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Abstract The integration of kinetic effects in fluid models is important for global simulations of the
Earth's magnetosphere. We use a two-fluid 10-moment model, which includes the pressure tensor and has
been used to study reconnection, to study the drift kink and lower hybrid drift instabilities. Using a
nonlocal linear eigenmode analysis, we find that for the kink mode, the 10-moment model shows good
agreement with kinetic calculations with the same closure model used in reconnection simulations, while
the electromagnetic and electrostatic lower hybrid instabilities require modeling the effects of the ion
resonance using a Landau fluid closure. Comparisons with kinetic simulations and the implications of the
results for global magnetospheric simulations are discussed.

1. Introduction
Thin current sheets are often found in the Earth's magnetosphere and are unstable to a variety of modes,
including the tearing mode, drift-kink mode, and lower-hybrid drift instability (LHDI).

The drift-kink mode is an ion scale mode (k𝜌i ∼ 1) driven by the streaming of ions and electron and was once
thought to be a possible mechanism for substorm onset, becoming the subject of theoretical and numerical
studies using fluid and kinetic theory (Daughton, 1999a, 1998; Pritchett et al., 1996; Ozaki et al., 1996; Yoon
et al., 1998; Zhu & Winglee, 1996). However, it was shown (Daughton, 1999b) that the electron-ion drift-kink
instability has a strongly reduced growth rate at the physical mass ratio. More recently, there has been work
on ion-ion kink instabilities driven by the velocity difference between background and current carrying ions
(Karimabadi, Daughton, et al., 2003, Karimabadi, Pritchett, et al., 2003).

Compared to the drift-kink instability, the electrostatic LHDI has shorter wavelength, with a broad range
of wave numbers (me∕mi)1/4 < k𝜌e < 1 with frequency 𝜔 ≈ Ωlh ∼

√
ΩceΩci (Daughton, 1999b; Davidson

et al., 1977). These fluctuations are located at the edge of the current sheet, where the density gradient is
strongest and have been observed in space, experiments, and simulations (Bale et al., 2002; Carter et al., 2002;
Lapenta et al., 2003). While the electrostatic LHDI does not always enhance reconnection by itself due to its
location away from the center of the current sheet, it can alter the structure of the current layer due to its
comparatively faster growth rate and drive secondary instabilities such as the drift-kink or Kelvin-Helmholtz
instabilities (Daughton, 2003; Lapenta et al., 2003; Price et al., 2016). Additionally, there is also a longer
wavelength k

√
𝜌e𝜌i ∼ 1 electromagnetic lower-hybrid mode which has a lower growth rate (Daughton,

2003). This instability can be observed at the center of the current sheet and can influence the reconnection
process (Roytershteyn et al., 2012). Within the magnetosphere, there have been observations of the LHDI at
both the magnetopause (Graham et al., 2017) and magnetotail (Zhou et al., 2009).

The Earth's magnetosphere is composed mostly of a collisionless plasma. Global simulations of the magne-
tosphere have relied so far mostly on single-fluid magnetohydrodynamics (MHD), which is inadequate for
collisionless plasmas. In recent years, we have attempted to extend fluid models to incorporate more kinetic
effects in magnetospheric systems using higher moment models (Wang et al., 2018). While these models
have been successful in simulating large reconnecting systems (Allmann-Rahn et al., 2018; Ng et al., 2015,
2017; Wang et al., 2015, 2018), there have not been detailed studies on how well the drift instabilities are
represented by the models. Though there is some work on these instabilities in field-reversed configurations
(Hakim & Shumlak, 2007), existing fluid theory for current sheets (Daughton, 1999a; Pritchett et al., 1996;
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Yoon et al., 2002, 1998) shows some discrepancies with kinetic theory (Daughton, 1999b, 2003; Davidson
et al., 1977) and does not include the pressure tensor which is evolved by the 10-moment model.

In the light of these attempts, it is important to understand if the extended fluid equations can model these
instabilities and if inclusion of the pressure tensor and associated closure improves the agreement between
kinetic and fluid models. It is also necessary to determine if the same closures that give good agreement
with kinetic studies of reconnection can simultaneously describe the instabilities. One area of interest is
the growth rate of the kink and sausage modes, where the fluid calculations can have faster growth rates at
shorter wavelengths (Daughton, 1999a; Pritchett et al., 1996; Yoon et al., 2002), while in kinetic theory, the
fastest growing kink mode is around kL ∼ 1, L ∼ 𝜌i being the length scale of gradients in the equilibrium,
and the sausage mode is stable (Daughton, 1999b).

This paper is focused on linear eigenmode calculations of the drift instabilities in Harris sheets (Harris, 1962)
using the 5- and 10-moment models. The five-moment model is a standard two-fluid model with isotropic
pressure and reduces to Hall MHD in the limit of me → 0, c → ∞ and ni = ne, while the 10-moment
model includes the effects of an anisotropic pressure tensor and a heat flux closure. Our results show that
the 10-moment model is able to model the drift-kink instability and magnetic reconnection simultaneously,
while a proper treatment of the lower-hybrid instabilities requires capturing the ion kinetic response using
a Landau fluid closure for the heat flux, though the instability still appears when using a simple fluid model.
The remainder of the paper is organized as follows: Section 2 describes the moment models and closures
used in the calculations, and section 3 describes the linear eigenmode calculations. The results of the kink
and LHDI calculations are shown in sections 4 and 5, with some discussion of the appropriate closure to use
for the LHDI in section 5. Finally, comparisons between fluid and a fully kinetic Vlasov-Maxwell simulation
are presented in section 5.2, and we conclude in section 6.

