for different intervals
from simulated data.

[[Figure 1]]

The broken curve in Figure 1 represents the estimate of f while the solid curves represent estimates of
f̂0 corresponding to different intervals [−ci, ci]. There are clear differences among f̂0s especially around
the peak, however, f̂0,ci tends to be close to each other as z moves further away from the center. In high-
peaked data, there are condensed data around the center which may lead to large differences in the criterion
based on L(ci) in (7) although there are slight differences among f̂0s for different cis. Thus, we consider
some adjustment which can avoid such unstable behaviors of L(ci) in (7) for the case of high-peaked data.

In practice, differentiated genes from f1 are clearly distinguished from those from φ1 with σ1(< σ2)
and are mixed with data from φ2. From this point, the value c in (5) is located outside of φ1 with σ1(< σ2)
which are the part of the data where the high peak is located. To reflect this idea, gene expression zi with
|zi| > 2σ1 or |zi| > 3σ1 is assumed to be generated from either φ2 or f1. In terms of avoiding instability
of L(ci) due to unstable estimate of f̂0 for different cis, it seems to be reasonable to exclude the condensed
high-peaked section of the data in L(ci) which is the main idea of overcoming the difficulty in selecting c.
Based on this idea, we propose two algorithms called Fixed a and Flex a with a smoothed curve of L(ci).
Additionally, we also propose another method called Hybrid where we use an initial estimate of [−c, c]
using some known method such as goodness-of-fit(GoF) in Park et al. (Park et. al.,2011) and attempt to
improve upon it by using the criterion in (7). The first proposed algorithm is based on only removing the
data around spiky part. Given that the component is normal, it is considered that [−a, a] contains about 95
percent of elements coming from this component, where a = 2σ̂1 (σ̂1 < σ̂2). Thus, these elements do not
relevantly contribute to the criterion. Based on this, a modified criterion was constructed as

c∗ = argmaxci:i=1,...,I (L(ci)− L(a)) (8)

where a is constant for all ci. Based on the previous sections, we propose the following algorithm for
Fixed a as follows:

Algorithm 1 (Fixed a):

Step 1: Obtain an initial estimate for σ2
1(< σ2

2), the variance of the spikier component of the null distribution
using EM algorithm on some sufficiently large c such that [−c, c] contains 80 percent of the data.

Step 2: Let a = 2σ̂1 where σ̂1 is from Step 1.

Step 3: Let c1 = a and take c1 < c2 < · · · < cI so that [−ci, ci] contains a fixed number of data more than
[−ci−1, ci−1].

Step 4: Do EM estimation of parameters in θ = (µ1, σ1, µ2, σ2, η) for the data subset in [−ci, ci] and compute
L(ci)− L(a).

Step 5: Choose c∗ = argmaxci:i=1,...,I(L(ci)− L(a)) and the corresponding estimator of θ.

In Fixed a , the main idea is that L(ci) should have a monotone increasing pattern in ci ∈ [0, 2σ̂1] from
f0(z)
f(z) > 1 for |z| < 2σ1 however, we actually estimate all the parameters in f0 for different cis. L(ci) for
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different ci values are computed based on different f̂0s of which estimation errors may cause instability
of L(ci). From the instability of f̂0, the monotonicity of L(ci) =

∑
zj :|zj |<ci

f̂0(zj)

f̂(zj)
is not guaranteed for

ci < c. Fixed a is designed for eliminating the instability by removing the part of high-peaked portion of
the data around the center of the whole data. The choice of a in Step 2 in Fixed a is ad-hoc, so there may be
a room for improvement. We consider a more flexible procedure which uses more values of a rather than a
fixed value of a. Furthermore, there is another problematic phenomenon in L(ci) such that multiple small
bumps in the plot of L(ci) leading to several local maximums. Ideally, we should have one maximum of
L(c), however this does not happen due to estimation errors in f̂0 and f̂ . To remedy this, we consider a
smoothed curve of L(c) by ignoring small variations of L(c) and detect a single global maximum from the
smoothed curve. For these two purposes such as (i) more flexible a to remove spiky part and (ii) detect
a single global maximum by removing small variations, a is treated as a tuning parameter and smoothed
curve of L(c) is fitted for each a. Considering these two aspects, we propose another Algorithm, Flex a as
follows:

Algorithm 2 (Flex a):
For a given K, we take a1 < . . . < aK .

