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a b s t r a c t 

Mobile device users avoiding observational attacks and coping with situational impairments may em- 

ploy techniques for eyes-free mobile unlock authentication, where a user enters his/her passcode with- 

out looking at the device. This study supplies an initial description of user accuracy in performing this 

authentication behavior with PIN and pattern passcodes, with varying lengths and visual characteristics. 

Additionally, we inquire if tactile-only feedback can provide assistive spatialization, finding that orien- 

tation cues prior to unlocking do not help. Measurements of edit distance and dynamic time warping 

accuracy were collected, using a within-group, randomized study of 26 participants. 1021 passcode en- 

try gestures were collected and classified, identifying six user strategies for using the pre-entry tactile 

feedback, and ten codes for types of events and errors that occurred during entry. We found that users 

who focused on orienting themselves to position the first digit of the passcode using the tactile feedback 

performed better in the task. These results could be applied to better define eyes-free behavior in further 

research, and to design better and more secure methods for eyes-free authentication. 

Published by Elsevier Ltd. 
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1. Introduction 

The threat of observational attacks in shared or public spaces

may influence or modify the way smartphone users interact with

their devices. In particular, users may favor unlocking their mobile

devices out-of-view, without looking at the screen to avoid oth-

ers from surfing the authenticator. Purposeful user obfuscation (e.g.

keeping the screen out of sight from third parties or hidden cam-

eras by hiding the device in the pocket or bag [1] ) for purposes

of the initial stages of the interaction, limits the likelihood of the

authentication sequence being viewed. This can put users at some

level of ease, even if the remainder of the interaction is performed

in-view of third parties. 

Eyes-free authentication behaviors may also be performed when

the situation, context or environment demands it. For example, in

situations where glare may be factor, or the environment is inap-

propriate for mobile device usage and discretion is needed (e.g. [2] ,

the interaction may be performed away from view). While eyes-

free interactions for different types of mobile device have been

studied by researchers in the past [3–13] , studies have yet to ex-

amine real world eyes-free authentication behaviors; investigating
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he performance with common authentication mechanisms when

he phone is out-of-view, and user coping strategies to enter pass-

odes in an eyes-free manner. 

To address this knowledge gap, we conducted a randomized,

ulti-factor study with 26 participants entering PINs and gesture-

ased patterns (termed: “patterns” in this paper). Participants en-

ered passcodes under both in-view and eyes-free conditions, as

ell as eyes-free using an additional training module for spatial-

zation based on tactile feedback. 

The tactile channel was chosen to discreetly offer cues directly

o the user’s hand, without drawing attention during interaction, as

ould likely occur with auditory or visual cues. Existing assistive

ids aid to eyes-free PIN authentication, such as iOS VoiceOver, rely

n audio feedback (audio readout of PIN number buttons when

ouched, allowing selection). However, audio cues impose usability

nd security penalties in shared and public spaces. 

Biometric authentication such as fingerprint identification can

reatly expedite this task for many users. However, fingerprint

dentification remains only a secondary means of authentication,

hich is generally tied to a PIN or patterns for screen unlocking.

ssentially, even biometric authentication users must necessarily

nter conventional passcodes on a semi-regular basis, and eyes-

ree conditions may apply in some instances. 

In light of this, tactile-only feedback was designed for this study

s a research device for understanding authentication performance
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ith strictly eyes-free interaction. Its functionality, and our eval-

ation of its performance, is not intended to propose a workable

eal-world tool in the present form. Instead, we tried to capture

ow users develop techniques that use additional spatial cues to

ocate key screen features. This spatialization might then assist the

ccuracy and precision of eyes-free authentication gestures, espe-

ially for situations where the user may feel at risk of being a vic-

im of an observer attack or be at risk of a situational impairment.

Given these assumptions, we have undertaken these research

uestions: 

• RQ1 : How well are users able to perform eyes-free authentica-

tion (without tactile feedback) with common methods, such as

PIN and pattern entry, and how is this affected by the length

and visual features of passcodes? 

• RQ2 : Will the relationship between spatial cues to screen lay-

out features (e.g. position of buttons), presented by tactile in-

teraction, enhance the user’s performance when authenticating

eyes-free? 

• RQ3 : When tactile feedback is presented, what approaches will

users develop for using it? 

With these considerations, during the experiment we collected

omplete movement traces, recording all participants’ touch-based

estures during each authentication attempt, totaling 1021 eyes-

ree traces. To extend the work described in [14] , we aimed to un-

erstand the input techniques and strategies the participants de-

eloped when completing the tasks. To do this, we classified all

he traces, and developed a set of verified and grounded labels to

escribe the actions of the participants. 

We further evaluated participants’ performance in the eyes-free

etting in two dimensions, accuracy and precision. For accuracy, we

onsidered the edit-distance (or Levenshtein distance ) between the

nput passcode and the true passcode. The edit-distance consid-

rs the number of additions or removals to transform one string

equence into another. For precision, we developed a geometric

istance measure between in-view and eyes-free traces using Dy-

amic Time Warping (DTW), computing the average distance be-

ween temporally-associated points in the trace. 

Based on this analysis, we found that participants using pat-

erns were more accurate and precise in eyes-free settings, as com-

ared to PINs. Additional tactile training was found to not improve

he accuracy or precision of the participants’ entries. We discuss

sers’ observations regarding this distinction between task perfor-

ances. When applying the classification results, we found that

pecific techniques in both training stages impacted performance.

n particular, traces where participants used the additional tactile

raining aid to understand specifically the location of the starting

igit of their passcode showed the most significant increase in per-

ormance, for both PINs and patterns. In addition to identifying

echniques that improved performance, we also developed a set of

lassifications for eyes-free entry and training. 

The results firstly contribute to an initial baseline of perfor-

ance results and classifications of types for eyes-free interaction

ehaviors, events, and error types. We also show that the describe

trategies for locating the starting location of authentication ges-

ures (i.e. the screen position of the button for a passcode’s first

igit) that correspond with a number of significant effects on user

erformance. These results will help further research on eyes-free

nteraction make accurate comparisons and descriptions regard-

ng this condition. Additionally, these insights will help iterate the

esign of targeted training aids for users, such as blind mobile

echnology users who rely on secure ubiquitous computing for

rivacy-sensitive tasks in shared spaces, who need to authenticate

requently in eyes-free settings (i.e. when at perceived risk of an

bserver attack described in [1] ). Informing users of effective tech-
iques will enable users to enter unlock authentication more confi-

ently, securely, and accurately, away from adversarial observation.

While the tactile aid adopted for this study produced a mostly

egative result from accuracy and edit distance measures, we as-

ert several important contributions from this investigation: 

1. A novel characterization of HCI and security performance

conditions for eyes-free authentication tasks. 

2. A systematic inquiry of accuracy, precision, and timing ef-

fects of input in eyes-free settings. 

3. Establishing the unequivocal performance gap between eyes-

free PIN and pattern entry (although unsurprising, this is the

first time this has been shown empirically). 

4. The extension of existing classification methodology for cod-

ing eyes-free unlock entry methods and events, similar to

error codes established in von Zezschwitz et al. [15] . 

5. Identifying significant relationships between classification 

codes and authentication conditions (e.g. a decrease in Start-

Hunt behavior for pattern passcodes ( χ2 = 8 . 17 , p < 0 . 005 )).

6. Identifying passcodes features for which accuracy and/or

precision significantly deviated from average (e.g. self-

crossing pattern 743521). 