2. Moment Equations
For each species, the fluid equations are obtained by taking velocity moments of the Vlasov equations. This
leads to

𝜕n
𝜕t

+ 𝜕

𝜕x𝑗
(nu𝑗) = 0

m 𝜕

𝜕t
(nui) +

𝜕i𝑗

𝜕x𝑗
= nq(E𝑗 + 𝜖i𝑗ku𝑗Bk).

(1)

where i𝑗 is the second moment of the distribution function

i𝑗 ≡ m∫ viv𝑗𝑓d3v (2)

In the five-moment model, the pressure is assumed to be isotropic, and we evolve the energy equation in
addition to the continuity and momentum equations.

𝜕
𝜕t

+ 𝜕

𝜕x𝑗

(
u𝑗 (p + )) = nquiEi. (3)

Here  = 1
2

nmu2 + nm𝜖, where 𝜖 = P∕[(𝛾 − 1)nm] is the internal energy per unit mass. For this paper we
use 𝛾 = 5∕3.

The 10-moment model evolves the full pressure tensor according to

𝜕i𝑗

𝜕t
+

𝜕i𝑗k

𝜕xk
= nqu[iE𝑗] +

q
m
𝜖[iklk𝑗]Bl, (4)

where i𝑗k is the third moment of the distribution function

i𝑗k ≡ m∫ viv𝑗vk𝑓d3v, (5)

and the square brackets denote a sum over permutations of the indices (e.g., u[iEj] = uiEj + ujEi). Following
Wang et al. (2015) one can write i𝑗k in terms of the heat flux tensor Qi𝑗k ≡ m ∫ (vi −ui)(v𝑗 −u𝑗)(vk −uk)𝑓d3v

i𝑗k = Qi𝑗k + u[i𝑗k] − 2mnuiu𝑗uk. (6)
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For collisionless plasmas in the unmagnetised limit, we use a three-dimensional extension of the
Hammett-Perkins closure, which can be expressed as follows for both electrons and ions (Hammett &
Perkins, 1990):

qi𝑗k(x) = n(x)q̂i𝑗k(x) (7)

where q̂i𝑗k in Fourier space is q̃i𝑗k and is calculated as

q̃i𝑗k = −i
vt|k|𝜒k[iT̃𝑗k]. (8)

Here T̃𝑗k is the Fourier transform of the deviation of the local temperature tensor from the mean. The
1∕|k| scaling makes this a nonlocal closure when expressed in real space (Hammett et al., 1992; Snyder &
Hammett, 2001) and provides a 1- to 3-pole Padé approximation of various components of the dielectric
tensor. The coefficient 𝜒 =

√
4∕9𝜋 is the best fit value for the diagonal qiii component and reduces to the

closure in Hammett and Perkins (1990) and Hammett et al. (1992) in the 1-D limit. This closure has been
used to study reconnection in the context of magnetic island coalescence and gives better agreement with
kinetic results than Hall MHD (Ng et al., 2017).

Due to the computational costs involved in calculating the nonlocal heat flux, relaxation of the pressure
tensor to local isotropy is a more common approximation and has been used successfully in large-scale
studies of reconnection and magnetospheres (Ng et al., 2015; Wang et al., 2015, 2018). With this model the
heat flux divergence term is replaced by 𝜕iQijk = vt|k0|(Pij − P𝛿ij) (Hesse et al., 1995; Ng et al., 2015; Wang
et al., 2015; Yin et al., 2001), where vt =

√
2T∕m is the thermal velocity of the associated species and k0 is a

free parameter for each species.

As this work is focused on understanding if the drift instabilities exist within the 10-moment model and
whether they will be present in global simulations and interact with reconnection, we study both local
relaxation and the nonlocal closure over a variety of parameter regimes.

3. Eigenmode Calculations
To study the current sheet instabilities, we begin with the exact Harris equilibrium (Harris, 1962). The
magnetic field and density are described by

Bx(z) = B0 tanh
( z

L

)
(9)

n(z) = n0 sech2
( z

L

)
, (10)

with species drift velocities

u𝑦,s =
2Ts

qsB0L
(11)

The temperature is determined by the equilibrium condition 𝛽e + 𝛽 i = 1. Here 𝛽s is the species plasma beta
defined as 2𝜇0n0Ts∕B2

0.

We consider perturbations about the equilibrium in the form 𝑓 (𝑦, z, t) = 𝑓1(z) exp
(

i
(

k𝑦𝑦 − 𝜔t
))

, with no
variation in the x direction (parallel to the equilibrium magnetic field). This is orthogonal to the usual 2-D
plane used in reconnection studies. For the modes we are studying, the perturbed quantities By,Bz,Ex, and
vx are identically zero (Pritchett et al., 1996), and in the 10-moment model, the pressure tensor components
Pxy and Pxz are also zero. This leads to reduced systems of 11 and 17 equations for the 5- and 10-moment
models, respectively (for two species).
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For the five-moment equations, they are (normalized to c = 1, di0 = 1, 𝜔pi0 = 1 in simulation units):

