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Abstract

Recent equations of motion for the large deflections of a cantilevered elastic beam are analyzed. In
the traditional theory of beam (and plate) large deflections, nonlinear restoring forces are due to the
effect of stretching on bending; for an inextensible cantilever, the enforcement of arc-length preser-
vation leads to quasilinear stiffness effects and inertial effects that are both nonlinear and nonlocal.
For this model, smooth solutions are constructed via a spectral Galerkin approach. Additional com-
pactness is needed to pass to the limit, and this is obtained through a complex procession of higher
energy estimates. Uniqueness is obtained through a non-trivial decomposition of the nonlinearity.
The confounding effects of nonlinear inertia are overcome via the addition of structural (Kelvin-
Voigt) damping to the equations of motion. Local well-posedness of smooth solutions is shown first
in the absence of nonlinear inertial effects, and then shown with these inertial effects present, tak-
ing into account structural damping. With damping in force, global-in-time, strong well-posedness
result is obtained by achieving exponential decay for small data.
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1 Introduction

1.1 Motivation and Overview

The large deflections of elastic beams and plates have broad applicability in engineering and other phys-
ical sciences, and they have been intensely studied from the modeling, analytical, and computational
points of view (see, e.g., [6, 7, 13, 21]). Specifically, with respect to fluid-structure interaction models,
the large deflections of panel, airfoil, and flap structures are of particular interest [5,9] (and references
therein). In these circumstances, the presence of a fluid flow can act as a destabilizing mechanism,
giving rise to self-excitation instabilities (i.e., aeroelastic flutter [5, 28]) that manifest as limit cycle
oscillations (LCOs). In such applications, relevant large deflection models require nonlinear restoring
forces that take into account higher order effects, typically appearing via a potential energy above
the “quadratic” level. The choice of nonlinearity dictates the qualitative features of the post-onset
dynamics—which is to say, the dynamics in the nonlinear regime of interest. Traditional large deflec-
tion theory for panels (i.e., fully restricted boundary conditions) is that of von Karman [6], producing
semilinear, cubic-type nonlinearities based on a quadratic strain-displacement law [7,24].

The configuration of a cantilever in axial flow, whereby an elastic beam (or thin plate) has a flow of
gas running along its principal axis, has been historically overlooked. Until about 15 years ago, interest
in this configuration was minimal [19], while interest in airfoil and panel flutter has been immense for
more than 75 years [5,9]. A cantilever in axial flow is particularly prone to aeroelastic instability, with
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the bifurcation leading to sustained LCOs. This fact is useful in the development of vibration-based
energy harvesting devices [12, 14]. In such applications, dynamic instability is encouraged to extract
energy from LCOs of the elastic cantilever, after the onset of flutter. The main idea for large dis-
placement harvesters is to capture mechanical energy via piezoelectric laminates or patches (for which
oscillating strains induce current [14]). The feasibility of such a system has been recently demonstrated
with affixed piezo (SMART) materials [12,14,16,33].

Figure 1: Temporal snapshots of post onset, small amplitude LCO (left) and large amplitude LCO
(right) for a cantilever in axial flow. Captured from wind-tunnel simulations [35, 36]. In these experi-
ments, the airflow runs from left to right.

To effectively and efficiently harvest energy in this manner, one must be able capture and predict
the post-onset behaviors of a cantilever, and thus, one must have a viable model for the large deflections
of cantilever. Tradition nonlinear elastic models are based on local stretching effects, which are domi-
nant when the entire structural boundary is restricted. However, for a cantilever, nonlinear effects are
decidedly not due to stretching [10,12,31,36]. An appropriate nonlinear cantilever model, then, should
account for in-plane displacements and variable stiffness and inertia. Thus, dominant nonlinear effects
should come from the cantilever’s inextensibility, rather than extensible effects (stretching). Inextensi-
ble cantilever models are rather recent [8,10,36], and have not been addressed—even in vacuo—in the
rigorous mathematical literature. Thus, in this paper, we discuss the model derivation for an inexten-
sible cantilever, and we produce a rigorous theory of solutions for the corresponding PDE model. The
treatment at hand is a rigorous follow up to the recent [8], where an inextensible cantilever is discussed
and analyzed numerically. In that paper, the results proven here were announced.

1.2 Large Deflections of Cantilevers

Cantilever flutter is associated with large deflections on the order of the beam’s length [35,36]. For such
deflections, structural nonlinearity arises in modeling as a byproduct of the inclusion of higher order
terms in strain and energetic expressions. From a mathematical point of view, the presence of non-
conservative flow-effects gives rise to a beam bifurcation (this is flutter [5,8,17,18]), which would yield
exponential growth in time for a linear model, according to destabilized eigenvalues. To ensure that
flow-destabilized trajectories remain bounded, one must consider a nonlinear restoring force, active for
large displacements, slopes, or curvatures.

The typical way to achieve this in the theory of elasticity is through the inclusion of cubic-type
forces that arise from the effect of local stretching on bending [18, 24] . Since extensibility is not
physically dominant for cantilevers, engineers have posited that the prevailing nonlinear forces result
from inextensibility [10, 32, 36]. Although enforcing inextensibility—as a nonlinear constraint—can
be quite challenging, the recent modeling work [10, 36] utilizes a simplified approach that accounts
for both nonlinear stiffness and nonlinear inertia effects. The result is a beam theory that is both
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quasilinear and nonlocal in space, as well as implicit in the transverse acceleration, which is to say
the dynamics are not a traditional second order evolution. The model was recently considered in the
mathematical paper [8], where solutions were defined and qualitatively investigated from a numerical
point of view under the influence of non-conservative flow effects. In the paper at hand we consider
this inextensible elastic cantilever model and develop a rigorous well-posedness theory
for smooth solutions.

For the remainder of this treatment, let (u,w) ∈ R2 denote the Lagrangian displacement of a beam
whose centerline equilibrium position is x ∈ [0, L]. This is to say that u(x, t) is the axial (longitudinal)
displacement from equilibrium and w(x, t) is the transverse beam deflection.

x

z

L0

w

u(L)

Then, the inextensible equations of motion of interest—derived later in Section 2—are:
wtt +D∂4

xw + k2∂
4
xwt + A[w, utt] = p(x, t) in (0, L)× (0, T );

w(0) = wx(0) = 0; wxx(L) = wxxx(L) = 0 in (0, T );

w(t = 0) = w0, wt(t = 0) = w1,

(1)

with A[w, utt] = −D∂x
[
w2
xxwx

]
+D∂xx

[
wxxw

2
x

]
+ ∂x

[
wx

∫ L

x
uttdξ

]
(2)

utt(x) = −
∫ x

0
[w2
xt + wxwxtt]dξ. (3)

We denote by D the standard (mass-normalized) beam stiffness coefficient [10], L is the beam’s
length, and k2 ≥ 0 corresponds to structural damping of Kelvin-Voigt type (discussed further in Section
2). The RHS p(x, t) constitutes a given transverse pressure differential across the deflected beam.

We now mention the only (to the best of our knowledge) large deflection beam models in the PDE
literature that accommodate a cantilever configuration. First is the extensible system found in [24]; in
addition to standard elasticity assumptions, it invokes a quadratic strain-displacement law consistent
with von Karman theory [37]. As a system, it is nonlinearly coupled in u and w via the beam’s
extensionality: [ux + 1

2w
2
x].

utt −D1∂x
[
ux + 1

2(wx)2
]

= 0;

(1− α∂2
x)wtt +D2∂

4
xw + (k0 − k1∂

2
x)wt −D1∂x

[
wx(ux +

1

2
w2
x)

]
= p(x, t);

u(0) = 0, w(0) = wx(0) = 0;
[
ux(L) + 1

2w
2
x(L)

]
= 0, wxx(L) = 0, α∂xwt(L) = D2wxxx(L);

u(t = 0) = u0, ut(t = 0) = u1; w(t = 0) = w0, wt(t = 0) = w1.

(4)

The above Lagnese-Leugering system is the beam analog of the so called full von Karman plate equa-
tions [22]. Above, D1, D2 > 0 are two different mass-normalized stiffness parameters and α ≥ 0
represents (linearized) rotational inertia in the filaments of the plate1. The coeffcients ki ≥ 0 corre-
spond to damping of various strengths. The paper [24] considers a variant of this model that allows for

1D1, D2, and α are not necessarily independent in the presentation of these equations with physical coefficients.
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boundary feedbacks and takes k0 = k1 = 0; the results include nonlinear semigroup well-posedness, as
well as a stabilization result.

One further consideration can be made as a simplification of the above system when we take
negligible in-plane accelerations, utt ≈ 0. Elementary simplifications then produce a scalar extensible
cantilever, as was studied in [18]. In that reference, well-posedness and long-time behavior of the scalar
system are analyzed in the presence of a non-conservative p(x, t) representing an inviscid potential
flow. A principal consideration in that analysis is whether α > 0 or α = 0. In the case where α > 0,
stabilization-type estimates require damping strength to be tailored to the inertia, i.e., α > 0 =⇒
k1 > 0.

Each of these extensible beam models above is reasonable under certain modeling hypotheses, in
particular contexts. However, as is clear from the engineering literature discussed above, large
deflections of a flow-driven cantilever should be appropriately modeled with inextensibil-
ity. Lastly, we point to some work that addresses the 2 or 3-D deflections of inextensible rods in the
seminal reference [1] (and many references therein), as well as [2]. The principal inextensible models
therein are linear of wave type (or their linearizations are, i.e., second order in space, perhaps with
strong damping), and hence fundamentally distinct from the nonlinear models considered here which
account for nonlinear inertia and stiffness effects.

1.3 The Analysis At Hand

In this section we outline the remainder of the paper and state our results informally.
We conclude the introduction in Section 1.4, where we discuss the novel mathematical contributions

of this treatment and technical challenges of the analysis. The remaining preliminary sections are 2 and
3. Section 2 presents a derivation of the equations of motion, as well as a brief discussion of structural
damping central to this analysis. Section 3 presents the functional setup for the analysis and technical
definitions of solutions used in subsequent well-posedness and stability proofs.

Each of the remaining sections corresponds to a main result. In those latter sections, we will: (i)
state a main result technically, using the terminology and concepts established in Section 3; (ii) outline
the proof briefly; and (iii) execute the proof in detail. Below, we give a short, nontechnical description
of each of these main sections.

Section 4 provides a local2 well-posedness for strong solutions for (1) in the absence of nonlinear
inertia with no imposed damping. The resulting system is a conservative, quasilinear beam system. The
result—Theorem 4.1—is built upon higher order energy estimates used to obtain additional compact-
ness needed in executing a Galerkin procedure with cantilever eigenfunctions..

Section 5 provides a local well-posedness result—in the presence of nonlinear inertia—for strong
solutions in Theorem 5.1; in this case, some damping is required (k2 > 0) to obtain estimates in the
construction of solutions. The damping addresses the nonlocal and implicit nature of the inertial terms.

Section 6 provides our final main result: global existence of strong solutions for small data (in
the presence of both inertia and damping). This result is typical for quasilinear hyperbolic dynam-
ics, whereby the presence of damping and small data allow for stabilization estimates that ensure
exponential decay, yielding an arbitrary time of existence.

Lastly, Section 7 gives a brief discussion of open problems related to the model at hand, and Section
8 gives the authors’ declarations and acknowledgements.

1.4 Novel Contributions and Technical Challenges

The model we focus on here only appeared for the first time in the context of elastic cantilevers in the
recent papers [10, 36]. These (and other earlier works focusing on inextensible pipes conveying fluid

2local, in the sense that the time of existence depends on the size of the initial data in the associated solution topology.

4



such as [29, 32]) are largely engineering-oriented, making use of finite dimensional analyses via modal
truncation or the Rayleigh-Ritz method at the energetic level. And, although the present authors’ recent
work [8] discusses solutions and states well-posedness theorems, it is numerically-focused, without
proofs. Thus, the existing body of work on inextensible elasticity does not address:

• a construction of PDE solutions (at the infinite dimensional level)

• (Hadamard) well-posedness

• the effects of damping in relation to nonlinear inertial terms

• the time of existence for solutions or quantitative restrictions on data.

To the knowledge of the authors, this is the first treatment to rigorously address the theory of solutions
for inextensible elasticity.

Although the central problem here is a 1-D beam, the following issues render the analysis quite
challenging. Some of these issues are common for quasilinear dynamics, but many are not (e.g., those
associated with nonlinear inertia), and we also point to the non-trivial interaction between (high order)
free boundary conditions, nonlinear stiffness, and nonlocal inertial terms.

The technical challenges faced in the analysis are:

• Despite a good, conservative structure for the baseline equations of motion, quasilinear and
semilinear terms do not straightforwardly admit (semigroup or fixed point) perturbation methods.

• The term ∂x[w2
xxwx] precludes weak limit point identification at the baseline energy level.

• Nonlinear terms and free boundary conditions (i) do not readily permit differentiation of the
equations to obtain higher energy estimates, and (ii) convolute the standard technique of going
back through the equations to trade time and space regularity.

• Nonlinear inertial terms (i) present themselves at a level above finite energy, (ii) are also nonlocal,
and (iii) are implicit terms in wtt, and hence do not constitute a traditional evolution. The
truncated version of the dynamics is in fact quasilinear in time (62).

In addressing the issues above, we note the following specific novelties of this analysis:

• The sequence of multipliers used to close estimates in obtaining compactness are non-standard,
including the use of stabilization-type multipliers.

• A novel decomposition of nonlinear differences exploits polynomial symmetry for a non-obvious
uniqueness proof, relying critically on smooth trajectory estimates obtained earlier.

• The inclusion of damping to permit appropriate estimates for well-posedness of the full model
is a peculiarity, one that, at present, we cannot avoid. On the other hand, including damping in
the full model (1)–(2) successfully obtains global solutions for small data.

2 PDE Model Derivation
Recall that w(x, t) is the transverse deflection and u(x, t) is the in-axis displacement from equilibrium
of a beam at t ∈ [0, T ] and a spatial point x ∈ [0, L]. Let ε(x, t) describe the axial strain along
the centerline of the beam. In this section we derive the in-vacuo equations of motion via Hamilton’s
principle. The inextensibility condition is simplified to an effective inextensibility constraint, which is
enforced via a Lagrange multiplier. Our derivation tracks the one first appearing in [10], and we point
to the earlier references [29,32] for inextensibility treated in the context of pipes conveying fluid.
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2.1 Inextensibility

According to classical work (e.g., [32, 34]) we have the Lagrangian strain relation [32][
1 + ε]2 = (1 + ux)2 + w2

x.

When the beam is inextensible, we take ε(x, t) = 0, which immediately yields the condition

1 = (1 + ux)2 + w2
x. (5)

From [7, 10, 32], large deflections dictate that higher order nonlinear terms should be retained,
namely, up to cubic order. (For variational purposes, then, energetic expressions will be accurate up
to quartic order.) By expanding the inextensibility condition (5), we see that if wx ∼ ε, we will have
ux ∼ ε2:

2ux + u2
x + w2

x = 0.

As in [10], we drop u2
x ∼ ε4, owing to its relative order being above cubic. Approximating, then

0 = 2ux + w2
x =⇒ ux = −1

2
w2
x.

This yields what we henceforth refer to as the effective inextensibility constraint, providing a direct
relationship between u and w:

u(x, t) = −1

2

∫ x

0
[wx(ξ, t)]2dξ. (6)

2.2 Nonlinear Elasticity

Define the elastic potential energy (EP ) via beam curvature κ and constant stiffness D (flexural
rigidity) [32] in the standard way

EP ≡
D

2

∫ L

0
κ2dx.

Owing to inextensibility, we may take the beam’s displaced state, {(x + u(x), w(x)) : x ∈ [0, L]}, as
a parametrized curve. The standard expression for curvature in this scenario is:

κ =
(1 + ux)wxx − uxxwx
[(wx)2 + (1 + ux)2]3/2

.

From inextensibility (5) (without approximation), we see that the denominator is one. From (5),
we can also write ux =

√
1− w2

x − 1 which leads to uxx = −wxwxx(1−w2
x)−1/2. Substituting in κ, we

obtain:

κ = (1 + ux)wxx − wxuxx = (1− w2
x)1/2wxx + wx(wxwxx(1− w2

x)−1/2) =
wxx

(1− w2
x)1/2

.

To be consistent with the approximation that yields (6), we must retain terms at the level of w2
x in

approximating EP [10, 32]. Via a Taylor expansion, we take κ ≈ wxx
√

1 + w2
x.

Remark 2.1. This point distinguishes the derivation from linear elasticity in w, where κ ≈ wxx.