Step 1: For a given ak, compute L(ci)− L(ak) for all ci > ak, i = 1, ...I using Fixed a.

Step 2: Fit (ci,L(ci)− L(ak)) for ci > ak using quartic (4th order) polynomial regression.

Step 3: Identify the number of local maximums of the fitted polynomial regression in Step 2.

Step 4: If both of the following conditions are true, stop and accept the result in Step 1. Otherwise, repeat
Step 1 using ak+1.

– Condition 1: There is exactly one maximum from the fitted regression curve located in the range
of the ci

– Condition 2: At least one value of the first derivative of the quartic polynomial at the first few
smallest cutoff values is positive.

The Flex a approach seeks to choose an a that ignores enough of the data around the peak of the
distribution to make L(c) stable. By fitting a quartic polynomial, the fitted curve becomes a proxy for the
behavior of the criterion across different values of c. The quartic polynomial is selected since it is flexible
enough to accommodate both desirable and undesirable behaviors of the curve. If Condition 1 is false, then
it means that the criterion goes up again within the range of ci after reaching a first maximum point, which
is contrary to the intended behavior of L(c) with respect to c. If Condition 2 is false, then it means that
L(c) does not start in an increasing state, which is again contrary to its intended behavior. Thus, if either
condition is false, then it means that the plot is not behaving as it should if enough of the bias from L(c) has
been removed by a. Thus, in this case, the algorithm proceeds to repeating the process with an increased
a. In essence, Flex a is based on removing some part of the condensed high-peaked part adaptively.

A demonstration of how the algorithm adjusts a until achieving the intended behavior of L(c) is shown
in the Figure 2.

The Figure 2 shows the plot for a specific simulated data set (seed=2) at different values of a selected,
where ak is selected as some factor of σ̂1 for σ̂1 < σ̂2 such as {1, 1.25, 1.5, 1.75, 2, 2.5}. As shown from
Figure 2, at a = 2σ̂1 (σ̂1 < σ̂2), the plot shows two visible local maximums within the range of data which
are not desirable. By increasing ak, the plot with a = 2σ̂1 shows the fitted line shows one maximum which
we actually expect in the sense that we have one maximum. In the example of Figure 2, when we observe
the phenomenon from 2σ̂1 from the given grid points of ak, Flex a chooses a = 2σ̂1 in this example.
[[Figure 2]]
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As mentioned, Fixed a and Flex a should estimate f0 for different cis which may cause some unex-
pected pattern of L(c) from different estimation errors. To avoid this, we propose another algorithm, called
Algorithm 3 (Hybrid), which does not request multiple estimation of f0 for different ci values.

Algorithm 3 (Hybrid)

Step 1: Use a conservative interval [−cI , cI ] and estimate (µ1, σ1, µ2, σ2, η, p0) using the data in [−cI , cI ]

Step 2: Create equally-spaced grid points 0 < c1 < · · · < cI for cutoff values in [−cI , cI ] chosen in Step 1.

Step 3: Compute the criterion L(ci) for 1 ≤ i ≤ I using Algorithm 1 with a = 0.

Step 4: Select the cutoff value with maximum criterion value as the best cutoff, i.e., c∗ = argmax1≤i≤IL(ci)

The rationale behind Hybrid is that since (µ1, σ1, µ2, σ2) in f0 and (η, p0) are estimated only once
based on [−cI , cI ] chosen in Step 1 using the GoF approach (Park et. al.,2011), so the variation of L(c)
from differently estimated parameters for different cis can be eliminated while Fixed a and Flex a include
such variations. Thus, in Hybrid, a can be safely set to be zero and the expected behavior of criterion values
versus cutoff values will be observed. The initial choice of [−cI , cI ] in Step 1 should be conservative in
the sense that the interval can include the true interval [−c, c] for the Zero assumption in (5) so that [−c, c]
can be included in [−cI , cI ]. However, we do not want to take an arbitrarily large interval, so we use GoF
which tends to select a wider interval than the true interval in the Zero assumption. Hybrid attempts to
improve upon the conservative result of the GoF approach by re-detecting the change point using Fixed a.

