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Recent years have seen a flurry of research activity in the study of minimal and autonomous information
ratchets. However, the existing classical and quantum models are somewhat hard to compare and hence
quantifying possible quantum supremacy in information ratchets has been elusive. We propose a step towards
filling this void between quantum and classical ratchets by introducing a model with continuous variables: a
quantum particle in a box coupled to a stream of qubits. The dynamics is solved exactly and we analyze the
quantum to classical transition in terms of a natural timescale parameter for the model.
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I. INTRODUCTION

It is commonly expected that for certain tasks quantum
computers will be exponentially more powerful than classical
analogs [1]. Loosely speaking, this quantum supremacy rests
in the fact that the quantum logical space is spanned by ex-
ponentially more states. For classical computers, Landauer’s
principle [2,3] characterizes the minimal thermodynamic cost
necessary to process information. The natural question arises
whether this statement of the second law also carries over
to quantum systems or whether quantum effects significantly
impact the consumed resources. Most likely the answer to
this question will arise from a study of quantum versions of
Maxwell’s demon [4].

Recent years have seen steady progress in the develop-
ment of a comprehensive framework for the thermodynam-
ics of information [5–12]. This has led to the development
of minimal classical [13–16] and quantum [17–28] models
for information processing, experimental implementations of
Maxwell’s demon [29–33], and verifications of Landauer’s
principle [34–36].

In the present paper we propose and study a minimal
model of a quantum demon [21], also known as quantum
information ratchet [5], operating in continuous physical state
space. This analysis is motivated by the classical three-state
model by Mandal and Jarzynski [13] and the discrete three-
state quantum model in Ref. [21]. It is worth emphasizing that
these minimal models [13–16,21,37] do not include feedback.
In other words, even though information is exchanged with a
memory, this information is not utilized to control the behav-
ior of the system of interest. Rather, these analyses focus on
the net effect on the dynamics that arises from the interaction
with an information reservoir [7]. Here our main interest lies
in how the system behaves as the ratchet transitions from the
quantum to the classical regime, which permits us to directly
compare quantum and classical modes of operation. See also
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Ref. [38] for a study of quantum memories with correlated
qubits and the quantum Zeno effect.

Similarly to the models of Refs. [21,38], we analyze the
dynamical behavior of a small quantum system, the demon
D, interacting with a quantum memory M such that the
quantum transitions in D become biased. In complete analogy
to Refs. [21,38], the memory M is given by a stream of
identical qubits. For our present purposes, however, D is
modeled as a particle in a one-dimensional box, which has an
infinitely large eigenspectrum. This is in contrast to previous
studies [21,38], which were limited to single spin-1/2 or
spin-1 particles with no clear and systematic classical limit.
The dynamics of the universe spanned by D ⊗ M is assumed
to evolve under Schrödinger dynamics, which includes qubit
coupling, decoupling, and time evolution of the particle in the
box.

We solve the dynamics of the continuous quantum ratchet
exactly as it writes information into the quantum memory M.
As a main result, we find that after a transient phase D settles
into a time periodic steady state with a persistent probability
current as information is written into M. Further introducing
a physically motivated time parameter, we are able to examine
the behavior of the ratchet as it transitions from the deep
quantum to the classical regime. Thus, the present analysis
constitutes a solvable, autonomous, and pedagogical example
of a quantum demon, or more precisely a quantum informa-
tion ratchet operating in continuous state space.

II. QUANTUM INFORMATION RATCHET

The following analysis will study a minimal model of a
self-contained quantum information ratchet within the frame-
work of autonomous thermodynamics of information [7].
The working medium is a quantum particle D in a one-
dimensional box of length L (0 � x � L) with eigenfunctions
and eigenenergies
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L
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where m is the mass of the particle. This particle is coupled to
a stream consisting of N qubits, which we denote by M (see
Fig. 1).

The dynamics of D ⊗ M is described by the Hamiltonian

HD⊗M(t )

=
N∑
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(2)

where In is the identity operator in the reduced Hilbert space
of the nth qubit, �n(t ) is the Heaviside π function given by

�n(t ) =
{

1 if (n − 1)τ < t � nτ

0 otherwise,
(3)

and the coefficients ai,n and bi,n are given by
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φL
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(4)

Note that, in complete analogy to a discrete version of the
present model [21], we assume that during the time interval
(n − 1)τ < t � nτ the ratchet interacts with only the nth
qubit.