Finally, the effective potential energy for the problem at hand becomes

EP =
D

2

∫ L

0
w2
xx

(
1 + w2

x

)
dx. (7)

The kinetic energy (EK) for the dynamics taken in the standard way for a mass-normalized beam:

EK =
1

2

∫ L

0

(
u2
t + w2

t

)
dx. (8)
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2.3 Hamilton’s Principle

To derive the equations of motion and the associated boundary conditions, we utilize Hamilton’s
Principle [10, 24]. We consider displacements u and w (and hence virtual displacements δu and δw)
which are smooth and respect the essential boundary conditions at x = 0, namely:

w, wx, δw, δwx : 0 at x = 0; u, δu : 0 at x = 0.

The effective inextensibility constraint, f ≡ ux + (1/2)w2
x = 0, will be appended to the system via a

Lagrange multiplier λ. Thus, we express the Lagrangian in the usual way:

L = EK − EP +

∫ L

0
λfdx. (9)

Taking the variation of (9) and performing the necessary integration by parts with respect to
both time and space, Hamilton’s principle provides the Euler-Lagrange equations of motion and the
associated boundary conditions. Virtual changes are considered for both displacements, u and w.3

To minimize the Lagrangian, we set δ
∫ t2
t1
Ldt ≡ 0 and utilize the arbitrariness of the virtual

changes δu and δw. For interior terms, we gather virtual changes and set the totals equal. The relevant
calculation pertains to the EP :

δEP = D

∫ L

0

[
(1 + w2

x)wxx
]
δwxx +

[
(wxw

2
xx)
]
δwxdx. (10)

Integrating by parts until only δw appears, and utilizing the arbitrariness of the virtual changes, we
obtain the unforced equations of motion:

from δu : utt + λx = 0 (11)

from δw : wtt −D∂x
(
w2
xxwx

)
+D∂xx

(
wxx

[
1 + w2

x

])
+ ∂x (λwx) = 0. (12)

For the (natural) boundary conditions at x = L, the relevant calculations pertain to w (the u and
λ conditions can then be inferred). In the integration by parts proceeding from (10), we obtain by the
arbitrariness of δw, δwx and δu at x = L:

λ(L) = 0; (1 + w2
x(L))wxx(L) = 0; (1 + w2

x(L))wxxx(L) + wx(L)w2
xx(L) = 0. (13)

From (13), we infer that wxx(L) = wxxx(L) = 0—the standard free boundary conditions.

Remark 2.2. This fact is both critical and somewhat surprising, as the nonlinear effects (and their pre-
viously discussed simplifications) do not alter the standard linear boundary conditions for a cantilever.
Note that in extensible elasticity, this is not always the case [6, 18].

Now, using the equation (11) we can formally write

λ(x) = −
∫ x

0
utt(ξ)dξ + λ(0).

We then utilize the fact that λ(L) = 0 to conclude λ(0) =

∫ L

0
utt(ξ)dξ. From this we deduce:

λ(x) =

∫ L

x
utt(ξ)dξ.

Substituting the above expression in (12) we finally obtain the equations of motion (1)–(2), and
the corresponding boundary conditions for w, as well as for u and λ at x = L.

3Note that virtual change in λ simply produces the effective inextensibility constraint.
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2.4 Damping

Discussion of damping in beams goes far back in both the engineering literature [3, 32] as well as the
mathematical literature [4, 30]. In the treatment at hand, some additional velocity regularization is
needed to address the nonlinear inertial terms; namely wt must be “better” than C([0, T ];L2(0, L)).
We obtain this by imposing Kelvin-Voigt type structural damping. Note, this type of damping is in
fact invoked in the engineering-oriented references [29, 32] for improving numerical simulations. The
recent [31] addresses local damping and stiffness in a cantilever from a modeling and experimental
point of view.

Let us here refer to the damped, linear Euler-Bernoulli beam equation

wtt +D∂4
xw + [k0 − k1∂

2
x + k2∂

4
x]wt = p.

Weak (frictional) damping has the form k0wt, providing no velocity regularization. In the elasticity
context, Kelvin-Voigt damping k2∂

4
xwt is strain-rate type, and mirrors the principal (linear) operator,

providing a strong dissipative effect. In fact, this damping transforms the underlying dynamics to be
of parabolic type [4,26]. Square root-like damping, −k1∂2xwt [16], interpolates between the previous two
damping types. (See [8, 18] for more discuss of damping in the context of nonlinear cantilevers.)

Remark 2.3. Square root-type damping corresponds to modal damping models [9], as one finds fre-
quently in the engineering literature [3,27,28]. However, the boundary conditions for a given problem
affect the physical interpretation of square-root type damping; in [30] it is noted that square-root type
damping has a questionable physical interpretation for a cantilevered configuration. See also [17] for
more recent discussion. In the analysis here, we utilize the (strong) Kelvin-Voigt damping.

Remark 2.4. It is of course of interest to discuss damping in the context of the stiffness-only model
ι = 0. On the other hand, in this treatment the damping is primarily included to mitigate the effects
of nonlinear inertia. We discuss this further in Section 7.

3 Functional Setup and Key Notions

3.1 Equations of Motion

With the derivation above, we recall the equations of motion, allowing for Kelvin-Voigt damping k2 ≥ 0,
and including flags for the nonlinear terms:

wtt +D∂4
xw + k2∂

4
xwt + Aι,σ(w, utt) = p(x, t) in (0, L)× (0, T )

w(t = 0) = w0(x), wt(t = 0) = w1(x)

w(x = 0) = wx(x = 0) = 0; wxx(x = L) = wxxx(x = L) = 0,

(14)

Aι,σ(w, utt) =− σD∂x
[
w2
xxwx

]
+ σD∂xx

[
wxxw

2
x

]
+ ι∂x

[
wx

∫ L

x
utt(ξ)dξ

]
(15)

u(x) = − 1

2

∫ x

0
[wx(ξ)]2 dξ. (16)

To simplify terminology, we use the following language from here on:

[NL Stiffness] = −D∂x
[
w2
xxwx

]
+D∂xx

[
w2
xwxx

]
[NL Inertia] = ∂x

[
wx

∫ L

x
utt(ξ)dξ

]
,

the latter of which is nonlocal, when written in w through (16). The flags, ι, σ = 0 or 1, in (15), easily
isolate particular nonlinear effects. This is to say, when ι = 0, we say that [NL Inertia] is turned off.
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Remark 3.1. For convenience, we note two expansions. First

[NL Stiffness] = D[w3
xxx + 4wxwxxwxxx + w2

x∂
4
xw],

which highlights the quasilinear nature of the PDE (with high order semilinearity). Secondly,

[NL Inertia] = −wxutt + wxx

∫ L

x
uttdξ, with utt = −

∫ x

0
[w2
xt + wxwxtt]dξ, (17)

which highlights that, when closed in w, (i) there is high temporal regularity required to interpret the
strong form of the PDE, and (ii) the equation is implicit in the acceleration wtt.

3.2 Notation and Conventions

For a given spatial domain D, its associated L2(D) will be denoted as || · ||D (or simply || · || when the
context is clear). Inner products in a Hilbert space are written (·, ·)H (or simply (·, ·) when H = L2(D)
and the context is clear). We will also denote pertinent duality pairings as 〈·, ·〉X×X′ , for a given
Banach space X, as well as the general notation for a norm, || · ||X . The open ball of radius R in X will
be denoted BR(X). The space Hs(D) will indicate the standard Sobolev space of order s, defined on
domain D, and Hs

0(D) will be the closure of C∞0 (D) in the Hs(D)-norm ‖·‖Hs(D), also written as ‖·‖s.
For Γ ⊂ ∂D, boundary restrictions u

∣∣
Γ

are taken in the sense of the trace theorem for u ∈ H1/2+(D).
The constant C we take to mean a generic constant that may change from line to line. In estimates

where dependencies are critical, we will write C(qi), where qi are relevant quantities. Additionally,
in our involved estimates below, for situations where ||q1||X ≤ C||q2||Y for some quantities q1, q2 in
spaces X and Y , with C having no critical dependencies, we will simply write ||q1||X . ||q2||Y .

Finally, we will frequently make use of standard Sobolev embeddings (in particular, that of
H1/2+(0, L) ↪→ L∞(0, L)) as well as the Sobolev interpolation inequalities [15].

3.3 Energies

With reference to Section 2, we employ the following energies:

E(t) ≡ EK(t) + EP (t) ≡ 1

2

[
||wt||2 + ι||ut||2

]
+
D

2

[
||wxx||2 + σ||wxwxx||2

]
. (18)

The energies now include the nonlinear flags. This can be written in w explicitly using ut = −
∫ x
0
wxwxtdξ.

In the unforced situation, with p(x, t) ≡ 0, the formal energy identity is obtained by the velocity
multiplier wt on (14) taken with the relation (16), yielding

E(t) + k2

∫ t

s
||wxxt||2L2(0,L)dτ = E(s), 0 ≤ s ≤ t.

Higher order energies corresponding to smooth solutions will be defined in later sections.

3.4 Spaces and Operators

The principal state space for cantilevered beam displacement takes into account the clamped conditions:

H2
∗ = {v ∈ H2(0, L) : v(0) = 0, vx(0) = 0}.

This space is equipped with an H2(0, L) equivalent inner product:

(v, w)H2
∗

= D(vxx, wxx). (19)
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Denoting R as the Riesz isomorphism H2
∗ → [H2

∗ ]
′, we see it is given by:

R(v)(w) ≡ (v, w)H2
∗
. (20)

This framework is conveniently induced by the generator of the linear cantilever dynamics:

A : D(A) ⊂ L2(0, L)→ L2(0, L), Af ≡ D∂4
xf,

D(A) = {w ∈ H4(0, L) : w(0) = wx(0) = 0; wxx(L) = wxxx(L) = 0}. (21)

From this we have in a standard fashion [26]:

D(A1/2) = H2
∗ , D(A−1/2) = [H2

∗ ]
′ and A1/2 = R in (20).

Then (u, ·)H2
∗

is the extension of (Au, ·) from D(A) to H2
∗ which gives (19).

Using the above spaces we can define the appropriate state space(s) for our dynamics. The finite
energy space will be denoted as:

H ≡ D(A1/2)× L2(0, L) = H2
∗ × L2(0, L),

with the inner product y = (y1, y2), ỹ = (ỹ1, ỹ2) ∈H

(y, ỹ)H = (y1, ỹ1)H2
∗

+ (y2, ỹ2)L2(0,L). (22)

In our discussions, we will also require stronger state spaces (corresponding to strong solutions):

Hs ≡ D(A)×D(A1/2), for ι = k2 = 0, (23)

H I
s ≡ D(A)×D(A), for ι = 1, k2 > 0. (24)

The norm in Hs is taken (equivalent4 to the natural operator-induced norm) to be:

||y||2Hs
= ||∂4

xy1||2 + ||∂2
xy2||2, for ι = k2 = 0,

||y||2H I
s

= ||∂4
xy1||2 + ||∂4

xy2||2, for ι = 1, k2 > 0.

3.5 Mode Functions

We will utilize the so called in vacuo modes (eigenfunctions) associated to the operator A. Specifically,
we work with the Euler-Bernoulli cantilever eigenfunctions as our approximants in H2

∗ ; namely, the
eigenvalues and eigenfunctions {λn, sn(x)}∞n=1 of A on L2(0, L). These modes and associated eigenvalues
are computed in an elementary way. The C∞([0, L]) mode shapes take the form

sn(x) ≡ cn[cos(κnx)− cosh(κnx)] + Cn[sin(κnx)− sinh(κnx)], κ4
n = λn, (25)

where the κn are obtained (numerically) by solving the associated characteristic equation

cos(κnL) cosh(κnL) = −1.

The Cn are obtained by invoking the boundary conditions:

Cn =
−cn

(
cos(κnL) + cosh(κnL)

)
sin(κnL) + sinh(κnL)

,

and the cn values are chosen to normalize the functions in L2(0, L).
Via the spectral theorem, these functions are complete and orthonormal in L2(0, L), as well as

complete and orthogonal in H2
∗ (with respect to (·, ·)H2

∗
). These eigenvalues have the property that

0 < λ1 < λ2 < ...→∞.
4The topological equivalences on D(A) follow from repeated applications of Poincaré.
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3.6 Definition of Solutions

We provide the natural setting for the weak formulation of the problem; this will yield the appropriate
starting point for our Galerkin procedure to construct solutions. Ultimately, we will construct weak
solutions that possess additional regularity; these, in turn, will be strong solutions.

We begin with the weak form of (14) which we define for functions that are smooth in time:

(wtt, φ) +D(wxx, φxx) + k2(wxxt, φxx) + σD
(
wxxwx, wxφxx

)
+ σD(wxxwx, wxxφx)− ι

(
wx

∫ L

x
utt, φx

)
= (p, φ), ∀ φ ∈ H2

∗ . (26)

When σ > 0, the [NL Stiffness] is in force; similarly, when ι > 0, [NL Inertia] is in force. When k2 > 0,
Kelvin-Voigt damping is imposed.

We now give precise definitions of solutions making reference to the weak form (26) above:

Definition 1. We say a weak solution to (14), with k2 = ι = 0 and σ = 1 is a function w, with

w ∈ L2
(
0, T ;H2

∗
)

; wt ∈ L2
(
0, T ;L2(0, L)

)
; wtt ∈ L2

(
0, T ; [H2

∗ ]
′)

that satisfies (26), replacing L2(0, L) inner products with (H2
∗ , [H

2
∗ ]
′) duality pairings where necessary.

Moreover, for any χ ∈ H2
∗ , ψ ∈ L2(0, L), we require

(w,χ)H2
∗

∣∣
t→0+

= (w0, χ)H2
∗
, (wt, ψ)

∣∣
t→0+

= (w1, ψ). (27)

Definition 2. A weak solution to (14) with k2 > 0 and ι = σ = 1 is a function w, with

w ∈ L2
(
0, T ;H2

∗
)

; wt ∈ L2
(
0, T ;H2

∗
)

; wtt ∈ L2
(
0, T ; [H2

∗ ]
′) ,

such that (26) holds, replacing L2(0, L) inner products with (H2
∗ , [H

2
∗ ]
′) duality pairings where necessary.

Moreover, for any χ ∈ H2
∗ , ψ ∈ L2(0, L), we require

(w,χ)H2
∗

∣∣
t→0+

= (w0, χ)H2
∗
, (wt, ψ)

∣∣
t→0+

= (w1, ψ). (28)

Remark 3.2. For k2 > 0 and ι > 0, the definition of weak solution is self-consistent; this is to say, for
such a function w, all terms in (26) are well-defined. We note that for k2 = 0, there are complications
with the a priori regularity of wt ∈ L2(0, T ;L2(0, L)) and the interpretation of the [NL Inertia] terms.

Now, we define strong solutions as weak solutions with additional regularity.

Definition 3. A strong solution to (14) with k2 = ι = 0 and σ = 1 is a weak solution (as in Definition
1) with the additional regularity

w ∈ L2 (0, T ;D(A)) ; wt ∈ L2(0, T ;H2
∗ ); wtt ∈ L2

(
0, T ;L2(0, L)

)
.

Definition 4. A strong solution to (14) with k2 > 0, ι = σ = 1 is a weak solution (as in Definition
2) with the additional regularity

w ∈ L2 (0, T ;D(A)) ; wt ∈ L2 (0, T ;D(A))) ; wtt ∈ L2
(
0, T ;H2

∗
)
.

As we will show below in Corollaries 4.2 and 5.2, strong solutions will satisfy the pointwise form
of the PDE in (14) as well as the higher order boundary conditions at x = L.
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4 The Case of Only Stiffness Effects: σ = 1, ι = k2 = 0

4.1 Precise Statement of the Theorem

Theorem 4.1. Take σ = 1 with ι = k2 = 0, and consider p ∈ H2
loc(0,∞;L2(0, L)). For smooth data

(w0, w1) ∈Hs = D(A)×H2
∗ , strong solutions exist up to some time T ∗(w0, w1, p). For all t ∈ [0, T ∗),

the solution w is unique and obeys the energy identity

E(t) = E(0) +

∫ t

0
(p, wt)L2(0,L)dτ.

Restricting to BR(Hs), for any T < T ∗(R, p) solutions depend continuously on the data in the
sense of C([0, T ]; H ) with an estimate on the difference of two trajectories, z = w1 − w2:

sup
t∈[0,T ]

∣∣∣∣(z(t), zt(t))∣∣∣∣H ≤ C(R, T )
∣∣∣∣(z(0), zt(0)

)∣∣∣∣
H
, ∀ t ∈ [0, T ].