4 Simulation studies

In this section, we present simulation studies to compare the performance of the three proposed algorithms
(Fixed a, Flex a, and Hybrid). We also provide results using the GoF approach in Park et al. (2011) and
Efron’s local FDR procedure (Efron, 2004) for comparison. Each of these methods is evaluated across
different sets of null and alternative distribution configurations. Across all settings, the means for the null
distributions are set to be zero to reflect the biological assumption on the non-interesting genes. If the ratio
of σ1 and σ2 is large, it is expected to have a very high peak around the center of the data. In each setting,
we generate 8, 000 data and p0 = 0.9 of them are generated from f0 while the rest are generated from f1,
i.e. 7, 200 and 800 are generated from f0 and f1, respectively. η in f0 is set to be 0.6.

As alternative distributions, we consider several different settings: (i) a truncated t-distribution with
20 degrees of freedom and truncation excluding the region [−0.5, 0.5] , (ii) a pair of shifted truncated
t-distributions shifted by ±1.5 and likewise truncated to exclude the region [−0.5, 0.5], and (iii) a mixture
of gamma(shape=2, rate=1) and -gamma(shape=2, rate=1). We evaluate the performance of each method
using false discovery rate (FDR) and true positive rate (TPR). Since we simulate each setting 1, 000 times,
we define the empirical FDR and TPR as follows:

FDR =
1

1, 000

1,000∑
i=1

Vi
Ri
I(Ri > 0), TPR =

1

1, 000

1,000∑
i=1

Si
800

(9)

where 800 in TPR is the number of the true alternative from f1, and Vi, Ri and Si are the numbers of
falsely rejected hypotheses, the number of rejected hypotheses and the number of true positives from ith
simulated data set, respectively.

The succeeding simulation results are divided into two subsections. In the first subsection, the focus is
on examining the performance of the different methods under the alternative distribution described in (i).
As such, both σ1 and σ2 were varied. In the second subsection, the focus is on examining the performance
and parameter estimation of the methods under different alternative distributions described in (ii) and (iii)
specifically in the context of data similar to the Set4∆ mutant dataset. Thus for this subsection, σ1 is kept
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Table 1
FDR and TPR estimates for each method across various null distributions 0.6N(0, σ2

1) + 0.4N(0, σ2
2).

Alternative distribution is t distribution truncated at±0.5. The number in (.) represents standard deviation.
σ2

1 0.02 0.02 0.02 0.08 0.06 0.01 0.005Null
distribution σ2

2 0.1 0.08 0.05 0.1 0.1 0.1 0.1
Fixed a 0.0187 (0.0168) 0.0042 (0.0021) 0.0004 (0.0003) 0.0000 (0.0000) 0.0000 (0.0000) 0.0839 (0.0392) 0.2541 (0.1125)
Flex a 0.0427 (0.0243) 0.0285 (0.0166) 0.0086 (0.0050) 0.0017 (0.0023) 0.0059 (0.0039) 0.0453 (0.0605) 0.0130 (0.0543)
Hybrid 0.0036 (0.0107) 0.0039 (0.0077) 0.0076 (0.0072) 0.0030 (0.0044) 0.0057 (0.0067) 0.0052 (0.0194) 0.0051 (0.0330)
GoF 0.0007 (0.0021) 0.0009 (0.0020) 0.0000 (0.0004) 0.0006 (0.0019) 0.0008 (0.0025) 0.0008 (0.0019) 0.0013 (0.0021)

F̂DR

Efron’s locfdr 0.2784 (0.0242) 0.1943 (0.0243) 0.0673 (0.0154) 0.0043 (0.0035) 0.0095 (0.0053) 0.5032 (0.0218) 0.6673 (0.0107)
Fixed a 0.6028 (0.0723) 0.6033 (0.0917) 0.6717 (0.0751) 0.2039 (0.0582) 0.2452 (0.0341) 0.7298 (0.1362) 0.8329 (0.1629)
Flex a 0.7165 (0.0949) 0.7693 (0.0591) 0.8403 (0.0304) 0.4945 (0.0315) 0.5819 (0.0259) 0.6522 (0.1634) 0.4547 (0.1575)
Hybrid 0.4588 (0.1056) 0.5749 (0.1082) 0.7602 (0.1665) 0.4752 (0.1153) 0.5182 (0.1283) 0.4829 (0.1046) 0.5242 (0.0679)
GoF 0.3998 (0.0787) 0.4830 (0.1082) 0.1312 (0.1845) 0.2576 (0.2146) 0.2838 (0.2117) 0.4288 (0.0633) 0.4832 (0.0491)

