

Peichang Shi

INTERPRETABLE DEEP LEARNING MODELS FOR
ELECTRONIC HEALTH RECORDS

pshi1@umbc.edu

NOTE: *The Approval Sheet with the original signature must accompany the thesis or
dissertation. No terminal punctuation is to be used.

DISSERTATION APPROVAL SHEET

2022Doctor of Philosophy,

Name of Candidate:

Title of Dissertation:

Information SystemsGraduate Program:

Aryya Gangopadhyay

11/29/2022 | 3:45:01 PM EST

Dissertation and Abstract Approved:

Professor

Information Systems

gangopad@umbc.edu

Curriculum Vitae

Name: Peichang Shi

Degree and date to be conferred: PhD, 2022

Collegiate institutions attended:

2014-2022 University of Maryland,Baltimore County,PhD in Information Sys-

tems

2003-2006 Wright State University, MS in Applied Statistics

2000-2002 Florida Institute of Technology,MS in Computer Information Sys-

tems

1991-1995 Jimei University, BS in Fisheries biology

Professional Publications

1.Conference/journal papers:

1).Shi, P., Gangopadhyay, A., Yu, P. (2022, June). LIVE: A Local Inter-

pretable model-agnostic Visualizations and Explanations. In 2022 IEEE 10th Inter-

national Conference on Healthcare Informatics (ICHI) (pp. 245-254). IEEE.

2).Wu, X., Wang, H. Y., Shi, P., Sun, R., Wang, X., Luo, Z., ... Wang, Y.

(2022). Long short-term memory model–A deep learning approach for medical data

with irregularity in cancer predication with tumor markers. Computers in Biology

and Medicine, 144, 105362

3).Shi, P., Gangopadhyay, A., Owens, C., Blunt, B., Grogan, C. (2019, De-

cember). A hybrid model using LSTM and decision tree for mortality prediction

and its application in provider performance evaluation. In 2019 IEEE International

Conference on Big Data (Big Data) (pp. 2773-2781). IEEE.

4).Shi, P., Song, Q., Patwardhan, J., Zhang, Z., Wang, J., Gangopadhyay, A.

(2019, September). A hybrid algorithm for mineral dust detection using satellite

data. In 2019 15th International Conference on eScience (eScience) (pp. 39-46).

IEEE.

2. Oral presentation /Posters

1) Shi, P.,Zhang,S.,Yu,P., Shang,Q.,Xiong,X. “An AI Approach for Real-time

Provider Performance Evaluation Based on Federated Learning” 2022 Annual Meet-

ing, American Public Health Association , 2022

2) Shi, P., Yu, P., Shang, Q., Levine, E., Zhao, J ”Application of Bagging Ap-

proach in Program Evaluation with Heterogenous Groups.” 2022 Annual Research

Meeting. AcademyHealth, 2022

3) Shi, P., Yu, P., Shang, Q., Levine, E., Zhao, J.“Application of NLP Word

Embedding Model with Irregular Time Series and Sparse Healthcare Data ” 2022

Annual Research Meeting. AcademyHealth, 2022

Professional positions: Senior Lead Data Scientist, Booz Allen Hamilton

ABSTRACT

Title of dissertation: INTERPRETABLE DEEP LEARNING
MODELS FOR ELECTRONIC
HEALTH RECORDS

Peichang Shi, Doctor of Philosophy, 2022

Dissertation directed by: Professor Aryya Gangopadhyay
Department of Information Systems

Analysis of healthcare data could help reduce cost, improve patient outcomes

and understand the best practices related to diseases.However,with rapid increase of

massive amounts of health-related data, such as Electronic Health Records (EHRs),high

dimensionality and large sample size have become challenges for traditional statis-

tical approaches.

Deep learning models have been proved to be powerful tools in computer vi-

sion and machine learning in healthcare.However,despite their superior performance

to traditional statistical methods,it remains challenging to understand their inner

mechanism due to the black box effects.