Mathematically, the bipartite system composed of D and
the nth qubit can be mapped onto a single particle in a box
of with domain −L � x � L where the particle occupying
−L � x � 0 corresponds to D being in the down state |↓〉 and
the particle occupying 0 � x � L corresponding to the qubit
being in the up state |↑〉. This mapping is shown schematically
in Fig. 2.

In the following we will be solving for the reduced dynam-
ics of D and the nth qubit of M. Mathematically, we will need

FIG. 1. Schematic illustration of a continuous information
ratchet, where the working medium is a quantum particle in a box
and the information reservoir is realized as a stream of qubits.

to take the partial trace over the N − 1 remaining qubits. To
get a little more intuition for the physical dynamics, it may
be useful to consider that HD⊗M(t ) is constructed such that
when the incoming qubit is in the |↓〉 state the right wall of the
box instantaneously moves, expanding the box to length 2L,
i.e., 0 � x � L → 0 � x � 2L. Similarly, when the incoming
qubit is in the |↑〉 state the left wall of the box instantaneously
moves, expanding the box, i.e., 0 � x � L → −L � x � L.
The box instantaneously resets to its original length L when
the qubit is decoupled.

This model constitutes a minimal and autonomous version
of a quantum information ratchet. While our system forgoes
coupling to a heat bath and provides no mechanism for work
extraction, it can still serve as a solvable system to test
notions of quantum thermodynamics and the thermodynamics
of quantum information processing.

(a) (b)

(c) (d)

FIG. 2. Illustration of the dynamics described by Eq. (2). (a) In
the beginning of the nth interval D is in some state (depicted by a blue
solid line) and all N − n qubits of M are in |↓〉. (b) Same instant as
in (a), but as represented in the reduced space of D and the nth qubit
of M. (c) Final quantum state in reduced space of D and the nth
qubit of M at the end of the nth interval. (d) Same instant as in (c),
but as represented from the point of view of D only; all N − n − 1
qubits in M are still in the down state, but the nth qubit is now in a
superposition of |↑〉 and |↓〉.
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III. SOLUTION OF THE DYNAMICS

The total system D ⊗ M evolves by the von Neumann
equation [39] −ih̄ρ̇D⊗M = [ρD⊗M, HD⊗M(t )], where ρD⊗M
is the density operator. The reduced density operator of D is
obtained by taking the partial trace [40] over M,

ρD(t ) = trM{ρD⊗M(t )} = trM{U (t )ρD⊗MU †(t )}, (5)

where U (t ) = T> exp[−i/h̄
∫ t

0 ds HD⊗M(s)].
To analyze the dynamics of the ratchet, we need to solve

for the completely positive trace-preserving (CPTP) [40] map,
which determines the evolution of ρ(t ). We can write in the
Kraus operator expansion [40]

ρD(t ) =
∑

i

TiρD(t0)T †
i . (6)

In general, determining Ti for a system consisting of N +
1 (each qubit plus D) individual systems is a formidable
task. Here the situation is greatly simplified since at time
(n − 1)τ < t � nτ , D only interacts with the nth qubit and the
qubits in M are independent. For correlated qubits we refer to
Ref. [38]. Therefore, the total dynamics can be determined
by successively solving the dynamics in the reduced (but
still infinite-dimensional) Hilbert space of the demon and the
nth qubit. The CPTP map can be constructed by a recursive
protocol constructed of Kraus operators Ti.

Step 1. At time t = (n − 1)τ the demon is decoupled from
the (n − 1)th qubit, which we denote by Q(n−1). Thus, we
have

ρD(τ (n − 1)) = trQ(n−1){ρD⊗Q(n−1) (τ (n − 1))}
= P1ρD⊗Q(n−1) P†

1 + P2ρD⊗Q(n−1) P†
2 , (7)

which we expand in terms of the two Kraus operators P1 and
P2. In the reduced Hilbert space of the bipartite state spanned
by |φn〉 ⊗ Id , P1 = 〈↓| ⊗ Id and P2 = 〈↑| ⊗ Id are projection
operators into either the left or right side of the box and Id is
the identity operator in the Hilbert space of the demon. Further
details can be found in Appendix A.