T̂PR

Efron’s locfdr 0.9732 (0.0143) 0.9693 (0.0149) 0.9719 (0.0149) 0.5192 (0.0258) 0.5754 (0.0265) 1.0000 (0.0000) 1.0000 (0.0000)

constant at 0.02 while σ2 is varied. Figure 3 presents the setup of null and alternative distributions for the
different settings.

4.1 Primary Simulation Outcomes

The first set of simulations vary both the larger and the smaller variance of the null distributions in order
to get a general idea of the comparative performance of the different methods. These settings use (i)
truncated t-distribution as the alternative distribution and they are visualized in Figure 3(A). Table 1 shows
the FDR and TPR defined in (9) from 1, 000 replications under each setting. We use a nominal level of
FDR=0.05 throughout the simulations. As expected, Efron’s local FDR procedure based on a single normal
distribution is not able to control FDR in most of settings where σ1 and σ2 are significantly different. This
is because Efron’s local FDR recognizes φ1 (σ1 < σ2) as a null distribution and tends to reject many data
from φ2 falsely which leads to the failure of controlling a given level of FDR. The Efron’s FDR approach
is expected to control a given FDR for the case of similar values of σ1 and σ2 under which a single normal
distribution behaves similar to the mixture of φ1 and φ2. The Fixed a approach is not able to control a given
level of FDR for some of the settings since a pre-fixed a such as a = 2σ̂1 is not expected to cover universal
cases. On the other hand, Flex a achieves the closest empirical FDR to the nominal level 0.05 among all
procedures. As expected, the Goodness-of-fit (GoF) approach produces the most conservative FDRs. The
Hybrid approach is a modification of the GoF approach that seeks to correct its over-conservative nature
by using the changepoint criterion to select a less conservative c. As shown in Table 1, it is able to do this
in each setting, producing a higher FDR each time that is still below the nominal α level.

In terms of empirical TPR, Table 1 shows that Efron’s local FDR achieves the highest TPRs across all
settings. However, it fails in controlling the given FDR in almost every case, only being able to do so
when the variances of the two null distribution components are close enough together such that the null
distribution better resembles a single normal. Thus, it is not meaningful to consider the Efron’s local FDR
for comparison of TPR. Since the Fixed a method is also unable to control FDR for some cases, it is also
excluded in the TPR comparison. Among the remaining methods, Flex a yields the highest TPRs in gen-
eral and is almost always better than the Hybrid in terms of TPR across all settings. The Hybrid produced
a better TPR than the Flex a only in the setting where the σ2

1 = 0.005 and σ2
2 = 0.10. This observation

is further explored in another set of simulations. Also as expected, the GoF approach has the lowest TPRs
and the Hybrid approach tends to improve the TPR of GoF approach. This improvement is observed to be
limited when the variance components of the null are farther apart but becomes larger as those components
are set to be closer to each other. [[Figure 3]]
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4.2 Comparison between alternative distributions and parameter estimation

In this section, we present more simulation studies to demonstrate the behavior of the different approaches
under different alternative distributions. The smaller variance is set at σ2

1 = 0.02 while σ2
2 is varied. In the

previous section, we used the f1 which is the truncated t distribution with the support (−∞, c)∪ (c,+∞).
In this section, we consider a shifted t distribution with truncation. More specifically, when f1 is the
conditional density of z = ±1.5(t) given |z| > 0.5. The Zero assumption is still satisfied with this f1.
This setup is represented by Figure 3(C)

In addition to this, we are also interested in how the Zero assumption in (5) affects results when the
assumption is actually not satisfied by the setup. For this, f1 is modeled based on gamma distribution and
random sign (±1) leading to zi = (2xi − 1)yi where X ∼ Bernoulli(0.5), Y ∼ gamma(2, 1) and xi
and yi are independent. We call this as a ±gamma(2, 1). There is no truncation here for f1, so c in the
Zero assumption is simply 0 which means there does not exist an interval [−c, c] defined in (5). This setup
is represented in Figure 3(B).