Remark 4.1. The time of existence T ∗ depends on the data in the sense of

T ∗ = T ∗
(
||(w0, w1)||Hs , ||p||H2(0,T ;L2(0,L))

)
,

namely, the size of the data in the appropriate space, rather than the individual data itself.

4.2 Proof Outline

We will commence with a Galerkin procedure, using the mode functions {sj}∞j=1 described above.
This will yield approximate solutions, with the baseline energy identity providing associated weak
limit points. Identifying the nonlinear weak limits is non-trivial, hence, two higher-order multipliers
will be used to provide more regular a priori bounds; one is an energy estimate corresponding to the
time-differentiated version of the equation, and the other is a stability type estimate resulting from the
multiplier ∂4

xw. Additional compactness is obtained through these estimates with appropriately smooth
initial data. With a weak solution in hand corresponding to smooth data, we will show that this strong
solution satisfies the PDE pointwise, along with all four cantilever boundary conditions. Lastly, we will
tackle the uniqueness and continuous dependence in this case through a particular decomposition of
the polynomial structure of the nonlinear stiffness.

4.3 Proof of Theorem 4.1

4.3.1 Existence

Consider the positive eigenfunctions of A described in Section 3.5, with λn →∞; these constitute an
orthonormal basis for L2(0, L) and orthogonal basis for any D(As), s ∈ R. Now, for each n = 1, 2, . . .,
we denote

Sn ≡ span{s1, s2, . . . , sn}. (29)

Step 1 - Approximants: For fixed smooth data, w0 ∈ D(A) and w1 ∈ H2
∗ , we can construct two

approximating sequences {wn0 }∞n=1 and {wn1 }∞n=1 such that

wn0 :=

n∑
j=1

(w0, sj) sj ∈ Sn and wn1 :=

n∑
j=1

(w1, sj) sj ∈ Sn. (30)

By construction: wn0 → w0 in D(A), wn1 → w1 in H2
∗ . (31)
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and we can proceed to define smooth finite-dimensional approximations,

wn(x, t) :=
n∑
j=1

qj(t)sj(x),

where each qj(t) is a smooth function of time.
From the weak form, (26), we construct a corresponding matrix system by taking φ = sj . We define

the following spatial four tensor for ease of writing:

Sijkl = (φi,xxφj,xx, φk,xφl,x). (32)

Interpreting qisi as a sum, we have the separated form of the equations:[
q′′i (si, sj)

]
+Dqi

[
κ4
i (si, sj)

]
+Dq3

i [Siiij + Sjiii] = (p, sj), (33)

where primes represent ∂t. Initialization is given by

qj(0) = (w0, sj) , q′j(0) = (w1, sj) , j = 1, 2, . . . .

We may then invoke standard ODE existence and uniqueness for this finite dimensional system.
Noting the hypotheses on pt, ptt, we obtain a solution {qj}nj=1 ∈ C3(0, t∗), for some small t∗(n).

Step 2 - Energy Level 0: The estimate below for (33) on the approximant wn follows immediately
using wt as the multiplier in the equations (14)–(16), taken with ι = k2 = 0:

En0 (t) = En0 (0) +

∫ t

0
(p, wnt ) dτ for all t > 0,

where

En0 (t) =
1

2

[
||wnt ||2 +D||wnxx||2 +D||wnxwnxx||2

]
. (34)

Now, via Young’s inequality and Grönwall applied to (34), and noting that by (31) that {En0 (0)}∞n=1

is uniformly bounded in terms of the initial data ||(w0, w1)||2H , we obtain:

En0 (t) ≤ f0

(
||p||L2(0,t;L2(0,L)), ||w0||D(A), ||w1||H2

∗

)
et/2 for all t > 0. (35)

The function f0 is increasing in its arguments. The estimate in (35) ensures that the time of existence
for the approximants, t∗, is independent of n.

Step 3 - Boundedness of wntt(0): We will consider E1(t) as the natural “energy” corresponding to
the time-differentiated version of the stiffness-only equation (ι = k2 = 0). For this calculation it is
pivotal to establish boundedness of the sequence {wntt(0)}∞n=1 in L2(0, L). To that end, it is true that
the following holds for all φ ∈ Sn, n = 1, 2, . . .:(

wntt +D∂4
xw

n −D∂x
[
(wnxx)2wnx

]
+D∂xx

[
wnxx(wnx)2

]
− p, φ

)
= 0. (36)

We consider φ = sj(x), j = 1, 2, . . . , n. Then, multiplying (36) by q′′j (t), summing over the j′s, and
rearranging the terms we obtain:

||wntt||2 = (p, wntt)−D(∂4
xw

n, wntt) +D(∂x([wnxx]2wnx), wntt)−D(∂xx([wnx ]2wnxx), wntt). (37)
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Owing to the C3 temporal regularity of wn, we can take t = 0 in the above expression. Therefore,
using (i) the expanded version of [NL Stiffness] shown in Remark 3.1, (ii) the Sobolev embedding
into H1 ↪→ L∞, (iii) and Poincaré for various derivatives, we have:

||wntt(0)|| . ||p(0)||+ ||wnxxx(0)|| ||∂4
xw

n(0)||2 + ||wnxx(0)|| ||wnxxx(0)||2 +
(
1 + ||wnxx(0)||2

)
||∂4

xw
n(0)||.

The expression on the right-hand side is bounded. Indeed, by (31), ||∂4
xw

n(0)|| . ||w0||D(A). Moreover,
by hypothesis, since p, pt ∈ L2(0, T ;L2(0, L)), ||p(0)|| is interpreted as a temporal trace [15], with
||p(0)|| . ||p||H1(0,T ;L2(0,L)). Hence we conclude that

||wntt(0)|| ≤ f
(
||p||H1(0,T ;L2(0,L)), ||w0||D(A)

)
. (38)

Step 4 - Energy Level 1: Our goal now is to form the E1(t) energy which will correspond to time
differentiation of the stiffness dynamics. We note that time differentiation does not affect the boundary
conditions for wn(x, t) =

∑n
i=1 qi(t)si(x). Hence, after proceeding with appropriate integration by

parts, isolating conserved quantities, and gathering similar terms, we obtain the a priori identity:

1

2

d

dt

[
||wtt||2 +D||wxxt||2 +D||wxxwxt||2 +D||wxxtwx||2

]
(39)

= − d

dt

[
4D(wxwxx,wxtwxxt)

]
+ (pt, wtt) + 3D(wxxwxxt, w

2
xt) + 3D(wxwxt, w

2
xxt).

We have omitted the superscript n here and in the estimation below for ease of presentation. The
identity above is integrated in time on (0, t), with an eye to utilize a version of Grönwall’s inequality.

Remark 4.2. As an a priori estimate, the equality above holds for approximate solutions, which are
appropriately smooth; this can be seen by operating directly on the ODE system (33), differentiating
in time, multiplying by q′′j and integrating in time.

Accordingly, we define the energy En1 (t) precisely, corresponding to smoother norms for a solution:

En1 (t) =
1

2

[
||wntt||2 +D||wnxxt||2 +D||wnxtwnxx||2 +D||wnxwnxxt||2

]
. (40)

Now, we must bound/absorb the unsigned quantities in the energy identity (39) above. We first
note some important intermediate inequalities. (We have freely used: Young’s inequality, Poincaré,
Sobolev interpolation, and the continuous embedding H1/2+(0, L) ↪→ L∞(0, L).)

1. 3D
∣∣(wxxwxxt, w2

xt)
∣∣ ≤ 3D||wxt||2L∞ ||wxx|| ||wxxt|| . ||wxx||4 + ||wxxt||4

2. 3D
∣∣(wxwxt, w2

xxt)
∣∣ ≤ 3D||wx||L∞ ||wxt||L∞ ||wxxt||2 . ||wxx||4 + ||wxxt||4

3. 4D |(wxwxx, wxtwxxt)| ≤ ε1||wxwxxt||2 + Cε1 ||wxxwxt||2 ≤ ε1||wxwxxt||2 + Cε1 ||wxt||2L∞ ||wxx||2.

To continue our estimation of 3 above, we interpolate the term ||wxt||2L∞ as follows:

||wxt||2L∞ . ||wt||23/2+ε . ||wt||
1/2−ε ||wxxt||3/2+ε.

Substituting the above in 3 and then utilizing Young’s inequality in the (p, q) setting we obtain:

4D |(wxwxx, wxtwxxt)| ≤ ε1||wxwxxt||2 + Cε1 ||wt||1/2−ε ||wxxt||3/2+ε ||wxx||2 (41)

≤ ε1||wxwxxt||2 + Cε1Cεp ||wt||(1/2−ε)q ||wxx||2q + Cε1εp||wxxt||(3/2+ε)p.
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We choose p > 1 such that (3/2 + ε)p = 2. Hence, by fixing ε = 1/4, we obtain p = 8/7 and q = 8.
Inequality in (41) becomes:

4D |(wxwxx, wxtwxxt)| ≤ ε1||wxwxxt||2 + Cε1Cεp ||wt||4 + Cε1Cεp ||wxx||32 + Cε1εp||wxxt||2.

Choosing ε1 and εp sufficiently small, we can absorb terms by En1 (t) on the LHS of (39). Thus,
using (31) in passing to the limit on the RHS, and invoking the result from (38), we arrive at the
estimate:

En1 (t) ≤ f1

(
pt, ||w0||D(A), ||w1||H2

∗

)
+ f2

(
p, ||w0||D(A), ||w1||H2

∗

)
t+ C

∫ t

0
[En1 (τ)]2 dτ. (42)

Note that C > 0 above does not depend on w0, w1 or p. The functions f1 and f2 are smooth,
real-valued functions, increasing in their arguments. In particular, the function f2 is obtained after we
apply (35) to the norms ||wxx||4, ||wt||4 and ||wxx||32 that appear on the RHS of the estimates (1)–(4).
Dependence on p we take to mean dependence on the norm ||p||L2(0,t;L2(0,L)) (mutatis mutandis for pt),
as in the previous step.

Hence, using the nonlinear version of Grönwall’s inequality [11], we obtain a local-in-time estimate:

En1 (t) ≤ f1 + f2t

1− C [f1t+ f2t2]
≡M1(t), 0 ≤ t < T ∗ where T ∗ = sup

t>0

{
C
[
f1t+ f2t

2
]
< 1
}
. (43)

Remark 4.3. Following the assumptions of Theorem 4.1, requiring p ∈ H2
loc(0,∞;L2) is done here since

the version of Grönwall we utilize for (42) requires f1 and f2 to be continuous functions in time.

Then, for any fixed T < T ∗, we have that (43) constitutes a uniform-in-n a priori bound on
En1 (t) < M∗1 (T ), t ∈ [0, T ], where

M∗1 (T ) = max
t∈[0,T ]

M1(t); (44)

this quantity depends only on fixed norms of the data and T .

Remark 4.4. It is also important to note that, for a fixed t, M1(t) is an increasing function in
||(w0, w1)||Hs that vanishes when p = w0 = w1 = 0; this is used for continuous dependence.

From (43), we conclude that the Galerkin approximations satisfy a local-in-time bound by the data
on any interval [0, T ] with T < T ∗5).

Whenever the initial data (w0, w1) ∈ H , as well as p, are fixed, then T ∗ is fixed; hence, for the
existence portion of the proof of Theorem 4.1, we take T < T ∗ fixed and consider t ∈ [0, T ].

Step 5 - Additional Spatial Regularity: Unlike the standard approach, we cannot obtain the
needed additional boundedness of ∂4

xw by going back through the equation (with additional regularity
of wtt established). To obtain further regularity of solutions, spatial differentiation is used.

Remark 4.5. Owing to the high order boundary conditions, one must take care in this process. We
note energy identities associated with one spatial differentiation result in problematic trace terms that
cannot be controlled by the conservative energetic terms. Moreover, as spatial differentiation produces
mixed time-space terms, we do not proceed to obtain an energy estimate in this scenario; rather, we
utilize an equipartition multiplier and integrate in space-time, which will provide control of the term

||∂4
xw||2L2(0,t;L2(0,L)) − ||wxxt||

2
L2(0,t;L2(0,L))

the latter term is controlled by the estimate in the previous step.

5Conversely, given T > 0, there is a ball of data small in the sense of
∑
Ei(0) for which solutions exist up to T .
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To obtain the a priori bound, we multiply the equation by ∂4
xw and estimate.(

wtt, ∂
4
xw
)

+D
(
∂4
xw, ∂

4
xw
)
−D

(
∂x[w2

xxwx], ∂4
xw
)

+D
(
∂2
x[wxxw

2
x], ∂4

xw
)

=
(
p, ∂4

xw
)
. (45)

Note that as in Step 3, this can be justified by multiplying the weak ODE form (33) by λjqj (see [23]).
We integrate the above in time on (0, t). For the first term of (45) we integrate by parts:∫ t

0

(
wtt, ∂

4
xw
)

=

∫ t

0
(wxxtt, wxx) = (wxxt, wxx)

∣∣t
0
−
∫ t

0
||wxxt||2.

For the remaining of the terms in (45) we identify positive quantities and gather terms.

D

∫ t

0

[
||∂4

xw||2 + ||wx∂4
xw||2

]
dτ −

∫ t

0
||wxxt||2dτ (46)

=

∫ t

0

[(
p, ∂4

xw
)
−D

(
w3
xx, ∂

4
xw
)
− 4D

(
wxwxxwxxx, ∂

4
xw
)]
dτ − (wxxt, wxx)

∣∣∣t
0
.

We now bound the expressions that appear on the RHS above.

1.
∣∣∣(wxxt, wxx)

∣∣t
0

∣∣∣ ≤ ||wxxt(t)|| ||wxx(t)||+ ||wxxt(0)|| ||wxx(0)||

2.
∣∣(p, ∂4

xw
)∣∣ ≤ Cε||p||2 + ε||∂4

xw||2

3. D
∣∣(w3

xx, ∂
4
xw)

∣∣ ≤ δ||∂4
xw||2 + Cδ||wxx||6L6

≤ δ||∂4
xw||2 + Cδ||wxx||4L∞ ||wxx||2 ≤ δ||∂4

xw||2 + Cδ||wxx||41/2+ε||wxx||
2

≤ δ||∂4
xw||2 + Cδ

[
||w||1+2ε

4 ||wxx||3−2ε
]
||wxx||2 (take ε = 1/4)

≤ δ||∂4
xw||2 + Cδδp||w||

(3/2)p
4 + Cδ1,δp ||w||

(9/2)q
2 (take p = 4/3)

≤ (δ + Cδδp) ||∂4
xw||2 + Cδ,δp ||wxx||18

4. 4D
∣∣(wxwxxwxxx, ∂4

xw)
∣∣ ≤ η||∂4

xw||2 + Cη||wx||2L∞ ||wxx||2L∞ ||wxxx||2

≤ η||∂4
xw||2 + Cη||wxx||2

[
||wxx||3/2−ε||w||1/2+ε

4

]
[||wxx|| ||w||4] (take ε = 1/4)

≤ η||∂4
xw||2 + Cηηp||w||(7/4)p

4 + Cη,ηp ||wxx||(17/4)q (take p = 8/7)

≤ (η + Cηηp) ||∂4
xw||2 + Cη,ηp ||wxx||34.

We choose ε, δ, δp, η, ηp so that, upon integration,
∫ t

0 ||∂
4
xw||2dτ is absorbed by the LHS of (46).

Hence, by denoting

V (t) = D
∣∣∣∣∂4

xw
∣∣∣∣2 +D

∣∣∣∣wx∂4
xw
∣∣∣∣2,

and V n(t) the above functional evaluated on wn, we estimate (46) as:∫ t

0
V n(τ)dτ ≤ f3 (t, p, En0 (0), En1 (0), En0 (t), En1 (t)) for all t ∈ [0, T ], (47)

where we have invoked the estimates from the previous level (35) and (43), and T < T ∗. Again, f3 is
increasing in its arguments, and dependence on p is taken as in the previous sections.
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Remark 4.6. Note that (47) is not a true energy estimate in the sense of pointwise-in-time control of an
“energy”. The estimate above highlights the need to first close the higher time estimate for solutions
in order to use the equipartition approach.

Based on the boundedness of of En0 (0) and En1 (0), along with the combination of (35),(43), (47),
we deduce that∫ t

0
V n(τ)dτ ≤ f3

(
t, p, pt, ||w0||D(A), ||w1||H2

∗
,M∗1 (T )

)
for all t ∈ [0, T ]. (48)

Combining (43) and (48), we arrive at the final energy estimate for boundedness of

||wn||L2(0,T ;D(A)) + ||wnt ||L∞(0,T ;D(A1/2)) + ||wntt||L∞(0,T ;L2(0,L)) ≤ C(data, T ), (49)

where T < T ∗ as in (43) and the dependence on “data” is as in the RHS of (48). This bound holds for
the associated subsequential weak limit points and provides additional compactness below.

