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 The present study examined the ability of content domain (algebra, geometry, 

rational number, probability) to classify mathematics misconceptions. The 

study was conducted with 1,133 students in 53 algebra and geometry classes 

taught by 17 teachers from three high schools and one middle school across 

three school districts in a Midwestern state. Students answered 17 multiple 

choice items from the National Assessment of Educational Progress. A prompt 

was added to each item for students to explain the reasoning for their answer. 

Explanations were examined qualitatively to determine whether the responses 

were indicative of misconceptions. The responses were then analyzed 

quantitatively with structural equation modeling. Several knowledge structures 

(variable, measurement, spatial reasoning, additive/multiplicative structures, 

absolute/relative comparison) were found to be foundational to understanding 

multiple content domains. Multiple foundational structures were found to be 

related to misconceptions in each content domain, and misconceptions for 

multiple content domains were found within each foundational structure. The 

quantitative analyses found that the best classification of misconceptions 

included correlations among the content domains and a factor independent of 

content domain. The qualitative analyses led to the conclusion that interactions 

among the foundational knowledge structures best described the factor 

independent of content domain. 
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Introduction 

 

Addressing mathematics misconceptions appropriately is critical for fostering deep student learning (Clements 

& Sarama, 2014; Sztajn, Confrey, Wilson, & Edgington, 2012) and learning how to do so has been recognized 

as an important component of mathematics teacher preparation (e.g., Association of Mathematics Teacher 

Educators, 2017; American Statistical Association, 2015) and effective professional practice (National Council 

of Teachers of Mathematics (NCTM), 2014). Addressing mathematics misconceptions while teaching begins at 

the lesson planning stage, when teachers consider common patterns of student reasoning, difficulties, and 

mistakes for a particular topic and continues through lesson enactment and assessment (Swan, 2001). 

Understanding how mathematics misconceptions are related to one another across topics in a conceptual 

framework can be especially useful for identifying broader patterns that affect student long-term mathematical 

development (Bransford et al., 2000).  

 

 

Study Purpose and Research Questions 

 

The present study examined student reasoning in algebra, geometry, rational number, and probability to identify 

common patterns across content domains to support a conceptual framework for mathematics misconceptions. 

Misconceptions are often described as conceptual misunderstandings (e.g., Blanco & Garrote, 2007; Durken & 

Rittle-Johnson, 2015; Van Dooren, Lehtinen, & Verschaffel, 2015). The present study followed Smith, diSessa, 

and Roschelle (1993) by defining misconceptions as any ―student conception that produces a systematic pattern 

of errors‖ (p. 119). This definition excludes errors that were produced by simple procedural errors (i.e., slips and 

bugs, as in VanLehn, 1983) and recognizes that the reasoning included with consistent patterns of errors may be 

indicative of misconceptions, consistent with Earls (2018). 

 

This definition provided a consistent construct for examining student reasoning for incorrect responses for the 

purpose of identifying systematic patterns indicative of misconceptions and analyzing relationships between 

those patterns. The investigation was structured to address three research questions: 
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1. How well can student reasoning be used to identify misconceptions?  

2. How well does content domain classify errors rooted in misconceptions? 

3. How well does the addition of factors independent of content domain improve the classification of 

misconceptions? 

 

Mixed methods are needed to fully investigate these questions. While the qualitative analysis provides insight 

into the types of mathematics misconceptions that lead to particular responses, the quantitative analyses provide 

validity to generalizations about the ways those misconceptions are interconnected and what factors might lead 

to particular misconceptions (Creswell & Plano Clark, 2007). Research about mathematics misconceptions is 

typically qualitative only or includes only descriptive quantitative analyses of correct responses, only loosely 

connected to the misconceptions analysis (e.g., Earls, 2018; Fisher, 1988; Van Hoof, Vandewalle, Verschaffel, 

& Van Dooren, 2015). In the present study, both the qualitative and quantitative analyses focus entirely on 

misconceptions, providing greater validity to conclusions. The three research questions work together to guide a 

progression of analyses that lead to the development of a conceptual framework about mathematics 

misconceptions. The application of structural equation modeling allows for more robust inferences about the 

nature of the conceptual framework (Byrne, 2012). 

 

 

Significance of the Study 

 

A framework to help teachers connect errors to underlying thinking is critical for determining appropriate 

interventions. Konold (1988) found that errors are reflective of underlying mathematics understanding and 

correcting only the incorrect statement does little to address those misunderstandings. In contrast, when students 

misunderstand a fundamental concept (such as proportional reasoning) that supports multiple topics (such as 

probability, linearity, similarity), fully addressing the fundamental misunderstanding may offer a more efficient 

approach to improving student understanding of the supported topics (Confrey & Krupa, 2010; Lobato, Ellis, 

Charles, & Zbiek, 2010; Sztajn et al., 2012). Correct answers do not always indicate correct conceptual 

understanding, making the assessment of mathematical understanding an even more complex undertaking 

(Lobato et al., 2010).  

 

Cooper (2009) found that although pre-service teachers could identify error patterns readily, they had difficulty 

determining the source of the error. She found that their most common strategy for addressing errors was to re-

teach material at a slower pace, focusing on breaking down procedures into smaller chunks. Such a procedure-

based approach to fix an error may be successful for a specific type of task, but the underlying conceptual 

misunderstanding will often reassert itself in new situations (Fisher, 1988; Hiebert and Grouws, 2007; Van 

Dooren, De Bock, Depaepe, Janssens, & Verschaffel, 2003). 

 

In contrast, Hiebert and Grouws (2007), Skemp (2006), and Kieran (1989, 1992, 2007) all concluded that 

effective interventions with the longest lasting benefits must address important mathematical understandings 

that, if misunderstood, lead to errors. A framework to explain how fundamental mathematics ideas support more 

advanced mathematics, the focus of the present study, is therefore critical for helping teachers trace surface 

mistakes back to their underlying root sources (Bransford et al., 2000). 

 

 

Conceptual Framework 
 

The conceptual framework for the present study describes relationships between understanding, reasoning, 

misconceptions, procedural fluency, and student responses to tasks or problems. The degree to which concepts 

are connected will directly influence the depth of learning (Hiebert & Carpenter, 1992; Skemp, 2006). If 

students learn in a way that connects procedures and concepts, then conceptual understanding (ideas or 

connections among ideas, facts, or procedures as in Hiebert et al., 2005) may produce stronger, more consistent 

procedural skills, which in turn may reinforce deeper more robust conceptual understanding. Existing research 

has not clarified whether procedures emerge from concepts or vice versa (Rittle-Johnson, Schneider, & Star, 

2015). The available evidence suggests that both directions occur but that procedures emerge from concepts 

more (e.g., Rittle-Johnson & Alibali, 1999; Rittle-Johnson, Siegler, & Alibali, 2001). Relational understanding 

may be integrated into a student‘s knowledge framework for use with future unfamiliar, non-routine tasks or 

problems (Skemp, 2006). 