We feel the relationship between the initial training methods

hat users develop using the tactile aid, such as those that help

ocate the starting point of the authentication gesture, are partic-

larly illustrative. Strategies, such as the Start-Hunt trial code and

eturn to Start training code, offer an insight into the ways that

sers cope with the challenges of entering gestures under eyes-

ree conditions. By being able to better understand user strategies

aken, along with events and error types made, this work could

ead to the improved support of targeted training aids for users

ho interact with mobile authentication solutions under eyes-free

onditions. 

. Related work 

.1. Eyes-free interaction techniques 

As mobile technologies reduce in size and provide increasing

mounts of PC-like functionality, these technologies become an at-

ractive option for performing tasks while on-the-go. As informa-

ion is predominantly presented via the graphical user interface,

he user is heavily reliant on visual feedback to perform mobile

asks. 

However, there are scenarios when difficulties are faced

iewing the interface. One of the predominant issues relates

o worries about third parties viewing content, and using this

nformation without permission. Examples described by Yi et al.

16] include (1) environmental factors (e.g. excessive brightness

mpacting the user’s ability to perceive screen content, and in sce-

arios where switching visual attention between the device and

he physical environment poses safety concerns), (2) social factors

e.g. instances where it may be socially-inappropriate to view the

creen, or multi-task in front of others), (3) constraints imposed by

he mobile devices themselves (e.g. difficulties seeing content due

o the crowded nature of content on mobile GUIs), and (4) personal

actors (e.g. no perceived benefit to using vision to performing the

ask). 

Additionally, if the user feels under threat of observer attacks,

he screen may be hidden from view, either shielded by the hand

17] , or placed within a garment or accessory [1] . The user can

hen attempt to use a combination of a mental image of the in-

erface and muscle memory to attempt to interact with the device.

One of the fundamental motivations for eyes-free interaction

s that as it leaves visual attention unoccupied, users are free to

erform additional tasks [18] . However, performing mobile tasks
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Table 1 

Conditions for study. 

Eyes-free In-view 

A) w/o tactile aid B) w/o tactile aid 

A1) 4-digit PIN A3) 4-len Pattern B1) 4-digit PIN B3) 4-len Pattern 

A2) 6-digit PIN A4) 6-len Pattern B2) 6-digit PIN B4) 6-len Pattern 

C) w/ tactile aid D) w/ tactile aid 

C1) 4-digit PIN C3) 4-len Pattern D1) 4-digit PIN D3) 4-len Pattern 

C2) 6-digit PIN C4) 6-len Pattern D2) 6-digit PIN D4) 6-len Pattern 
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when visual and other forms of feedback are not available, can

lead to errors during the input process, and contribute to levels

of frustration among users. To better support users, a range of

techniques have been developed involving gestural input (e.g. [3,5–

7,11,13,19] ), or voice input (e.g. [4,9] ), along with accessible forms

of output to provide feedback to the user (e.g. audio [5,6,10,13,19] ,

and/or tactile output [8,19] either to the user’s hand via the mo-

bile device or via a separate wearable. Similar technologies have

also been designed to support users for whom the visual channel

is restricted or blocked (i.e., individuals who are blind and visually-

impaired [20–24] , with the aim of substituting or complementing

visual feedback with other forms of accessible information). How-

ever, any solutions developed would ideally need to work in con-

junction with existing assistive technologies (e.g., screen readers). 

2.2. Augmenting interfaces to support eyes-free interactions 

To help users orient position and better understand the layout

of content on a mobile interface during eyes-free interactions, non-

visual cues have been added to the interface. The PocketMenu so-

lution [12] for pocket-based mobile device interactions, presents

tactile information to convey the position and state of buttons,

arrayed along the left edge of the mobile phone touchscreen, to

exploit the natural tactile localization that the outer bezel of the

phone affords. Findings from the researchers’ study showed that

PocketMenu outperformed auditory output (VoiceOver) in terms

of completion time, selection errors, and subjective usability, mak-

ing it ideal for interactions where the user is on-the-go [12] . Mc-

Gookin et al. [25] used tactile overlays to support interaction with

a visual touchscreen. Recommendations proposed to support eyes-

free interactions include presenting a discernible button for orien-

tation (i.e. home button), through the use of a tactile aid such as

an adhesive bump-on, and providing feedback for all interactions.

However, care should be taken with the latter, to ensure that the

user is not overloaded with feedback. Oakley and Park [18] note

the trade-off which designers should be aware of - between the

amount of information contained within user interface feedback,

the speed with which this can be achieved and the amount of ef-

fort and attention required to interpret it. This is thought to be

especially important in the eyes-free domain. Existing research has

not directly addressed tactile feedback using built-in actuators for

eyes-free authentication, that would orient users to any passcode

starting position. 

2.3. Device and interaction modification for authentication 

Although not designed specifically to improve accessibility of

entry under eyes-free conditions, researchers have adopted a se-

ries of methods to reduce the likelihood of adversarial observa-

tions. Examples include the Back of Device scheme, proposed by

De Luca et al. [26] , who used a simulated double-sided touchscreen

to allow users to grip the device in two hands, and conceal a sec-

ondary authentication action. This was found to be more resistant

to simulated observation attacks than other common login meth-

ods. In terms of presenting information through alternative senses,

the tactile channel has been a popular method of communicating

information relating to the authentication discreetly to the user.

Examples include the Haptic Wheel [27] , where the user positions

their hand around a rotary dial. After each input, the system ran-

domizes the vibration it emits to protect the user from observer

attack, and the VibraPass system [28] , where the system presents

tactile cues to the user’s hands to indicate when to enter false PIN

numbers to randomize each entry. While this modification added

little time to a typical interaction (averaging 1.68 additional sec-

onds), randomized PINs were intercepted by the simulated shoul-

der surfers 32.5% of the time (versus 100% for non-VibraPass pat-
erns). Other tactile solutions include H4Plock, proposed by Ali

t al. [29] , where the user is required to enter a sequence of

p to four pre-selected on-screen gestures while responding to

actile prompts signaling whether stimuli from a primary or sec-

ndary passcode should be entered. The solution proved to be

ecure against 76.5% of participants, who carried out attacks im-

ediately after watching a set of videos. Participants were able to

xpress strong levels of confidence in using the system. 

Limited work has been conducted exploring existing common

obile authentication mechanisms and their use when the user

eeds to purposely obfuscate the screen to perform tasks in an

yes-free manner. In this paper, we describe a study investigat-

ng PIN and graphical pattern entry using tactile feedback, when

he device is out of view, with the aim to unlocking entry. While

uditory feedback appears to be an appealing solution to this sce-

ario, it may be impractical. Providing an auditory representation

f screen content may be insecure or an unacceptable distraction.

urthermore, auditory cues from a mobile device may be masked

y ambient noise, which may pose challenges when attempting to

uthenticate entry. Tactile feedback may offer a solution to direct-

ng users to make accurate entry gestures (e.g. finding the start

osition of their passcode). A tactile aid to support orientation has

lso been evaluated, as part of this research. To better understand

ser behaviors, we aim to focus on input techniques, and methods

f classifying these. 

. Study design and procedure 

We designed a within-subjects, multi-factor study where par-

icipants were asked to enter authentication sequences under four

rimary conditions. To address RQ1, out-of-view performance was

easured and compared to that of in-view. RQ2 is addressed by

he inclusion of with- and without-tactile feedback conditions. The

onditions are described in more detail below: 

• in-view w/o training aid : participants performed the tasks com-

pletely in-view where they could view the device and the entry

thereon, without a training aid. 

• in-view w/ training aid : participants performed the tasks com-

pletely in-view with a tactile/vibration-based training aid. 

• eyes-free w/o training aid : participants performed the tasks out-

of-view (eyes-free) without a training aid. 

• eyes-free w/ training aid : participants performed the task with a

tactile/vibration-based training aid. 