Step 2. Immediately after the (n − 1)th qubit is decoupled
from D, the nth qubit is coupled

ρD⊗Qn (τ (n − 1)) = ρD(τ (n − 1)) ⊗ ρQn

= BρD(τ (n − 1))B†, (8)

where, in the reduced Hilbert space of the bipartite state
spanned by |φn〉 ⊗ Id and for pure initial states, B = Id ⊗ |i〉
and |i〉 is the initial state of the nth qubit. Again, further details
can be found in Appendix A. It is worth noting that Eq. (8)
would not hold if the demon interacted with multiple qubits
at a single instance in time due to quantum correlations and
entanglement as this is the case in Ref. [38].

Step 3. For (n − 1)τ < t � nτ both D and the nth qubit
evolve under the unitary dynamics generated by reduced
Hamiltonian of D and the nth qubit

Hi, j =
∑

l

E2L
n (ai,l a

∗
j,l ⊗ |↓〉〈↓| + bi,l b

∗
j,l ⊗ |↑〉〈↑|)

+
∑

l

E2L
n (a∗

i,l b j,l ⊗ |↓〉〈↑| + ai,l b
∗
j,l ⊗ |↑〉〈↓|). (9)

However, since this system is a particle in a one-dimensional
box of length 2L, the Hamiltonian can be written in the
eigenbasis of the bipartite Hilbert space, Hi, j = E2L

i δi, j .
Recursive map. Now that we have the Kraus operators

governing each cyclic step, we can, in complete analog to
Ref. [21], write down the recursive generator of our CPTP
map

ρD(nτ ) = U (τ )BP1ρD⊗Q(n−1) (τ (n − 1))P†
1 B†U †(τ )

+ U (τ )BP2ρD⊗Q(n−1) (τ (n − 1))P†
2 B†U †(τ ), (10)

which describes the exact dynamics of the quantum informa-
tion ratchet.

To continue, we note that all CPTP maps have a fixed
point and that if this fixed point is unique, the generated time
evolution will converge on this fixed point [21,41]. For the
present dynamics this means that after an initial transient the
dynamics relaxes toward this fixed point. More precisely, if
n is sufficiently large, then for each time during the cycle
(n − 1)τ < t � nτ a dynamical fixed point is established.
Thus, the demon relaxes into a time-periodic or stroboscopic
steady state where ρD(nτ )

n→∞−−−→ ρSS
D . A proof of this state-

ment can be found in Appendix B.
Initial preparation of M. In the following we will numer-

ically illustrate the behavior of the continuous quantum infor-
mation ratchet for several cases. For the sake of simplicity, we
will assume that all N qubits in M have been identically and
independently prepared in the same state ρn(0). We consider

ρ1
n (0) = |↓〉〈↓|,

ρ2
n (0) = |↑〉〈↑|,

ρ3
n (0) = (|↓〉〈↓| + |↑〉〈↑|)/2,

ρ4
n (0) = (|↓〉 + i|↑〉)(〈↓| − i|↑〉)/2.

(11)

States ρ1
n (0) and ρ2

n (0) correspond to a stream of qubits,
which are all prepared in the down or up states, respectively.
Classically, this would be a completely empty memory. State
ρ3

n (0) represents a stream of qubits where each qubit is equally
likely to be in the up or down state, which corresponds
to a classically completely full memory (see Appendix C).
Finally, state ρ4

n (0) is a deeply quantum qubit stream with no
immediate classical analog.

To further exclude any predetermined bias in the dynamics
of the ratchet, D is initially, at t = 0, prepared in the ground
state of the bipartite system. Note that the ground state is
parity even about the center of the box.

IV. THERMODYNAMICS OF INFORMATION

From the full time evolution of ρD⊗M we can obtain insight
into the thermodynamic properties of the information ratchet.
Naturally, prime attention lies on the von Neumann entropy of
D, SD(t ) = −tr{ρD(t ) ln[ρD(t )]}.