 

Alternatively, a focus on instrumental understanding leads to the development of procedures without meaning, 

with incomplete or erroneous meaning, or even the lack of awareness of meaning (Skemp 2006). 
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Misconceptions are often the result of over- or under-generalization of properties or concepts (e.g., Chang, 

2002; Falk, 1992; Fuys & Liebov, 1997; Kalchman & Koedinger, 2005; Van Dooren et al., 2003) and can lead 

to faulty reasoning about a particular task or problem (e.g., Falk, 1992; Kahneman & Tversky, 1972; 

Küchemann, 1978). Faulty reasoning about a task or problem may emerge from misunderstandings or 

incomplete understanding about ideas and/or connections among ideas (e.g., Clement, 1982; Kim et al., 2016). 

Faulty reasoning may lead to a misconception or indicate an already-existing misconception (Figure 1). Some 

faulty reasoning emerges from misunderstandings about the particular problem or task, not the underlying 

mathematical concepts or procedures (English, 2004; Kotsopoulis & Lee, 2012; Schoenfeld, 1982, 1992). 

Correct responses do not necessarily indicate that a student understands the mathematical concepts completely 

(e.g., De Bock et al., 1998). 

 
Figure 1. Pathways of understanding, reasoning, and procedural skills leading to student responses 

 

For example, if a student believes that the absolute value of a number is just that number with a positive sign, 

and every absolute value example they encounter in school results in positive numbers, then their conceptual 

framework will be reinforced, leaving intact their incorrect/incomplete belief about absolute value (Karp, Bush, 

& Dougherty, 2015). Similarly, if a student believes that a variable represents a specific unknown value, and 

every equation they encounter results in a single numerical value answer, then their incorrect/incomplete about 

variable meaning will be left intact (Küchemman, 1978). A framework connecting misconceptions to both 

content domains and foundational knowledge structures may offer teachers insight into the nature of 

misconceptions. 

 

 

Content Domain Misconceptions 

 

Researchers have typically classified mathematics misconceptions by the content domain in which they are 

observed. For example, Earls (2018) studied misconceptions about sequences and series in calculus. Lamon 

(1999) and Schield (2006) considered misconceptions inherent to rational numbers while Watson and 

Shaughnessy (2004) focused on probability and statistics misconceptions. Chang (2002), Kalchman and 

Koedinger (2005), Blanco and Garrote (2007) and Socas Robayna (1997) studied algebra misconceptions. 

Clements and Battista (1992), Monaghan (2000), and Swindal (2000) examined geometry misconceptions. The 

content domains in the present study were rational number, probability, algebra, and geometry because they 

make up the bulk of secondary mathematics education in the U.S.  

 

 

Rational Number 

 

Rational number concepts confound student mathematical understanding more than whole numbers and 

integers, in part because of the major conceptual shift that is required of students when learning rational 

numbers and in part because of their multiple representations and uses across content domains (Fuson, 

Kalchman, & Bransford, 2005; Kilpatrick, Swafford, & Findell, 2001; Lamon, 2007; Moss, 2005). 

Misconceptions about rational numbers emerge from difficulties with fraction meaning and equivalence (Behr, 

Harel, Post, & Lesh, 1992; Booth & Newton, 2012). Steen (2007) described interpretation as a more 

fundamental problem for students than the computation of rational numbers. Understanding rational numbers, 

and particularly fractions, is predictive of future mathematics success (Bailey, Hoard, Nugent, & Geary, 2012; 

Torbeyns, Schneider, Xin, & Siegler, 2015). Booth and Newton (2012) found that understanding fraction 

magnitudes, especially unit fractions (numerator = 1), are strong predictors of algebra readiness. 

 

 

Probability 

 

Probability misconceptions such as representativeness and uniformity beliefs influence how students approach 

problem solving situations as well as their understanding of non-linearity (Falk, 1992).  Agnoli and Krantz 
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(1989) found that students who relied on static comparisons (i.e., students depend upon their image of a typical 

context without regard to information presented in a problem) based their decisions on a priori knowledge rather 

than the meaning of the mathematical statement. 

 

 

Algebra 

 

Researchers have repeatedly found that the abstract nature of algebra poses difficult challenge for students (e.g., 

Carraher & Schliemann, 2007; Kieran, 1989; Welder, 2012). Specifically, abstractness poses an impediment that 

arises when students attempt to construct multiple representations of algebraic objects (Kieran, 1992). 

Understanding functional relationships also requires facility with algebraic language.  Students often fail to 

recognize that function notation is a general form intended for all functions rather than just linear (Chang, 2002). 

As a result, students may develop a misconception that functions are supposed to be linear (Chang, 2002; 

Kalchman & Koedinger, 2005). Van Dooren et al. (2003) found that students cling to linear functions 

tenaciously without consideration for inconsistencies in their reasoning. Lamon (1999) suggested a deeper 

misunderstanding in such situations. She noted that students continue exhibiting misconceptions even when a 

function is linear. She found that when functions are linear, students often consider the relationship to be 

additive (i.e., recursive) rather than multiplicative (i.e., functional). Her study used algebraic equations that were 

presented as proportions, suggesting that her findings about additive and multiplicative units are applicable to 

both algebra and rational numbers.  

 

 

Geometry 

 

The Van Hiele framework classifies understanding of geometric shapes into five levels (described in detail by 

Clements & Battista, 1992; Crowley, 1987): Level 0 (visual), Level 1 (descriptive/analytical, Level 2 

(abstract/relational), Level 3 (deduction), and Level 4 (rigor). Clements and Battista (1992) and Crowley (1987) 

pointed out that the development of spatial reasoning does not directly correspond to particular ages or grade 

levels: adults may operate at Level 0 while children in grade school may reach Levels 1 or 2.  