Results for the shifted truncated t-distribution alternative are shown in Table 2. Consistent with Table 1,
the empirical FDRs are shown to be controlled for the Flex a, Hybrid, and GoF approaches across null
distribution settings as σ2

2 is decreased from 0.12 to 0.05 while the Efron’s local FDR fails in controlling
a given FDR. We also have the results of TPRs similar to Table 1 in the sense that Flex a obtains the
highest TPRs for three cases and the Efron’s local FDR approach has the best TPRs with somewhat inflated
empirical FDR when σ1 and σ2 are similar (e.g., σ2

1 = 0.02 and σ2
2 = 0.05). The Hybrid improves the

GoF approach, but it is still very limited improvement. In terms of parameter estimation, Table 2 shows
that σ2

1 is estimated well across the three methods (Flex a, Hybrid, GoF). On the other hand, σ2
2 was found

to be overestimated by GoF and underestimated by the Flex a approach. The Hybrid comes closest to
estimating the null distribution parameters, however, in terms of estimating c, Flex a comes much closer
than the Hybrid which overestimates of c. Considering the superiority of the Flex a approach over the
Hybrid approach, the estimation of c is more important than estimation of (σ2

1 , σ
2
2). Since the Hybrid

approach inherits the estimate of c from the GoF approach, the Hybrid approach should be much more
conservative compared to the Flex a approach unless there is a much better initial estimate of c.

Table 3 shows parallel results for the ± gamma(2,1) as f1. Although there does not exist an interval
[−c, c] in (5), the results are still consistent with those in Table 2, with the main difference being a loss
in TPR across all methods. Compared to the truncated f1 used in Table 1 and 2, ± gamma(2,1) is more
overlapped with f0 which leads to the loss of powers of testing procedures. From Table 3, even when there
exist slightly contaminated data from f1 around the center of the whole data. the proposed approaches with
the Zero assumption in (5) is robust to such contamination from f1.

4.3 Robustness under model missspecification

We have discussed the cases that the null distribution consists of two normals and one of them repre-
sents the spiky distribution. In practice, there may be some situation that such a spiky distribution also
consists of more than one normal distribution. In this section, we consider the cases that the null distri-
bution is a mixture of more than two normal distributions. As shown in the simulations in the previous
section, Efron’s local fdr based on a single normal for the null distribution performs well when the null
distribution is a mixture of two normals with similar variances. From this, when the null distribution is a
mixture of more than two normals and some of them have similar variances, the mixture of two normal
distributions is expected to be robust to the number of components in the mixture model. To deomstrate
this, we conduct some simulations where the null distribution is a mixture of four normals instead of
two such as f0 = 0.3(N(0, σ2

1) + N(0, σ2
2)) + 0.2(N(0, σ2

3) + N(0, σ2
4)). We considere two cases: the

first one is (σ1, σ2, σ3, σ4) = (0.005, 0.05, 0.10, 0.15) which is the case that two components represent
spiky distributions and the other two components represent non-spiky distributions. The second case is
(σ1, σ2, σ3, σ4) = (0.11, 0.13, 0.1, 0.3) which is the case that all of them have similar variances. The
alternative distribution used is the same as that in Table 2. Table 4 shows that the results across different
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Table 2
Comparison of results using different methods across various null distributions 0.6N(0, 0.02) +
0.4N(0, σ2

2) with alternative distribution set as t ± 1.5 truncated at ±0.5. The number in (.) represents
standard deviation

Null
Distribution

σ2
1 0.02 0.02 0.02 0.02
σ2

2 0.12 0.1 0.08 0.05

F̂DR

Flex a 0.0584 (0.0592) 0.0525 (0.0376) 0.0288 (0.0146) 0.0046 (0.0030)
Hybrid 0.0050 (0.0135) 0.0052 (0.0105) 0.0040 (0.0048) 0.0032 (0.0031)
GoF 0.0015 (0.0025) 0.0014 (0.0024) 0.0016 (0.0022) 0.0009 (0.0014)
Efron’s locfdr 0.3532 (0.0246) 0.2788 (0.0265) 0.1903 (0.0262) 0.0615 (0.0154)