(𝜔 − k𝑦us)n1,s − k𝑦n0v1𝑦,s + i(n′
0v1z,s + n0,sv′1z,s) = 0

(𝜔 − k𝑦us)v1𝑦,s −
iqs

ms
E𝑦 − iΩsv1z,s −

k𝑦P1,s

n0ms
= 0

(𝜔 − k𝑦us)v1z,s −
iqs

ms
Ez + iΩsv1𝑦,s + i

qsvs

ms
B1x

+iΩs
n1,s

n0
us + i

P′
1,s

msn0
= 0

(𝜔 − k𝑦us)P1,s + iv1z,sP′
0,s − 𝛾k𝑦P0v1𝑦,s + i𝛾P0,sv′1z,s = 0

𝜔B1x − (k𝑦Ez + iE′
𝑦
) = 0

𝜔E𝑦 − iB′
1x + i

∑
s

qs(n0v1𝑦,s + n1svs) = 0

𝜔Ez − k𝑦B1x + i
∑

s
qsn0v1z,s = 0,

(12)

where the primes represent z derivatives and Ωs = qsB0(z)∕ms.

The linear 10-moment equations are as follows:

(𝜔 − k𝑦us)n1,s − k𝑦n0v1𝑦,s + i(n′
0v1z,s + n0,sv′1z,s) = 0

(𝜔 − k𝑦us)v1𝑦,s −
iqs

ms
E𝑦 − iΩsv1z,s −

k𝑦P1𝑦𝑦,s

n0ms
+ i

P′
1𝑦z,s

n0ms
= 0

(𝜔 − k𝑦us)v1z,s −
iqs

ms
Ez + iΩsv1𝑦,s + i

qsus

ms
B1x + iΩs

n1,s

n0
us − k𝑦

P1𝑦z,s

n0ms
+ i

P′
1zz,s

msn0
= 0

(𝜔 − k𝑦us)P1xx,s − k𝑦P0,sv1𝑦,s + iP0,sv′1z,s + iP′
0,sv1z,s + i|k0,s|vt,s

(
P1xx,s −

P1,s

3

)
= 0

(𝜔 − k𝑦us)P1𝑦𝑦,s + iP0,s(ik𝑦v1𝑦,s + v′1z,s) − 2k𝑦P0,sv1𝑦,s

+iv1z,sP′
0,s − 2iΩ𝑗P1𝑦z,𝑗 + i|k0,s|vt,s

(
P1𝑦𝑦,s −

P1,s

3

)
= 0

(𝜔 − k𝑦us)P1𝑦z,s + iP0,sv′1𝑦,s − k𝑦P0,sv1z,s − iΩs(P1zz,s − P1𝑦𝑦,s) + i|k0,s|vt,sP1𝑦z,s = 0

(𝜔 − k𝑦us)P1zz,s + iP0,s(ik𝑦v1𝑦,s + v′1z,s) + 2iP0,sv′1z,s

+iv1z,sP′
0,s + 2iΩsP1𝑦z,s + i|k0,s|vt,s

(
P1zz,s −

P1,s

3

)
= 0,

(13)

where P1 = P1xx + P1yy + P1zz is the perturbed trace of the pressure tensor and Maxwell's equations
remain the same. The modifications are the additional equations for the pressure tensor components and the
replacement of the pressure gradient by the divergence of the pressure tensor in the momentum equations.
The terms proportional to |k0,s| in the pressure tensor evolution represent the local isotropization discussed
in section 2.

When using the nonlocal closure, we replace the relaxation terms in equation (13) with the following
expressions for the nonlocal heat flux

i(∇ · q)xx = i
√

4
9𝜋

k𝑦vt(P1,xx − n1T0)

i(∇ · q)𝑦𝑦 = i

(√
4
𝜋

k𝑦vt(P1,𝑦𝑦 − n1T0)

)
+ 2

3

√
4
𝜋

vt
𝜕P1,𝑦z

𝜕z

i(∇ · q)𝑦z = i

(
2
3

√
4
𝜋

k𝑦vtP1,𝑦z

)
+ 1

3

√
4
𝜋

vt
𝜕(P1,zz − n1T0)

𝜕z

i(∇ · q)zz = i

(√
4

9𝜋
k𝑦vt(P1,zz − n1T0)

)
(14)

Here we have only kept the ky terms in qijk ∝ k[iTjk]∕|k|.
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Figure 1. Growth rate of the drift-kink instability in an electron-positron
plasma.

Although it is possible to reduce the five-moment system to a single
second-order differential equation, which is amenable for analysis (Yoon
et al., 2002), the additional equations in the 10-moment system make it
somewhat difficult to use the same method. Instead, we note that the
equations can be written as

𝜔F + k𝑦𝑦F +z
𝜕F
𝜕z

+ F = 0, (15)

where 𝑦,z, and  are coefficient matrices. The instabilities of the
system can then be found directly by discretizing the equations and
solving for the eigenvalues of the resulting matrix. In this work we
used sixth-order central differences to calculate the z derivatives. The
equations are solved from z = −12.8L to z = 12.8L. The resolu-
tion of kink modes and longer-wavelength lower-hybrid modes typically
requires fewer than 250 grid points. For shorter-wavelength lower-hybrid

modes, which are more localized and can have finer structure, we use a smaller domain z = −6.8L to
z = 6.8L, and 250 points. Once specific eigenvalues are found, convergence is tested by increasing resolution
by a factor of 4 and using a sparse solver to find the closest solutions to the selected eigenvalue.

One feature of this method compared to the search methods employed by Daughton (1999b) and Yoon et al.
(2002) is that we find all the modes of the system (limited by the resolution and numerical method), and
postprocessing is necessary to identify the unstable modes of interest.