Remark 4.7. Denoting w as the function corresponding to the weak/weak-* limit above, we see that
w ∈ L2(0, T ;H4(0, L)) and wt ∈ L2(0, T ;H2

∗ ); hence we obtain in the standard way [15] the auxiliary
bound for w ∈ C([0, T ];H3(0, L)).

Step 6 - Limit Passage and Weak Solution: With higher a priori bounds in hand for smooth data
w0 ∈ D(A), w1 ∈ H2

∗ , we proceed to pass with the limit and construct a weak solution satisfying (26)
with k2 = ι = 0 and σ = 1 on any [0, T ] for T < T ∗(w0, w1, p).

From (49), Banach-Aloaglu yields existence of a subsequence {wnk}∞k=1 and associated weak limit
point

w ∈ L2
(
0, T ;H4(0, L)

)
∩H1

(
0, T ;H2

∗
)
∩H2

(
0, T ;L2(0, L)

)
, such that (50)

wnk ⇀ w ∈ L2 (0, T ;D(A))) ; wnk
t ⇀ wt ∈ L2

(
0, T ;H2

∗
)

; wnk
tt ⇀ wtt ∈ L2

(
0, T ;L2(0, T )

)
, (51)

with compactness of the Sobolev embeddings and Aubin-Lions ensuring strong convergence for wnk
in

L2(0, T ;H2
∗ ).

Now, based on Definition 1, in order to identify w as a weak solution, it must satisfy the weak
formulation (26) with k2 = ι = 0 and σ = 1. Identification for linear terms in (26) immediately follows
from the above weak convergence, whereas the two [NL Stiffness] terms require more attention. For
φ ∈ H2

∗ , adding and subtracting mixed terms, we obtain (omitting temporal integration):(
[wnk
x ]2wnk

xx − w2
xwxx, φxx

)
≤
(
[wnk
x ]2(wnk

xx − wxx), φxx
)

+
(
wxx([wnk

x ]2 − w2
x), φxx

)
≤ ||wnk

x ||2L∞ (wnk
xx − wxx, φxx) + ||φxx|| ||wxx|| ||[wnk

x ]2 − w2
x||L∞

≤ ||wnk
xx ||2 (wnk

xx − wxx, φxx) + ||φxx|| ||wxx|| ||wnk
x + wx||L∞ ||wnk

x − wx||L∞
≤ ||wxx||2 (wnk

xx − wxx, φxx) + 2 ||φxx|| ||wxx||3||wnk
x − wx||1/2+ε

→ 0 as k →∞.

The above calculation requires no additional regularity of solutions, and follows from bounds at the
baseline energy level E0, i.e., w,wn ∈ L∞(0, T ;H2

∗ ) ∩ W 1,∞(0, T ;L2(0, L)). Below, we isolate the
problematic nonlinear difference, and critically use additional regularity gained in the preceding steps.(

[wnk
xx ]2wnk

x − w2
xxwx, φx

)
≤
(
[wnk
xx ]2(wnk

x − wx), φx
)

+
(
wx([wnk

xx ]2 − w2
xx), φx

)
≤ ||φx||L∞ ||wnk

xx ||2||wnk
x − wx||L∞ + ||φx||L∞ ||wx||L∞ ||[wnk

xx ]2 − w2
xx||

≤ ||φxx|| ||wnk
xx ||2||wnk

xx − wxx||+ ||φxx|| ||wxx|| ||wnk
xx + wxx||L∞ ||wnk

xx − wxx||
≤ ||φxx|| ||wxx||2||wnk

xx − wxx||+ 2 ||φxx|| ||wxx|| ||wxxx|| ||wnk
xx − wxx||

→ 0 as k →∞.
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We emphasize the need for strong convergence for wnk
xx in L2(0, T ;L2(0, T )) obtained through com-

pactness of the higher estimates.

Remark 4.8. Algebraic manipulations of the difference [wnk
xx ]2wnk

x − w2
xxwx reveal a clear compact-

ness gap for limit passage at the level of only ||wnk
xx || boundedness. An alternative approach for the

identification of limit points for {[wnk
xx ]2wnk

x }∞k=1 (which uniformly bounded in L1), would be to utilize
the Dunford-Pettis weak compactness criterion in L1. However, associated multiplier estimates bring
about non-trivial commutators corresponding to the quasilinear nature of [NL Stiffness].

We conclude that the limit point w, as above, satisfies the weak formulation (26) with k2 = ι = 0
and σ = 1, and is thusly a weak solution.

Step 7 - Strong Solution and Free Boundary Condition: With a weak solution w(x, t) in hand
corresponding to smooth initial data, we have immediately that the solution is strong, by Definition 3
and the regularity afforded by (51). This concludes the proof of Theorem 4.1.

Naturally, we would like to show that the strong solution constructed above satisfies the PDE
pointwisedly, as well as the higher order boundary conditions.

Corollary 4.2. Strong solutions w(x, t) as described in Definition 3, satisfy equation (14) with σ = 1
and ι = k2 = 0 almost everywhere in space and in time. Additionally, they satisfy the free boundary
conditions: wxx(L, t) = wxxx(L, t) = 0 for all 0 ≤ t ≤ T .

Proof of Corollary 4.2. The weak limit w constructed above satisfies:

(wtt, φ) +D(wxx, φxx) +D(w2
xxwx, φx) +D(w2

xwxx, φxx) = (p, φ), ∀φ ∈ H2
∗ , a.e. t. (52)

Having in hand the regularity given in (50), we undo integration by parts in (52) evaluated on test
functions to obtain the strong form of the PDE. That is:(

wtt +D∂4
xw −D∂x

[
w2
xxwx

]
+D∂xx

[
wxxw

2
x

]
− p, φ

)
= 0, ∀φ ∈ C∞0 (0, L).

Via density, we have:

wtt +D∂4
xw −D∂x

[
w2
xxwx

]
+D∂xx

[
wxxw

2
x

]
= p a.e. x, a.e. t, (53)

and thus the PDE in (14) is satisfied a.e. x pointwisedly for a.e. t.
Since w ∈ H2

∗ by construction, we must verify the free boundary conditions. Undoing the integration
by parts procedure and invoking (53) results the following boundary terms:

φx(L)
(
wxx(L) + w2

x(L)wxx(L)
)
− φ(L)

(
wxxx(L) + wx(L)w2

xx(L) + w2
x(L)wxxx(L)

)
= 0, (54)

for all φ ∈ H2
∗ , holding a.e. in t. But, as in Remark 4.7, w ∈ C([0, T ];H3(0, L)), and so we can write:

φ(L)(1 + w2
x(L))wxxx(L) = φx(L)

(
wxx(L) + w2

x(L)wxx(L)
)
− φ(L)wx(L)w2

xx(L),

where the RHS is continuous function of time. Now, consider the subclass of φ ∈ H1
0 ∩H2

∗ ⊆ H2
∗ . Then,

wxx(L)
(
1 + w2

x(L)
)
φx(L) = 0 for all such φ.

By the surjectivity of the trace theorem, there exists one function so that φx(L) 6= 0, and thus

wxx(L)
(
1 + w2

x(L)
)

= 0 =⇒ wxx(L) = 0.
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Now, consider φ ∈ H2
∗ . Again, by the surjectivity of the trace theorem, there exists at least one φ

so that φ(L) 6= 0. Using this φ and the fact that wxx(L) = 0, (54) yields:

wxxx(L)
(
1 + w2

x(L)
)

= 0 =⇒ wxxx(L) = 0.

Thus, we have verified that the free boundary terms wxx(L) = wxxx(L) = 0 are satisfied.

Remark 4.9. It is particularly important that strong solutions remain in Hs ≡ D(A) × D(A1/2) for
data (w0, w1) emanating therefrom—namely, exhibiting regularity and satisfying all four boundary
conditions. This, for instance, allows us to use Poincaré repeatedly on the solution, so, for a strong
solution w, we have the norm equivalences: ||∂4xw|| ∼ ||w||H4(0,L) ∼ ||w||D(A).

4.3.2 Uniqueness and Continuous Dependence

Now, consider two strong solutions, w and v whose difference z = w − v satisfies:

ztt +D∂4
xz −D∂x

(
w2
xxwx − v2

xxvx
)

+D∂2
x

(
wxxw

2
x − vxxv2

x

)
= 0, (55)

as well as the strong form of the boundary conditions at x = 0 and x = L and associated initial
conditions z0 = w0 − v0 and z1 = w1 − v1. We consider the dynamics above on t ∈ [0, T ], where
T < T ∗ = min{T ∗(w0, w1), T ∗(v0, v1)}. We multiply (55) by zt and integrate over x ∈ (0, L).

For linear terms we have standard conserved quantities, ||zt||2; D||zxx||2. We now take a closer look
at the nonlinear differences. Note that the regularity of strong solutions in Definition 3 is sufficient—
specifically wt ∈ L2(0, T ;H2

∗ )—to permit the calculations below.

1.
(
∂2
x

[
wxxw

2
x

]
, zt
)
−
(
∂2
x

[
vxxv

2
x

]
, zt
)

=
(
wxxw

2
x − w2

xvxx, zxxt
)

+
(
w2
xvxx − vxxv2

x, zxxt
)
,

Examining each of the resulting terms above yields:

(i)
(
wxxw

2
x − w2

xvxx, zxxt
)

=
(
w2
x, zxxzxxt

)
=

1

2

d

dt
||wxzxx||2 −

(
wxwxt, z

2
xx

)
(ii)

(
w2
xvxx − vxxv2

x, zxxt
)

=
(
vxx
[
w2
x − v2

x

]
, zxxt

)
= (vxx [wx + vx] , zxzxxt) .

2. −
(
∂x
[
w2
xxwx

]
, zt
)

+
(
∂x
[
v2
xxvx

]
, zt
)

=
(
w2
xxwx − w2

xxvx, zxt
)

+
(
w2
xxvx − v2

xxvx, zxt
)

Like before, we examine each term separately:

(i)
(
w2
xxwx − w2

xxvx, zxt
)

=
(
w2
xx, zxzxt

)
=

1

2

d

dt
||wxxzx||2 −

(
wxxwxxt, z

2
x

)
(ii)

(
w2
xxvx − v2

xxvx, zxt
)

=
(
vx
[
w2
xx − v2

xx

]
, zxt

)
= (vx [wxx + vxx] , zxxzxt) .

Combining the linear terms along with 1 and 2 we obtain:

1

2

d

dt

[
||zt||2 +D||zxx||2 +D||wxzxx||2 +D||wxxzx||2

]
(56)

= D
(
wxwxt, z

2
xx

)
−D (vxx [wx + vx] , zxzxxt) +D

(
wxxwxxt, z

2
x

)
−D (vx [wxx + vxx] , zxxzxt) .

The expression above cannot be directly estimated, but we exploit symmetry in the polynomial
nature of the nonlinearity by swapping the roles of w and v in the previous calculation (equivalent to
subtracting v from w), adding the two identities, yielding the (now) symmetric identity:
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d

dt

[
||zt||2 +D||zxx||2

]
+
D

2

d

dt

[
||wxzxx||2 + ||vxzxx||2 + ||wxxzx||2 + ||vxxzx||2

]
(57)

= D
(
wxwxt + vxvxt, z

2
xx

)
+D

(
wxxwxxt + vxxvxxt, z

2
x

)
−D

(
[wxx + vxx] [wx + vx] , zxzxxt + zxxzxt

)
.

Now, the third term in the above line sees z-regularity higher than that appearing in the “energetic”
(i.e., positive, conservative) portion of the identity. The key step is to rewrite this term, moving time
derivatives onto individual trajectories treated as coefficients—so as to exploit bounds in higher norms
for individual trajectories, as well as the particular quadratic factorization appearing here.

D
(

[wxx + vxx] [wx + vx] , zxzxxt + zxxzxt

)
= D

d

dt

(
(wxx + vxx) (wx + vx) , zxzxx

)
−D

(
∂t [(wxx + vxx)(wx + vx)], zxzxx

)
.

Denote:

E(t) = ||zt||2 +D||zxx||2 +
D

2

[
||wxzxx||2 + ||vxzxx||2 + ||wxxzx||2 + ||vxxzx||2

]
.

Then, (57) becomes upon temporal integration:

E(t) = E(0)−D ((wxx + vxx) (wx + vx) , zxzxx)
∣∣∣t
0

+

∫ t

0

[
D
(
wxwxt + vxvxt, z

2
xx

)
+D

(
wxxwxxt + vxxvxxt, z

2
x

)
+D

(
[wxxt + vxxt][wx + vx], zxzxx

)
+D

(
[wxx + vxx][wxt + vxt], zxzxx

)]
dτ.

The RHS terms are estimated in the following way, using the Sobolev embeddings and Poincaré,
with an eye to use Grönwall:

1. D
∣∣(wxwxt + vxvxt, z

2
xx

)∣∣ ≤ ||wxwxt + vxvxt||L∞ ||zxx||2

.
(
||wxx|| ||wxxt||+ ||vxx|| ||vxxt||

)
||zxx||2

2. D
∣∣(wxxwxxt + vxxvxxt, z

2
x

)∣∣ ≤ ||zx||2L∞(||wxx|| ||wxxt||+ ||vxx|| ||vxxt||)
.
(
||wxx|| ||wxxt||+ ||vxx|| ||vxxt||

)
||zxx||2

3. D |([wxxt + vxxt][wx + vx], zxzxx)| ≤ ||wx + vx||L∞ ||zx||L∞ ||wxxt + vxxt|| ||zxx||

. (||wxx||+ ||vxx||) (||wxxt||+ ||vxxt||) ||zxx||2

4. D |([wxx + vxx][wxt + vxt], zxzxx)| ≤ ||wxx + vxx|| ||zx||L∞ ||wxt + vxt||L∞ ||zxx||

. (||wxx||+ ||vxx||) (||wxxt||+ ||vxxt||) ||zxx||2
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5. D |([wxx + vxx][wx + vx]zx, zxx)| ≤ Cε1(w, v)||zx||2 + ε1||zxx||2

. Cε1(w, v)||z|| ||zxx||+ ε1||zxx||2

≤ Cε1,ε2(w, v)||z||2 + (ε1 + ε2)||zxx||2

. Cε1,ε2(w, v)

[∫ t

0
||zt||2dτ + ||z(0)||2

]
+ (ε1 + ε2)||zxx||2,

where above we have used interpolation and H2
∗ norm equivalence in the second inequality, and

the fundamental theorem of calculus in the fourth line. The dependence of C above is in the

sense that C(w, v) ≡ C (||wxxx + vxxx|| ||wxx + vxx||) ≤ C

(
sup

0≤t≤T

[
||w(t)||23 + ||v(t)||23

])
.

Thus, choosing ε1, ε2 sufficiently small, and putting 1–5 together, we obtain:

E(t) ≤ c(1 + C(w, v))E(0) + C(w, v)

∫ t

0
E(τ)dτ +

∫ t

0
K(w, v)E(τ)dτ. (58)

We again note the dependence of K(w, v) in the sense of:

K(w, v) ≡ K
(
||wxx + vxx|| ||wxxt + vxxt||

)
≤ K

(
||w||22, ||wt||22, ||v||22, ||vt||22

)
.

The constant c in (58) does not depend on the initial data, nor the trajectories w, v.
Finally, we note the C([0, T ]) boundedness (for T < T ∗(dataw, datav)) of the quantities C(w, v), K(w, v)

from the regularity of strong solutions, along with Remark 4.7 on the individual trajectories, (w,wt), (v, vt).
Taking sup[0,T ], we obtain:

E(t) ≤ C1E(0) + C2

∫ t

0
E(τ)dτ,

where t ∈ [0, T ] and we have the dependencies Ci
(
||(w0, w1)||Hs , ||(v0, v1)||Hs , ||p||H1(0,T ;L2(0,L))

)
.

The standard Grönwall lemma yields:

E(t) ≤ C1E(0)eC2t, t ∈ [0, T ]. (59)

Uniqueness of strong solutions follows immediately, since if (w0, w1) = (v0, v1), the times of existence
are identified and E(0) = 0 gives z = 0 in the sense of L2(0, T ;L2(0, L)) for all valid T .