 

The Van Hiele framework provides a structure for understanding misconceptions that develop from 

underdeveloped or misunderstood geometric concepts. For example, a student who believes that a square is not 

a square unless its base is horizontal does not associate the properties of a square to the label. Instead, such a 

student relies strictly on the visual orientation of a particular drawing (Van Hiele Level 0; Clements & Battista, 

1992). A student who believes that the angle sum of a quadrilateral is the same as its area acknowledges that a 

quadrilateral has the property of a constant sum for its interior angles but confuses the meaning of an angle with 

the meaning of area (Van Hiele Level 1; Clements & Battista, 1992). Gal and Linchevski (2010) found that 

visual perception (Van Hiele Level 0) in and of itself may be worse than insufficient: without intervention, it 

may actually impede understanding of shape and spatial reasoning. 

 

 

Content Domain Interactions 

 

Relationships between misconceptions across content domains have also been studied. Rational number and/or 

probability misconceptions may hold a primary, predictive position relative to algebra and geometry 

misconceptions (e.g., Fuson et al., 2005; Kilpatrick et al., 2001; Lamon, 2007; Moss, 2005), but hierarchical 

relationships between rational number and probability misconceptions or between algebra and geometry 

misconceptions have not been clearly demonstrated. No studies indicated the possibility that algebra and/or 

geometry misconceptions hold a predictive position for rational number or probability misconceptions. 

Furthermore, no studies examined these relationships beyond descriptions, case studies, and small sample sizes, 

making valid generalizations difficult about relationships between misconceptions across content domain. 

 

 

Foundational Structures 

 

A classification system based on mathematics content domains may be insufficient for addressing the observed 

complexities in the development and recidivism of particular misconceptions. For example, Falk (1992), Green 

(1982), and Watson and Shaughnessy (2004) examined misconceptions specific to probability, but to do so, they 

focused on the interaction between probability concepts and rational numbers. Van Dooren et al. (2003) found 

that misconceptions stemming from an over-reliance on linear proportionality hampered students‘ ability to 
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solve non-linear problems in algebra and geometry. They suggested that probability problems involving non-

linear relationships have the potential to help address those misconceptions. The ability to solve algebraic and 

geometric problems and to interpret probabilities have been consistently found to be connected to concepts of 

proportionality and linearity (e.g., Freudenthal, 1983; Shaughnessy & Bergman, 1993; Stacey, 1989). Moss, 

Beatty, Barkin, and Shillolo (2008) suggested that developing stronger links between algebra and number 

concepts may help address misconceptions about function relationships in algebra. Moss et al. (2008) and 

Lamon (1999) described misconceptions about equality and linearity in algebra as arising from an inability to 

assign meaning to unfamiliar contexts, a necessary step in problem solving, regardless of the content.  

 

Variable symbols and the meaning of variation may influence student capacity to understand probability 

concepts such as randomness (Shaughnessy, Canada, & Ciancetta, 2003). Earls (2018) traced calculus 

misconceptions to prerequisite algebra, geometry, and number concepts and discussed the role of hierarchical 

progressions of content. He noted that the presence of prerequisite knowledge does not guarantee that a 

misconception will not develop. Küchemann (2010) advocated for broader use of looking for generalized 

numerical patterns to strengthen students‘ understanding of algebraic concepts. Hunt (2015) noted the strengths 

of using ratio concepts to help students with learning disabilities understanding equivalence concepts. These 

examples suggest that mathematics misconceptions may not be bounded by content domain or explained by 

natural progressions of content.  

 

Several overarching structures (variable, measurement, spatial reasoning, equivalence, additive and 

multiplicative relationships, absolute and relative comparisons) have been found to be foundational to 

knowledge within and across content domains (e.g., Asquith, Stephens, & Knuth, 2007; Briggs, Demana, & 

Osborne, 1986; Cheng & Mix, 2014; Kilpatrick et al., 2001; Lamon, 1999; Siegler, Thompson, & Schneider, 

2011; Zhang et al., 2014). By foundational, we mean that these structures are necessary building blocks of a 

cognitive framework with which an individual reasons and makes sense of mathematics. Such foundational 

structures are essential for developing relational understanding and mathematical reasoning (English, 2004). For 

example, Ball and Bass (2002) pointed out that relationships among representations and equivalence are 

necessary components for understanding subtraction. 

 

 

Variable 

 

Understanding the meaning of variable is fundamental to the transition from arithmetic to algebra (Briggs et al., 

1986; Edwards, 2000; Graham & Thomas, 2000; Kalchman & Koedinger, 2005). But variable meaning goes 

beyond algebra and is interwoven throughout mathematics content and influences learning of geometry, 

statistics, and probability concepts (Edwards & Phelps, 2008; Shaughnessy et al., 2003). Variable interpretation 

and representing variables symbolically is especially challenging for students (Knuth, Alibali, McNeil, 

Weinberg, & Stevens, 2005; Swafford & Langrall, 2000). Students generally have difficulty recognizing the 

systemic consistency in the multiple uses of variables (MacGregor & Stacey, 1997), especially functional 

relationships (Küchemann, 1978; Blanton, Brizuela, Gardiner, Sawrey, & Newman-Owens, 2015).  

 

 

Measurement 

 

Measurement instruction is often interwoven with geometry, but measurement is integral to every mathematics 

content and provides straightforward connections between mathematics content domains (Hurrell, 2015). 

Measurement also connects mathematics to other content areas such as science and social studies (Foley, 2010) 

and the real world (Fuson, Clements, & Beckmann Kazez, 2010). Measurement misconceptions often arise 

when students misunderstand how to count units or which units to count as well as misinterpreting the meaning 

of the measurement value (McCool & Holland, 2012; Parmer, Garrison, Clements, & Sarama, 2011).  

 

 

Spatial Reasoning 

 

Spatial reasoning refers to spatial movements, symmetries, and transformations (Fuson et al., 2010). Spatial 

reasoning ability in the early grades (i.e. grades K-2) has been shown to be a strong predictor of student 

achievement in later grades (e.g., Casey et al., 2015; Cheng & Mix, 2014; Garderen, 2006; Hegarty & 

Kozhevnikov, 1999; LeFevre et al., 2010; Satyam, 2015; and Zhang et al., 2014). Mix and Cheng (2012) noted 

that children and adults who perform better on spatial tasks also perform better on mathematics ability 

assessments and that the relationship between spatial ability and mathematics ability remains consistent from 
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early childhood through middle age. They pointed out that spatial ability is strongly connected to long-term 

success in STEM courses and careers and therefore presents a leverage point for education interventions. Spatial 

ability and mathematics share cognitive processes beginning early in development, and spatial ability is related 

to mathematics ability throughout development, including the early elementary grades (Cheng & Mix, 2014; 

Cross, Woods, & Schweingruber, 2009).  