Within each condition, the participants were assigned a se-

uence of 10 PINs or patterns to enter, of which 5 were length

 PINs/patterns and 5 were length 6 PINs/patterns. We summa-

ize these conditions and the set of authentication passcodes in

ables 1 and 2 , respectively. Passcodes were sourced from real

orld data to establish validity, and selected individually to in-

lude important visual characteristics for analysis, for example left

s. right side shift, and self crossing patterns. For all experiments,

e used a Nexus 5x, which has a common 5.79 ′′ x 2.86 ′′ form fac-

or,5.2 ′′ display, 1080 x 1920 resolution. The steps of the study are

llustrated in Fig. 1 . The procedure and study design are similar to

hat presented in related work [30,31] . 
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Fig. 1. Study procedure: Participants are informed of the make-up of the experiment, and basic demographic and usage data is collected in step (1). In step (2), participants 

are trained on the application interface for data collection for both PINs and patterns, and spend time interacting with the training aid (the first prompt/orient phase). 

Without the training aid, participants in trial A and B proceed directly to the next phase. After completing the training stage, step (3) the trials begin alternating between 

the conditions as presented in Table 1 . 

Table 2 

PINs and patterns used in experiments, and reference for labeling pattern contact 

points. See the Appendix and Supplementary Materials for graphical depictions of 

the authentication. 

PINs Patterns

4-length

1328 0145
1955 1346
5962 3157
6702 4572
7272 6745

6-length

153525 014763
159428 136785
366792 642580
441791 743521
458090 841257
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.1. Study procedure 

As presented in Fig. 1 , the study consists of three steps: (1)

ntroduction/pre-study, (2) training stage, and (3) experimental tri-

ls. In total, the procedure took about 40 min per participant, as

raining time was allocated to familiarize participants with rele-

ant authentication issues, the two training aids, and the methods

f the study. This was undertaken to prepare participants at least

p to a low level of performance that could simulate everyday us-

ge. To begin, in step (1), participants provided informed consent

f participation (as required by the IRB), and were asked a series

f pre-survey questions. This included demographic questions as

ell as questions regarding their mobile phone usage and locking

abits. 

The training phase followed. As we developed a specialized

ata collection application that directed and stepped users through

he procedure (see Fig. 1 for more details), it was necessary to

rovide training and familiarization with the interface to allow

articipants to focus on accuracy and precision using the tactile

eedback rather than any unnecessary memorization tasks. In par-

icular, we wished for participants to be fully aware of each of

he authentication codes (i.e., all the PIN and pattern examples

hat they would encounter so they would be familiar with them

hen entering them in an eyes-free manner). A visual reference
f the passcode to be entered was always available throughout all

onditions, via a laptop showing the passcode. We also wished to

rain participants on the tactile aid that some of the trials would

mploy (condition C and D in Table 1 ), so that they could maxi-

ize the use of the aid. We also wanted to give participants some

imulated trial runs under eyes-free conditions, where they could

ubsequently review their performance by viewing replays of their

ntries, provided within the data collection application. Once par-

icipants were comfortable with the interface, the procedure, and

he tactile feedback aid, the trials for each condition began. The

onditions were randomized using a Latin Square. 

.2. Interface and tactile feedback design 

A web-based application was developed using HTML5 to collect

ata for the study. When opened in a smartphone’s web browser,

he application interfaces closely simulated the layout, font, ani-

ation, luminance, color, and interaction of typical mobile authen-

ication screens. The pattern interface displayed the standard An-

roid OS 3x3 grid, and the PIN interface displayed the standard

–9 digit layout (telephone dial-pad style), including a text dis-

lay that showed entered digits (which are obfuscated to an “∗”

fter 1 s), a back/delete button next to the display, and an “OK”

utton to the right of the “0” to submit the PIN. Graphical depic-

ions of the application are presented in Fig. 1 with the study’s

rocedures. 

The data collection applications interface is designed to assist

he study procedure by presenting the participant with an authen-

ication code and then directing users to place the device in the

yes-free setting to complete the experiment. Additionally, to sup-

ort RQ3, the interface implemented the tactile feedback aid if the

ondition called for that. The interface application also collected

nd stored traces of all touch interactions. A trace consisted of the

 - and y -coordinate of a touch event and the time in which that

vent occurred. To direct participants in the eyes-free setup, the in-

erface played audible “beeps” to indicate to the participants tran-

ition between the steps of the experiment. 

To facilitate the eyes-free setting, we used a shielding box in

hich the participant can interact with and hold the device in a

atural posture, but cannot see the device itself (see Fig. 2 ). Cut-

uts in the sides of the shielding box allowed the researchers to

bserve the interaction, which the participant is unable to view.

e placed no restrictions on how the user chose to interact with

https://www.dropbox.com/s/m1ujrtt32a7blg2/suplm.zip?dl=0
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Fig. 2. Participant holding the LG Nexus 5x test phone inside the eyes-free obser- 

vation box. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Demographics of participants. 

Male Female Total 

total 12 14 26 

age 18–24 7 7 14 

24–34 5 7 12 

OS Android 8 5 13 

iOs 4 9 13 

Unlock choice Fingerprint 5 10 15 

PIN-6 2 7 9 

PIN-4 5 4 9 

Pattern 4 2 9 

No-lock 1 1 2 

Level of confidence 

(1–5 Likert) 

Phone security 3.75 3.79 3.77 

(STD: 1.42) (STD: 0.7) (STD: 1.07) 

Shoulder surfing 3.08 3.79 3.46 

(STD: 1.24) (STD: 0.97) (STD: 1.140 
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1 Supplementary materials - https://www.dropbox.com/s/m1ujrtt32a7blg2/suplm. 

zip?dl=0 
the device, i.e, using one or two hands, as long as they were not

able to view the device directly. 

The interface also incorporated tactile feedback in the form of

vibrations for touches that occurred within a digit/point. This fea-

ture was not originally included in our experiment, and was added

after prototyping the procedures based on participant feedback.

We believe this is a reasonable choice given that most unlock au-

thentication systems already incorporate this style of feedback. 

In the conditions with the tactile training aid, participants were

able to use the aid to orient with the interface prior to begin-

ning the eyes-free authentication stage. The orientation occurred

during continual touching, where a participant can swipe around

the screen, receiving tactile/vibrational feedback when swiping

over a digit/point. If the digit/point is the first digit/point in the

PIN/pattern, a vibration cue encoded with a faster rhythm was

used to differentiate this point from the others; however, no other

passcode specific feedback was provided. Once the participant lifts

their finger, ending the continuous swiping, the interface “beeps”

indicating they should attempt to enter the authentication. Trace

information was collected during tactile training phase as well in

the same format as in the authentication phase. 

3.3. Pre- and post-Survey procedures 

In steps (1) and (3), we asked participants a set of pre- and

post-survey questions. Copies of the questions are presented in

the Appendix. The questions included basic demographic informa-

tion, as well as inquiries regarding mobile device usage, such as

OS, time, and locking behavior. Reported statistics are available in

Table 3 . 

In the pre-survey portion, participants were also asked a se-

ries of questions about how they chose passcodes, their concern

for phone security, experiences with device theft or unauthorized

access, and how those factors might have affected their behavior.

Two questions were Likert responses, on a scale from 1 to 5: 

• How concerned are you with keeping your phone secure (1, not at

all concerned, to 5, highly concerned)? 

• How concerned are you typically, in public spaces, with the threat

of someone watching you authenticate and collecting your pass-

codes (1, not at all concerned, to 5, highly concerned). 

Responses to these questions did not significantly correlate with

performance on the task, but did provide some information on the
articipants usage and locking behavior and mindset that is rele-

ant to the task. The responses are also presented in Table 3 . 