4. Drift-Kink Instability
The solution of equation (15) for both systems leads to a spectrum of eigenmodes over a range of ky.
In this—and the following—section we compare the 5- and 10-moment solutions for the drift-kink and
lower-hybrid instabilities. Where possible, we use similar parameters to the kinetic calculations in the
literature (Daughton, 1999b, 2003).

We begin by studying the case of an electron-positron plasma, mi∕me = 1,Ti∕Te = 1, 𝜌i∕L = 0.5, vt,e =
0.25c. This particular set of parameters has been studied in earlier work (Daughton, 1999a; Pritchett et al.,
1996) and is a useful basis for direct comparison. Figure 1 shows the fastest-growing kink modes for this
configuration. The variation of the growth rate with ky shown in Figure 1 shows good agreement with the
results of Pritchett et al. (1996), with a maximum growth rate of 𝛾∕Ωci = 0.22, while the 10-moment result
shows a maximum of 𝛾∕Ωci = 0.17 at a longer wavelength with kyL ≈ 1. This is in better agreement with
the linear Vlasov results in Daughton (1998, 1999a). With the 10-moment model, there is a plateau for kyL >

1.5, which is sensitive to the value of k0,i used. For this set of results we used local relaxation with k0,e =
1∕de, k0,i = 1∕di, a choice similar to that used in earlier reconnection studies (Ng et al., 2015; Wang et al.,
2015).

At long wavelengths, both models approach the dashed lines, which show the incompressible solution
(Daughton, 1999a)

𝜔r =
k𝑦ui

1 + me∕mi

(
1 −

Teme

Timi

)
(16)

𝛾 =
k𝑦ui

1 + me∕mi

(
me

mi

)1∕2 (
1 +

Te

Ti

)
. (17)

The equation systems (12) and (13) support a spectrum of eigenmodes. In Figure 2 we show the mode
structure of unstable odd and even harmonics for both 5- and 10-moment models at a fixed wave number
kyL = 0.5. Other physical parameters are mi∕me = 64, 𝜌i∕L = 0.7, and Ti∕Te = 1. In the left column, the
five-moment eigenfunctions are shown, with both odd and even (kink and sausage) modes supported by
the system. The real frequencies are consistent with the ion diamagnetic frequency, with kyui∕Ωci0 = 0.245.
In the right column, the 10-moment eigenmodes are shown. We were only able to find a single kink mode
growing at a similar growth rate to the five-moment solutions, with the sausage mode growth rate more
than a factor of 3 smaller.
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Figure 2. Real (solid) and imaginary (dashed) parts of Ey for five- and 10-moment models. The real frequency and
growth rate are normalized to Ωci0. The top row shows sausage modes with even Ey profiles, while the bottom row
shows kink modes with odd Ey profiles.

The scaling of the models with physical parameters is shown in Figures 3 and 4. In Figure 3 the scaling of the
growth rates and frequencies of the kink and sausage modes with the ratio of ion and electron temperatures
is shown. Here we are comparing modes with structure similar to those shown in Figure 2. In both models,
the growth rates increase as Ti∕Te decreases, in agreement with kinetic calculations (Daughton, 1999b). The
differences between the models are evident in the sausage mode growth rates, where the five-moment model
shows a sausage mode growing at almost the same rate as the kink mode, similar to Pritchett et al. (1996),
while the sausage mode in the 10-moment model grows 3 to 4 times more slowly than the kink mode across
the range of temperatures.

In large-scale simulations, the use of a reduced ion/electron mass ratio is common in order to reduce
computational costs. It is thus important to understand how the instabilities scale with mi∕me to ensure that

Figure 3. Normalized growth rate and real frequencies of the kink and sausage modes using the five- and 10-moment
models as a function of the temperature ratios. Parameters are mi∕me = 64, 𝜌i∕L = 0.7 and kyL = 0.5.

NG ET AL. 3336
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Figure 4. Fastest growth rate as a function of the ion/electron mass ratio.

the reduced models do not excite unrealistic instabilities, particularly
since the kink instability can potentially disrupt current sheets. In kinetic
theory, it is known that the drift-kink instability growth rate is greatly
reduced at higher mi∕me (Daughton, 1999b, 1998). Figure 4 shows how
the two models scale with mass ratio. The five-moment model shows
an increase in growth rate with mass ratio, with the maximum growth
rate being found at shorter wavelengths. In contrast, the kink mode in
the 10-moment model shows a decrease in the growth rate as mi∕me
increases, with the fastest growth rate occurring at ky𝜌i ∼ 1, in agree-
ment with kinetic results. The differences between these models show
the importance of keeping the nonisotropic pressure tensor in modeling
the kink instability.

4.1. Scaling With Relaxation Parameters
The local 10-moment model we use has free parameters, the relaxation
constants k0,s for the different species. In previous studies (Ng et al., 2015;

Wang et al., 2015, 2018), it was found that setting k0,s ∼ 1∕ds was suitable for modeling magnetic recon-
nection. It is thus important to understand how the kink instabilities are affected by different k0 and if the
values used for reconnection are suitable for studying these instabilities.