In Fig. 3 we plot SD(t ) together with the average reduced
Hamiltonian ED(t ) = tr{ρD(t )HD(t )}. We observe that both
quantities are monotonically rising until they asymptotically
approach their values in the periodic stationary state. It is
worth highlighting that, in contrast to previous discrete mod-
els [21], M has an energetic contribution to the dynamics.
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FIG. 3. Energy (blue lower line) and von Neumann entropy (red
upper line) of the demon as it undergoes repeated qubit interactions.
We see that both increase in discrete steps at each new interaction
with a qubit in state ρ1

n (0) [Eq. (11)].

However, also in the present case M does constitute a true
information reservoir, as in the stationary state no energy
is exchanged over one cycle of operation. This is precisely
in line with the characteristics and definition of information
reservoirs [7].

V. INFORMATION-DRIVEN CURRENT

We conclude the analysis by computing the probability
current through the ratchet. In Ref. [21] it was shown that as D
writes information to the qubit stream the state of D undergoes
cyclic flow of state occupation probabilities or a discrete state
space probability current. Note that, due to the absence of heat
and work reservoirs, the present ratchet fails to do anything
useful. The only analyzable feature of the interaction with M
is the resulting probability current.

This probability current can be expressed as

j(x, t ) = ih̄

2m
[∂y〈x|ρ(t )|y〉 − ∂x〈x|ρ(t )|y〉]|x=y. (12)

By integrating over the length of the box, we can obtain the
total probability current of the particle at time t ,

	(t ) =
∫ L

−L
j(x, t )dx. (13)

Figure 4 depicts 	(t ) after D has reached its periodic sta-
tionary state. We observe that, similarly to the discrete case,
	SS(t ) is an oscillatory function with period of the interaction
time τ . The natural question arises of how this probability
current behaves as we vary the parameters of our system.

Parametrizing the demon. To this end, we also compute
the average steady-state current over one qubit interaction

	̄ = 1

τ

∫ τ

0
dt 	SS(t ). (14)

We immediately see that 	̄ is dependent on the interaction
time τ , but also recall that the dynamics overall depend on the
length of the box L and the mass of the particle m.

FIG. 4. Total current 	SS(t ) in the time periodic steady state with
τ = πτs/30 for initial qubit preparations of ρ1

n (0) (blue solid line)
and ρ2

n (0) (orange dashed line). Only the last five periods are shown.

Thus, we introduce the characteristic time parameter τs,
which dictates the rate at which our demon evolves in time

τs ≡ 8mL2

π h̄
. (15)

Remarkably, the eigenenergies of the dual demon qubit basis
can be written as E2L

n = π h̄n2/τs. Therefore, τs scales the rate
at which each eigenstate of the dual basis evolves in time
depending on the particle mass and box size. In this way, τs

also quantifies the classicality of the particle in a box.
Consider the classical limit h̄ → 0 and m � 1. In this case,

τs diverges and the time evolution operator becomes unity

Un(t ) = exp

(
−i

n2π2h̄

8mL2
t

)

= exp

(
−iπn2 t

τs

)
τs→∞−−−→ I. (16)

This is in full agreement with classical intuition. Namely,
in the case of a classical particle in a box, i.e., expanding
instantaneously the walls of a box containing an initially
stationary classical particle will not induce a current in this
particle.

In Figs. 5–7 we plot the total steady-state currents as a
function of τ and τs for each of our qubit preparation states
ρ1

n (0), ρ2
n (0), and ρ4

n (0), respectively. We see that for ρ1
n (0)

the qubit interaction always induces a positive current in
D. Further, we observe that to obtain the largest probability
current for any given set of parameters is to drive the system
such that the interaction time is equal to the characteristic
time, i.e., τ = τs.

Comparing Figs. 5 and 6, we notice that by inverting the
initial state of the N qubits the induced current switches sign
and is also consistent with the total currents shown in Fig. 4.
This is again in full agreement with physical intuition, namely,
that the qubit states correspond to the effective interaction
shown in Fig. 1, i.e., expanding the box to either the left or
the right. As a final consistency check, we also confirmed that
preparing the qubits in the maximum classical information
state ρ3

n (0), there is never an induced current since the particle
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FIG. 5. Total current 	̄ for ρn(0) = ρ1
n (0) as a function of qubit

interaction time τ and the characteristic time τs with both τ and τs

given in arbitrary units.

is always equally likely to evolve in either direction (see
Appendix C).