 

 

Equivalence 

 

Equality is a key concept that influences understanding in every content domain (e.g., Asquith et al., 2007; 

Griffin, 2016). Understanding equivalence is foundational for success in algebra, geometry, and other higher-

level mathematics (Asghari, 2009; McNeil, 2014).  For example, equivalence is integral to solving equations 

(Baratta, 2011) and comparing algebraic expressions (Solares & Kieran, 2011). Equivalence relationships are 

also critical to learning geometry (Freudenthal, 1983) and statistics (Albright, Reeve, Reeve, & Kisamore, 

2105). 

 

 

Additive and Multiplicative Relationships 

 

Distinguishing between contexts that require multiplicative rather than additive relationships is an important 

mathematical understanding throughout elementary and secondary education (e.g., arithmetic, fractions, 

proportional reasoning, and linear functions; Strom, 2008; Vergnaud, 1994). Students may manifest 

misconceptions by applying their understanding of linearity to a wide array of mathematical situations, 

including when deciding whether a context calls for an additive or multiplicative comparison of two quantities 

(Van Dooren et al., 2003). Lamon (1999) found that such errors are not simply about overusing linear 

proportions. Similarly, Moss et al. (2008) found that students who misunderstand multiplicative structures are 

likely to struggle with algebra problems, for example mistaking recursive patterns in sequences for a 

relationship between independent and dependent variables. 

 

 

Absolute and Relative Comparisons 

 

Understanding how to properly compare values influences mathematics understanding in algebra, geometry, and 

probability, especially if the comparisons require understanding rational numbers as an integrated value (i.e., its 

own value on a number line, not simply an aggregate of two whole numbers; Green, 1982; Lobato et al., 2010). 

Siegler et al. (2011) found that magnitude comparisons yield distance effects (the closer a number is to the 

comparison value, errors in comparisons increase). Meert, Grégoire, and Noël (2010) found that fraction 

magnitude comparisons were more difficult when numerators were the same rather than denominators, 

indicating that the transition from whole number to rational number thinking is dependent on understanding the 

denominator. Difficulties with number comparisons have been found to affect students all the way through high 

school and into adulthood (DeWolf & Vosniadou, 2015; Van Hoof, Vandewall, Vershaffel, & Van Dooren, 

2015). 

 

 

Method 
 

The present study examined student response explanations to identify common patterns in reasoning that led to 

incorrect answers across mathematics content domains (algebra, geometry, rational number, and probability) 

and to determine the extent to which factors independent of content domain explain mathematics 

misconceptions. The study employed an exploratory sequential mixed methods design (Creswell & Plano Clark, 

2007), in which the qualitative data analysis preceded and informed the quantitative data analyses. 

 

 

Participants 

 

Seventeen mathematics teachers participated from three high schools and one middle school across three school 

districts with 1,144 students enrolled in 53 algebra and geometry classes. Eleven (1%) did not respond to any 

question (unit non-response), so the final sample size was 1,133 students. 
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Instrumentation 

 

Seventeen algebra, geometry, rational number, and probability multiple choice (A, B, C, D, E) items were 

selected from National Assessment of Educational Progress (NAEP) released items (U.S. Department of 

Education,1996, 2005, 2007). Twelve items were taken from the Grade 8 NAEP assessments. The four items 

taken from the Grade 12 assessments were rated by NAEP as having medium difficulty and low complexity. 

One item was taken from the Grade 4 assessments. The same items were therefore used for middle and high 

school students.  Although all 17 items remained as given by NAEP, a prompt was included for each question 

asking students to explain how or why they chose their response, following the advice of Zawojewski and 

Shaughnessy (2000). The internal consistency was found to be adequate (α = 0.791, 95% CI [0.773, 0.808]).  

 

Item Response Theory (IRT) was used to verify that the items chosen for the instrument were not too difficult or 

easy, able to discriminate across high and low ability students, and not overly subject to guessing. The difficulty 

coefficients were appropriate, ranging from -1.308 (Easy) to 0.930 (Hard). Item discrimination was also 

appropriate, ranging from 0.428 (less differences between high and low ability students) to 1.192 (more 

differences between high and low ability students). The guessing coefficient was zero for all 17 items.  

 

 

Data Analyses 

 

The NAEP items were designed to measure achievement of the four content domains and capture common 

errors through carefully crafted distractors. The open response portion was examined for each item to identify 

error patterns rooted in conceptual misunderstanding, using Hiebert and Grouws‘ (2007) definition of 

conceptual understanding, ―mental connections between mathematical facts, procedures, and ideas‖ (p. 380). 

The responses were then analyzed with structural equation modeling. 

 

 

Qualitative Analysis 

 

Of the 1,133 students in the sample, 295 students provided explanations for their responses. Approximately 26% 

of student explanations on the 17 NAEP items were completed (N = 5,008 out of 19,261 potential explanations). 

A qualitative sub-sample was chosen using purposive stratification across classes and item choices. Specifically, 

responses were organized by class and item and then chosen so that a wide array of classes were represented for 

each item, and each response within an item was represented. This technique resulted in a sub-sample of 72 

students. The coding of explanations for each item (72 students by 17 items) was based on the operational 

definition of misconceptions (conceptual misunderstandings that led to systematic errors). The patterns 

identified in this sub-sample were applied to the full sample of 1,133 students for the subsequent quantitative 

analyses. 

 

Although correct responses could emerge with misconceptions, the hypotheses focused on distractors. Student 

explanations of the correct responses for each item were examined for possible underlying misconceptions, but 

the explanations did not provide compelling evidence of systematic error patterns. A focus on misconceptions 

underlying correct responses might require deeper investigation than is possible with written explanations, such 

as diagnostic interviews (as in De Bock et al., 2002; Lobato et al., 2010).  

 

Such interviews fell outside the scope of the present study. Peer debriefings were used to enhance the reliability 

of the coding (Patton, 2002). Peers consisted of colleagues who were experts in mathematics education with 

varying levels of experience coding mathematics misconceptions. Student written explanations along with 

coding notes were shared with the colleagues. Feedback consisted of discussions regarding over- and under-

emphasized points and potential assumptions that affected the coding process.  