We perform two scaling studies, one in which we hold the ion relaxation parameter constant at 1∕di, and
one in which we hold the electron parameter constant at 1∕de. The mass ratio remains mi∕me = 64. The
results are shown in Figure 5. For the kink instability, the variation of k0,i has a greater effect on the max-
imum growth rate. As k0,i is increased from 1∕di to 100∕di, the ions are isotropized and the fluid model
for ions more closely resembles the five-moment model, with an increase in growth rate and a shift of the
fastest-growing mode to longer wavelength. Decreasing the value of k0,i has a small impact on the growth
rate, with an increase of < 0.01Ωci0 over 2 orders of magnitude. The effect of the electron relaxation parame-
ter is comparatively small, with an increase in growth rate at smaller k0,e. These results indicate that retaining
the additional ion physics is sufficient for describing the kink mode.

5. Lower-Hybrid Drift Instability
The equation systems (12) and (13) also support the LHDI (Daughton, 2003; Yoon et al., 2002). These insta-
bilities can be found at either ky(𝜌i𝜌e)1/2 ∼ 1 or ky𝜌e ∼ 1. The shorter-wavelength modes (ky𝜌e ∼ 1) have
frequency on order of 𝜔lh ≈

√
ΩciΩce (Davidson et al., 1977; Daughton, 2003) and are localized around the

Figure 5. Fastest growth rate as a function of the relaxation parameter k0,s.
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Figure 6. Real (solid) and imaginary (dashed) parts of Ey for the short wavelength (ky𝜌e = 0.5) lower-hybrid drift
instability. The frequencies and growth rate are normalized to Ωci0. The left column uses the 10-moment model with
k0,e = 0, k0,i = ky and the right column uses the nonlocal closure for ions and the local closure with k0,e = 0 for
electrons. We were unable to find unstable modes for the parameters used in reconnection studies.

edge of the current sheet, while the longer-wavelength modes have a lower frequency and can penetrate to
the center of the current sheet (Daughton, 2003).

We first review the local kinetic theory of the LHDI in order to guide our understanding of how to approx-
imate the LHDI using fluid models. In the cold electron limit, for ky𝜌e ≫ 1 modes, the local dispersion
relation of the LHDI can be written as (Davidson et al., 1977)
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[
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]
= 0 (18)

where Z(𝜁 i) is the ion plasma dispersion function, 𝜁 i = 𝜔∕kyvti and Vdi is the ion diamagnetic drift velocity.
Note that this is the dispersion relation in the ion rest frame, so any comparisons with our equations (12)
and (13) should be Doppler shifted. In this limit the ion kinetic response is assumed to be unmagnetized,
and gradients of perturbed quantities in the z direction are neglected.

The dispersion relation has known unstable solutions in the adiabatic (𝜁 i ≫ 1) and kinetic (𝜁 i ≪ 1)
limits (Hirose & Alexeff, 1972), through coupling of the drift and lower-hybrid wave or the ion resonance.
Because the ions can be treated as unmagnetized, the nonlocal closure of Hammett and Perkins (1990) or
3-D generalization of Ng et al. (2017) would be the best fluid model for capturing the kinetic ion physics. A
discussion of how well the fluid models approximate 1 + 𝜁 iZ(𝜁 i) is in the appendix.

For the electrons, since ky𝜌e ∼ 1, we do not expect the nonlocal closure to be applicable in this regime for
the cross-field heat flux. In a more general situation, a gyrofluid model with finite Larmor radius effects
would be appropriate (Snyder & Hammett, 2001; Tassi et al., 2018). However, in a reconnecting current
sheet with no guide field, such models would be inapplicable close to the center of the sheet as the magnetic
field becomes close to zero. In this case, particularly in the cold electron limit where the electron dynamics
affect the rate but not the instability threshold (Davidson et al., 1977), a 10-moment model with reduced
isotropization may be a better description. The role of the electron closure is discussed in section 5.1.3.
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Figure 7. Real (solid) and imaginary (dashed) parts of Ey for the short wavelength (ky𝜌e = 1) lower-hybrid drift
instability. The frequencies and growth rate are normalized to Ωci0. The first column from the left uses the five-moment
model. The second column (labeled (1)) uses the 10-moment model with k0,e = 0, k0,i = ky, the third column (labeled
(2)) uses k0,s = 1∕ds, and the final column uses the nonlocal closure for ions and the local closure with k0,e = 0 for
electrons.

5.1. Results
In this section we study the electrostatic and electromagnetic LHDI using the five-moment model, the
10-moment local model with the closure used in reconnection models (k0,s = 1∕ds), the local model with
k0,i = ky and no electron relaxation, and the 10-moment model with a nonlocal closure for ions and no elec-
tron relaxation. We use two current sheets, a thicker sheet with 𝜌i = L and hotter ions Ti∕Te = 5, where
equation (18) would be most applicable, and a current sheet with the parameters in Daughton (2003) for
direct comparison with kinetic work.
5.1.1. Electrostatic LHDI
We first present the results of calculations for the electrostatic LHDI. The parameters used here are mi∕me =
256, Ti∕Te = 5, 𝜔pe∕Ωce = 5 and 𝜌i∕L = 1. Modes are calculated for ky𝜌e = 0.5. The current sheets
support a spectrum of unstable modes (“harmonics” in Daughton, 2003) and we show four for each model
and configuration we study in the figures.

The eigenmodes are shown in Figure 6, where we use the the local 10-moment model with k0,e = 0, k0,i = ky
and the 10-moment model with nonlocal ions and k0,e = 0. For this set of parameters, the five-moment
model and 10-moment model with k0,s = 1∕ds are stable to lower-hybrid instabilities.