T̂PR

Flex a 0.8188 (0.0942) 0.8672 (0.0689) 0.8974 (0.0318) 0.9159 (0.0140)
Hybrid 0.6945 (0.0624) 0.7534 (0.0571) 0.8188 (0.0358) 0.8889 (0.0539)
GoF 0.6669 (0.0479) 0.7194 (0.0442) 0.7830 (0.0433) 0.7488 (0.2127)
Efron’s locfdr 0.9870 (0.0076) 0.9842 (0.0082) 0.9818 (0.0087) 0.9820 (0.0087)

σ̂2
1

Flex a 0.0251 (0.0111) 0.0229 (0.0051) 0.0235 (0.0023) 0.0236 (0.0045)
Hybrid 0.0211 (0.0056) 0.0216 (0.0075) 0.0203 (0.0062) 0.0212 (0.0031)
GoF 0.0207 (0.0014) 0.0204 (0.0013) 0.0196 (0.0014) 0.0210 (0.0034)

σ̂2
2

Flex a 0.0832 (0.0365) 0.0631 (0.0232) 0.0497 (0.0094) 0.0399 (0.0023)
Hybrid 0.1369 (0.0298) 0.1068 (0.0254) 0.0760 (0.0137) 0.0515 (0.0255)
GoF 0.1514 (0.0244) 0.1239 (0.0213) 0.0930 (0.0200) 0.1666 (0.1872)

η̂
Flex a 0.5427 (0.0390) 0.5375 (0.0204) 0.5332 (0.0117) 0.5195 (0.0314)
Hybrid 0.6075 (0.0420) 0.5878 (0.0525) 0.5520 (0.0350) 0.5551 (0.0741)

ĉ
Flex a 0.5768 (0.1643) 0.4898 (0.1257) 0.4470 (0.0658) 0.5291 (0.1158)
Hybrid 0.7676 (0.1277) 0.7244 (0.1163) 0.6360 (0.1061) 0.5787 (0.1839)

Table 3
Comparison of results using different methods across various null distributions 0.6N(0, 0.02) +
0.4N(0, σ2

2) with alternative distribution set as ±gamma(2,1). The number in (.) represents standard
deviation

Null
Distribution

σ2
1 0.02 0.02 0.02 0.02
σ2

2 0.12 0.1 0.08 0.05

F̂DR

Flex a 0.0661 (0.0610) 0.0501 (0.0406) 0.0303 (0.0151) 0.0038 (0.0029)
Hybrid 0.0082 (0.0201) 0.0060 (0.0117) 0.0035 (0.0045) 0.0032 (0.0029)
GoF 0.0018 (0.0030) 0.0016 (0.0025) 0.0016 (0.0020) 0.0009 (0.0014)
Efron’s locfdr 0.3998 (0.0278) 0.3163 (0.0310) 0.2141 (0.0309) 0.0641 (0.0180)

T̂PR

Flex a 0.7509 (0.0817) 0.7766 (0.0671) 0.8123 (0.0314) 0.8243 (0.0179)
Hybrid 0.6534 (0.0560) 0.6941 (0.0459) 0.7390 (0.0292) 0.8156 (0.0308)
GoF 0.6250 (0.0384) 0.6646 (0.0356) 0.7143 (0.0332) 0.7522 (0.1349)
Efron’s locfdr 0.8709 (0.0155) 0.8674 (0.0156) 0.8638 (0.0160) 0.8624 (0.0162)

σ̂2
1

Flex a 0.0276 (0.0126) 0.0236 (0.0067) 0.0240 (0.0029) 0.0237 (0.0045)
Hybrid 0.0218 (0.0071) 0.0219 (0.0080) 0.0201 (0.0049) 0.0215 (0.0019)
GoF 0.0207 (0.0016) 0.0204 (0.0015) 0.0197 (0.0014) 0.0200 (0.0027)

σ̂2
2

Flex a 0.0788 (0.0342) 0.0663 (0.0245) 0.0500 (0.0098) 0.0418 (0.0034)
Hybrid 0.1238 (0.0295) 0.0996 (0.0221) 0.0761 (0.0106) 0.0457 (0.0126)
GoF 0.1399 (0.0221) 0.1158 (0.0187) 0.0889 (0.0156) 0.1113 (0.2297)