Continuous dependence also follows from (59), but is somewhat more subtle. Upon inspection,
the constants above Ci are continuous, real-valued, positive functions of their arguments. Namely, the
Ci(· · · ), i = 1, 2 are bounded when restricting toBR(Hs)—see Remark 4.4. Hence, for (wn, wn,t), (w,wt) ∈
BR(Hs) we see that zn = w − wn has the property that

(zn(0), zn,t(0))→ (0, 0) ∈H =⇒ (zn, zn,t)→ (0, 0) ∈ C([0, T ]; H ).

5 The Case with Nonlinear Inertia: σ = ι = 1, k2 > 0

5.1 Precise Statement of the Theorem

Theorem 5.1. Take σ = ι = 1 and k2 > 0, and consider p ∈ H3
loc(0,∞;L2(0, L)). For initial

data (w0, w1) ∈ D(A2)2, strong solutions exist up to some time T ∗(w0, w1, p) and are unique on their
existence interval. For all t ∈ [0, T ∗), a solution obeys the energy identity

E(t) + k2

∫ t

0
||wxxt||2L2(0,L) = E(0) +

∫ t

0
(p, wt)L2(0,L)dτ,
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where E(t) is as in (18) with σ = ι = 1.
Restricting to BR(D(A2)2), for any T < T ∗(R, p) solutions depend continuously on the data in the

sense of C([0, T ]; H ) with an estimate on the difference of two trajectories, z = w1 − w2:

sup
t∈[0,T ]

∣∣∣∣(z(t), zt(t))∣∣∣∣H ≤ C(R, T )
∣∣∣∣(z(0), zt(0)

)∣∣∣∣
H
, ∀ t ∈ [0, T ].

Remark 5.1. The dependence T ∗ = T ∗
(
||(w0, w1)||D(A2)×D(A2), ||p||H3(0,T ;L2(0,L)

)
.

5.2 Proof Outline

For this proof we utilize a modified strategy from the previous section, as the presence of inertia
(and damping) change the sequence of multipliers. Indeed, with the addition of damping (as per the
discussion above), we can obtain a sequence of true energy estimates at various levels, and again
exploit the techniques in the proof of the Theorem 4.1 after closing estimates. Due to the structure of
[NL Inertia], even in the presence of velocity-regularizing Kelvin-Voigt damping, further additional
regularity (hence higher estimates) will be needed in the construction of solutions and their uniqueness.

5.3 Proof of Theorem 5.1

5.3.1 Existence

The setup here is the same as in Section 4.3.1. Since the inertial term and damping (ι = 1 and k2 > 0)
are additional terms to the stiffness equation, we will proceed through the relevant calculations cor-
responding only to [NL Inertia] ([NL Stiffness] calculations are unchanged). Kelvin-Voigt damping
appears in the final estimates with no discussion, owing to its linearity.
Step 1 - Approximants: Again, consider smooth data, w0 ∈ D(A2) and w1 ∈ D(A2), and take
Fourier partial sums as {wn0 }∞n=1 and {wn1 }∞n=1. Then, as before, we have:

wn0 → w0 in D(A2); wn1 → w1 in D(A2) (60)

and

wn(x, t) :=
n∑
j=1

qj(t)sj(x),

for qj(t) smooth functions of time. Throughout this section we freely use un = −(1/2)
∫ x

0 [wnx ]2dξ.
From the weak form, (26) (this time taken with ι = 1 and k2 > 0), we construct the corresponding

matrix system using the tensors Sijkl from (32) and

Iijkl =

(∫ x

0
φi,xφj,x,

∫ x

0
φk,xφl,x

)
. (61)

Remark 5.2. The following calculation for the inertial tensor connects Iijkl back to the weak form (26):

Iijkl = −
∫ L

0

[(
∂x

∫ L

x

∫ ξ

0

φi,xφj,xdξ2dξ

)∫ x

0

φk,xφl,xdξ

]
dx =

∫ L

0

[(∫ L

x

∫ ξ

0

φi,xφj,xdξ2dξ

)
φk,xφl,x

]
dx.

Analogously to (33), we then have the separated form of the ODE system:

q′′i (si, sj) +
[
q′′i (qi)

2 + (q′i)
2qi
]
Iiiij + k2q

′
i

[
δ4i (si, sj)

]
+Dqi

[
k4i (si, sj)

]
+Dq3i [Siiij + Sjiii] = (p, sj). (62)

Although this ODE system is not an evolution (it is quasilinear in time), it is polynomially nonlinear
in the qi’s. Thus, via the implicit function theorem, we have local solvability for q′′i in terms of the
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other quantities and lower order terms in q. Therefore, local-in-time, there are C4(0, t∗(n)) solutions,
again noting the regularity assumption on p.

Step 2 - Energy Level 0: For this step we examine the inertial term that corresponds to Level 0
which was described in Step 2 of Section 4.3.1 for the stiffness-only equation (ι = k2 = 0).(

∂x

[
wx

∫ L

x
utt

]
, wt

)
= −

(∫ L

x
utt, wxwxt

)
=−

(∫ L

x
utt, ∂x

∫ x

0
wxwxt

)
= (utt, ut) =

1

2

d

dt
||ut||2.

Denote En0 (t) = En0 (t) + In0 (t) ≥ 0, where In0 (t) =
1

2
||unt ||2 and En0 (t) is as in (34). Estimating

conservatively, we have:

En0 (t) + k2

∫ t

0
||wnxxt||2dτ ≤ En0 (0) +

1

2

∫ t

0
||p||2 +

1

2

∫ t

0
En0 (τ)dτ for all t > 0. (63)

From (60) and ut = −
∫ x

0 wxwxt, so ||ut|| . ||w||D(A1/2)||wt||D(A1/2). It is immediate that {En0 (0)}∞n=1

is uniform-in-n controlled by ||(w0, w1)||D(A1/2). Hence, the standard Grönwall inequality yields:

En0 (t) ≤ g0

(
p, ||w0||D(A), ||w1||H2

∗

)
et/2 for all t > 0. (64)

The function g0 is analogous as that described in (35).

Step 3 - Uniform Boundedness of Initial Inertia: To utilize the additional a priori bound de-
scribed in the next step, we need the quantity ||wntt(0)||2 + ||untt(0)||2 to be uniformly bounded by appro-
priate norms on w0 and w1. Our proof of uniform L2(0, L) boundedness {wntt(0)}∞n=1 in Step 3 in the
proof of Theorem 4.1 cannot be invoked for this calculation, since additional terms now appear in the
equation for ι = 1, k2 > 0.

From the equation, approximate solutions satisfy the relation

||wntt||2 +D(∂4
xw

n, wntt) + k2

(
∂4
xw

n
t , w

n
tt

)
−D(∂x([wnxx]2wnx), wntt) +D(∂xx([wnx ]2wnxx), wntt)

+

(
∂x

[
wnx

∫ L

x
untt

]
, wntt

)
= (p, wntt). (65)

Examining the inertial term:(
∂x

[
wnx

∫ L

x
untt

]
, wntt

)
=−

(
untt,

∫ x

0
wnxw

n
xtt

)
= ||untt||2 +

(
untt,

∫ x

0
[wnxt]

2

)
,

where we used the expansion of utt in terms of w as in (17). Combining everything, we have the identity:

||wntt||2 + ||untt||2 = (p, wntt)−
(
untt,

∫ x

0
[wnxt]

2

)
− k2

(
∂4
xw

n
t , w

n
tt

)
(66)

−D(∂4
xw

n, wntt) +D(∂x([wnxx]2wnx), wntt)−D(∂xx([wnx ]2wnxx), wntt).

Since approximate solutions (and p) are continuous in time, we take the time-trace at t = 0 in (66)
and use Young’s inequality to obtain the estimate:

||wntt(0)||2 + ||untt(0)||2 ≤ δ||untt(0)||2 + cδ||wnxxt(0)||4 + ε||wntt(0)||2

+ cε

[
||p(0)||2 + ||∂4

xw
n
t (0)||2 + ||∂4

xw
n(0)||4||wnxxx(0)||2

+ ||wnxx(0)||2||wnxxx(0)||4 +
(
1 + ||wnxx(0)||4

)
||∂4

xw
n(0)||2

]
.
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Choosing sufficiently small δ and ε, and using (60), we can finally conclude that

||wntt(0)||2 + ||untt(0)||2 ≤ C
(
||w0||D(A), ||w1||D(A), p(0)

)
. (67)

This fact will be used below in the next energy level.

Step 4 - Energy Level 1: In this step we proceed with examining the inertial term from the Energy
Level 1 estimate described in Step 3 of Section 4.3.1. Our aim is to control the conserved quantity
||utt||2, corresponding to a (formal) time differentiation of the equations. Differentiating the inertial
term in time and multiplying by wtt we form:(

∂xt

[
wx

∫ L

x
utt

]
, wtt

)
=−

(
wxt

∫ L

x
utt, wxtt

)
−
(
wx

∫ L

x
uttt, wxtt

)
≡ I1 + I2.

For I2, we have I2 = −
(∫ L

x
uttt, wxwxtt

)
= −

(
uttt,

∫ x

0
wxwxtt

)
. Recalling utt(x) = −

∫ x

0

[
w2
xt + wxwxtt

]
dξ,

we obtain:

I2 = (uttt, utt) +

(
uttt,

∫ x

0
w2
xt

)
=

1

2

d

dt
||utt||2 +

d

dt

(
utt,

∫ x

0
w2
xt

)
− 2

(
utt,

∫ x

0
wxtwxtt

)
.

The second term above will be estimated so that it can be absorbed by pointwise-in-time conserved
quantities. The third term is identical to I1, and

I1 =

(∫ x

0

[
w2
xt + wxwxtt

]
,

∫ x

0
wxtwxtt

)
=

1

4

d

dt

∣∣∣∣∣∣∣∣∫ x

0
w2
xt

∣∣∣∣∣∣∣∣2 +

(∫ x

0
wxwxtt,

∫ x

0
wxtwxtt

)
.

Combining these calculations, we obtain:

d

dt

[
1

2
||utt||2 +

3

4

∣∣∣∣∣∣∣∣∫ x

0
w2
xt

∣∣∣∣∣∣∣∣2 +

(
utt,

∫ x

0
w2
xt

)]
= −3

(∫ x

0
wxwxtt,

∫ x

0
wxtwxtt

)
. (68)

Utilizing once more the approximate inextensibility relation, we can rewrite:

d

dt

[
1

2
||utt||2 +

3

4

∣∣∣∣∣∣∣∣∫ x

0
w2
xt

∣∣∣∣∣∣∣∣2 +

(
utt,

∫ x

0
w2
xt

)]
= 3

(
utt,

∫ x

0
wxtwxtt

)
+ 3

(∫ x

0
w2
xt,

∫ x

0
wxtwxtt

)
.

Poincaré and the Sobolev embedding into L∞ yields:

d

dt

[
1

2
||utt||2 +

3

4

∣∣∣∣∣∣∣∣∫ x

0
w2
xt

∣∣∣∣∣∣∣∣2 +

(
utt,

∫ x

0
w2
xt

)]
≤ Cε1

[
||utt||4 +

∣∣∣∣∣∣∣∣∫ x

0
w2
xt

∣∣∣∣∣∣∣∣4
]

+ Cε2 ||wxxt||4 (69)

+ (ε1 + ε2) ||wxxtt||2.

For the unsigned, conservative term on the LHS we utilize Young’s inequality with precise coeffi-
cients: ∣∣∣∣(utt, ∫ x

0
w2
xt

)∣∣∣∣ ≤ 3

8
||utt||2 +

2

3

∣∣∣∣∣∣∣∣∫ x

0
w2
xt

∣∣∣∣∣∣∣∣2 ,
which is sufficient for absorption on the LHS of (69).
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Now, let us introduce more notation for the estimate resulting from the above formal calculations:

In1 (t) =
1

2
||untt||2 +

3

4

∣∣∣∣∣∣∣∣∫ x

0

[
w2
xt

]n∣∣∣∣∣∣∣∣2 and En1 (t) = En1 (t) + In1 (t), (70)

with En1 (t) given in the stiffness analysis by (40). Compiling everything together and absorbing damping
terms on the RHS, we then have that the approximate solutions wn satisfy:

En1 (t) + k2

∫ t

0
||wnxxtt||2 ≤ g1

(
pt, ||w0||D(A), ||w1||D(A)

)
+ g2

(
p, ||w0||D(A), ||w1||H2

∗

)
t (71)

+ C

∫ t

0
[En1 (τ)]2 dτ.

The dependencies for g1 and g2 follow after the application of (64) and (67). Note that C > 0 here
does not depend on w0, w1 or p. Dependence on p is taken in the sense of (42).

Step 5 - Energy Level 2: In contrast to what was done in the stiffness-only estimate for Step 5
of Section 4.3, we proceed to obtain an actual energy estimate for higher spatial regularity. Indeed,
the inclusion of the strong damping k2 > 0 allows us to consider improved regularity of the solution
by employing the multiplier ∂4

xwt, not permissible when k2 = 0. Thus the calculations for the from
Section 4.3 are modified below.

We proceed by multiplying the equation by ∂4
xwt and spatially integrating, with appropriate integra-

tion by parts. Here it is important to take note of the boundary conditions associated to eigenfunctions
in Section 3.5 and hence to approximants wn and all of their time derivatives as well.

Isolating conserved quantities and gathering terms yields:

1

2

d

dt

[
||wxxt||2 +D||∂4

xw||2 +D||wx∂4
xw||2

]
+ k2||∂4

xwt||2

=
(
p, ∂4

xwt
)
− 4D

(
wxwxxwxxx, ∂

4
xwt
)
−D

(
w3
xx, ∂

4
xwt
)
−
(
∂x

[
wx

∫ L

x
utt

]
, ∂4
xwt

)
.

We first estimate quantities associated with stiffness using (as before) interpolation, the Sobolev
embeddings, and Young’s inequality:

1. 4D
∣∣(wxwxxwxxx, ∂4

xwt
)∣∣ ≤ Cδ1 ||wxx||8 + Cδ1 ||∂4

xw||4 + δ1||∂4
xwt||2

2. D
∣∣(w3

xx, ∂
4
xwt
)∣∣ ≤ Cδ2 ||wxx||4L∞ ||wxx||2 + δ2||∂4

xwt||2 ≤ Cδ2
(
||wxx||16/3

L∞ + ||wxx||8
)

+ δ2||∂4
xwt||2.

where we have used Young’s Inequality p = 4/3 and q = 4. Subsequently, we interpolate ||wxx||16/3
L∞ as:

||wxx||16/3
L∞ ≤ ||wxx||

16/3
1/2+ε ≤ ||wxx||

10/3||wxx||22 . ||wxx||20/3 + ||∂4
xw||4, (72)

where we chose ε = 1/4 and used Young’s inequality again with p = 2 and q = 2.
According to the above, we introduce the notation:

En2 (t) = ||wnxxt||2 +D||∂4
xw

n||2 +D||wnx∂4
xw

n||2. (73)

We now estimate the inertial contribution above, aiming to control the term ||uxxt||2:(
∂x

[
wx

∫ L

x
utt

]
, ∂4
xwt

)
=

(
wxx

∫ L

x
utt, ∂

4
xwt

)
−
(
wxutt, ∂

4
xwt
)

≡ J1 + J2.
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We can directly bound J1 as follows:

|J1| ≤ Cδ3 ||wxx||2L∞ ||utt||2 + δ3||∂4
xwt||2 ≤ Cδ3 ||∂4

xw||4 + Cδ3 ||utt||4 + δ3||∂4
xwt||2.

For J2, we note that uxxt = −wxwxxt − wxxwxt, and use this expression to integrate by parts twice:

J2 =− (utt, wxxxwxxt)− 2 (uxxt, wxxwxxt) +
1

2

d

dt
||uxxt||2 + (uxxtt, wxxwxt) . (74)

We estimate the remaining unsigned terms:

1. −2 (uxtt, wxxwxxt) = 2 (utt, wxxxwxxt) + 2 (utt, wxxwxxxt) ,

we can combine the first term on the RHS with the first in (74), then control each term:

(i) |(utt, wxxxwxxt)| . ||utt||4 + ||∂4
xw||4 + ||wxxt||4

(where we used Young’s inequality with 1 for the utt term)

(ii) |(utt, wxxwxxxt)| = |(wxxutt, wxxxt)| ≤ Cδ4 ||∂4
xw||4 + Cδ4 ||utt||4 + δ4||∂4

xwt||2.