In this case, the stability of the five-moment model is likely due to its inability to model the ion response cor-
rectly, which is important in thicker sheets with a smaller equilibrium drift velocity (Davidson et al., 1977).
Both 10-moment calculations show that the LHDI is present, and the model using the nonlocal closure for
the ions has a growth rate and structure that is consistent with local kinetic theory, which gives a growth
rate of 𝛾∕Ωci0 = 2.9 in the region around z∕L = 1.5.

Figure 7 shows the eigenmode calculations for the second set of parameters, with 𝜌i∕L = 2, Ti =
Te, mi∕me = 512 and 𝜔pe∕𝜔ce = 5, also used in Daughton (2003). This is a comparatively thinner cur-
rent sheet, and all the models are unstable to the LHDI, with similar mode structures but different growth
rates. The five-moment model has the fastest growing modes, while the 10-moment models with k0,e = 0
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Figure 8. Real (solid) and imaginary (dashed) parts of Ey for the long wavelength (k𝑦
√
𝜌i𝜌e = 1) lower-hybrid drift

instability. The frequencies and growth rate are normalized to Ωci0. The first column from the left uses the five-moment
model. The second column (labeled (1)) uses the 10-moment model with k0,e = 0, k0,i = ky, the third column (labeled
(2)) uses k0,s = 1∕ds, and the final column uses the nonlocal closure for ions and the local closure with k0,e = 0 for
electrons.

have growth rates and frequencies differing by less than Ωci0. For similar real frequency, these modes have
a faster growth rate than in the kinetic calculation of Daughton (2003). The model with k0,s = 1∕ds shows
the lowest growth rates, which is a general trend reproduced in the next sections.
5.1.2. Electromagnetic LHDI
For the longer-wavelength electromagnetic LHDI, we first present the results of calculations with the thicker
𝜌i = L current sheet with the same parameters as the previous section, but wavelength k𝑦

√
𝜌i𝜌e = 1.

Selected eigenmodes are shown in Figure 8, where the local model labeled (1) again refers to the closure with
k0,e = 0, k0,i = ky, and the model labeled (2) has k0,s = 1∕ds. Here the local model with k0,s = 1∕ds shows
very weakly unstable modes, with structures reminiscent of the electrostatic modes, while the five-moment
model and other 10-moment models show broader mode structures that extend to the center of the current
sheet, which is expected for these modes (Daughton, 2003).

With the thinner sheet used in Daughton (2003), we find the modes shown in Figure 9. Again, the
10-moment model with the parameters used in reconnection studies (k0,s = 1∕ds) shows much more stable
modes around the drift frequency kyui ≈ 8.0Ωci0. The five-moment model, 10-moment model with nonlo-
cal ions and with k0,e = 0, k0,i = ky are able to capture the electromagnetic LHDI, though the growth rates
show quantitative differences with the results of Daughton (2003), though the frequencies and growth rates
have a similar range of values. We believe that the discrepancies are due to the limitations of our electron
model, which will be demonstrated in the next section.
5.1.3. Sensitivity to Electron Model
Although the 10-moment model contains nongyrotropic pressure effects, it is not clear how this affects the
calculations of the lower-hybrid instabilities where ky𝜌e ∼ 1. As we did with the kink instability, we perform
a scaling of the electron relaxation parameter and study how the fastest growing lower-hybrid mode varies
with k0,e. In these calculations we use the nonlocal 10-moment ion model as it is the best approximation to
the ion kinetic response.
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Figure 9. Real (solid) and imaginary (dashed) parts of Ey for the long wavelength (k𝑦
√
𝜌i𝜌e ≈ 0.84) lower-hybrid drift

instability. The frequencies and growth rate are normalized to Ωci0. The first column from the left uses the five-moment
model. The second column (labeled (1)) uses the 10-moment model with k0,e = 0, k0,i = ky, the third column (labeled
(2)) uses k0,s = 1∕ds, and the final column uses the nonlocal closure for ions and the local closure with k0,e = 0 for
electrons.

The parameters of the current sheet used in this scan are mi∕me = 256, Ti∕Te = 5, 𝜔pe∕Ωce = 5, and
𝜌i∕L = 1, and we use ky𝜌e = 0.5. The results are shown in Figure 10, with calculations using nonlocal
and five-moment electrons also plotted for reference. The growth rate of the instability is larger in the limits
k0 → 0 and k0 → ∞ and has a minimum for intermediate values of k0.

Figure 10. Frequency and growth rate of the fastest growing lower-hybrid mode as k0,e is varied while using the
nonlocal model for ions. The dashed line shows the growth rate when using the five-moment model for electrons,
while the dash-dotted line uses the nonlocal model for both ions and electrons.
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Figure 11. Structure of Ey in simulations of the lower-hybrid drift instability using different models at tΩci = 6. Ey is
normalized to B0vA0.

In the limit of k0 ≫ ky, the electrons are isotropized, so that the 10-moment model approaches the
five-moment limit, while as k0 → 0, the pressure tensor is allowed to evolve freely. The calculation with
nonocal electrons has growth rate close to the case with k0 = ky, which is consistent with the ky dependence
of the nonlocal heat flux.

Which closure approximation best captures the LHDI remains a question for further study. As mentioned
earlier, equation (18) is the local dispersion relation in the cold electron limit, where finite Larmor radius
effects can be neglected. For arbitrary Te, however, it is still necessary to incorporate these effects (Davidson
et al., 1977). Outside the current sheet, electrons are strongly magnetized, so a gyrofluid closure with finite
Larmor radius approximations would work (ky = k⟂ for this geometry; Snyder & Hammett, 2001; Tassi
et al., 2018), while within the current sheet, where electrons are unmagnetized, the nonlocal closure dis-
cussed above would correctly capture the electron response. A transition between the two limits will thus
be necessary to capture the instability correctly in the 10-moment model.