 

Once the explanations had been coded, the data were examined for emergent patterns to identify connections 

that might potentially explain variance in student responses (as recommended by Creswell, 2007). The 

qualitative analysis was used to examine whether the foundational structures identified in the literature review 

(a) were present in student explanations of misconceptions across content domains and (b) were complete, that 

is, whether other structures not identified in the literature review were present in student explanations of 

misconceptions. The qualitative analysis was critical for interpreting the subsequent quantitative analysis results.  
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Quantitative Analysis 

 

Upon completion of the qualitative analysis, the responses for all 1,133 students in the sample were coded 

dichotomously (1 = indicative of misconceptions; 0 = not indicative of misconceptions) based on the patterns 

identified in the qualitative analysis of the 72-student sub-sample. The full sample was randomly divided into 

two halves (N1 = 567; N2 = 566). The first half was used to produce initial results while the second half was to 

verify the results, thus minimizing the threat of over-fitting the models to a single sample, as recommended by 

Byrne (2012).All structural equation models were analyzed with MPlus 7.4 (Muthén & Muthén, 2015). Because 

data were dichotomous, the robust weighted least squares estimator was used (WLSMV estimator in MPlus). 

This estimation technique has been found to be the best approach to analyzing categorical variables when 

sample sizes are greater than 200 (Finney & DiStefano, 2013; Flora & Curran, 2004; Muthén, du Toit, & Spisic, 

1997; Rhemtulla, Brosseau-Liard, & Savalei, 2012).  

 

A bifactor modeling approach was used to test the degree to which the addition of factors independent of 

content domain improve the classification of misconceptions (Research Question 3). Bifactor modeling 

partitions item variance into independent sets of traits, usually with one set of correlated factors and another 

single factor independent of the factors in the other set (orthogonal factor). This modeling approach has been 

found to be highly useful for examining an existing instrument and deepening understanding of trait structure 

(Reise, 2012). For the present study, content domain represented the first set of factors, the trait structure most 

commonly identified with mathematics misconceptions. The single independent factor represents a single source 

of variance for all items in the instrument, above and beyond what is accounted for by content domain (Reise, 

2012). Based on the literature review, this single independent factor was hypothesized to be foundational 

knowledge structures, which were found to interweave throughout the content domains. The qualitative analysis 

was used to determine the viability of considering the single independent factor to represent the foundational 

knowledge structures. 

 

Three fit indices were used to determine the adequacy of model fit and to compare models: Comparative Fit 

Index (CFI), Tucker and Lewis Index (TLI; also referred to as Non-Normed Fit Index, or NNFI), and Root 

Mean Square Error of Approximation (RMSEA) as recommended by Schermelleh-Engel, Moosbrugger, and 

Müller (2003). The Weighted Root Mean Square Residual (WRMR) is specific to categorical data and was 

included as a fourth goodness of fit indicator.  

 

 

Missing Data 

 

Of the 1,133 students, 242 (21.4%) were missing at least one value, and all items had missing data. Little's 

(1987) test of missing completely at random (MCAR) indicated that the missing data patterns were statistically 

significant (i.e., not MCAR), χ
2 
(1004) = 1103.33, p = .015.  

 

The WLSMV estimator has been found to produce valid estimates with non-normality and missing data present 

(Finney & DiStefano, 2013; Muthén et al., 1997). The estimates are based on all data present (i.e., no deletion) 

without inflating statistical power. No imputation methods were therefore used to create complete datasets. 

 

 

Results 
 

The study investigated three research questions to identify systematic patterns in explanations of erroneous 

responses indicative of misconceptions and to examine classification systems of those misconceptions (i.e., 

content domain hierarchies, foundational structures). The explanations were examined qualitatively, and 

classification systems were analyzed using structural equation modeling.  

 

 

Qualitative Analysis Results 

 

The qualitative analysis addressed Research Question 1 by examining explanations of reasoning that led to 

erroneous responses. Prior to the analysis, hypotheses were developed about which distractors might indicate 

underlying misconceptions. Hypotheses were corroborated for 44 of the 68 (64.7%) distractors (misconception 

not hypothesized and not found; misconception hypothesized and same misconception found in Table 1). The 

outcome that over a third of the hypotheses (35.3%) were not corroborated by student explanations suggests that 
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experimenter expectancy bias was not a major issue. 

 

The analysis allowed for the emergence of misconception patterns that were not hypothesized, which accounted 

for 22.1% of the distractors (Table 1). For example, one item asked students, ―The cost to mail a first-class letter 

is 33 cents for the first ounce. Each additional ounce costs 22 cents. Fractions of an ounce are rounded up to the 

next whole ounce. How much would it cost to mail a letter that weighs 2.7 ounces? A) 55 cents, B) 66 cents, C) 

77 cents, D) 88 cents, E) 99 cents.‖ Of 1,062 responses, 453 (42.7%) chose the correct response (Choice C). The 

hypothesis for this item predicted only that Choice D would indicate an additive/multiplicative structure 

misconception (as in Moss et al., 2008). Student explanations for Choice D confirmed this hypothesis with 

statements such as, ―I multiplied .33¢ times 2.7‖ and ―Because 33 + 33 = 66; 0.7  1  66 + 22 = 88‖ 

(misconception hypothesized and same misconception found in Table 1). Choices A, B, and E were examples of 

unanticipated misconceptions in student explanations (misconception not hypothesized but found in Table 1). 

Students who chose E followed the same reasoning as students who chose D, with the exception that they 

remembered to round the 2.7 to 3. These students wrote explanations such as ―33 x 3 ounces = 99 cents.‖   

 

Students who chose B used two types of reasoning to arrive at their answer. Some students simply added: ―33 + 

22 + 11,‖ ―33 + 22 + 0.7.‖  Another student explained, ―You have 2 whole ounces, 33¢ + 22¢ = 55¢, next you 

have to figure out the .7. Take 22  70%, which is 18. So you add 12 to 55, total would be 66¢.‖  This final 

statement, apart from the readily apparent calculation errors, showed the same basic reasoning as the first two—

lack of understanding about when multiplication or addition should be used. This particular justification 

included several erasures over numbers, indicating that the student had changed numbers to arrive at the closest 

answer available (a phenomenon described by Clement, 1982). Another type of justification for Choice B relied 

on a multiplicative-only strategy, for example, ―I multiplied 33 times 2.‖ Students who chose A used similar 

reasoning to that used by students who chose B. These students also dropped the 0.7 or the second ounce. The 

justifications were variations of ―33 + 22 = 55.‖ Students who ignored the second ounce made statements such 

as, ―First ounce is 33 cents, next 0.7 of ounce is 22, rounded.‖ Based on these explanations, we coded choices 

A, B, D, and E as responses indicating an underlying misconception. 