A variety of interpretability algorithms have been developed to help explain

the deep learning models.However due to the trade off between model accuracy and

complexity, the current interpretability algorithms have lower performance com-

pared to original deep learning models, which cause some concern for high stakes in

healthcare. Also,most of interpretability algorithms focus on correlation interpreta-

tion, highly correlated features may lead to biased causal inference, which may be

more important in healthcare.

In this dissertation paper,we proposed a new ensemble approach for deep learn-

ing interpretation,Local surrogate Interpretable model-agnostic Visualizations and

Explanations (LIVE), where we assumed all the predictions from deep learning

model form a mixture of a finite number of Gaussian distributions with unknown

parameters.We applied ensemble trees to obtain the mixing coefficients. The rule

sets from the trees were used to build an interpretable model through randomized

experimental design for interpretation.

Our LIVE algorithm was validated using different types of datasets (image and

structured datasets) with different deep learning model structures. Our experiments

showed that LIVE algorithm could not only help improve the model accuracy, but

also provide visual interpretation.

INTERPRETABLE DEEP LEARNING MODELS
FOR ELECTRONIC HEALTH RECORDS

by

Peichang Shi

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2022

Advisory Committee:
Professor Aryya Gangopadhyay, Chair/Advisor
Professor Jianwu Wang
Professor Sanjay Purushotham
Professor Maryam Rahnemoonfar
Professor Yaacov Yesha

© Copyright by
Peichang Shi

2022

Acknowledgments

I would like to express my deepest appreciation to all the people who have

made this thesis possible.

First and foremost I’d like to thank my advisor, Professor Aryya Gangopad-

hyay for his great patience and feedback. He has always made himself available for

help. It has been a pleasure to work with him.

I can not have undertaken this journey without my committee members, Dr.

Jianwu Wang, Dr. Sanjay Purushotham, Dr. Maryam Rahnemoonfar and Dr.

Yaacov Yesha, who have provided invaluable advice on my dissertation research.

I also have to say a special word of thanks to the fantastic team I have been

fortunate to work with over the years at Booz Allen Hamilton, especially Dr. Ping

Yu for his encouragement and inspiration.

Finally I would like to express my deepest gratitude to my family who have

always stood by me, especially my wife, Xiaochun Mou and my three kids, Chelsea,

Ryan and George. Without their tremendous understanding in the past few years,

it would be impossible for me to complete my study.

ii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Healthcare and healthcare data . 3
1.2 Deep learning in healthcare . 3
1.3 What is interpretability . 5
1.4 What is causal interpretability . 6
1.5 Current interpretability methods and limitations 7

1.5.1 Major interpretation methods 7
1.5.2 Limitations and challenges for current interpretability algo-

rithms . 8
1.6 Problem statement . 9
1.7 Statement of purpose . 9
1.8 Proposed approaches . 10
1.9 Contributions . 11

2 Background 13
2.1 Healthcare data . 13

2.1.1 Properties of EHRs . 13
2.1.2 Challenges in EHR data . 15

2.2 Deep learning in healthcare . 20
2.2.1 Major techniques in deep learning 21

2.2.1.1 Autoencoders and deep autoencoders 22
2.2.1.2 Recurrent neural network(RNN) 24
2.2.1.3 Restricted Boltzmann Machine (RBM) 25
2.2.1.4 Convolutional Neural Networks(CNNs) 26
2.2.1.5 Transfer learning . 27
2.2.1.6 Ensemble learning 28

2.3 Interpretability . 29
2.3.1 Interpretable models . 29

iii

2.3.2 Types of interpretability methods 30
2.3.2.1 Before (pre-model), during (in-model), or after (post-

model) . 31
2.3.2.2 Intrinsic vs. post hoc 32
2.3.2.3 Model-specific vs. model-agnostic 32
2.3.2.4 Local or global . 32