Following the tasks, during the post-survey, we asked questions

egarding the ease or difficulty of the task itself, with or without

he tactile feedback aid. These results are presented in the results

ection of the paper. 

.4. Passcode selection 

To select the passcodes, both PINs and patterns, we sought to

se a representative sample from real world data for validity, that

lso had good spatial features in terms of the regions of the screen

hat must be touched. As such, we used the set of PINs and pat-

erns published in related work [32,33] . The set of passcodes are

resented in Table 2 and visuals are provided in the Appendix and

he Supplementary Materials 1 . 

Following [32] , the PINs from the study were culled from pub-

icly leaked password sets, using sequences of 4 or 6 digits. This is

n acceptable practice in simulating PINs from related work [34] ,

s good realistic data is not available for purposes of research.

atterns from [32] were selected from [35] using spatial criteria,

here the authors ensured good spatial criteria: up, down, left,

ight, and neutral shifts. 

.5. Participants and recruitment 

Participants were recruited via a university mailing list, along-

ide the use of the snowball sampling technique. The latter was

sed with the aim of recruiting a wider, more representative group

f mobile device users. There were 26 individuals recruited, com-

rising of 12 male and 14 female younger adults. Participants were

ully sighted mobile users, evenly divided between using iOS and

ndroid. For their current unlock conditions, many used their fin-

erprint in addition to another lock mechanism, such as a PIN or

attern. Only 2 participants had no lock authentication on their

martphone. Details are provided in Table 3 . 

.6. Realism and limitations 

As the study was performed under controlled in-person condi-

ions, the set-up introduced some constraints which reduced the

evel of realism. Examples include the slightly extended posture of

he users arm, holding and pointing with the mobile device when

nteracting within the shielding box. Further work will examine

ore natural methods of interacting with the device under more

https://www.dropbox.com/s/m1ujrtt32a7blg2/suplm.zip?dl=0
https://www.dropbox.com/s/m1ujrtt32a7blg2/suplm.zip?dl=0
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e  
ealistic constraints (e.g. the impact of the user entering passcodes

hile the device is located in his/her pocket or bag). 

In order to provide a baseline control, participants were asked

o perform in-view PIN and pattern conditions, with/without the

resence of a tactile aid. Due to the randomization of conditions,

alf of the group of participants performed this condition after the

yes-free condition. This was conducted to minimize the likelihood

f an order effect. It was acknowledged that this may have led to

 slight performance disadvantage for users performing eyes-free

rst, as the in-view conditions may be considered equivalent to a

mall amount of extra training. 

In terms of limitations, passcodes were presented in the same

rder to all participants under each condition. Although passcodes

id not necessarily increase in complexity during each condition, it

s acknowledged that this may have contributed to an effect. 

While the number of participants recruited for our study either

xceeded or remained in line with those selected for other studies

elating to eyes-free interaction (e.g. [12,25] ), the sample selected

or the study described in this paper, can be considered small in

ize (n = 26), and limited in range of demographic features. While

ignificance was found within our results, challenges can be faced

hen samples are very small, which can impact the power of the

tudy and increase the margin of error. Similarly, the representa-

iveness of findings may be impacted if the samples are too lim-

ted in terms of age. The sample in our study reflected the uni-

ersity environment (i.e. younger adults). It is also acknowledged

hat participants who were primarily iOS users may have been at a

light disadvantage in levels of experience interacting with stroke-

ased patterns, as these types of mechanism are found on devices

unning the Android OS. However, training was provided to famil-

arize users with the process, which helped to offset any poten-

ial disparity. Finally,as participants came from a university, issues

f bias may have also been introduced from the working envi-

onment. While it is not uncommon in authentication studies to

ecruit participants comprising mainly of students, future studies

ould aim to widen the pool, with the aim of recruiting a more

iverse sample, who are more representative of the array of in-

ividuals who use mobile devices (e.g., participants with varying

evels of concern about security). 

. Results 

In this section, we present the results of both the performance

f the participants, as well as the classification of the traces and

raining techniques. We begin with a description of the metrics

pplied, followed by the performance results, and finish with the

lassification results. 

.1. Performance metrics 

Accuracy. A crucial and informative metric to determine ef-

ectiveness is simply how accurately participants performed the

asks in eyes-free settings. Of course, authentication is a binary re-

ponse: either participants entered the passcodes correctly or not.

s we are also interested in granularity of performance, we also

onsidered the edit distance , normalized to the distance of each

asscode. More precisely, we considered accuracy as a fraction cal-

ulated for a passcode p and entered code p ′ 

cc = 

len (p) − d(p, p ′ ) 
len (p) 

here len ( p ) is the length of the passcode and d ( p, p ′ ) is the edit

istance between the entered and expected passcode. The edit

istance (or Levenshtein distance) computes the number of addi-

ions, subtractions, or replacements needed to transform one se-

uence into another. For example, if the task requires entering the
asscode 123456, and the participant entered 12356 (or any pass-

ode off by one in some dimension), then the accuracy would be

(6 − 1) / 6 or 0.83 as the edit distance is 1. This is a generous ac-

uracy measure in the sense that the edit distance is a greedy al-

orithm and tries to aggressively match strings. However, given the

ature of the task, eyes-free entry, we feel that this provides a bet-

er reflection on participant effort and performance than a binary

es/no. 

Precision. As a second measure of performance, we wish to

ompare the traces of the eyes-free entry to that of the in-view

ntry. Recall that interface application collects detailed trace infor-

ation for each touch event in the form of d = (x, y, t) where x is

 width coordinate, y is a height coordinate, and t is a time in-

ication from the start of the interaction. The goal is to develop

 method that allows two sequences, which may be time dilated

ith different number of points, to be compared in the 2-D space.

The solution to this was the use of Dynamic Time Warping

DTW), which has been used extensively in the space of free-form

esture authentication [26,36–38] . DTW takes two time series se-

uences and aligns one to the other to best match the time dila-

ion present. For example, in Fig. 3 (a), the blue trace is the eyes-

ree trace and the red trace is the in-view trace. Notice that the

lue trace (eyes-free) is longer in time (will have more points in

he trace) and also have more loops due to mistakes during en-

ry. Comparing these two traces directly, such as point by point,

ould indicate that the participant performed the authentication

ask quite poorly, but in fact, here, this is an 100% accurate entry

f pattern 136785. 

With DTW, we can better show the precision of the user. First,

TW will associate points in one time series with the other based

n a distance measure, which is Euclidean in this case. In Fig. 3 (a),

his matching is represented by the green lines. Based on the

atching, point reduction is performed by averaging the points in

he blue trace that match a single point in the red trace, giving

s Fig. 3 (b). The last step in the metric is to take the average dis-

ance between two matched points, again using Euclidian, which

epresents the precision of the trace in the eyes-free setting to the

n-view one. 

We treated PIN traces as a series of distinct touch event traces

ince each touch could really be a drag/swipe and consist of mul-

iple points in the trace. To apply the DTW distance metric for

recision, we merged the touch event traces into a single trace,

ia concatenation, and then applied the same routine as described

reviously. This resulted in extra connections when the partici-

ant transitioned between touch events, but this information is

seful when considering the precision as the direction and regu-

arity of those transitions are measurable and meaningful. We ex-

luded the last touch event from the analysis, pressing “OK” as this

as not always successful in the eyes-free conditions, and the re-

earcher monitoring the experiment would need to assist in this

rocess. 