2. (uxxtt, wxxwxt) = (∂t[uxxt], wxxwxt) =
d

dt
(uxxt, wxxwxt)− (uxxt, wxxtwxt)− (uxxt, wxxwxtt) ,

where each term is bounded as follows:

(i) |(uxxt, wxxtwxt)| . ||uxxt||4 + ||wxt||2L∞ ||wxxt||2 . ||uxxt||4 + ||wxxt||4

(ii) |(uxxt, wxxwxtt)| = |(wxxutxx, wxtt)| ≤ Cε3 ||∂4
xw||4 + Cε3 ||uxxt||4 + ε3||wxxtt||2

(iii) |(uxxt, wxxwxt)| ≤ ε||uxxt||2 + Cε||wxt||2L∞ ||wxx||2 ≤ ε||uxxt||2 + Cε||wxt||9/4L∞ + Cε||wxx||18,

where we used Young’s inequality with p = 9/8 and q = 9. Then we use interpolation for ||wxt||9/4L∞ :

||wxt||9/4L∞ ≤ ||wt||
9/4
3/2+ε ≤ ||wt||

9/32||wxxt||63/32 ≤ Cεp ||wt||18 + εp||wxxt||2, (75)

where we chose ε = 1/4 and Young’s inequality with p = 64 and q = 64/63.

By choosing ε and εp sufficiently small, the above terms can be absorbed. Additionally, we note
that from the previous energy bounds, (64), ||wnt || and ||wnxx|| are bounded in any power in which
they appear.

Denoting:

In2 (t) =
1

2
||unxxt||2 and En2 (t) = En2 (t) + In2 (t),

where En2 (t) is given by (73), we can obtain a clean estimate. It is true from (60) that, as before,
{En2 (0)}∞n=1 is uniformly bounded in terms of ||(w0, w1)||D(A)2 . Thus, combining (71) with a compilation
of the calculations described in this step and absorbing damping terms on the RHS, we have the
estimate

En1 (t)+En2 (t) + k2

∫ t

0

[
||wnxxtt||2 + ||∂4

xw
n
t ||2
]
dτ

. g3

(
pt, ||w0||D(A), ||w1||D(A)

)
+ g4

(
p, ||w0||D(A), ||w1||H2

∗

)
t+

∫ t

0
[En1 (τ) + En2 (τ)]2 dτ. (76)

We point out once again that the C > 0 associated to ‘.’ above does not depend on w0, w1 or p and
that the denoted dependence on p (and its derivative) is taken in the sense of (42).
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Hence, disregarding the damping integral and invoking nonlinear Grönwall [11], we obtain:

En1 (t) + En2 (t) ≤ g3 + g4t

1− C [g3t+ g4t2]
≡M2(t) 0 ≤ t < T ∗1 where T ∗1 = sup

t

{
C
[
g3t+ g4t

2
]
< 1
}
. (77)

From (77), we deduce that the Galerkin approximations wn satisfy a uniform-in-n a priori bound on
[0, T ] for any T < T ∗1 :

0 ≤ En1 (t) + En2 (t) ≤M∗2 (T ) ≡ max
t∈[0,T ]

M2(t).

This, along with (64), provides uniform-in-n boundedness in the associated norms of E0, E1 and E2 for
a finite time depending on the initial data.

Step 6 - Boundedness of Initial Jerk: It is apparent from the expression of the [NL Inertia]
in (17) that the existence of strong solutions requires higher regularity of wtt. We obtain this via yet
another energy level, corresponding to two temporal differentiations of the equations. To begin, we
again need uniform estimates of t = 0 quantities appearing in the energy estimates. We remark that
the resulting regularity of solutions obtained here is requisite also in the latter proof of uniqueness.
Lastly, we note that in order to obtain this estimate (as well as that in the previous sections for En1
and En2 ) with ι = 1, the presence of the damping term k2 > 0 is critical.

For the upcoming energy inequality for En3 (t), we must justify boundedness in n of {||wnttt(0)||}∞n=1,
{||unttt(0)||}∞n=1. To that end, the weak equations of motion (26) hold on approximants wn and can be
differentiated in time for any fixed test function φ. Then, by choosing φ = sj(x), multiplying (26) by
q
′′′
j (t) and summing over j = 1, 2, . . . , n, we obtain:

||wnttt||2 +D
(
∂4
xw

n
t , w

n
ttt

)
+ k2

(
∂4
xw

n
tt, w

n
ttt

)
−D

(
∂xt
[
(wnxx)2wnx

]
, wnttt

)
+D

(
∂xxt

[
wnxx(wnx)2

]
, wnttt

)
+

(
∂xt

[
wnx

∫ L

x
untt

]
, wnttt

)
− (pt, w

n
ttt) = 0. (78)

Differentiating directly, we have uttt = −
∫ x

0 [3wxtwxtt + wxwxttt] dξ, which yields:(
∂xt

[
wnx

∫ L

x
untt

]
, wnttt

)
= −

(
∂t

[
wnx

∫ L

x
untt

]
, wnxttt

)
=−

(
wnxt

∫ L

x
untt, w

n
xttt

)
−
(
wnx

∫ L

x
unttt, w

n
xttt

)
≡ K1 + K2.

For K1 we proceed by undoing the integration by parts which yields:

K1 =

(
wnxxt

∫ L

x
untt, w

n
ttt

)
− (wnxtu

n
tt, w

n
ttt) .

These two terms can now be transferred to the right hand side and be estimated. For K2 we recall the
expression for uttt above, and by adding and subtracting appropriate terms we have:

K2 = −
(
unttt,

∫ x

0
wnxw

n
xttt

)
= ||unttt||2 + 3

(
unttt,

∫ x

0
wnxtw

n
xtt

)
.

Grouping everything together, and absorbing ||wnttt(0)||2 and ||unttt(0)||2 from the RHS, we obtain:

||wnttt(0)||2 + ||unttt(0)||2 ≤ h1

(
pt(0), ∂kxw

n(0), ∂lxw
n
t (0), ∂4

xw
n
tt(0)

)
, k, l = 1, 2, 3, 4, (79)

with h1 is polynomial in its slots. As we can see from the above expression, it is now crucial to establish
the boundedness of the sequence

{
∂4xw

n
tt(0)

}∞
n=1

in L2(0, L) in terms of the data, (w0, w1) ∈ D(A2).
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To achieve this bound, we revisit the weak form (26) and test with φ = ∂8
xsj(x), then multiplying

by q′′j (t) and summing over j = 1, 2, . . . , n, yielding (after some integration by parts):

||∂4
xw

n
tt||2 +

(
∂5
x

[
wnx

∫ L

x
untt

]
, ∂4
xw

n
tt

)
=
(
p, ∂4

xw
n
tt

)
−D

(
∂8
xw

n, ∂4
xw

n
tt

)
− k2

(
∂8
xw

n
t , ∂

4
xw

n
tt

)
+D

(
∂5
x

[
(wnxx)2wnx

]
, ∂4
xw

n
tt

)
−D

(
∂6
x

[
wnxx(wnx)2

]
, ∂4
xw

n
tt

)
.

Brute force yields:

∂5
x

[
wnx

∫ L

x
untt

]
= ∂6

xw
n

∫ L

x
untt − 5[∂5

xw
nuntt + wnxxu

n
xxxtt]− 10[∂4

xw
nunxtt + wnxxxu

n
xxtt]− wnx∂4

xu
n
tt.

∂4
xutt = −

[
6wxxtwxxxt + 2wxt∂

4
xwt + ∂4

xwwxtt + 3wxxxwxxtt + 3wxxwxxxtt + wx∂
4
xwtt

]
.

−
(
wnx∂

4
xu

n
tt, ∂

4
xw

n
tt

)
=
(
∂4
xu

n
tt,−wnx∂4

xw
n
tt

)
= ||∂4

xu
n
tt||2 + 6

(
∂4
xu

n
tt, w

n
xxtw

n
xxxt

)
+ 2

(
∂4
xu

n
tt, w

n
xt∂

4
xw

n
t

)
+
(
∂4
xu

n
tt, ∂

4
xw

nwnxtt
)

+ 3
(
∂4
xu

n
tt, w

n
xxxw

n
xxtt

)
+ 3

(
∂4
xu

n
tt, w

n
xxw

n
xxxtt

)
.

Combining the terms above, we can extract ||∂4xwntt||2 and ||∂4xuntt||2 on the LHS. We group the RHS
terms into different categories based on the actions that are necessary to control them. Type 1 is first:

T1 ≡
(
p, ∂4

xw
n
tt

)
−D

(
∂8
xw

n, ∂4
xw

n
tt

)
− k2

(
∂8
xw

n
t , ∂

4
xw

n
tt

)
+D

(
∂5
x

[
(wnxx)2wnx

]
, ∂4
xw

n
tt

)
−D

(
∂6
x

[
wnxx(wnx)2

]
, ∂4
xw

n
tt

)
−
(
∂6
xw

n

∫ L

x
untt, ∂

4
xw

n
tt

)
+ 5

(
∂5
xw

nuntt, ∂
4
xw

n
tt

)
− 6

(
∂4
xu

n
tt, w

n
xxtw

n
xxxt

)
− 2

(
∂4
xu

n
tt, w

n
xt∂

4
xw

n
t

)
,

where for these terms, it is clear that

|T1| ≤ h2

(
p, ∂ixw

n, ∂jxw
n
t , u

n
tt

)
+ ε1||∂4

xw
n
tt||2 + δ1||∂4

xu
n
tt||2, i, j = 1, 2, . . . , 8, (80)

where h2 depends on ε1, δ1 and is polynomial in its slots. Type 2 is next:

T2 ≡ 10
(
∂4
xw

nunxtt, ∂
4
xw

n
tt

)
+ 10

(
wnxxxu

n
xxtt, ∂

4
xw

n
tt

)
+ 5

(
wnxxu

n
xxxtt, ∂

4
xw

n
tt

)
. (81)

For this category we will exploit the fact that ||∂4xuntt||2 appears in the LHS and that {untt(0)}∞n=1 is
bounded in L2(0, L) as shown in (67) which will be used in interpolation for the terms ∂ixutt, i = 1, 2, 3.
We show how to control one of the terms appearing in (81).∣∣(wnxxunxxxtt, ∂4

xw
n
tt

)∣∣ ≤ Cε||wnxxx||2||unxxxtt||2 + ε||∂4
xw

n
tt||2 ≤ Cε||wnxxx||10 + Cε||unxxxtt||5/2 + ε||∂4

xw
n
tt||2,

where we used Young’s inequality with p = 5 and q = 5/4. Then we use interpolation for ||unxxxtt||5/2:

||unxxxtt||5/2 ≤ ||untt||5/8||∂4
xu

n
tt||15/8 ≤ Cεp ||untt||10 + εp||∂4

xu
n
tt||2,

where employed Young’s inequality once again with p = 16 and q = 16/15.

Remark 5.3. We can see from the explicit expression of ∂ixu
n
tt, i = 0, 1, 2, 3, that

untt(0) = unxtt(0) = unxxtt(L) = unxxxtt(L) = 0.

Hence, Poincaré’s Inequality guarantees that ||untt||i ∼ ||∂ixuntt|| for i = 1, 2, 3.
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The remaining Type 2 are bounded analogously, yielding:

|T2| ≤ h3

(
∂ixw

n, untt
)

+ ε2||∂4
xw

n
tt||2 + δ2||∂4

xu
n
tt||2, i = 1, 2, . . . , 5. (82)

Finally, we have Type 3:

T3 ≡ −
(
∂4
xu

n
tt, ∂

4
xw

nwnxtt
)
− 3

(
∂4
xu

n
tt, w

n
xxxw

n
xxtt

)
− 3

(
∂4
xu

n
tt, w

n
xxw

n
xxxtt

)
.

For this category, we interpolate the terms ∂ixwtt, i = 1, 2, 3, exploiting the fact that {wntt(0)}∞n=1 is
bounded in L2(0, L) as shown in (67). We omit these details, as the calculations are identical to those
described for Type 2. We obtain the bound:

|T3| ≤ h4

(
∂ixw

n, wntt
)

+ ε3||∂4
xw

n
tt||2 + δ3||∂4

xu
n
tt||2, i = 1, 2, . . . , 5. (83)

Combining (80), (82) and (83), absorbing with εk, δk small, and taking the (valid on approximants)
time trace at t = 0, we produce the following estimate:

||∂4
xw

n
tt(0)||2 + ||∂4

xu
n
tt(0)||2 ≤ h

(
p(0), ∂ixw

n(0), ∂jxw
n
t (0), wntt(0), untt(0)

)
, i, j = 1, 2, . . . , 8.

By combining (60) and (67), we can finally write (79) as:

||wnttt(0)||2 + ||unttt(0)||2 ≤ C
(
p(0), pt(0), ||w0||D(A2), ||w1||D(A2)

)
. (84)

Step 7 - Energy Level 3: With the initial jerk bounded, we proceed with the higher energy estimate
corresponding to two time differentiations of the equation. The formal identity (applying ∂2

t to (14)
and multiplying by wttt) is:

1

2

d

dt

[
||wttt||2 +D||wxxtt||2 +D||wxwxxtt||2 +D||wxxwxtt||2

]
+ k2||wxxttt||2

= D(wxwxt, w
2
xxtt) +D(wxxwxxt, w

2
xtt)− 4D(wxxwxxtwxt, wxttt)− 2D(wxw

2
xxt, wxttt)

− 2D(wxwxxwxxtt, wxttt)− 4D(wxxtwxwxt, wxxttt)− 2D(wxxw
2
xt, wxxttt)− 2D(wxxwxwxtt, wxxttt)

−
(
∂xtt

[
wx

∫ L

x
utt

]
, wttt

)
.

We bound the RHS, in line with previous sections, using the Sobolev embeddings and Young’s; the
estimates from stiffness terms are straightforward. Inertia is handled as in previous estimates. After
two temporal differentiation we have:(

∂xtt

[
wx

∫ L

x
utt

]
, wttt

)
=−

(
∂tt

[
wx

∫ L

x
utt

]
, wxttt

)
=−

(
wxtt

∫ L

x
utt, wxttt

)
− 2

(
wxt

∫ L

x
uttt, wxttt

)
−
(
wx

∫ L

x
utttt, wxttt

)
≡ L1 + L2 + L3.

We bound L1 and L2 as:

1. |L1| . ||wxtt||L∞ ||utt|| ||wxttt|| ≤ Cε7 ||utt||4 + Cε7 ||wxxtt||4 + ε7||wxxttt||2

2. |L2| . ||wxt||L∞ ||uttt|| ||wxttt|| ≤ Cε8 ||wxxt||4 + Cε8 ||uttt||4 + ε8||wxxttt||2.
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The term L3 creates the desired conserved quantity (again using the explicit representation of uttt):

L3 = (utttt, uttt) + 3

(
utttt,

∫ x

0
wxtwxtt

)
=

1

2

d

dt
||uttt||2 + 3

(∫ L

x
utttt, wxtwxtt

)
.

The additional term that was produced above can be manipulated as follows:(
utttt,

∫ x

0
wxtwxtt

)
=
d

dt

(
uttt,

∫ x

0
wxtwxtt

)
−
(
uttt,

∫ x

0
w2
xtt

)
−
(
uttt,

∫ x

0
wxtwxttt

)
≡ dM1

dt
+ M2 + M3.

Now, M2 and M3 will be moved to the right hand side and estimated as follows:

1. |M2| . ||uttt||2 + ||w2
xtt||2 . ||uttt||2 + ||wxtt||2L∞ ||wxtt||2 . ||uttt||2 + ||wxxtt||4

2. |M3| =
∣∣∣∣(wxt ∫ L

x
uttt, wxttt

)∣∣∣∣ ≤ ||wxt||L∞ ||uttt|| ||wxttt|| ≤ Cε9 ||wxxt||4 + Cε9 ||uttt||4 + ε9||wxxttt||2.