Completely quantum current. Finally, examining ρ4
n (0),

the “truly” quantum preparation state which has no classical
analog, we observe that the sign is dependent on both τ and
τs. This dependence is a purely quantum feature that is caused
by quantum correlations of the initial preparation and is the
continuous version of the interaction-strength-dependent state
current calculated in Ref. [21]. Interestingly, the average
persistent current survives deep into the classical regime.
However, due to the deeply quantum nature of ρ4

n (0), we
would not expect this behavior to appear from any classical
preparation of M or have a simply and intuitive explanation.

Behavior for large τs. As a final check, we observe that
for τs � τ for any fixed driving time the induced current does
in fact decrease toward zero. as in the classical limit τs → ∞
the total current has to vanish. Therefore, we can conclude
that the induced probability current is an exclusively quantum
property of the quantum information ratchet.

FIG. 6. Total current 	̄ for ρn(0) = ρ2
n (0) as a function of qubit

interaction time τ and the characteristic time τs with both τ and τs

given in arbitrary units.

FIG. 7. Total current 	̄ for ρn(0) = ρ4
n (0) as a function of qubit

interaction time τ and the characteristic time τs with both τ and τs

given in arbitrary units.

VI. POSSIBLE EXTENSIONS OF THE MODEL

In the present analysis we have restricted ourselves to the
simplest case of a particle in a box coupled to an information
reservoir comprised of a stream of qubits. We have thus
forgone the typical treatment of Maxwell’s demon or Szilard’s
engine in which the demon is coupled to a thermal reservoir,
whose energy is harnessed by the demon to do work. Indeed,
the present analysis serves as only a starting point for un-
derstanding how the thermodynamics of quantum information
differ from those of classical information.

Here we have shown that writing quantum information
can be used to induce persistent currents. While this current
is associated with a directed form of energy, we have not
demonstrated how to extract work from the ratchet or how the
system behaves if coupled to a thermal environment. Certainly
the next step would be to include thermal reservoirs and
devise a method for work extraction to answer questions more
closely related to thermodynamics.

VII. CONCLUSION

In summary, we have proposed and analyzed a simple,
solvable, and pedagogical example of an autonomous quan-
tum information ratchet, which operates in a continuous state
space. We have demonstrated that as information is written
into a stream of qubits a persistent steady-state current is
induced, which is consistent with previously analyzed models
of quantum and classical Maxwell demons. The continuous
spectrum has made it possible to introduce a simple measure
of classicality and we have analyzed the behavior of the per-
sistent current in the classical limit. As main insight, we have
concluded that in comparing quantum and classical models
for information processing, differences in behavior may not
be due solely to information type, but also to the very nature
of quantum and classical dynamics. In addition, we have
shown that truly quantum information states unlock modes
of operation which persist in both quantum and classical
regimes.
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FIG. 8. Trace distance between the demon state and the fixed
point D(ρ(nτ ), X ) as a function of repeated qubit interactions in
time. Here M = 10 and τs = 0.94τ .
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APPENDIX A: DETERMINING THE KRAUS OPERATORS

In Sec. III we solve the dynamics of the bipartite demon-
qubit system. In this analysis we introduced the projection
operators P1 = 〈↓| ⊗ Id and P2 = 〈↑| ⊗ Id used in Eq. (7) to
define the partial trace B = Id ⊗ |i〉.

We can explicitly calculate our partial trace over the infor-
mation bearing qubits as

ρD = trQ{ρ}
= (〈↓| ⊗ ID )ρD⊗Q(|↓〉 ⊗ ID )

+ (〈↑| ⊗ ID )ρD⊗Q(|↑〉 ⊗ ID ), (A1)

and we immediately see that we do in fact have the correct
choice of projection operators P1 and P2. Next, in order
to determine B, which defines the Kronecker product such
that ρD⊗Q = ρD ⊗ ρQ, where ρQ = ∑

i pi|i〉〈i|, we arrive
at

ρD⊗Q = ρD ⊗
∑

i

pi|i〉〈i| =
∑

i

pi(ID ⊗ |i〉)ρD(ID ⊗ 〈i|).