.2. Performance results 

The primary performance results are presented in Table 4 with

er passcode breakdowns in Tables 5 and 6 . We applied the two

etrics (accuracy and precision) described previously to conditions

hat considered the use or non-use of the tactile aid with the two

nlock authentications, PINs and patterns. Additionally, we con-

idered two further measurements, the precision of just the start

oint, calculated as the Euclidean distance between the first touch

vent in the in-view to the eyes-free setting, and the time (in mil-

iseconds) of entering the authentication in the eyes-free setting. 

As observed in Table 4 , the impact of the tactile aid is rather

imited. There were small effects for patterns, as compared to no

ffect in PINs, and the effect was most notable when it comes
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Fig. 3. Example of using DTW to do point reduction: In (a) The blue trace is eyes-free and the red trace is in-view, and the green lines show the points in the blue trace 

time sequence matched to points in the red trace; and in (b), associated points in the blue trace are merged via Euclidean average to form a set of singly matched points to 

the red trace. The precision metric is then the average Euclidean distance between the matched point of the blue trace with the red one. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 

Performance results: acc. is the accuracy using the edit-distance measure, prec. is the precisions using the DTW method, start is the 

Euclidian distance of the start point, and time refers to the number of milliseconds. As the data followed a normal distribution, we used 

a two-tailed t -test. Horizontally, the t -test compared Pattern vs. PIN results, and vertically, the t -test compared w/ and w/o the tactile aid. 

Effect size of α = 0 . 05 was considered significant. Only traces that were complete and collected without errors were considered. 

Tactile Aid Pattern PIN t -test 

acc. w/o ( μ = 0 . 80 , σ = 0 . 28 , n = 250 ) ( μ = 0 . 72 , σ = 0 . 30 , n = 260 ) t = 3 . 08 , p < 0 . 05 ∗

w/ ( μ = 0 . 83 , σ = 0 . 27 , n = 253 ) ( μ = 0 . 71 , σ = 0 . 30 , n = 258 ) t = 4 . 78 , p < 0 . 001 ∗∗

t -test t = 1 . 17 , p = 0 . 243 t = −0 . 49 , p = 0 . 628 

prec. w/o ( μ = 80 . 93 , σ = 60 . 40 , n = 250 ) ( μ = 145 . 18 , σ = 90 . 29 , n = 260 ) t = −9 . 41 , p < 0 . 001 ∗∗

w/ ( μ = 83 . 21 , σ = 69 . 74 , n = 253 ) ( μ = 154 . 49 , σ = 94 . 11 , n = 258 ) t = −9 . 71 , p < 0 . 001 ∗∗

t -test t = 0 . 39 , p = 0 . 695 t = 1 . 15 , p = 0 . 251 

start w/o ( μ = 80 . 51 , σ = 67 . 62 , n = 250 ) ( μ = 96 . 56 , σ = 109 . 79 , n = 260 ) t = −1 . 98 , p < 0 . 05 ∗

w/ ( μ = 68 . 35 , σ = 61 . 96 , n = 253 ) ( μ = 91 . 77 , σ = 86 . 46 , n = 258 ) t = −3 . 51 , p < 0 . 001 ∗∗

t -test t = −2 . 10 , p < 0 . 05 ∗ t = −0 . 55 , p = 0 . 582 

time (ms) w/o ( μ = 7134 . 86 , σ = 6672 . 95 , n = 250 ) ( μ = 8597 . 35 , σ = 6314 . 62 , n = 260 ) t = −2 . 54 , p < 0 . 05 ∗

w/ ( μ = 7500 . 12 , σ = 5359 . 63 , n = 253 ) ( μ = 10227 . 07 , σ = 8236 . 91 , n = 258 ) t = −4 . 43 , p < 0 . 001 ∗∗

t -test t = 0 . 68 , p = 0 . 499 t = 2 . 53 , p < 0 . 05 ∗

Table 5 

Performance Metrics per-Pattern: Comparisons were made with-out (w/o) and with (w/) the tactile aid, and a t -test is 

used as the data is normal. Note that not all participants provided valid traces, and invalid traces were excluded. 

Pattern Metric w/o Tactile aid w/ Tactile aid t -test 

0145 acc ( μ = 0 . 81 , σ = 0 . 27 , n = 25 ) ( μ = 0 . 86 , σ = 0 . 27 , n = 25 ) t = −0 . 66 , p = 0 . 510 

prec ( μ = 82 . 66 , σ = 50 . 16 , n = 25 ) ( μ = 71 . 77 , σ = 62 . 11 , n = 25 ) t = 0 . 68 , p = 0 . 499 

1346 acc ( μ = 0 . 88 , σ = 0 . 19 , n = 25 ) ( μ = 0 . 87 , σ = 0 . 22 , n = 26 ) t = 0 . 25 , p = 0 . 801 

prec ( μ = 57 . 19 , σ = 28 . 84 , n = 25 ) ( μ = 72 . 96 , σ = 37 . 22 , n = 26 ) t = −1 . 69 , p = 0 . 098 

3157 acc ( μ = 0 . 78 , σ = 0 . 31 , n = 25 ) ( μ = 0 . 75 , σ = 0 . 28 , n = 26 ) t = 0 . 36 , p = 0 . 717 

prec ( μ = 89 . 60 , σ = 77 . 38 , n = 25 ) ( μ = 87 . 02 , σ = 45 . 19 , n = 26 ) t = 0 . 15 , p = 0 . 885 

4572 acc ( μ = 0 . 92 , σ = 0 . 14 , n = 25 ) ( μ = 0 . 80 , σ = 0 . 29 , n = 25 ) t = 1 . 86 , p = 0 . 068 

prec ( μ = 67 . 62 , σ = 31 . 71 , n = 25 ) ( μ = 130 . 00 , σ = 125 . 20 , n = 25 ) t = −2 . 41 , p = 0 . 020 ∗

6745 acc ( μ = 0 . 68 , σ = 0 . 38 , n = 25 ) ( μ = 0 . 74 , σ = 0 . 42 , n = 25 ) t = −0 . 53 , p = 0 . 595 

prec ( μ = 111 . 61 , σ = 96 . 17 , n = 25 ) ( μ = 90 . 51 , σ = 80 . 56 , n = 25 ) t = 0 . 84 , p = 0 . 405 

014763 acc ( μ = 0 . 81 , σ = 0 . 26 , n = 25 ) ( μ = 0 . 87 , σ = 0 . 24 , n = 26 ) t = −0 . 74 , p = 0 . 461 

prec ( μ = 82 . 28 , σ = 68 . 34 , n = 25 ) ( μ = 73 . 37 , σ = 66 . 77 , n = 26 ) t = 0 . 47 , p = 0 . 640 

136785 acc ( μ = 0 . 80 , σ = 0 . 23 , n = 25 ) ( μ = 0 . 86 , σ = 0 . 22 , n = 25 ) t = −0 . 93 , p = 0 . 356 

prec ( μ = 70 . 12 , σ = 37 . 28 , n = 25 ) ( μ = 80 . 78 , σ = 53 . 51 , n = 25 ) t = −0 . 82 , p = 0 . 418 

642580 acc ( μ = 0 . 78 , σ = 0 . 25 , n = 25 ) ( μ = 0 . 79 , σ = 0 . 23 , n = 25 ) t = −0 . 20 , p = 0 . 844 

prec ( μ = 78 . 69 , σ = 40 . 08 , n = 25 ) ( μ = 109 . 83 , σ = 76 . 32 , n = 25 ) t = −1 . 81 , p = 0 . 077 

743521 acc ( μ = 0 . 77 , σ = 0 . 27 , n = 25 ) ( μ = 0 . 92 , σ = 0 . 17 , n = 26 ) t = −2 . 34 , p = 0 . 024 ∗

prec ( μ = 89 . 66 , σ = 69 . 72 , n = 25 ) ( μ = 54 . 70 , σ = 26 . 51 , n = 26 ) t = 2 . 38 , p = 0 . 021 ∗

841257 acc ( μ = 0 . 80 , σ = 0 . 31 , n = 25 ) ( μ = 0 . 86 , σ = 0 . 22 , n = 24 ) t = −0 . 79 , p = 0 . 434 

prec ( μ = 79 . 91 , σ = 49 . 08 , n = 25 ) ( μ = 62 . 14 , σ = 32 . 16 , n = 24 ) t = 1 . 49 , p = 0 . 142 
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Table 6 

Performance Metrics per-PIN: Comparisons were made with-out (w/o) and with (w/) the tactile aid, and a t -test is used 

as the data is normal. Note that not all participants provided valid traces, and invalid traces were excluded. 