2.3.3 Intrinsic approaches . 33
2.3.3.1 Adding interpretability constraints 33
2.3.3.2 Mimic learning . 34
2.3.3.3 Attention mechanism 35

2.3.4 Post hoc approaches . 35
2.3.4.1 Model-Specific explanation methods 36
2.3.4.2 Model-Agnostic explanation methods 36

2.3.5 Interpretability evaluation . 39
2.3.6 Limitations and challenges of current interpretability methods 40

2.4 Decision tree and deep learning models 41
2.4.1 Neural networks to decision trees 42
2.4.2 Decision trees to neural networks 42
2.4.3 Mixing deep learning models and decision trees 42

2.5 Deep learning models and mixture models 43
2.5.1 Gaussian process in deep learning models 43
2.5.2 Mixture density network . 44

3 Methodology 46
3.1 Decision tree and regression tree . 46
3.2 Clustering . 48
3.3 Bagging and random subspace . 49
3.4 Deep learning models . 49

3.4.1 CNN model . 49
3.4.2 Transfer learning models . 50
3.4.3 LSTM model . 51
3.4.4 Evaluation metrics . 51

3.5 Problem definition . 52
3.5.1 Mixture distributions . 52
3.5.2 Interpretability . 54

3.6 Proposed method . 54
3.6.1 LIVE algorithm description 57
3.6.2 Properties of LIVE algorithm 59

3.6.2.1 LIVE algorithm is consistent 59
3.6.2.2 LIVE algorithm is an ensemble approach 60
3.6.2.3 LIVE algorithm is causal interpretable 70
3.6.2.4 Complexity of LIVE algorithm 75

3.6.3 Comparison to other interpretability methods 76

iv

4 Results 78
4.1 Results for image data . 78

4.1.0.1 Vingroup dataset . 78
4.1.0.2 Pneumonia x ray dataset 79

4.1.1 Model structures . 79
4.1.1.1 CNN model . 80
4.1.1.2 Transfer learning model 82

4.1.2 Experiment design . 83
4.1.2.1 Impact of image sizes 84
4.1.2.2 Impact of number of epochs 85

4.1.3 Results of impact of epoches 85
4.1.3.1 Impact of number of decision trees 86

4.1.4 Results of impact of image size 87
4.1.5 Performance comparison . 88
4.1.6 Results for transfer learning 89
4.1.7 Performance of LIVE algorithm with smaller image size 91

4.2 Results for visualization . 93
4.3 Results for Structured dataset . 97

4.3.1 Data source . 97
4.3.2 Challenges of this dataset . 99

4.3.2.1 Irregular time series 99
4.3.2.2 Hierarchical variables 100
4.3.2.3 Word embedding . 103

4.3.3 Models for diabetes dataset 103
4.3.4 Model results for structured data 104
4.3.5 Interpretation and visualization for diabetes dataset 106

5 Conclusion and future work 107
5.1 Conclusion . 107
5.2 Future work . 111

A Programs codes 114
A.1 Data sources . 114
A.2 Codes for Vinbig data . 114

A.2.1 CNN model for Vinbig . 115
A.2.2 VGG16 model for Vinbig data 122
A.2.3 Visualization codes using LIME,SHAP and GRAD CAM . . . 128
A.2.4 Codes for LIVE algorithm . 131

A.2.4.1 SAS code for LASSO regression model 141
A.2.4.2 Visualization for LIVE algorithm 142

A.3 Codes for pneumonia data . 144
A.3.1 SAS code for data creation . 144
A.3.2 Codes for LIVE algorithm and visualization 151