5.2. Simulations of the LHDI
The five- and 10-moment equation systems have been implemented in the finite-volume version of the
Gkeyll code, which uses a high-resolution wave propagation method for the hyperbolic part of the
equations and a point implicit method for the source terms (Hakim et al., 2006; Hakim, 2008), and has pre-
viously been used to study magnetic reconnection (Ng et al., 2015, 2017; Wang et al., 2015). The kinetic
simulations use the discontinuous Galerkin finite-element Vlasov-Maxwell solver of Gkeyll 2.0 (Juno
et al., 2018). Because the Vlasov code uses a discontinuous Galerkin method, we require a basis function
expansion in each cell, and we choose piecewise quadratic basis functions from the Serendipity Element
family. Details on the particulars of the basis expansion can be found in Arnold and Awanou (2011) and
Juno et al. (2018).

The simulations presented below use the parameters 𝜌i = L, vt,e = 0.06, mi∕me = 36,Ti∕Te = 10, with
simulation domain Ly × Lz = 6.4L × 12.8L. A background plasma with nb = 0.001n0 is introduced for
numerical stability. In the fluid simulations the grid size was Nx × Ny = 256 × 512. The kinetic simulations
are run in two velocity dimensions (2X2V) as the LHDI (with no guide field and k = ky) does not depend
on the out-of-plane velocity. The configuration space dimensions are the same as the fluid simulations, but
use 96 × 192 cells, with quadratic Serendipity elements (Arnold & Awanou, 2011) in each cell. The electron
velocity domain ranges from −8vt,e to 8vt,e while the ion velocity domain ranges from −6vt,i to 6vt,i in each
direction. Two cells with quadratic Serendipity elements are used per species thermal velocity. Quadratic
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Figure 12. Ion distribution functions f(vy, vz = 0) at z = 0, at the center of
the current sheet and z = −1.7, at the edge of the sheet (magenta crosses in
Figure 11).

Serendipity elements give us roughly a factor of 3 in additional subcell res-
olution for a total amount of resolution of 2.3 grid points per 𝜌e (calculated
using the asymptotic B field) and six cells per thermal velocity.

These parameters were chosen to balance computational costs while
maintaining Ti ≫ Te and the local approximation where gradients of
the perturbed quantities in the y direction are much larger than gradi-
ents in the z direction. In the simulations, an initial m = 8 perturbation
is imposed, which corresponds to kyL ≈ 7.9 or ky𝜌e ≈ 0.41 and is close
to the wavelength with the maximum growth rate predicted by local the-
ory (Davidson et al., 1977). For these parameters, the predicted kinetic
growth rate is 𝛾 = 1.1Ωci0 and the most unstable region is at z∕L ≈ 1.6. In
order to compare the (2X2V) simulations to the fluid simulations, we use
an adiabatic index of 2 for the five-moment simulations and modify the
10-moment model to relax only the in-plane components of the pressure
tensor when using the local closure. We do not modify the nonlocal model
as the closure does not couple the out-of-plane diagonal component of
the pressure tensor to the in-plane components.

Figure 11 shows a comparison between the structure of Ey in kinetic
and fluid simulations of the LHDI at tΩci0 = 6. The local closure used
k0,i = ky and k0,e = 0. The calculation with the nonlocal closure for ions

also used k0,e = 0. From the simulations, the measured growth rates of the m = 8 mode were 0.34Ωci0 for
the local closure, 0.84Ωci0 for the nonlocal closure, and 1.1Ωci0 for the kinetic model. The mode was found to
be stable when using the five-moment model. As can be seen in the lower panels, the structure of the LHDI
in this regime is well described by the nonlocal model, with the growth rate about 24% slower than in the
kinetic simulation. When using the local model, in spite of the slower growth rate, the LHDI does eventu-
ally develop with a similar structure. When performing the equivalent fluid simulations with three velocity
dimensions—with an adiabatic index of 5/3 or relaxing all the components of the pressure tensor—which
would be used in simulations of physical systems, the results are similar. The five-moment model is stable
for these parameters, while the local relaxation shows a small increase in the growth rate to 0.39Ωci0.

The role of ion kinetic effects is highlighted in Figure 12, which shows a cut of the ion distribution function
f(vy, vz = 0) at the edge, where the perturbed electric field is confined to and center of the current sheet.
These points are marked in Figure 11. At the edge of the current sheet, the ion resonance can be seen in the
upper panel, where the phase velocity obtained by solving the linear dispersion relation equation (18) and
the initial drift velocity are marked. At the center of the sheet, the distribution remains close to Maxwellian,
consistent with the electrostatic LHDI being confined to the edge of the current sheet.

6. Conclusion
We have performed calculations of the drift-kink and LHDI for Harris sheets using the five- and 10-moment
two-fluid models. For the drift-kink instability, the 10-moment model has growth rates and wave numbers
comparable to the results of Vlasov-Maxwell calculations, unlike the five-moment, or standard two-fluid,
model, which has faster-growing modes at larger mass ratios and wave numbers. The growth rates are not
sensitive to the relaxation parameter in the range k0,s ≲ 1∕ds. Additionally, the sausage moment is damped
by the 10-moment model, which is consistent with kinetic studies (Pritchett & Coroniti, 1996; Daughton,
1999b). Although the kink mode has a lower growth rate at high mass ratio, this result does not preclude its
excitation as a secondary instability (Lapenta & Brackbill, 2002), or the growth of ion-ion kink instabilities
in the 10-moment model (Karimabadi, Daughton, et al., 2003, Karimabadi, 426 Pritchett, et al., 2003), which
could be the topic of future work.