PIN Metric w/o Tactile aid w/ Tactile aid t -test 

1328 acc ( μ = 0 . 73 , σ = 0 . 32 , n = 26 ) ( μ = 0 . 69 , σ = 0 . 33 , n = 26 ) t = 0 . 43 , p = 0 . 672 

prec ( μ = 110 . 42 , σ = 54 . 18 , n = 26 ) ( μ = 108 . 75 , σ = 41 . 15 , n = 26 ) t = 0 . 12 , p = 0 . 901 

1935 acc ( μ = 0 . 73 , σ = 0 . 36 , n = 26 ) ( μ = 0 . 62 , σ = 0 . 36 , n = 26 ) t = 1 . 06 , p = 0 . 296 

prec ( μ = 149 . 54 , σ = 125 . 19 , n = 26 ) ( μ = 169 . 98 , σ = 104 . 29 , n = 26 ) t = −0 . 64 , p = 0 . 525 

5962 acc ( μ = 0 . 82 , σ = 0 . 20 , n = 26 ) ( μ = 0 . 72 , σ = 0 . 40 , n = 26 ) t = 1 . 09 , p = 0 . 280 

prec ( μ = 136 . 19 , σ = 81 . 36 , n = 26 ) ( μ = 166 . 62 , σ = 119 . 08 , n = 26 ) t = −1 . 08 , p = 0 . 287 

6702 acc ( μ = 0 . 65 , σ = 0 . 29 , n = 26 ) ( μ = 0 . 63 , σ = 0 . 28 , n = 26 ) t = 0 . 24 , p = 0 . 810 

prec ( μ = 176 . 51 , σ = 98 . 64 , n = 26 ) ( μ = 172 . 79 , σ = 97 . 10 , n = 26 ) t = 0 . 14 , p = 0 . 891 

7272 acc ( μ = 0 . 81 , σ = 0 . 31 , n = 26 ) ( μ = 0 . 67 , σ = 0 . 31 , n = 26 ) t = 1 . 56 , p = 0 . 124 

prec ( μ = 174 . 64 , σ = 112 . 77 , n = 26 ) ( μ = 176 . 16 , σ = 100 . 48 , n = 26 ) t = −0 . 05 , p = 0 . 959 

153525 acc ( μ = 0 . 78 , σ = 0 . 28 , n = 26 ) ( μ = 0 . 82 , σ = 0 . 21 , n = 26 ) t = −0 . 66 , p = 0 . 515 

prec ( μ = 115 . 73 , σ = 62 . 08 , n = 26 ) ( μ = 136 . 91 , σ = 78 . 55 , n = 26 ) t = −1 . 08 , p = 0 . 286 

159428 acc ( μ = 0 . 69 , σ = 0 . 26 , n = 26 ) ( μ = 0 . 72 , σ = 0 . 25 , n = 26 ) t = −0 . 45 , p = 0 . 654 

prec ( μ = 125 . 48 , σ = 53 . 41 , n = 26 ) ( μ = 144 . 00 , σ = 92 . 45 , n = 26 ) t = −0 . 88 , p = 0 . 380 

366792 acc ( μ = 0 . 66 , σ = 0 . 32 , n = 26 ) ( μ = 0 . 71 , σ = 0 . 24 , n = 26 ) t = −0 . 65 , p = 0 . 517 

prec ( μ = 178 . 64 , σ = 99 . 21 , n = 26 ) ( μ = 196 . 46 , σ = 107 . 88 , n = 26 ) t = −0 . 62 , p = 0 . 538 

441791 acc ( μ = 0 . 72 , σ = 0 . 27 , n = 26 ) ( μ = 0 . 81 , σ = 0 . 17 , n = 24 ) t = −1 . 46 , p = 0 . 151 

prec ( μ = 173 . 36 , σ = 84 . 65 , n = 26 ) ( μ = 163 . 50 , σ = 73 . 30 , n = 24 ) t = 0 . 44 , p = 0 . 663 

458090 acc ( μ = 0 . 65 , σ = 0 . 32 , n = 26 ) ( μ = 0 . 71 , σ = 0 . 28 , n = 26 ) t = −0 . 62 , p = 0 . 540 

prec ( μ = 111 . 25 , σ = 51 . 50 , n = 26 ) ( μ = 110 . 44 , σ = 53 . 00 , n = 26 ) t = 0 . 06 , p = 0 . 956 
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m  
o the start point in the pattern. Using the aid showed a signifi-

ant improvement in starting accuracy as compared to not using

he tactile aid. This is reasonable given that the tactile aid per-

ormed different vibration feedback for the first point/digit in the

asscode. As the t -test performed is two-tailed, one can consider

he significance for the accuracy measure is somewhat intriguing,

p = 0 . 243 / 2 = 0 . 1215 . While this effect is not-significant as a one-

ailed result, it is encouraging for tactile aids in the eyes-free set-

ing, perhaps a better design based on feedback from this study,

ould improve the accuracy of entry. 

The performance of the tactile aid for PINs can only be ex-

lained as detrimental. The eyes-free task for PINs is already sig-

ificantly harder, in all conditions, but the addition of the aid

howed worse performance for precision with no effect on accu-

acy (maybe even hurting accuracy). The time increase of using the

id is also striking and much larger than the time increase for pat-

erns. We can speculate as to the reason for this disparity from

articipants post hoc responses regarding eyes-free PIN entry. It

ay be that the task is already challenging enough (concentrating

n a series of discrete gestures hitting PIN digits) that the cognitive

urden of integrating the aids tactile feedback only decreased the

articipants abilities. This is an area of future investigation, sug-

esting that different kinds of tactile aids may be needed for dif-

erent authentication systems in the eyes-free setting. 

When observing performance impacts of the tactile aid on a

er-passcode basis, see Tables 5 and 6 , there is no noticeable ef-

ect for either accuracy or precision. In only one case, for pat-

ern 743521, was there a significant difference gained from us-

ng the tactile aid for both accuracy and precision. This pattern

equired doubling-back, (see the Supplemental Material for a

raphical depiction) and the tactile aid may have provided some

eference points for that process which improved performance.

owever, there were some negative results associated with using

he tactile aid. For pattern 4572, there was an effect observed for

recision, as the tactile aid increased the precision score, which de-

rades the precision of the pattern (smaller distances are better).

his may have been the case that due to the compactness of this

attern, the tactile aid encouraged participants to take more elab-

rate/longer paths than they would have normally. In either case,

his is further evidence that introducing aids for the eyes-free set-

ing needs further investigation. 
.3. Classification metrics 

As a further metric for understanding the techniques that par-

icipants applied to eyes-free authentication, we developed a set

f classification labels over both the authentication task and the

actile training. These labels describe observed types of errors (e.g.

ransposed or Missed OK) or actions (e.g. Went Well or Start Hunt)

ade during passcode entry by participants, or apparent strategies

sed to spatialize using the tactile aid (e.g. Wide Explorer or Start

oint Only). For consistency in label development, we adopted a

imilar approach to that of Micinski et al. [39] and von Zezschwitz

t al. [15] . Three researchers independently classified sub-sets, then

et periodically to resolve differences between categorization la-

els. Although the definitions of some labels were mutually exclu-

ive (e.g. a gesture could not be both Went Well and also include a

tart Middle or End Hunt event), multiple compatible labels were

pplied to completely describe each gesture. Once agreement was

eached on labels, one researcher labeled all the data while the

ther labeled a 15% random sample. Comparing the ratings la-

els, there was strong agreement between the two researchers us-

ng Cohens kappa ( κ = 0 . 900 , p < 0.0005). Additionally, during this

rocedure the researchers marked traces as invalid any observed

iss-touches or other errors, which were then removed from the

ata sets. 