η̂
Flex a 0.5334 (0.0378) 0.5346 (0.0223) 0.5312 (0.0126) 0.5222 (0.0311)
Hybrid 0.5865 (0.0442) 0.5694 (0.0471) 0.5459 (0.0254) 0.5345 (0.0362)

ĉ
Flex a 0.5772 (0.1606) 0.5140 (0.1452) 0.4410 (0.0815) 0.5238 (0.1177)
Hybrid 0.7215 (0.1412) 0.6883 (0.1162) 0.6221 (0.0995) 0.5138 (0.1065)
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Table 4
Comparison of results where the null is a mixture of four Normal distributions 0.3(N(0, σ2

1)+N(0, σ2
2))+

0.2(N(0, σ2
3) +N(0, σ2

4)) with alternative distribution set as t± 1.5 truncated at ±0.5. The number in (.)
represents standard deviation

Null
Distribution

σ2
1 , σ

2
2 0.005 , 0.05 0.11 , 0.13

σ2
3 , σ

2
4 0.10 , 0.15 0.1, 0.3

F̂DR
Flex a 0.0194 (0.0314) 0.0223 (0.0153)
Hybrid 0.0069 (0.0109) 0.0196 (0.0195)
GoF 0.0056 (0.0040) 0.0127 (0.0146)
Efron’s locfdr 0.5796 (0.0200) 0.4503 (0.0224)

T̂PR
Flex a 0.7306 (0.0781) 0.5307 (0.0710)
Hybrid 0.7101 (0.0809) 0.5046 (0.0935)
GoF 0.7160 (0.0256) 0.4276 (0.1624)
Efron’s locfdr 0.8735 (0.0102) 0.9248 (0.0067)

methods. As in previous simulations, Flex a, Hybrid, and GoF are all able to retain control over FDR un-
der this missspecification of the null distribution, and that Flex a remains superior to the other two in terms
of TPR. Efron’s local FDR procedure continues to suffer from misspecification and is unable to control
FDR in each case.

5 Real Data : Analysis of Set4∆ Mutant Dataset

The study is interested in the identification of genes within the genome of the budding yeast Saccharomyces
cerevisiae that are differentially expressed when key gene expression machinery is mutated. Specifically,
this work focused on a yeast protein, known as Set4, which was recently identified as a chromatin regula-
tor and there are many open questions about its functions (Tran et al.,2018). Previous work demonstrated
that the gene expression regulator Set4 is important for protecting cells during oxidative stress induced by
hydrogen peroxide treatment and activates stress response genes to help cells survive during stress. How-
ever, the full complement of genes controlled by Set4 is not yet determined. In order to identify the genes
dependent on Set4 during stress, the gene expression profile of the whole genome in cells where Set4 is
absent (knock-out condition, Set4∆) and cells where it is present (wildtype condition) are determined. In
addition, cells are treated with hydrogen peroxide to induce oxidative stress. Approximately 8000 RNA
species are evaluated using this method, each represented by a weighted count value under knock-out and
wildtype conditions. From among the 8000 RNA species (about 6000 coding genes and 2000 non-coding
genes), the objective is the identification of ”interesting” genes based on values of the statistic log2

K̄O
W̄T

,
where W̄T is a mean weighted count measure of mutations under wild type condition and K̄O is a mean
weighted count measure of mutations under knock-out condition. The counts are weighted based on the
length of each gene and the total number of reads and so is a continuous value rather than a discrete one. A
gene is considered ”interesting” if the weighted count measure is very different between the KO and WT
settings, and so correspondingly, if | log2

K̄O
W̄T
|� 0. For each gene, the experiment is replicated thrice and

the resulting weighted counts are averaged. Afterward, the log2
K̄O
W̄T

is computed, thus yielding a single
statistic for each gene. A basic histogram of the logfold change statistics is shown in Figure 4.
[[Figure 4]]

Figure 4 shows that the distribution of the test statistics has a very high peak but still have prominent
tails. This is consistent with cellular biology as cells often have very specific responses to genetic or
chemical disruptions. Thus, the majority of the genes in the genome will not show differential expression
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Table 5 Set4∆ Mutant Data Results