A.4 Codes for diabetes data . 152
A.4.1 data preprocessing . 152

v

A.4.2 Deep learning model and LIVE method 157

Bibliography 170

vi

List of Tables

3.1 Sample node information with features in the rule path 70
3.2 Differences between LIVE algorithm and 4 other interpretability meth-

ods . 77

4.1 Some transfer learning models [1] . 83
4.2 Impact of different image sizes for Pneumonia data 87
4.3 Impact of image sizes for Vingbig data 88
4.4 Performance with smaller image size for Vinbig data 92
4.5 Performance with smaller image size for Pneumonia data 92
4.6 Region of interest for Figure 4.11 . 95
4.7 Region of interest for Figure 4.12 . 95
4.8 Some regression coefficients for interpretation using Vinbig data . . . 98
4.9 Frequency of irregular hospital visits 100
4.10 Sample diagnosis codes . 101
4.11 Performance comparison between LSTM and LIVE 105

vii

List of Figures

1.1 Deep learning in healthcare [2] . 4

2.1 Types of deep learning methods. 23
2.2 Types of interpretability methods [3] 31
2.3 Neural network and Gaussian process 44
2.4 Mixture density network, figures from [4] 45

3.1 Regression tree . 47
3.2 Decision tree for clustering . 48
3.3 Mixture distribution . 53
3.4 LIVE algorithm . 56
3.5 Random trees . 59
3.6 LIVE is consistent . 60
3.7 Two curves without overlapping . 63
3.8 Two curves without overlapping . 64
3.9 Induction step for proof of LIVE . 67
3.10 ICU model structure in literature [5] 70
3.11 LIVE algorithm is interpretable (1) 71
3.12 LIVE algorithm is interpretable (2) 71

4.1 Sample images from Vingroup big data 79
4.2 Sample image from Pneumonia data 80
4.3 CNN model structure . 81
4.4 VGG 16 model structure [6] . 84
4.5 Pneumonia images with different sizes 85
4.6 Impact of number of epochs . 86
4.7 Impact of number of decision trees 86
4.8 Performance for Pneumonia data CNN vs LIVE 89
4.9 Performance for Vinbig data CNN vs LIVE 90
4.10 Performance for VGG16 vs LIVE . 91
4.11 Visualization for Vinbig data 1 . 94
4.12 Visualization for Vinbig data 2 . 96
4.13 Frequency of diagnosis code . 102

viii

4.14 LSTM model with embedding layer 104
4.15 Impact of number of decision trees for Diabetes data 105
4.16 Interpretation and Visualization for diabetes data 106

ix

Chapter 1: Introduction

Due to exponential growth in healthcare data, more and more deep learning

models have been used in healthcare study with high performance compared to

traditional approaches.Lack of transparency of deep learning models are barriers

for the wide adoption in medical research and clinical decision making. A variety

of traditional interpretable models have been developed where a second model is

built to explain the deep learning model.There is a trade off between explainability

and accuracy, thus generally the current explainable models which target to mimic

the deep learning models have less accuracy. This low performance in interpretable

models may lead to biased decisions especially in high staking healthcare industry.

Also, traditional interpretable machine learning approaches focus on the association

instead of the causality, little has been done for causality inference analysis, which

tried to answer questions why the model made such decisions.

The aim of this thesis is to develop an innovative approach with both high

interpretablilty and high accuracy compared to deep learning models alone.The new

model is supposed to have statistical theory support to show its superior performance

and better interpretability with less correlations among the features. The proposed

model is evaluated on a variety of real world datasets.

1

In Chapter 1, we talk about the motivations why we seek to develop a model

with both high interpretability and high accuracy. We briefly cover deep learning

models in healthcare, some challenges between accuracy, interpretability and causal

inference, then we discuss our research questions,research approaches and our con-

tributions.

The rest of this dissertation is organized as follows:

In Chapter 2, we introduce the definition of EHRs, the properties of EHRs,

and some challenges in EHRs. We will also discuss the benefits of application of deep

learning models in healthcare where we will briefly talk about some major techniques

in deep learning. Next we will go over the definition of interpretability and major

explanation methods. Also, we will review some specific approaches about decision

trees and deep learning models, which are highly related to our proposed algorithm.