The procedure produced six training labels and ten authentica-

ion labels. Visual examples of these labels are provided in Figs. 4

nd 5 and descriptions of the labels, with counts, are presented in

ables 7 and 8 . Animated examples of the classifications are pro-

ided on the supplementary web site 2 . 

.4. Classification results 

The frequency results for the different classification labels are

resented in Tables 7 and 8 . The frequencies are calculated by

he total traces in the categories that were labeled as valid. Some

races were excluded due to either collection errors or misunder-

tandings on the part of the participant. 

For the training classifications (see Table 7 ), the most common

ethod for entering PINs was to perform a partial exploration of
2 Supplementary web site - https://unlockclassification.wordpress.com 

https://www.dropbox.com/s/m1ujrtt32a7blg2/suplm.zip?dl=0
https://unlockclassification.wordpress.com
https://unlockclassification.wordpress.com
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Table 7 

Descriptions of the Training Classifications and Frequencies: Frequencies are calculated based on the total number of traces that 

received the label. Note that the trace can receive multiple labels, for example, it is possible to trace the path and return to the 

start. There was a total of 496 training traces considered, 248 pattern traces and 248 PIN traces. 

Classification name Description PIN Pattern 

Random touch Short gesture away from path 4 (1.61%) 0 (0.00%) 

Partial explore Touched part of space or path 100 (40.32%) 57 (22.98%) 

Start point only Only traced the area around the first digit 59 (23.79%) 47 (18.95%) 

Return to start Returns to starting point at end of gesture 37 (14.92%) 37 (14.92%) 

Wide explore Touched most of the space 32 (12.90%) 23 (9.27%) 

Traced path Traced the path of the entire passcode 54 (21.77%) 119 (47.98%) 

Table 8 

Descriptions of the Entry Classifications: Frequencies are calculated based on the total number of traces that received that label. Note that 

the trace can receive multiple labels, for example, it is possible to trace the path and return to the start. There was a total of 993 entry 

traces considered, 490 pattern traces and 503 PIN traces. 

PIN Pattern 

Classification name Description w/o Tactile aid w/ Tactile aid w/o Tactile aid w/ Tactile aid 

Start-hunt Missed or hunted for 1st digit/point 61 (12.13%) 49 (9.74%) 66 (13.47%) 37 (7.55%) 

End-hunt Missed or hunted for last digit/point 77 (15.31%) 69 (13.72%) 64 (13.06%) 66 (13.47%) 

Middle-hunt Missed or hunted for midrange digits 104 (20.68%) 116 (23.06%) 95 (19.39%) 103 (21.02%) 

Went well No major errors 111 (22.07%) 94 (18.69%) 105 (21.43%) 117 (23.88%) 

Gave up Just gave up and moved randomly 2 (0.40%) 1 (0.20%) 2 (0.41%) 6 (1.22%) 

Transposed Entered right shape in wrong place 11 (2.19%) 3 (0.60%) 12 (2.45%) 3 (0.61%) 

Swift Moved swiftly 1 (0.20%) 5 (0.99%) 1 (0.20%) 1 (0.20%) 

Hesitant Moved hesitantly 2 (0.40%) 1 (0.20%) 1 (0.20%) 0 (0.00%) 

Used delete (PIN-only) Used Delete button to back up 11 (2.19%) 8 (1.59%) − −
Missed ok (PIN-only) Tried to tap OK but missed > 2–3 times 43 (8.55%) 43 (8.55%) − −

Table 9 

Performance Metrics for Training Classifications: Use Kruskal’s H-test to test for significance. 

PIN Pattern 

Classification acc. prec acc. prec. 

Random touch ( μ = 0 . 69 , σ = 0 . 32 ) ( μ = 142 . 75 , σ = 140 . 53 ) − −
Partial explore ( μ = 0 . 73 , σ = 0 . 29 ) ( μ = 139 . 14 , σ = 78 . 03 ) ( μ = 0 . 78 , σ = 0 . 27 ) ( μ = 84 . 08 , σ = 47 . 74 ) 

Start point only ( μ = 0 . 78 , σ = 0 . 31 ) ( μ = 126 . 27 , σ = 77 . 20 ) ( μ = 0 . 88 , σ = 0 . 18 ) ( μ = 75 . 29 , σ = 57 . 68 ) 

Return to start ( μ = 0 . 76 , σ = 0 . 24 ) ( μ = 124 . 19 , σ = 59 . 80 ) ( μ = 0 . 91 , σ = 0 . 22 ) ( μ = 66 . 41 , σ = 53 . 93 ) 

Wide explore ( μ = 0 . 69 , σ = 0 . 31 ) ( μ = 194 . 93 , σ = 114 . 63 ) ( μ = 0 . 80 , σ = 0 . 38 ) ( μ = 100 . 48 , σ = 94 . 65 ) 

Traced path ( μ = 0 . 67 , σ = 0 . 25 ) ( μ = 169 . 40 , σ = 88 . 19 ) ( μ = 0 . 86 , σ = 0 . 26 ) ( μ = 75 . 51 , σ = 57 . 97 ) 

H = 8 . 268 , p = 0 . 14 H = 17 . 74 , p < 0 . 005 ∗∗ H = 10 . 34 , p < 0 . 05 ∗ H = 11 . 70 , p < 0 . 05 ∗

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10 

Likert Responses to Ease of Tactile Aid: Response range from 1 to 

5 (1, very easy, to 5, very hard). 

PIN Pattern 

Ease of learning μ = 2 . 41 , σ = 1 . 25 μ = 1 . 89 , σ = 0 . 93 

Ease of use μ = 3 . 44 , σ = 1 . 01 μ = 2 . 74 , σ = 1 . 13 
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the interface. This kind of exploration would entail a basic ori-

entation of the space which would make the participant aware

of the digit-buttons. The next two most common training classi-

fications for PINs are just exploring the start point (Start Point

Only, orienting to where to begin the PIN entry), or tracing out

the entire gesture for entering all of the digits in the PIN (Traced

Path). 

For patterns, during training, unsurprisingly, the most common

technique we observed was traces that retraced the path of the

pattern. This makes sense given the swiping nature of the pattern.

Partial exploration of the grid space and exploring just the start-

point only are also quite common, but only half as common as re-

tracing. 

When considering the classifications during entry, the traces

are divided into those that use the tactile aid and which do not.

There was no difference statistically in the presence of a label (us-

ing χ2 ) except for a significant decrease in Start-Hunt for patterns

( χ2 = 8 . 17 , p < 0 . 005 ). Since the tactile aid provided distinct feed-

back when the participant touched the start point, a decrease in

the amount of hunting for the start point is expected. While there

was a similar decrease for PIN entry using the aid, it was not sig-

nificant ( χ2 = 1 . 31 , p = 0 . 25 ). 

s  
In Table 9 , we analyze the impact of training label on per-

ormance. For PINs, the accuracy shows no significant differences

cross labels. However, we do see a difference for precision. No-

ably, both Start Point Only and Return to Start have much lower

istances (higher precision). Additionally, those that performed a

ide exploration had the highest distance (lower precision). This

uggests that training with PINs should encourage a tighter train-

ng regime, perhaps confined to the start digit. 