 

Table 1. Analysis of misconceptions from student explanations of distractors 

Outcome 

Distractor 

count 

Percent of 

distractors
a
 

Distractors were not hypothesized as indicating 

misconceptions, and student explanations corroborated that 

the distractor was not indicative of misconceptions 

23 33.8% 

Distractors were hypothesized as indicating particular 

misconceptions, and student explanations corroborated that 

the distractors indicated those misconceptions. 

21 30.9% 

Distractors were hypothesized as indicating particular 

misconceptions, and student explanations corroborated that 

the distractors indicated misconceptions, but the 

misconceptions were different ones than those 

hypothesized. 

4 5.9% 

Distractors were not hypothesized as indicating 

misconceptions, but student explanations indicated 

misconceptions. 

15 22.1% 

Distractors were hypothesized as indicating particular 

misconceptions, but student explanations did not indicate 

misconceptions. 

5 7.4% 

Note. Each of the 17 items had 4 distractors for a total of 68 distractors. 
a
Sum is not exactly 100% due to 

rounding. 

 

Another item presented a spinner divided in two halves, with one of the halves divided in half again and an 

arrow pointed to one of the quarter regions with a circle inside. The item asked students, ―If Rose spins a 

spinner like the one below 300 times, about how many times should she expect it to land on the space with a 

circle? A) 75, B) 90, C) 100, D) 120, and E) 150.‖ Of the 1,112 student respondents, 583 (52.4%) correctly 

chose A. We hypothesized that a spatial reasoning misconception would result in students deciding that the 

probability of the region was 1/3 instead of 1/4 (i.e., failure to recognize that the regions shown in the figure 

were unequal) and predicted that Choices C and D would result from students taking 1/3 of 300 or 1/3 of 360 

respectively. Explanations for Choice C verified the hypothesis (i.e., misconception hypothesized and same 

misconception found in Table 1) with statements such as, ―Because there‘s 3 spaces and 300 ’ 3 is 100‖ or ―I 
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divided 300 ’ 3 & got 100.‖ Students who chose D, on the other hand, did not verify our hypothesis. Instead, 

these students indicated that they had recognized the probability of the region as being 1/4 but made a 

computation error.  

 

No one who chose D gave explanations that indicated a misconception (i.e., misconception hypothesized but not 

found in Table 1). Explanations for Choice B did, however, indicate an unanticipated misconception 

(misconception hypothesized but different misconception found in Table 1). These students recognized that the 

region was 1/4 of the circle and used the the number of degrees in a circle. These students made statements such 

as, ―The circle is in an angle of 90º,‖ ―Circle = 360, divide it by 4, you get 90,‖ or ―Because the circle is split up 

into 3 parts; a circle‘s measure is 360, if cut in half, each part will be 180, if one half of the split circle is cut in 

half again, that side is now 2 sets of 90º.‖ These explanations consistently indicated a lack of recognition that 

the ratio of interest required the numerator to be 300 rather than 360, a misconception about the rational number 

rather than the spatial aspects of the problem. The overall item was therefore coded as indicating misconceptions 

about both rational number meaning and spatial reasoning, depending on which distractor was chosen. 

 

As a result of the analyses, the coding of all items was changed as needed to match student response patterns. 

These changes enhanced the ability of the coding to represent student underlying conceptual understanding 

(construct validity). Five of the foundational structures identified in the conceptual framework were found 

(Table 2).  

Table 2. Classification of items by content domain and foundational structure 

  Foundational Structure 

Content 

Domain Item Variable Measurement 

Spatial 

Reasoning 

Absolute/ 

Relative 

Comparison 

Additive/ 

Multiplicative 

Structures 

Algebra 5  X    

6     X 

7 X    X 

8 X     

16 X     

Geometry 9   X   

10
a
  X   X 

11 X     

Rational 

Number 

12     X 

13  X    

14    X  

15   X   

Probability 1    X  

2
b
      

3
b
      

4   X   

17
b
      

Note. Content domains were determined by NAEP classification. Foundational structures determined by student 

response analysis. 
a
Student responses to Item 10 indicated misconceptions about more than one foundational 

structure across distractors. 
b
Items 2, 3, and 17 indicated misconceptions about rational numbers. 

 

Two features of Table 2 supported further exploration via structural equation modeling. First, even with the 

limited pool of 17 items, which were not initially developed to detect misconceptions, student explanations for 

40 of the 68 distractors (58. 8%) did indicate consistent patterns of misunderstanding about concepts rather than 

simple procedural errors. Multiple foundational structures were found within each content domain, and each 

foundational structure was found in multiple content domains. A structural equation modeling analysis offered 

an avenue for investigating the relationships between misconceptions across content domains and foundational 

structures. The testing of a bifactor model in which the single independent factor represented the foundational 

structures was therefore warranted. 
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Structural Equation Modeling Results 

 

The structural equation modeling analyses began with an examination of the relationships between 

misconceptions classified by content domain. Hypothesized models were based on relationships identified in the 

literature review. The hypotheses were: content domain misconceptions were correlated (i.e., no potentially 

causal pathways; Model A, Figure 2A), probability misconceptions predict algebra, geometry, and rational 

number misconceptions (Model B, Figure 2B), rational number misconceptions predict algebra, geometry, and 

probability misconceptions (Model C, Figure 2C), and both probability and rational number misconceptions 

predict algebra and geometry misconceptions (Model D, Figure 2D). No evidence was found in the literature for 

algebra or geometry misconceptions predicting rational number or probability misconceptions. 

 

 
Figure 2. Content domain structural equation models. NAEP questions (not shown) were associated with each 

content domain according to Table 2 

 

Based on the literature review, a model was theoretically feasible in which probability misconceptions predict 

rational number misconceptions, which in turn predict algebra and geometry misconceptions (Figure 3). Initial 

analyses revealed, however, that this model was statistically equivalent to Model C, so the more parsimoniuos 

Model C was the only one retained in the analyses (Hershberger & Marcoulides, 2013). Similarly, a model in 

which rational number misconceptions predict probability misconceptions, which in turn predict algebra and 

geometry misconceptions (Figure 3) was also found to be equivalent to Model B, so the more parsimonious 

Model B was the one retained in the analyses.  
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Figure 3. Alternative content domain structural equation models not included due to model equivalency with 

models shown in Figure 2 

 

Once the content domain models (Models A-D; Figure 2) were analyzed, a bifactor model (Model E; Figure 4) 

was examined to determine the viability of the hypothesis that an underlying factor independent of content 

domain predicts mathematics misconceptions. Based on the qualitative results, this independent factor was 

considered to represent the foundational structures because they were found to interweave throughout 

misconceptions in different content domains. 