In Chapter 3, we propose our LIVE algorithm and describe the implementation

details. We also talk about some properties of our LIVE algorithm, such as reducing

bias, consistency and visualization etc. We would also explain why our model reduce

correlations and improve interpretability.

In Chapter 4, we mainly talk about some experiments to validate our LIVE

algorithm. We use different datasets including both images data and structured

data, and different deep learning models to show that our LIVE algorithm could

consistently improve the model performance compared to deep learning methods

alone.

Finally in Chapter 5, we review some limitations of LIVE algorithm and discuss

some future work.

2

1.1 Healthcare and healthcare data

Healthcare is an important sector in US, which costs approximately 18% of the

GDP. Rising health care cost is a serious issue. According to McKinsey, healthcare

expenses have been growing consistently for 20 years, and reache 17.6 percent of

GDP. McKinsey’s estimates also show that US health care expenses are nearly 600

billion dollars more than expected and 30% of the healthcare spending is considered

a waste [7,8]. The waste includes failure of care delivery, failure of care coordination

and over treatment etc [9–11]. Today, approximately 30% of the world’s data volume

is being generated by the healthcare industry. By 2025, the compound annual growth

rate of data for healthcare will reach 36% [12]. The fast-growing and tremendous

amount of health data has far exceeded the ability of traditional statistics. We need

powerful and versatile machine learning techniques to deal with this big data.

1.2 Deep learning in healthcare

Deep learning models have been received much attention and successfully ap-

plied in a variety of task such as classification and prediction, especially in image

analysis and natural language processing. In healthcare, medical imaging plays an

important role in the disease diagnosis from cancer and appendicitis to stroke and

heart disease due to its noninvasive and painless properties. Each year medical

imaging saves millions of lives. Images are one of the most challenging sources of

data in healthcare. Current image analysis is totally depending on well trained

3

Figure 1.1: Deep learning in healthcare [2]

professionals, which is limited by the complexity of the image, the large variations

across different interpreters, and fatigue. Even the best practicing doctor could lead

to 25% false positives on image readings, which may produce unnecessary invasive

procedures and follow-up scans and increase the cost and stress for patients [13,14].

These incorrect detection of disease may increase treatment costs and reduce sur-

vival rates. Artificial intelligence algorithms have been shown to help radiologists

improve the speed and accuracy of interpreting medical images. These deep learn-

ing techniques include Convolutional Neural Network (CNN), Recurrent neural Net-

work (RNN), Long Short term Memory (LSTM) models, Extreme Learning Model

(ELM), Generative Adversarial Networks (GANs) etc. Some research on medical im-

age classification by CNN has achieved better performance than human experts.For

4

example, CheXNet, a CNN algorithm trained with more than 100,000 chest X-rays,

achieved a better performance than the average performance of four radiologists.

Moreover, Kermany et al. proposed a transfer learning system to classify 108,309

Optical Coherence Tomography (OCT) images, and the weighted average error was

equal to the average performance of 6 human experts [15, 16].

However, one major concern for the deep learning is its black box effect: algo-

rithms could identify an image object as abnormal but cannot explain why it was

determined due to the complex architecture of the deep learning models.In health-

care industry, we would not totally rely on machine learning models for medical

diagnosis, unless we know how it works [17]. The basic common characteristic of

the deep learning models is its multiple layers of hidden neurons, which greatly in-

troduces complexity to the model. For example, VGGNet is a CNN architecture and

the 1st runner up of ILSVR2014 in the classification task.Many image classification

models are built on top of this architecture. VGGNet has 144 millions of parameters.

It is hard to understand the model without help of interpretable models [18].