# of interesting genes Cutoff c µ1 σ2
1 µ2 σ2

2 η
Flex a 505 0.400 0.000 0.004 -0.002 0.042 0.615
Hybrid 328 0.664 -0.001 0.005 -0.003 0.082 0.668
GoF 264 0.851 -0.020 0.116 0.000 0.006 0.299
Efron’s locfdr 1348 NA -0.001 0.006 NA NA NA

following the perturbance compared to standard conditions. However, there is also often a subset of genes
that show small changes, most likely due to indirect consequences of genetically or chemically perturbing
the cell. Neither of these groups of cells are of interest and so both belong to the null distribution. Only
the genes that are highly differentially expressed are considered to be directly affected by the genetic or
chemical change, and are of the most interest to the biologist investigating the specific outcome of a given
cellular perturbance. Thus, it is reasonable to assume that the null distribution is a mixture of two compo-
nents. For the Set4∆ mutant dataset, there are 8630 simultaneous tests conducted. For estimating f via
splines, the most extreme 30 values of the logfold change statistic needed to be removed for estimation to
work. An FDR level of α = 0.05 was used for all procedures. Flex a, Hybrid, and the GoF approach were
used. Table 4 shows a summary of the results. Results of applying Efron’s local FDR are also presented.
As expected, using just the local FDR approach leads to a very liberal set of interesting cases (rejections).
However, the assumption of a single normal null distribution is contrary to biological grounding, and hav-
ing over 1300 rejections is not realistic. As expected, the goodness-of-fit approach is the most conservative.
The Hyrbid approach is less conservative than goodness-of-fit but not by much since it uses goodness-of-
fit as a baseline. The Flex a approach gives the most liberal results while still controlling FDR. Figure 5
shows how each test, Flex a, Hybrid, and GoF, identifies interesting genes. It is shown that the number of
significant genes selected by different methods have similar patterns to those from simulation studies. In
particular, the sets of the selected genes are nested in the sense that all of the genes identified by GoF and
Hybrid are also identified by Flex a etc. Considering the simulation studies, GoF and Hybrid approches
are considered to be fairly conservative and Efron’s local fdr fails in controlling a given level of FDR. On
the other hand, the result from Flex a in Set4∆ mutant data is believed to be the most reasonable among
all the methods in terms of controlling a FDR and obtaining significant genes.

[[Figure 5]]

6 Conclusion

Different change-point detection based procedures that were constructed were able to control FDR in the
setting where the null distribution is a highly peaked mixture of two normal distributions, where one
component has a very small variance. Simulation studies showed how in this situation, the standard local
FDR procedure fails at controlling type 1 error. Furthermore, accommodating for the issue by modeling
the null distribution as a mixture of two normal distributions using a goodness-of-fit approach was shown
to produce overly conservative outcomes. Novel methods developed to address these problems applied
changepoint detection to determine the largest interval in the dataset that still comes purely from the null
distribution. Estimating the ormal null mixture from this interval was found to retain control over FDR
while producing more competitive power than the goodness-of-fit approach.

Of the two viable changepoint detection procedures constructed, the Flex a approach, which used a
tuning parameter in order to remove an unstable portion of the dataset, was found to be superior in terms
of TPR in almost every simulation setting used compared to the Hybrid approach which used the result
from goodness-of-fit as a baseline and then applied changepoint detection. When the two components
of the null distribution were close enough to make the distribution appear similar to a single normal, the
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Figure 1 Bias of Estimator in Equation 5. The broken curve represents the estimate of f while the solid
curves represent some EM estimates of f0 at different fixed [−c, c]’s. Close-up view is shown on the figure
to the right.

standard local FDR method was still able to control FDR and produced the best TPR. This shows that the
new approaches are best used in contexts where the null distribution can be soundly assumed as deviating
considerably from a single normal distribution.

Finally, application of the different methods on the Set4∆ mutant dataset showed that the methods
which accounted for the null distribution being a mixture of two normal distributions rather than a single
normal produced more reasonable results. Among these, the Flex a method was able to identify the most
number of interesting candidates for the investigator to conduct further experimentation on.
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