 

 
Figure 4. Model E: Single bifactor model 
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Model A was a one-level confirmatory factor analysis (CFA) model (Figure 2A). The RMSEA value was in the 

excellent range (< .05; Table 3), but CFI and TLI were below the recommended cutoff for excellent or 

acceptable fit (> .97 or .95, respectively; Schermelleh-Engel et al., 2003), and WRMR was above the 

recommended cutoff of 1.0 (Yu, 2002). One item on probability had a negative factor loading (Item 3) and 

another had a non-significant factor loading (Item 17). These two items were removed, and model fit improved 

(Model A2 in Table 3). All subsequent models excluded Items 3 and 17. No modification indices greater than 10 

were produced by the model estimation. Because some fit indices remained out of recommended levels, further 

examination of alternative models was warranted. 

 

 

Model B hypothesized that probability misconceptions predict algebra, geometry, and rational number 

misconceptions (Figure 2B). All fit indices indicated a slightly worse fit than Model A2. Two modification 

indices were produced with a value greater than 10 (i.e., likely to produce a statistically signficant reduction in 

chi-squared), but neither was theoretically feasible. No additional modifications were added to Model B. 

 

Model C hypothesized that rational number misconceptions predict algebra, geometry, and probability 

misconceptions (Figure 2C). Some fit indices indicated that Model C produced a slightly better or comparable 

fit than Model A2 (CFI, TLI, RMSEA) while WRMR indicated a slightly worse fit (Table 3). No modification 

indices greater than 10 were produced.  

 

Table 3. Fit indices for structural equation models 

Model Model Description DF CFI
a
 TLI

a
 RMSEA (90% CI)

b
 WRMR

c
 

A Content domains correlated 113 .905 .886 .042 (.034, .050) 1.142 

A2 Q03 and Q17 removed from 

Model A 

84 .935 .919 .038 (.029, .048) 1.042 

B Probability misconceptions 

predict algebra, geometry, 

and rational number 

misconceptions  

87 .930 .916 .039 (.030, .048) 1.075 

C Rational number 

misconceptions predict 

algebra, geometry, and 

probability misconceptions  

87 .937 .923 .037 (.028, .047) 1.051 

D Probability and rational 

number misconceptions 

predict algebra and 

geometry misconceptions  

85 .935 .919 .038 (.029, .048) 1.050 

E Underlying factor 

independent of content 

domain predicts 

mathematics misconceptions 

(bifactor model) 

69 .996 .994 .010 (.000, .027) 0.689 

Note. N = 567 students. 
a
Larger CFI and TLI values indicate better fitting models; Values  .95 indicate 

acceptable fit; Values > .97indicate excellent fit (Schermelleh-Engel et al., 2003). 
b
Smaller RMSEA values 

indicate better fitting models; RMSEA ≤ .05 indicates excellent fit (Byrne, 2012). CI = Confidence Interval. 
c
Smaller WRMR values indicate better fitting models; WRMR ≤ 1.0 indicates acceptable fit (Yu, 2002).  

 

Model D hypothesized that both rational number and probability misconceptions predict algera, geometry, and 

probability misconceptions (Figure 2D). All fit indices indicated that Model D produced a slightly worse or 

comparable fit than Model A2 (Table 3). The structural model estimates produced non-significant values for 

algebra and geometry misconceptions on probability misconceptions. 

 

Model A2 was the best fitting content-based model of misconceptions. These results provided evidence against 

the hypotheses that some content-based misconception factors might hold a predictive, potentially causal 

relationship to other content-based misconception factors. The remaining mis-specification in Model A2 led to 

further analyses to determine if an underlying knowledge base factor might help explain some variance in 

misconceptions. The qualitative analyses and literature review suggest that an underlying knowledge base factor 

would represent the foundational structures. 

 

A bifactor model (Model E; Figure 4) was examined to determine the viability of the hypothesis that an 
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independent factor other than content domain predicts mathematics misconceptions. Based on the qualitative 

analysis, this independent (orthogonal) factor was interpreted as representing the foundational structures. Model 

E showed much better model fit than Model A2 (Table 3). For example, the CFI jumped from .935 in Model A2 

to .995 in Model E, and the TLI jumped from .935 to .994. Both of these improvements moved the indices from 

moderate to excellent fit. Similarly, the WRMR dropped from 1.042 to 0.689, from above to below the threshold 

for acceptable fit. This result indicates that the addition of a factor independent of content domain helps explain 

variance in the model. 

 

Results from the initial analyses were cross-checked with an independent subsample (N2 = 566). Model A2 was 

the best fitting content domain model, and Model E was the best fitting model overall. Models A2 and E were 

therefore examined with the second subsample. Patterns of fit indices seen in the first subsample remained 

consistent in the second subsample (Table 4).  

 

Table 4. Fit indices for structural equation models using second sub-sample 

Model Model Description DF CFI
a
 TLI

a
 RMSEA (90% CI)

b
 WRMR

c
 

A2 Content domains 

correlated 

84 .937 .921 .033 (.022, .043) 0.992 

E Underlying factor 

independent of content 

domain predicts 

mathematics 

misconceptions (bifactor 

model) 

69 .950 .924 .032 (.021, .043) 0.886 

Note. N = 566 students. 
a
Larger CFI and TLI values indicate better fitting models; Values  .95 indicate 

acceptable fit; Values > .97indicate excellent fit (Schermelleh-Engel et al., 2003). 
b
Smaller RMSEA values 

indicate better fitting models; RMSEA ≤ .05 indicates excellent fit (Byrne, 2012). CI = Confidence Interval. 
c
Smaller WRMR values indicate better fitting models; WRMR ≤ 1.0 indicates acceptable fit (Yu, 2002).  

 

Because patterns of significance in parameter estimates differed between the first and second subsamples, final 

parameter estimates in Model E were computed with the full sample to avoid over-interpreting patterns unique 

to a particular subsample (i.e., threat to construct validity). Most parameter estimates were statistically 

significant for the foundational structures factor, and most were not statistically significant for the content 

domain factors (Table 5). 

 

Table 5. Factor loadings in final model (Model E, Table 3, Figure 4) 

Factor Loading Estimate S.E. Est./S.E.  Factor Loading Estimate S.E. Est./S.E. 