1.3 What is interpretability

The model interpretability could be defined as the ability to explain the mean-

ing of the model in a way human could understand. Sometimes interpretability and

explainability are used interchangeably [19], however it is also reported interpretabil-

ity and explainability are two different concepts. Interpretability is the intrinsic

propriety of the model, for example, in multivariate linear regression model, the

5

coefficients could be used directly to measure the expected output for different in-

put data. However explainability is kind of interface between the non interpretable

models and human understanding, for example, if the black box model is hard for

people to understand, you may through another method to help understand the

inner mechanics [20]

Interpretability is crucial for several reasons. If researchers don’t understand

how a model works, they can have difficulty transferring learning into a broader

knowledge base. Similarly, interpretability is essential for guarding against embed-

ded bias or debugging an algorithm. It also helps researchers measure the effects of

trade-offs in a model. More broadly, as algorithms play an increasingly important

role in society, understanding precisely how they come up with their answers will

only become more critical [21].

It is also some requirement of regulation. A key example is the new Euro-

pean General Data Protection Regulation, which enforces that the explanation of

algorithmic decision must be provided with the data subject [22].

1.4 What is causal interpretability

Causal inference is used to determine the causal relationship between two

variables.The traditional interpretability methods focus on correlation analysis and

not the causal inference.A causal interpretable model can help us understand the

real cause of the decision made by machines. The causal relationship is to study how

changing one variable will cause a change in another variable. However traditional

6

interpretable machine learning models are used for general relationship, where causal

relationship can not be verified through interpretable machine learning techniques

[23].

1.5 Current interpretability methods and limitations

1.5.1 Major interpretation methods

There are a quite few of review papers which describe a variety of approaches

for interpretation methods. Monlnar [24] provides a taxonomy of the approaches

for explaining black models, which include intrinsic or post hoc based on when

the interpretation happens during the training or after training. Model specific or

model agnostic interpretation is based on whether the method is limited to specific

model or for any machine learning models. The interpretability could be also local

or global where the local interpretation targets the individual prediction, while the

global interpretation is for entire model.

One widely popular method is SHapley Additive exPlanations (SHAP) based

on cooperative game theory, it is a global agnostic model intepreation. SHAP value

could be used to measure the contribution of each feature among the coalition. It

is a good way to show how input features contribute to the outcomes either at

individual level or population average level [24].

7

1.5.2 Limitations and challenges for current interpretability algo-

rithms

The interpretablity algorithms have evolved quickly and still suffer some lim-

itations:

1. Accuracy of interpretation models

One notable limitation is that most of the interpretation algorithms are trying

to approximate the black box model, thus they could not precisely catch the in-

ner mechanism of the models. One example is to use tree model to explain the

deep learning model using MNIST(Modified National Institute of Standards

and Technology) database, the tree model has accuracy of 96.7% compared

to 99.2% using deep learning model alone [25]. With simple structure of de-

cision tree, it may be hard to account for the complexity of the deep learning

model. Rudin argued that even the explanation model has 90% agreement

with deep learning model, the left 10% may still be questionable about trust

explanations, especially in high stake decision healthcare area [26].

2. Causal inference due to highly correlation

Most of current interpretable techniques focus on correlation identification,

not causation. Though the interpretation may suggest the relative feature

importance in the model, it is not sufficient to draw causal inference from these

findings. The challenges for causal inference in observational data include

both confounding factors and selection bias. The confounding occurs when

8

extraneous causes are missing in the model, which is difficult to avoid unless

we have substantial domain knowledge to know in advance. The selection bias

is due to sampling issue, where the samples are not appropriately selected,

which could be avoided through careful experiment design. [27]. Another

issue is multicollinearity among features, which could also affect the causal

inference. It is already known that SHAP value may serve good tool for feature

correlation study, but not be used for causal analysis directly, since during

SHAP value calculation, it used all the features regardless their correlations.

[24].

1.6 Problem statement

Research indicates that most traditional interpretability models have lower

performance than the original deep learning models, also the interpretation is about

correlation analysis, and not causal inference due to highly correlated features. All

these may lead to biased interpretation.

1.7 Statement of purpose

The purpose of this study was to explore a novel research that could combine

the accuracy from deep learning models with statistical casual analysis.To shed light

on the problem, the following key research questions will be addressed:

1. Could we develop an interpretation algorithm which is interpretable without

sacrificing the accuracy of original deep learning models?