(A2)

In the case where our initial state is a pure state we further
have

ρ = (ID ⊗ |i〉)ρD(Id ⊗ 〈i|) = BρDB† (A3)

and we see that we have identified the correct operator B =
ID ⊗ |i〉. Overall, however, we are concerned with solutions in
the dual basis represented in Fig. 2 spanned by the eigenstates
|ψn〉, which can be expanded in terms of particle in a box

eigenstates as

|ψn〉 =
∑

i

(ai,n|φi〉 ⊗ |↓〉 + bi,n|φi〉 ⊗ |↑〉)

=
∑

i

(
ai,n

∣∣φ0
i

〉 + bi,n

∣∣φ1
i

〉)
, (A4)

where ai,n and bi,n are defined as

ai,n = (〈φi| ⊗ 〈↓|)|ψn〉 =
∫ 0

−L
dx ψn(x)φi(x + L),

bi,n = (〈φi| ⊗ 〈↑|)|ψn〉 =
∫ L

0
dx ψn(x)φi(x).

(A5)

Now we are prepared to obtain operators which can be
used in Eq. (10) along with our choice of basis. Since the
operators always show up in pairs, i.e., BP1 or BP2, we will
forgo a derivation of each operator and for the sake of brevity
only derive the form of BP1 in the eigenbasis of the dual state
if we have the initial preparations of qubits ρ1

n (0) [Eq. (11)].
Using BP1 = (I ⊗ |↓〉)(〈↓| ⊗ I) and inserting a complete set
of states, we have

(BP1)lk = 〈ψl |BP1|ψk〉
=

∑
i j

(a∗
i,l〈φi| ⊗ 〈↓| + b∗

i,l〈φi| ⊗ 〈↑|)(I ⊗ |↓〉)

× (〈↓| ⊗ I)(a jk|φ j〉 ⊗ |↓〉 + b jk|φ j〉 ⊗ |↑〉)

=
∑

i

a∗
il bik . (A6)

All other operators needed to calculate the CPTP map in this
model can be calculated in a similar manner.

Finite dimensions and numerics. Finally, we conclude with
a more technical remark: Strictly speaking, the Hilbert space
of the particle in a box is infinite dimensional. However, for
explicit calculations we must restrict ourselves to a Hilbert
space spanned by the lowest M eigenvectors. Due to com-
putational limitations, all explicit calculations in the present
work are done with M = 40 eigenvectors. An additional
complication that arises by this truncation is that, as defined,
the CPTP map above is no longer trace preserving as the
Hilbert space is no longer complete. To remedy this, we
renormalize the trace of the density operator between steps
2 and 3, i.e., ρ → ρ/tr{ρ}.

APPENDIX B: FIXED POINTS

This Appendix is dedicated to a numerical proof that the
above-constructed CPTP map indeed relaxes towards its fixed
point. To this end, we consider

U (τ )

(
BP1XP†

1 B† + BP2XP†
2 B†

Tr(BP1XP†
1 B† + BP2XP†

2 B†)

)
U †(τ ) = X, (B1)

where X is the fixed point. Solving this equation requires
us to solve a system of M2 equations for M2 unknowns and
this is done numerically. To understand the convergence we
recursively apply our CPTP map to generate ρD(nτ ) and
compare this to X via the trace (Kolmogorov) distance [40]

042129-6



QUANTUM TO CLASSICAL TRANSITION IN AN … PHYSICAL REVIEW E 99, 042129 (2019)

given by

D(ρ(nτ ), X ) = 1
2 Tr|ρ(nτ ) − X |. (B2)

The result is illustrated in Fig. 8. We observe that the trace
distance goes to zero as N becomes large and our system does
indeed converge on the fixed point.

APPENDIX C: ZERO CURRENT FOR CLASSICALLY
MIXED MEMORIES

As a final consistency check we also computed the cur-
rent for quantum memories that are prepared in classically,
completely mixed states, i.e., it is equally likely to find the
incoming qubit in either |↑〉 or |↓〉 (see Fig. 9). This situation
is described by ρn(0) = ρ3

n (0). As expected, we found (nu-
merically) that the resulting current is zero for any choice of
parameters.

FIG. 9. Total current 	̄ for ρn(0) = ρ3
n (0) as a function of qubit

interaction time τ and the characteristic time τs with both τ and τs

given in arbitrary units.
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