Foundational Structures by    Probability by    

Q01 0.233 0.068 3.444**  Q01 ---
a
 --- --- 

Q02 0.409 0.051 7.993***  Q02 0.546 0.232 2.352* 

Q04 0.25 0.086 2.903**  Q04 1.667 0.5 3.332** 

Q05 0.563 0.051 11.043***  Algebra by    

Q06 0.305 0.062 4.882***  Q05 ---
a
 --- --- 

Q07 0.869 0.05 17.354***  Q06 1.608 0.952 1.69 

Q08 0.101 0.07 1.436  Q07 -0.073 1.081 -0.068 

Q09 0.288 0.051 5.672***  Q08 2.054 1.458 1.409 

Q10 0.459 0.053 8.716***  Q16 2.345 1.274 1.841 

Q11 0.51 0.067 7.630***  Geometry by    

Q12 0.462 0.077 5.982***  Q09 ---
a
 --- --- 

Q13 0.329 0.099 3.315**  Q10 2.626 2.13 1.233 

Q14 0.082 0.131 0.628  Q11 12.892 23.525 0.548 

Q15 0.379 0.069 5.459***  Rational Number by   

Q16 0.509 0.07 7.317***  Q12 ---
a
 --- --- 

     Q13 1.356 0.31 4.377*** 

     Q14 1.901 0.554 3.432** 

     Q15 -0.173 0.342 -0.504 

**p < .01. ***p < .001. N = 1,133 students. 
a
Fixed factor in model.  

 

The foundational structures factor was modeled to be independent (orthogonal) to the content domain factors in 

Model E (covariances = 0), consistent with bifactor modeling (Reise, 2012). Covariances among content domain 

factors were estimated to be statistically non-significant in Model E (Table 6). 
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Table 6. Factor covariances in final model (Model E, Table 3, Figure 4) 

Factor Covariances Estimate S.E. Est./S.E. 

Algebra with    

Probability 0.034 0.034 0.991 

Geometry with    

Probability 0.007 0.016 0.457 

Algebra 0.003 0.009 0.376 

Rational Number with    

Probability 0.071 0.042 1.706 

Algebra 0.057 0.055 1.042 

Geometry 0.005 0.013 0.411 

N = 1,133 students. 

 

 

Discussion 
 

The present study examined patterns in student explanations of error responses to determine connections to 

misconceptions (Research Question 1). The results of those analyses were used to examine the degree to which 

content domains classify misconceptions (Research Question 2) and the degree to which factors independent of 

content domain improve the classification of misconceptions (Research Question 3). 

 

The qualitative analysis revealed misconceptions about multiple foundational structures within each content 

domain and misconceptions about multiple content domains within each foundational structure. The quantitative 

analyses found that the best content domain model was a correlational model (Model A2; Table 3; Figure 2A). 

The best overall model was a bifactor model, which included a factor independent of content domain (Model E; 

Table 3; Figure 4). The predominance of the bifactor model indicates stronger connections among 

misconceptions across content domains than can be explained by correlations alone. These results indicate that 

content domain misconceptions are highly interactive, which may help explain the stability and robustness of 

erroneous thinking resulting from misconceptions (as in Moschkovich, 1998). The literature review and the 

qualitative analyses indicated that this factor, independent of content domains, is best interpreted as the 

foundational structures. These findings provide two insights into mathematics misconceptions. First, 

misconceptions among content domains are not hierarchical and are better understood through an analysis of the 

mathematical structure among concepts (consistent with recommendations by Kieran, 2007). Second, the 

finding of a factor outside of content domain that contributes to misconceptions is startling because relationships 

among misconceptions have typically been viewed as resulting from simple correlations among content domain.  

 

 

Limitations 

 

Although the 17 NAEP item data produced robust models, additional items may have uncovered other 

systematic patterns of errors. The items chosen for each content domain did not include all intersections of 

content. For example, none of the algebra questions involved rational number concepts, and none of the 

probability questions involved algebra, equivalence, or measurement. The questions therefore limited the ability 

of the models to detect potential relationships between misconceptions across content domain. 

 

The dichotomous coding of misconceptions introduced a large degree of non-normality in the data, which 

limited the degree of model complexity that could be supported in the analyses. A dataset consisting of 

continuous variables designed to detect misconceptions and a larger sample size may be needed to detect more 

than one factor independent of content domain.  

 

 

Future Directions 

 

Future research about mathematics misconceptions may focus on the development of diagnostic tools to help 

teachers identify gaps in foundational structures across content domains as well as the nature and impact of the 

foundational structures on various content domains. Although misconceptions can be inferred through an 

analysis of student explanations on current achievement tests, diagnostic measures targeting misconceptions to 

reveal where learning was derailed along a content trajectory can provide teachers with critical information for 

crafting classroom interventions. Shifting data collection procedures to consistently include student 



16        Rakes & Ronau 

explanations, written work, and reasoning (as recommended by Zawojewski & Shaughnessy, 2000) will also 

allow for stronger connections between qualitative and quantitative analyses of mathematics misconceptions.  

 

The development of continuous measures of misconceptions (e.g., percentages, scores) may support more robust 

quantitative analyses of misconceptions. The use of modeling techniques such as structural equation modeling 

and bifactor modeling resulted in findings that run counter to typical findings about mathematics 

misconceptions (i.e., misconceptions not hierarchical and not fully explained by content domain connections). 

Such techniques are therefore recommended to support stronger analyses of mathematics misconceptions.  

 

Future research may also focus on professional development to enable teachers to dig deeper into student 

thinking and create interventions that repair, strengthen, and reinforce conceptual understanding of the 

foundational structures across content domains. Teaching that addresses misconceptions through both content 

and foundational structure lenses may strengthen a particular foundational structure and prevent future 

misconceptions (e.g., avoiding rules that expire, as in Karp et al., 2015). Helping students reason through 

incomplete information and building reasoning from prior knowledge may also provide meaningful 

opportunities to struggle with important mathematics and prevent future misconceptions and address currently-

held misconceptions (Hiebert & Grouws, 2007; Resnick, 1983). Shifting teacher views of misconceptions to 

foundational structures rather than prerequisite knowledge or general relationships among content domains may 

result in a stronger focus on conceptual understanding and how student conceptual understanding of 

mathematics is integral to assessing and addressing student misconceptions. Such shifts may be necessary for 

students‘ long-term success in mathematics. 
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