9

2. If so, could the algorithm reduce biased interpretation due to highly correlated

features so that it could reveal the potential rational of a model making the

decisions ? Does it answer the following questions, like, why the image is

predicted as cancer? Which regions make the algorithm think this is a cancer

image?

3. Could this algorithm work for different datasets with different model struc-

tures, in another word, is this algorithm model agnostic? Is it a local or global

interpretation?

4. Could this algorithm help visual interpretation? How is it compared to other

visual interpretation methods, such as SHAP etc.

1.8 Proposed approaches

We propose the following proposed approaches to address the above questions,

:

To improve the deep learning model performance, we will try to identify the

limitation of the current deep learning models,which assume the predictions from

deep models have independent Gaussian distributions, however for many applica-

tions, the distributions of predictions are not simple Gaussian distributed,mixture

distributions could be more flexible and appropriate for the data. We plan to pro-

pose an ensemble approach, where decision trees are used to calculate the mixing

coefficients for the mixture distribution. Finally, general linear regression model is

built to interpret the outputs from our ensemble approach.

10

Unlike many other interpretation algorithms, which target to interpret the

predictions from deep learning models,our proposed algorithm is composed of black

box algorithm and white box algorithms. There, the black box algorithm provides

the model predictions, the white box algorithms are decision trees and linear regres-

sion models, which are used for interpretation. Our interpretable model is general

linear regression model, which is based on the rules from decision trees. Our tar-

get interpretation outcome is the newly predictions from the mixture distributions.

The current gold-standard approach for causal inference is randomized experimenta-

tion [28].We can have our randomized experiment design matrices through random

subspace approach based on the rule sets from the decision trees so that we can

estimate the contribution of each feature and answer questions, like what the model

looks like if the specific feature is missing, thus we could reveal the potential causal

relationships based on our linear regression model.

We will evaluate our algorithm using different datasets including both images

data and structured data with different model structures to show our algorithm is

a model agnostic approach. We will also demonstrate visual interpretation based

on model coefficients and compare to other visual interpretation techniques.Finally

we would report our evaluation of our model performance using Area Under the

Curve(AUC), precision, recall and accuracy.

1.9 Contributions

Our major contributions lie in the following areas:

11

1. We proposed a new frame work for interpretability algorithm, which is an

ensemble approach with black box model and white box model. This algorithm

is not trying to interpret the predictions from the black box directly, but to

explain the results from the ensemble approach.

2. This algorithm could reduce prediction bias, and provide comparable model

accuracy as the black box model or even with slight better performance.

3. This algorithm is transparent and potential causal interpretable.Linear regres-

sion model is to explain the contribution of each feature based on rule sets from

decision trees, which could make the interpretation more transparent.We in-

corporate game theory into our model design, so that we can also study the

potential causal relationships after we deal with the high correlation in our

model.

4. Our LIVE algorithm could be for any machine learning models and different

types of data, either images or structured data.

5. LIVE algorithm could provide visual explanation and identification of region

of interest.

12

Chapter 2: Background

2.1 Healthcare data

Health information technology, especially EHRs, has been proved to be an effi-

cient way to improve clinical quality and reduce healthcare costs through descriptive

statistics, prediction modeling etc [29]. Over the years, EHR data have been used

to improve care, increase patient engagement, perform quality improvement, build

shared models and standardization across institutions, enable public health surveil-

lance and intervention, and facilitate personalized care and decision-making [30–32].

2.1.1 Properties of EHRs

However, with rapid development of information technology, EHR data has

entered the big data era with the following common properties:

1. Volume:The volume of worldwide healthcare data in 2012 was 500 petabytes,

which was estimated to grow to 25,000 petabyte, a fiftyfold increase from 2012

to 2020 [8].