The M1 is more delicate, since it must be absorbed by conservative quantities:

|M1| ≤ ε||uttt||2 + Cε||wxtt||2L∞ ||wxt||2 ≤ ε||uttt||2 + Cε||wxtt||9/4L∞ + Cε||wxt||18

≤ ε||uttt||2 + Cε,εp ||wtt||18 + Cεεp||wxxtt||2 + Cε||wxt||18,

accomplished as in (75).
Moving on, we compile the above calculations into an energy estimate, taking

E3(t) =
1

2

[
||wttt||2 +D||wxxtt||2 +D||wxwxxtt||2 +D||wxxwxtt||2

]
and I3(t) =

1

2
||uttt||2,

and subsequently E3(t) = E3(t) + I3(t). Thus, by invoking (60) and (84) to guarantee the uniform
boundedness of En3 (0), we obtain:

En3 (t) + k2

∫ t

0
||wnxxttt||dτ ≤ g5

(
p, pt, ptt, ||w0||D(A2), ||w1||D(A2)

)
+ g6

(
p, ||w0||D(A), ||w1||H2

∗
,M∗2

)
t

+
9∑
j=1

εj

∫ t

0
||wnxxttt||2dτ + C

∫ t

0
[En3 (τ)]2 dτ for all t ∈ [0, T ],

where T < T ∗1 and M∗2 (T ) are as in (77). In addition, C > 0 does not depend on w0, w1 or p. Absorbing
the damping terms, we finally obtain through another application nonlinear Grönwall:

En3 (t) ≤ g5 + g6t

1− C [g5t+ g6t2]
0 ≤ t < T ∗2 where T ∗2 = min

t

(
sup
t

{
C
[
g3t+ g4t

2
]
< 1
}
, T ∗1

)
. (85)

As before, this yields a uniform-in-n a priori bound on solutions in the topology corresponding to E3

on any [0, T ] for T < T ∗2 . We remark once again that the regularity of p considered in theorem (5.1)
is necessary for ensuring that the functions g1, g2, . . . , g6 are continuous functions in time, as required
by the version of the Grönwall lemma we employ.

30



Step 8 - Sufficient Regularity for wt:
Regularity for the damping (with smooth data) proceeds standardly, through the equation:

||∂4
xw

n
t || . ||p||+ ||wntt||+ ||wnxxx|| ||∂4

xw
n||2 + ||wnxx|| ||wnxxx||2 +

(
1 + ||wnxx||2

)
||∂4

xw
n||+ ||wnxx|| ||untt||.

Using (77) we can deduce that

||∂4
xw

n
t || is bounded in L∞(0, T ;L2(0, L)), (86)

for any T < T ∗2 . Thus, combining (77) and (85) and (86), we can finally obtain a priori bounds:

||wn||L∞(0,T ;D(A)) + ||wnt ||L∞(0,T ;D(A)) + ||wntt||L∞(0,T ;H2
∗)
≤ C(data, T ), (87)

(among other controlled norms), where “data” indicates dependence on (w0, w1) measured in norms
up to that of D(A2)2.

Step 9 - Limit Passage and Weak Solution: With our a priori bounds in hand for smooth data
w0 ∈ D(A2), w1 ∈ D(A2), we proceed to pass with the limit and construct a weak solution satisfying
(26) with σ = ι = 1 and k2 > 0. The boundedness of the terms in (87) yields to the existence of a
subsequence {wnk}∞k=1 and a limit point w ∈ H1 (0, T ;D(A)) ∩H2

(
0, T ;H2

∗
)
, such that

wnk ⇀ w ∈ L2 (0, T ;D(A)) ; wnk
t ⇀ wt ∈ L2 (0, T ;D(A)) ; wnk

tt ⇀ wtt ∈ L2
(
0, T ;H2

∗
)
.

We must show that w satisfies the weak form (26), in this case with σ = ι = 1 and k2 > 0. The
details corresponding to limit point identification for [NL Stiffness] are identical to those in Step 6
of Section 4.3, thus we focus on [NL Inertia] terms.

We first show that unk
tt → utt in L2

(
0, T ;L2(0, L)

)
. To that end, we consider the differences:

||unk
tt − utt|| ≤

∣∣∣∣∣∣∣∣∫ L

x

(
[wnk
xt ]2 − w2

xt

)∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣∫ L

x
(wnk

x wnk
xtt − wxwxtt)

∣∣∣∣∣∣∣∣2 ≡ Y1 + Y2.

We will show that both Y1 and Y2 go to zero as k →∞.

Y1 . ||wnk
xt + wxt||2L∞ ||w

nk
xt − wxt||2 . ||wxxt||2||wnk

xt − wxt||2 → 0 as k →∞.

Y2 ≤ ||wnk
x (wnk

xtt − wxtt)||2 + ||wxtt(wnk
x − wx)||2 ≤ ||wnk

x ||2L∞ ||w
nk
xtt − wxtt||2 + ||wxtt||2L∞ ||wnk

x − wx||2

. ||wxx||2||wnk
xtt − wxtt||2 + ||wxxtt||2||wnk

x − wx||2

→ 0 as k →∞.

Now, in order to pass to the limit for the [NL Inertia] term we need to show that(
wnk
x

∫ L

x
unk
tt , φx

)
→
(
wx

∫ L

x
utt, φx

)
for all φ ∈ H2

∗ .

∣∣∣∣(wnk
x

∫ L

x
unk
tt − wx

∫ L

x
utt, φx

)∣∣∣∣ ≤ ∣∣∣∣(wnk
x

∫ L

x
[unk
tt − utt], φx

)
+

(
(wnk

x − wx)

∫ L

x
utt, φx

)∣∣∣∣
≤ ||φx||L∞ ||wnk

x || ||u
nk
tt − utt||+ ||φx||L∞ ||utt|| ||wnk

x − wx||
≤ ||φx||L∞ ||wx|| ||unk

tt − utt||+ ||φx||L∞ ||utt|| ||wnk
x − wx||

→ 0 as k →∞.

Hence, w satisfies the weak formulation (26) with σ = ι = 1 and k2 > 0. With a weak solution
w(x, t) in hand corresponding to smooth data, we have by Definition 4 that the solution is strong, via
the estimate (87) that provides the necessary regularity for w, wt, wtt.

And thus we have proven theorem 5.1.
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Corollary 5.2. Strong solutions w, described in Definition 4, satisfy equation (14) with σ = ι = 1
and k2 > 0 in the sense of L2(0, T ;L2(0, L)). Additionally, they satisfy wxx(L, t) = wxxx(L, t) = 0 for
all 0 ≤ t ≤ T .

Proof of Corollary 5.2. The weak form is now satisfied by the constructed limit:

(wtt, φ) +D(wxx, φxx) + k2(wxxt, φxx) +D(w2
xxwx, φx) +D(w2

xwxx, φxx)−
(
wx

∫ L

x
utt, φx

)
= (p, φ),

∀φ ∈ H2
∗ , a.e. t. (88)

Reversing integration by parts, yields (on test functions):(
wtt +D∂4

xw + k2∂
4
xwt −D∂x

[
w2
xxwx

]
+D∂xx

[
wxxw

2
x

]
+ ∂x

[
wx

∫ L

x
utt

]
− p, φ

)
= 0, ∀φ ∈ C∞0 (0, L).

By density, we have the equation holding in L2(0, L), as desired:

wtt +D∂4
xw + k2∂

4
xwt −D∂x

[
w2
xxwx

]
+D∂xx

[
wxxw

2
x

]
+ ∂x

[
wx

∫ L

x
utt

]
= p a.e. x, a.e. t. (89)

The solution resides in H2
∗ , but we must show the natural boundary conditions wxx(L, t) =

wxxx(L, t) = 0. The argument proceeds as before, invoking (89) and yielding, upon integration by
parts:

φx(L)
(
(1 + w2

x(L))wxx(L) + wxxt(L)
)
− φ(L)

(
(1 + w2

x(L))wxxx(L) + wx(L)w2
xx(L) + wxxxt(L)

)
= 0,

∀φ ∈ H2
∗ , (90)

where we interpret the time derivatives above distributionally. Considering φ ∈ H1
0 ∩H2

∗ ⊆ H2
∗ , we see

φx(L)
(
(1 + w2

x(L))wxx(L) + wxxt(L)
)

= 0. There exists one such function so that φx(L) 6= 0, and thus

wxxt(L) +
(
1 + w2

x(L)
)
wxx(L) = 0.

Now, since w ∈ H1(0, T ;D(A)) for smooth solutions, we have w ∈ C([0, T ];D(A)). Hence wxx(L, t),
wxxx(L, t) are continuous functions of time, so we have a linear ODE of the form f ′(t) + g(t)f(t) = 0,
with classical solution

wxx(L, t) = wxx(L, 0)e−
∫ t
0 (1+w2

x(L,s))ds.

As w0 ∈ D(A), wxx(L, 0) = 0 and thus wxx(L, t) = 0 for all t ∈ (0, T ).
The same argument now applies for φ ∈ H2

∗ , yielding

wxxxt(L) +
(
1 + w2

x(L)
)
wxxx(L) = 0,

from which we deduce that wxxx(L, t) = 0 for all t ∈ (0, T ).

5.3.2 Uniqueness and Continuous Dependence

Consider w and v to be two strong solutions of (14) with σ = ι = 1 and k2 > 0 and let z ≡ w − v.
Using the multiplier zt on (14) we obtain:

1

2

d

dt

[
||zt||2 +D||zxx||2 +D||wxzxx||2 +D||wxxzx||2

]
+ k2||zxxt||2 +

(
∂x

[
wx

∫ L

x
utt − vx

∫ L

x
ûtt

]
, zt

)
= D

(
wxwxt, z

2
xx

)
−D (vxx [wx + vx] , zxzxxt) +D

(
wxxwxxt, z

2
x

)
−D (vx [wxx + vxx] , zxxzxt) ,

(91)
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where

utt(x) = −
∫ x

0

[
w2
xt + wxwxtt

]
dξ and ûtt(x) = −

∫ x

0

[
v2
xt + vxvxtt

]
dξ.

The presence of strong damping allows us to estimate the RHS in a straightforward manner (without
the subtlety needed in Section 4.3.2):

1. D
∣∣(wxwxt, z2

xx

)∣∣ . ||wxx|| ||wxxt|| ||zxx||2
2. D |(vxx [wx + vx] , zxzxxt)| ≤ Cε1 ||vxx||2||wxx + vxx||2||zxx||2 + ε1||zxxt||2

3. D
∣∣(wxxwxxt, z2

x

)∣∣ . ||wxx|| ||wxxt|| ||zxx||2
4. D |(vx [wxx + vxx] , zxxzxt)| ≤ Cε2 ||vxx||2||wxxx + vxxx||2||zxx||2 + ε2||zxxt||2.

For the inertial term, we have:(
∂x

[
wx

∫ L

x
utt − vx

∫ L

x
ûtt

]
, zt

)
=−

(
(wx − vx)

∫ L

x
utt, zxt

)
−
(
vx

∫ L

x
[utt − ûtt] , zxt

)
≡ N + O.

Firstly:

|N | =
∣∣∣∣(utt, ∫ x

0
zxzxt

)∣∣∣∣ . ||zxt||L∞ ||utt|| ||zx|| ≤ ε3||zxxt||2 + cε3 ||utt||2||zxx||2.

The second term O yields:

O = −
(
utt − ûtt,

∫ x

0
vxzxt

)
=

(∫ x

0

[
w2
xt − v2

xt

]
,

∫ x

0
vxzxt

)
+

(∫ x

0
[wxwxtt − vxvxtt] ,

∫ x

0
vxzxt

)
≡ O1 + O2,

where

O2 =

(∫ x

0
[zxwxtt + vxzxtt] ,

∫ x

0
vxzxt

)
=

1

2

d

dt

∣∣∣∣∣∣∣∣∫ x

0
vxzxt

∣∣∣∣∣∣∣∣2 − (∫ x

0
vxtzxt,

∫ x

0
vxzxt

)
+

(∫ x

0
zxwxtt,

∫ x

0
vxzxt

)
.

The conserved d/dt quantity will remain on the LHS, with the rest moved to the RHS and estimated:∣∣∣∣(∫ x

0
vxtzxt,

∫ x

0
vxzxt

)∣∣∣∣ ≤ ε4||vxt||2L∞ ||zxt||2 + cε4

∣∣∣∣∣∣∣∣∫ x

0
vxzxt

∣∣∣∣∣∣∣∣2
≤ ε4||vxxt||2 ||zxxt||2 + cε4

∣∣∣∣∣∣∣∣∫ x

0
vxzxt

∣∣∣∣∣∣∣∣2∣∣∣∣(∫ x

0
zxwxtt,

∫ x

0
vxzxt

)∣∣∣∣ . ||wxtt||2||zxx||2 +

∣∣∣∣∣∣∣∣∫ x

0
vxzxt

∣∣∣∣∣∣∣∣2 .
Remark 5.4. The above calculation demonstrates the necessity of forming an energy identity (namely
the Energy Level 3 formed in the proof of Theorem 5.1) that provides higher spatial regularity for
wtt.
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Lastly we have:

|O1| ≤
∣∣∣∣(∫ x

0
(wxt + vxt) zxt,

∫ x

0
vxzxt

)∣∣∣∣ ≤ ε5 (||wxxt + vxxt||)2 ||zxxt||2 + cε5

∣∣∣∣∣∣∣∣∫ x

0
vxzxt

∣∣∣∣∣∣∣∣2 .
Defining:

E(t) =
1

2

[
||zt||2 +D||zxx||2 +D||wxzxx||2 +D||wxxzx||2 +

∣∣∣∣∣∣∣∣∫ x

0
vxzxt

∣∣∣∣∣∣∣∣2
]
,

combining estimates for N and O, and recalling utt(x) = −
∫ x
0

[
w2
xt + wxwxtt

]
, we obtain:

E(t) + k2

∫ t

0
||zxxt||2 ≤ E(0) +

∫ t

0
K(w, v)E(τ)dτ +

5∑
i=1

εi

∫ t

0
C(w, v)||zxxt||2, (92)

where the above dependencies are of the following sense:

K(w, v) = K
(
||w||23, ||wt||22, ||v||23, ||wtt||21

)
and C(w, v) =

(
||w||22, ||wt||22

)
.

The regularity of strong solutions in the inertial case with data in D(A2)2 (see e.g., (85)) provide
wttt ∈ L∞(0, T ;L2(0, T )) (with a bound in terms of the data), and with wtt ∈ L∞(0, T ;H2

∗ ); thus
we have wtt ∈ C([0, T ];H1(0, L)). From this, and the energy estimate for inertial solutions ((87)
with Remark 4.7), we obtain C([0, T ]) boundedness (for T < T ∗(dataw,datav)) of the quantities
C(w, v), K(w, v) the individual trajectories (w,wt), (v, vt). Taking sup[0,T ] and choosing εi sufficiently
small (depending on the data), we obtain:

E(t) ≤ C1E(0) + C2

∫ t

0
E(τ)dτ,

where t ∈ [0, T ] and we have the dependencies Ci
(
||(w0, w1)||H I

s
, ||(v0, v1)||H I

s
, ||p||H2(0,T ;L2(0,L))

)
. The

standard Grönwall lemma yields:

E(t) ≤ E(0)eC1t, t ∈ [0, T ].

Uniqueness and continuous dependence follow as in Section 4.3.2 for stiffness-only dynamics, i.e.,
in the sense that ||z||22 + ||zt||2 . E(t).

6 Global Solutions for Sufficiently Small Data

6.1 Precise Statement of the Theorem

Theorem 6.1. Suppose ι = σ = 1 with k2 > 0, and take p ≡ 0. Then there exists a number Q > 0
such that if ||(w0, w1)||D(A2)×D(A2) ≤ Q, then the corresponding strong solution (w,wt) of (14)–(15)
has time of existence T ∗(w0, w1) = +∞ and there exist M,ω > 0 depending only on Q such that

||(w(t), wt(t))||2D(A2)×D(A2) ≤M exp(−ωt).

We note that the above theorem will obtain unproblematically in the case of ι = 0 and k2 > 0,
i.e., when nonlinear inertia is neglected and Kelvin-Voigt damping is included. On the other hand, it
is clear the result should be possible with weaker damping. See the second point in Section 7.
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6.2 Outline of Proof

We proceed as in [20, 25] to obtain global existence indirectly via the Barrier method, which exploits
the superlinearity in the problem. Using the damping, we will employ stabilization type multipliers at
every energy level to obtain an inequality of the form in the theorem below, which we take from [20]:

Theorem 6.2. Suppose that X : [0,∞) → [0,∞) is a continuous function such that there is a T > 0
so that X(T ) <∞ and

X(T ) + C1

∫ T

0
X(s)ds ≤ C2X(0) + C3

N1∑
i=1

Xαi(0) + C4

N2∑
i=1

Xβi(T ) + C5

N3∑
i=1

∫ T

0
Xγi(s)ds, (93)

where αi > 1, i = 1, 2, . . . , N1, βj > 1, j = 1, 2, . . . , N2 and γk > 1, k = 1, 2, . . . , N3. Then there exists
a C depending on Ci, Ni, αi, βi so that if X(0) ≤ ε ≤ C , then

X(t) ≤ ε

C
exp (−C t) .

For us, X(t) will be the sum of (the majority of) the norms appearing in the formal energy identities
we have constructed thus far. Any continuous function that satisfies the integral inequality has the
desired property: exponential decay for sufficiently small initial conditions Xi(0), which in turn yields
global-in-time existence [20].