The training classification for patterns had significant differ-

nces for both accuracy and precision. Most notably, the Return to

tart label showed much higher accuracy (0.91) and the lowest in

he distance metric (highest precision). We also see strong perfor-

ance gains for both Start Point Only and Traced Path. These re-

ults suggest that when designing training aids for patterns, just
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Fig. 4. Samples of training classification: see Table 8 for description of each classi- 

fication type. 
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Fig. 5. Samples of entry classification: see Table 8 for description of each classifi- 

cation type. 
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ike PINs, focusing on the start point is important. However, for

atterns, encouraging a retrace of the path of the pattern can also

e helpful. 

.5. Discussion from participants 

Quantitative findings suggested that ease of learning and ease

f use with the tactile aid were both harder for PIN compared

o patterns ( Table 10 ), In a similar vein, post-hoc discussion with

articipants revealed that challenges in the PIN condition were

ore frequently reported (n = 7, three preferred the PIN aid oper-

tion). Several reasons for this were mentioned, most commonly

he difficulty of accurately making long jumps between PIN num-

ers (e.g. 7 to 3 or 1 to OK, n = 6). Participants also found more
losely spaced PIN buttons a challenge (n = 3), as well as accurately

itting the OK button at the end of a PIN sequence (n = 3). Sev-

ral specific passcode features, such as PIN digits located along the

dge opposite a thumb for one-handed users (n = 3), and consecu-

ive numbers (n = 1) were also mentioned as challenging factors. 

More generally, participants reported the 6-digit PIN and grid

onditions as being more difficult to perform (n = 6), and felt the

pp itself might be hard to use discreetly in public (n = 5). There

as positive feedback on the utility of the distinct start point fea-

ure (n = 4), which could guide the user to accurately begin their

esture. Regarding this feature, one participant stated that “it’s all

bout the start” in maintaining spatialization throughout authenti-

ation gestures. Several participants also suggested giving the OK

nd Delete buttons a different vibrotactile coding to enhance the

id. 

Two participants related feeling the aid worked best with a

wo-handed index pointer grip, but this challenged them because

hey typically gripped their phones one-handed, with a thumb

ointer. Another participant, also typically a one- handed thumb

rip user, noted that PIN jumps to central digits (e.g. 5 and 8)

ere much easier than jumps to digits on the outer edges (e.g. 1, 7,

nd 9). 
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veloped by users when they entered different types of passcodes on a 

orrying about the threat of observer attacks, or when facing situational 

uld effectively assist users with this type of screen unlocking. We did 

ehaviors for common passcode entry methods. Looking at accuracy and 

yes-free unlocking overall (without tactile feedback) is understandably 

racy and precision, likely because of the numerous jumps the pointing 

ere aided by tactile feedback, as addressed by RQ2, we see a small 

rwise, the tactile only feedback employed in this study is not helpful 

 taken to unlock. Movement traces were classified to better understand 

, per RQ3. We found that strategies that focused on locating the first 

roved by the Start Point Only and Return to Start strategies. Similarly, 

Return to Start strategy. These classifications have been described, and 

ment traces on mobile touchscreen technologies. These insights about 

 of targeted authentication training aids for users who may frequently 

a gathering and analysis process. This work is supported by the Office 

t included in the pattern. Note that labeling of patterns begins in the 

wer right with 8. All visuals are also provided in images/patterns 

346 4572

4673 841257

 ◦ indicates an intermediate point. Line traces are provided to show 

/maintain contact during entry. Rather, users enter the PIN as normally 

 also provided in images/pins sub-directory. 

272 5962

1791 366792
5. Conclusion 

This study was conducted to examine interaction techniques de

mobile touchscreen device under eyes-free conditions (e.g., when w

impairments). We also inquired if tactile-only spatial feedback wo

succeed, firstly, in capturing a picture of eyes-free authentication b

precision measures, in particular, we can say regarding RQ1 that e

very challenging. PIN authentication is harder to perform with accu

finger must make. Looking at these measures for gestures that w

positive effect on start point accuracy, for pattern unlocking. Othe

to eyes-free authentication in terms of accuracy, precision, or time

the strategies undertaken for unlocking and using tactile feedback

digit of the passcode were helpful. Precision for PIN entry was imp

accuracy and precision of pattern entry was helped by use of the 

can be used by other researchers for purposes of analyzing move

user strategies, event and error types can also support the design

encounter similar eyes-free conditions. 
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Appendix A. Patterns and PINs visualized 

A1. Patterns 

The double circle indicates a start point, single circles is a poin

upper left with 0, incrementing across each row, ending in the lo

sub-directory. 

0145 6745 3157 1

743521 136785 642580 01

A2. PINs 

The filled circle • indicates the start point, and unfilled circle

expected shape and directionality of a trace, but users do not drag

would be expected by clicking/pressing the buttons. All visuals are

1328 6702 1955 7

152525 458090 159428 44

https://doi.org/10.13039/100000006
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ppendix B. Pre-survey questions 

• What is your age (18–24, 25–34, 35–44, 45–54, 55+, NA)? 

• What is your identified gender? 

• Do you have any physical conditions that might affect your abil-

ity to enter authentication passcodes on a mobile phone? 

• Do you use a smartphone currently? What is its operating sys-

tem? Why did you select that phone? 

• Do you use an authentication method to lock your phone, and

if so which method, and why (i.e. PIN, grid, TouchID, etc.)? 

• Without telling me your current passcode, how do you select

the passcodes you use to lock your phone (i.e. familiar number,

or visual pattern)? 

• How concerned are you with keeping your phone secure (1, not

at all concerned, to 5, highly concerned)? 

• What experiences can you recall involving people either trying

to steal or use your phone without permission? 

• What experiences can you recall involving people trying to ob-

serve your passcodes without permission? 

• How concerned are you, typically, in a public space, with the

threat of someone watching you authenticate and collecting

your passcodes (1, not at all concerned, to 5, highly concerned)?

• If you had any of these experiences, how did it affect your be-

havior? 

• Have any other experiences or concerns indirectly affected your

authentication behavior (news articles, stories about friends,

etc.)? 

• If you do authentication, how do you typically hold your phone

for that? 

1. Post-survey questions 

• On a scale from 1 to 5, how difficult was entering passcode this

way (1, very easy, to 5, very hard)? How so? 

• On a scale from 1 to 5, how easy was the grid pattern tactile

app to learn (1, very easy, to 5, very hard)? How so? 

• On a scale from 1 to 5, how easy was the grid pattern tactile

app to use (1, very easy, to 5, very hard)? How so? 

• On a scale from 1 to 5, how easy was the PIN tactile app to

learn (1, very easy, to 5, very hard)? How so? 

• On a scale from 1 to 5, how easy was the PIN tactile app to use

(1, very easy, to 5, very hard)? How so? 

• Can you see yourself using the grid pattern tactile aid to help

authenticate on your phone in your actual daily life? Why or

why not? 

• Can you see yourself using the PIN tactile aid to help authenti-

cate on your phone in your actual daily life? Why or why not? 

• How is this approach similar or different from how you enter

passcodes on your phone now? 

• Do you think the grid tactile aid would help protect you from

someone shoulder surfing you? Why or why not? 

• Do you think the PIN tactile aid would help protect you from

someone shoulder surfing you? Why or why not? 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.jisa.2018.05.004 
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