The results are consistent in the fluid work of Daughton (1999a) and Pritchett et al. (1996) in the
long-wavelength regime, and the scaling with physical parameters such as temperature ratio and mass ratio
are consistent with kinetic models (Daughton, 1999b). There are some differences compared to the fluid
results of Yoon et al. (2002) due to the treatment of the pressure term in the momentum equation. The kink
modes are more sensitive to the ion model used, which may be useful if reduced electron models are used
to save on computational costs.
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In global simulations, the importance of using a closure that captures the kink mode correctly has been seen
in global simulations of Ganymede (Ng, 2019; Wang et al., 2018). In Ng (2019), it was shown that when using
a five-moment model to study magnetosphere dynamics, a kink instability was excited in the magnetotail
after the formation of the tail current sheet. While the current sheet did not disrupt in this case, the instability
caused the formation of a large-scale corrugated structure. In the 10-moment simulations (Ng, 2019; Wang
et al., 2018), which are expected to show better agreement with kinetic models for this instability, the growth
of the kink instability was much reduced.

The LHDI can be observed in both five- and 10-moment models with the appropriate choice of closure.
Based on the results of kinetic theory (Davidson et al., 1977; Hirose & Alexeff, 1972), it is clear that the ions
should be modeled using a nonlocal closure, or a relaxation with the k0,i ≈ ky so that the ion resonance can
be captured. However, there is sensitivity to the electron model used, and the instabilities have the largest
growth rates when k0,e → 0 or ∞. For parameters used in reconnection studies (k0,s = 1∕ds; Ng et al., 2015;
Wang et al., 2015), both electromangetic and electrostatic instabilities are damped, with the electromagnetic
modes being stable in some regimes.

Finally, we have performed comparisons of fluid and Vlasov-Maxwell simulations to show that the LHDI
can be observed in our fluid simulations. The distribution function information demonstrates the impor-
tance of the ion resonance and applicability of the local kinetic theory for thicker sheets and illustrates the
utility of the Vlasov-Maxwell code in analyzing distributions due to the lack of particle noise as compared
to particle-in-cell simulations.

In the context of global simulations, where we would want to model magnetic reconnection in addition to
these instabilities, it may not be possible to capture the kink, LHDI, and reconnection simultaneously in
certain regimes. Due to computational constraints, it would be very computationally intensive to use the
nonlocal closure for the ions in global studies, and setting k0,i = ky to capture the LHDI would only be
appropriate for a small range of wave numbers and likely excite the drift-kink unphysically. Additionally,
the LHDI has a reduced growth rate when using closure parameters similar to those in reconnection studies,
though this may not be an issue for the electrostatic LHDI in sufficiently thin sheets. A compromise may
be the use of the five-moment model for electrons, though this would miss the electron pressure tensor
effects on reconnection. Even with compromises, it is evident that the 10-moment model is a significant
improvement over MHD models and captures some key physics features of fully kinetic simulations, which
cannot be used for global space weather studies.

There is potential for further development of the closure with the use of temperature gradients, which pro-
vides some heat flux while remaining computationally tractable (Allmann-Rahn et al., 2018), but more study
on how this model affects reconnection and instabilities is required. With the current 10-moment model, the
drift-kink instability and reconnection can be studied simultaneously, which avoids the unphysical growth
of the kink mode in five-moment models that can disrupt the current sheet.

Appendix A: Electrostatic Response in the Various Plasma Models
How well the fluid models approximate the ion response is determined by the term proportional to R(𝜁 i) =
1 + 𝜁 iZ(𝜁 i) in (18). This can be calculated by solving the 1-D dispersion relation in the fluid models and
finding the perturbed density (Hammett & Perkins, 1990)

n1 = −n0
e𝜙1

T0
R(𝜁 ) (A1)

where 𝜙1 is the perturbed electrostatic potential.

In the five-moment model with no thermal conductivity or viscosity, the response can be written as

R5mom(𝜁 ) =
1

𝛾 − 2𝜁2 (A2)

where 𝛾 is the adiabatic constant (we use 5∕3 in this paper).

The nonlocal 10-moment model has (Hammett & Perkins, 1990)

Rnonlocal(𝜁 ) =
𝜒1 − i𝜁

𝜒1 − 3i𝜁 − 2𝜒1𝜁
2 + 2i𝜁3 , (A3)
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with 𝜒1 = 2∕
√
𝜋, and the relaxation to local isotropy has

Rlocal(𝜁 ) =
𝛼 − i𝜁

5𝛼∕3 − 3i𝜁 − 2𝛼𝜁2 + 2i𝜁3 (A4)

where 𝛼 = k0∕k, with k0vt being the relaxation rate. The dependence of the response function on the relax-
ation parameter is quite explicit and shows why the choice of k0 is important to the regime where the ion
resonance is important for the LHDI. There is also a subtle difference between relaxing the pressure to local
isotropy and relaxing temperature fluctuations to the equilibrium temperature T0, which is responsible for
the 5∕3 in the first term of the denominator.
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