To form an inequality of the form (93) we will utilize the previous calculations we have obtained for
the energy estimates in Section 5, along with additional estimates based on equipartition multipliers at
each level. We will attempt to form (93) for each Xi(t), i = 0, 1, 2, 3 separately, where Xi’s correspond
to each energy level we have defined before, and sum the results. To streamline exposition of comparable
calculations in the earlier sections, we demonstrate the detailed calculations for X0(t). For Xi(T ), i =
1, 2, 3, we will only highlight deviations from the details in the proof of theorems 4.1 and 5.1.

6.3 Proof of Theorem 6.1

Step 1 - Inequality for X0: Recalling the estimate for E0 in Step 2 of Section 5, we redefine:

X0(t) = ||wt(t)||2 + ||wxx(t)||2 + ||wxwxx(t)||2 + ||ut(t)||2

and we have immediately the inequality:

X0(T ) + k2

∫ T

0
||wxxt||2 ≤ X0(0). (94)

It is crucial to retain the inertial term to appear under the integral sign, thus we augment (94) to
obtain:

X0(T ) +

∫ T

0

[
k2||wxxt||2 + ||ut||2

]
≤ X0(0) +

∫ T

0
||ut||2. (95)

The inertial term appearing on the RHS will now have to be estimated. Note that if we bound it above
by X0(0), it will appear under the time integral and such a bound would be inconsistent with the form
of inequality (93). Rather, we estimate as:

||ut||2 . ||wxwxt||2 . ||wxx||2||wxt||2 . ||wxx||6 + ||wxt||3, (96)

where we’ve used Young’s p = 3 and q = 3/2. We interpolate ||wxt||3 as follows:

||wxt||3 ≤ ||wt||3/2||wxxt||3/2 ≤ cε1 ||wt||6 + ε1||wxxt||2, (97)
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again using Young’s with p = 4 and q = 4/3. Thus we have the ε for absorption, and we obtain:

X0(T ) + c1

∫ T

0

[
||wxxt||2 + ||ut||2

]
≤ X0(0) + c2

∫ T

0

[
||wxx||6 + ||wt||6

]
. (98)

Invoking norm equivalence between H2(0, L) and H2
∗ , (98) becomes:

X0(T ) + c1

∫ T

0

[
||wt||2 + ||ut||2

]
≤ X0(0) + c2

∫ T

0

[
||wxx||6 + ||wt||6

]
. (99)

Now, the equipartition (stability) multiplier for this level is w; multiplying (14) by the solution and
integrating by parts in space and time, we obtain:

k2

2
||wxx(T )||2+D

∫ T

0

[
||wxx||2 + 2||wxwxx||2

]
−
∫ T

0

[
||wt||2 + ||ut||2

]
=
k2

2
||wxx(0)||2 −

∫ L

0
wwt

∣∣T
0
− 2

∫ L

0
uut
∣∣T
0
.

We note that from u(x, t) = − 1
2

∫ x
0
w2
x(ξ, t)dξ, we have:

||u(t)||2 .
∣∣∣∣ ∫ x

0
wx(ξ, t)

[∫ ξ

0
wxx(ζ, t)dζ

]
dξ
∣∣∣∣2 . ||wx(t)wxx(t)||2 . X0(t),

via Fubini and Jensen’s inequality, having then extended the integrals to x ∈ [0, L]. Hence, ||u(T )||2 +

||u(0)||2 ≤ c3X0(0). The RHS can then be estimated straightforwardly, yielding:

k2

2
||wxx(T )||2 +D

∫ T

0

[
||wxx||2 + 2||wxwxx||2

]
−
∫ T

0

[
||wxxt||2 + ||ut||2

]
≤ c3X0(0). (100)

We then take an appropriate linear combination of (99) and (100) (with constants depending on
the damping coefficient k2), and eliminate the negative terms appearing in (100). Then, by possible
adjustments of the constants, we have:

X0(T ) + C1

∫ T

0
X0 ≤ C2X0(0) + C3

∫ T

0
X6

0 . (101)

Step 2 - Inequality for X1 and X2: In this step we will proceed by forming the inequality that
corresponds to X1 +X2. As we will see later, there will be terms in the X2 estimate that will need to
by absorbed by some appearing in X1. We define:

X1(t) = ||wtt(t)||2 + ||wxxt(t)||2 + ||wxt(t)wxx(t)||2 + ||wx(t)wxxt(t)||2 + ||utt(t)||2.

Remark 6.1. Note X1 does not include the quantity
∣∣∣∣∫ x

0
w2
xt

∣∣∣∣2, as E1 does. As it can be seen from
the following calculations, the aforementioned norm is not needed in obtaining (93).

Following similar calculations as in Step 4 in the proof of Theorem 5.1, we obtain:(
∂xt

[
wx

∫ L

x
utt

]
, wtt

)
=

1

2

d

dt
||utt||2 +

d

dt

(
utt,

∫ x

0
w2
xt

)
− 3

(
utt,

∫ x

0
wxtwxtt

)
. (102)

The conserved quantity of (102) will remain to the LHS, while the remaining terms will be moved to
the RHS and be estimated, after we proceed with integration in time, as follows:
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1.

∣∣∣∣(utt(T ),

∫ x

0
w2
xt(T )

)∣∣∣∣ ≤ δ1||utt(T )||2 + cδ1 ||wxxt(T )||4

2.

∣∣∣∣(utt(0),

∫ x

0
w2
xt(0)

)∣∣∣∣ . ||utt(0)||2 + ||wxxt(0)||4

3.

∣∣∣∣(utt, ∫ x

0
wxtwxtt

)∣∣∣∣ ≤ δ2||utt||2 + cδ2 ||wxxt||6 + cδ2,ε1 ||wtt||6 + cδ2ε1||wxxtt||2.

In addition to the above calculations, we add the term
∫ T
0
||utt||2 to both sides of the inequality. On

the RHS it will be estimated via:

||utt||2 . ||wxxt||2||wxt||2 + ||wxxt||2||wx|| ||wxtt||+ ||wxx||2||wxtt||2.

Using Young’s and interpolation, as in (96) and (97), and directly invoking the stiffness calculations
in Step 4 in the proof of Theorem 4.1, we arrive at:

X1(T ) +

∫ T

0

[
k2||wxxtt||2 + ||utt||2

]
≤ c1

(
X1(0) +X2

1 (0) +X2
0 (0) +X16

0 (0)
)

+ c2X
2
1 (T )

+c3

∫ T

0

[
X2

1 +X3
1 +X4

1 +X2
0 +X3

0

]
+ δ

∫ T

0
||utt||2 + ε

∫ T

0
||wxxtt||2, (103)

where ε and δ collect the various εi’s and δi’s corresponding to earlier applications of Young’s inequality.
For the time-differentiated version of the equations, wt acts as the equipartition multiplier. After

the appropriate calculations, and straightforward estimation, we obtain:

k2

2
||wxxt(T )||2 +D

∫ T

0

[
||wxxt||2 + ||wxtwxx||2 + ||wxwxxt||2

]
−
∫ T

0

[
||wtt||2 + ||utt||2

]
≤ c1(X1(0) +X0(0)) + ε1||wtt(T )||2 + δ1||utt(T )||2 + c2

∫ T

0

[
X2

1 +X0
1

]
+ δ2

∫ T

0
||utt||2. (104)

Now, we define:

X2(t) = ||wxxt(t)||2 + ||∂4
xw(t)||2 + ||wx(t)∂4

xw(t)||2 + ||uxxt(t)||2.

Then, duplicating the calculations in Step 5 in the proof of Theorem 5.1 and adding
∫ T
0
||uxxt||2 to

both sides we have:

X2(T ) +

∫ T

0

[
k2||∂4

xwt||2 + ||uxxt||2
]
≤ c1

(
X2(0) +X9

0 (0)
)

+ c2

∫ T

0

[
X2

2 +X2
1 +X

10/3
0 +X4

0

]
+ε2

∫ T

0
||wxxtt||2. (105)

Remark 6.2. The term ||wxxtt||2 appearing on the RHS of the above inequality is the reason why we
chose to have the calculations of X1 and X2 combined.

To complete the estimate for X2(t), we proceed by employing ∂4
xw as a multiplier. The calculations

corresponding to stiffness are described in Step 5 in the proof of Theorem 4.1. Inertial terms are
handled through differentiation and spatial integration by parts:∫ T

0

(
∂x

[
wx

∫ L

x
utt

]
, ∂4
xw

)
=

∫ T

0

(
wxx

∫ L

x
utt, ∂

4
xw

)
−
∫ T

0

(
wxutt, ∂

4
xw
)

=

∫ T

0

(
wxx

∫ L

x
utt, ∂

4
xw

)
−
∫ T

0
(utt, wxxwxxx)− 2

∫ T

0

(
uttx, w

2
xx

)
−
∫ T

0
(uttxx, wxwxx) .
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The only non-trivial term to estimate is the last; integrate by parts in t and note ∂t (−wxwxx) = uxxt:

−
∫ T

0
(uttxx, wxwxx) = −wxwxxuxxt

∣∣T
0
−
∫ T

0
||uxxt||2.

Combining, we obtain:

k2

2
||∂4

xw(T )||2+D

∫ T

0

[
||∂4

xw||2 + ||wx∂4
xw||2

]
−
∫ T

0

[
||wxxt||2 + ||uxxt||2

]
≤ c1

(
X2(0) +X1(0) +X0(0) +X2

0 (0)
)

+ ε3||wxxt(T )||2 + δ3||uxxt(T )||2

+ c2

∫ T

0

[
X2

2 +X2
1 +X2

0 +X9
0 +X17

0

]
+ ε4

∫ T

0
||∂4

xw||2. (106)

As before, we add (103) to (105), and we add (104) to (106); we then choose an appropriate linear
combination of the sums for absorption of negative integral terms; we then choose εi, δi appropriately,
and invoke norm equivalence for H2

∗ , yielding the estimate for X1 +X2:

X2(T )+X1(T ) + C1

∫ T

0
[X2 +X1]

≤ C2

(
X2(0) +X1(0) +X2

1 (0) +X0(0) +X2
0 (0) +X9

0 (0) +X16
0 (0)

)
+ C3X

2
1 (T ) + C4

∫ T

0

[
X2

2 +X4
2 +X2

1 +X3
1 +X4

1 +X2
0 +X3

0 +X9
0 +X17

0

]
. (107)

Step 3 - Inequality for X3: Define:

X3(t) = ||wttt(t)||2 + ||wxxtt(t)||2 + ||wxwxxtt(t)||2 + ||wxx(t)wxtt(t)||2 + ||uttt(t)||2.

The estimate corresponding to two time differentiations of (14) with the multiplier wttt can be directly
formed from the existing calculations for Step 7 in the proof of Theorem (5.1).

X3(T ) + c1

∫ T

0

[
||wttt||2 + ||uttt||2

]
≤ c2

(
X3(0) +X9

2 (0) +X9
1 (0)

)
+ c3

(
X9

2 (T ) +X9
1 (T )

)
(108)

+c4

∫ T

0

[
X2

3 +X2
2 +X4

2 +X2
1 +X3

1 +X4
1 +X2

0 +X3
0 +X4

0

]
,

where we added
∫ T
0
||uttt||2 to both sides and proceeded as in earlier estimates in this section.

In this case, wtt is the equipartition multiplier, and calculations corresponding to stiffness are
duplicated from Step 7 in the proof of Theorem (5.1). The inertial term calls for a slightly altered
approach:(

∂xtt

[
wx

∫ L

x
utt

]
, wtt

)
= −

(
wxtt

∫ L

x
utt, wxtt

)
− 2

(
wxt

∫ L

x
uttt, wxtt

)
−
(
wx

∫ L

x
utttt, wxtt

)
.

The first two terms above can be treated similarly to Ji of Step 5 in the proof of Theorem (5.1),
and for the latter we write:∫ T

0

(
utttt,−

∫ x

0
wxwxtt

)
=

∫ T

0
(utttt, utt) +

∫ T

0

d

dt

(
uttt,

∫ x

0
w2
xt

)
− 2

∫ T

0

(
uttt,

∫ x

0
wxtwxtt

)
.
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The first term will be integrated by parts in time and the following two will be estimated as above.
Hence, assembling everything together we have:

k2

2
||wxxtt(T )||2 + c1

∫ T

0

[
||wxxtt||2 + ||wxwxxtt||2 + ||wxxwxtt||2

]
− c2

∫ T

0

[
||wttt||2 + ||uttt||2

]
≤ c3

(
X3(0) +X2

1 (0) +X1(0)
)

+ c4X1(T ) + ε1||wttt(T )||2 + ε2||uttt(T )||2 + c5X
2
1 (T )

+ c6

∫ T

0

[
X2

3 +X2
2 +X4

2 +X2
1 +X4

1 +X2
0 +X4

0

]
. (109)

Combining (108) with (109) in an appropriate linear combination, we obtain:

X3(T ) + C1

∫ T

0
X3 ≤ C2

(
X3(0) +X9

2 (0) +X1(0) +X2
1 (0) +X9

1 (0)
)

+ C3

(
X9

1 (T ) +X9
2 (T )

)
+C4X1(T ) + C5

∫ T

0

[
X2

3 +X2
2 +X4

2 +X2
1 +X3

1 +X4
1 +X2

0 +X3
0 +X4

0

]
. (110)

Here we remark that the term X1(T ) appearing above is bounded by (103).
Finally, we note that the bound above depends on the boundedness of the quantity X3(0) which

contains the term ||wttt(0)||2 + ||uttt(0)||2. This term does not explicitly appear as data, however, it is
directly bounded by the data ||(w0, w1)||2D(A2)2 , which can be shown directly on approximate solutions,
as was the focus of Step 6 in Section 5.1.

Step 4 - Global Estimate: With the constituent inequalities in hand from Steps 1–3, we form:

X(T ) = X0(T ) +X1(T ) +X2(T ) +X3(T ).

This quantity is nonnegative, and continuous due to the regularity of constructed solutions. We then
add (101), (107) and (110), and with minor algebraic manipulations, we obtain:

X(T ) + C1

∫ T

0
X(s)ds ≤ C2X(0) + C3F0 + C4

(
X2(T ) +X9(T )

)
+ C5

∫ T

0
F (s)ds, (111)

where
F0 = X2(0) +X9(0) +X16(0)

and
F (s) = X2(s) +X3(s) +X10/3(s) +X4(s) +X6(s) +X9(s) +X17(s).

This final estimate (111) is of the form in Theorem 6.2, which concludes the proof of Theorem 6.1

7 Comments, Open Problems, and Future Work
We briefly state and discuss some open problems and directions for future work.

• The existence of finite energy, weak solutions seems to be a challenging one. It is clear
that additional compactness is needed for the identification of limit points associated only to
the stiffness portion of the dynamics. Compensated compactness requirements (e.g., those in L1)
might be adapted to the nonlinear structures, though it is unclear if such an approach would be
more expedient than the higher order energy methods employed here.
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• The elimination or weakening of damping seems a natural course. In our estimates, it is
clear that the regularizing effects of Kelvin-Voigt damping are stronger than explicitly needed in
the construction of solutions and estimation of inertial terms. On the other hand, weak damping
of the form k0wt is clearly too weak to address inertial terms. Unfortunately, for cantilevered
beams, the physical interpretation of A1/2wt ∼ k1∂

2
xwt damping is unclear—see the discussions

in [8] and [17]. Additionally, it is a question for future work to utilize weaker (than Awt)damping
to obtain global solutions with sufficiently small data for (14) with σ, k2 = 1 and ι = 0.

• Explicit proof of blow up for large data in this quasilinear system would nicely complement
our local existence results. Currently, numerical evidence indicates that large data quickly leads
to non-physical solutions.

• The introduction of non-conservative forces as discussed in the introduction (e.g., with
application to piezoelectric energy harvesting) is a natural next step. In fact, the earlier work [8]
addresses a piston-theoretic beam, as does the more recent [27, 28]. However, exploiting the
superlinearity of the nonlinear stiffness to provide a rigorous framework for long-time behavior
of trajectories—or even constructing limit cycle oscillations—is a desirable future goal.

• The 2-D cantilever model, invoking inextensible elasticity (see the engineering references [35,
36]), is the topic of forthcoming work. This challenging mathematical problem was untouchable
before establishing the theory in this treatment. Difficulties for the 2-D problem include the
challenging mixed, clamped-free-type plate boundary conditions, as well as the loss of the 1-D
Sobolev embeddings (which were used profusely and non-trivially) in this treatment. Closing
estimates will require even higher differentiations of the equations, resulting in further involved
calculations beyond the numerous pages here.
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