2. Variety: Variety refers to the forms of the data. EHRs include structured, un-

structured and semi-structured data.Structured data include patient’s name,

13

physician’s name, hospital name and address, and treatment reimbursement

codes etc. Unstructured or semi-structured data include e-mails, photos,

videos, audios, and other health related data such as hospital medical re-

ports, physician’s notes, paper prescriptions, medical images and radiograph

films [8, 33,34].

The number of data sources in healthcare is also growing. The Internet of

Things and other technology development produced more data sources such

as various wearable devices and sensors, and even smart phone applications.

3. Velocity: Most healthcare data are static, such as patient visits, hospital ad-

missions, however there are still many real time data, for example, patient

vital signs in the ICU must be updated in real time and displayed immedi-

ately [35, 36].

4. Veracity (uncertainty of data): The veracity means whether the data are con-

sistent. Different data sources have different credibility and reliability. Due to

the varieties of data sources, missing or incomplete information increases the

risk of veracity [8, 33,34,37].

5. Values: It refers to how the big data could be valuable to the patients and

clinicians, which could contribute to the following areas: identifying at-risk

patients, tracking clinical outcomes, performance measurement and manage-

ment, clinical decision making at the point of care, length of stay prediction,

hospital readmission prediction etc [38].

14

The most common radiology types include plain X-ray, computed tomography

(CT), magnetic resonance imaging (MRI), positron emission tomography (PET),

and ultrasound imaging. X-rays (radiographs) are the most common and widely

available diagnostic imaging technique. Even if you also need more sophisticated

tests, you will probably get an x-ray first.However, these images are often rendered

in grayscale [39].

2.1.2 Challenges in EHR data

These unique features of big data differentiate EHRs from the traditional

datasets and significantly challenge the traditional statistical approaches. Though

the traditional epidemiology approaches are well established in healthcare data ana-

lytics, they provide relatively less desirable performance compared to machine learn-

ing approaches. For example, simple regression models require such assumptions like

multivariate normality, no multicollinearity and auto-correlation, however due to the

complexity of the healthcare data, those assumptions may not hold. This requires

us to develop more adaptive and robust models [34]. Kruse listed nine categories of

challenges such as data structure, security, data standardization, data storage and

transfers, lack of skill of data analysts, inaccuracies in data, regulatory compliance,

and real-time analysis [30,40–42], all these could impede the progress of EHR data

analysis.

1. Irregularity

Irregularity is one of the tough characteristics of EHR data. Irregularity is

15

due to the fact that EHR data are recorded only when patients visit the hos-

pitals. As a result, patients’ EHR data may have irregular samples or patient

length variability. The irregular samples means that sequential observations

are collected at different times, and the time between two consecutive obser-

vations may vary. The patient variability means the number of observations

in each data sequence is limited and the duration they span may vary a lot

from patient to patient. How to better account for the temporality of EHR

data is still an important research question [34,43–45].

(a) Use of baseline features

The first method is to only utilize patients’ baseline features, which are

collected when patients visit the hospital to perform examinations for the

first time [46, 47]. Schulze collected patients’ baseline features and then

applied a Cox regression model to predict their development of Type

2 Diabetes [48]. However with only baseline features, it may not fully

utilize the time related features.

(b) Data transformation

The EHR data could also be processed by transforming the time dimen-

sion into equally spaced observation data, and then some efficient meth-

ods (such as linear regression) will be applied directly, but we need to be

aware that the transformation method may possibly lead to the sparsity

and missing data problems because there could be no observations dur-

ing certain time windows. Moreover, by dividing longitudinal data into

16

windows, the model may be less sensitive to capturing short-time feature

patterns [34, 46].

(c) Direct use of irregular data

Long short-term memoery(LSTM) model

The LSTM model is a deep learning model, which could incorporate

the time spans between consecutive medical features to handle the ir-

regularity [49, 50]. This category of methods demonstrates the possi-

bility to fully utilize available data. However,when parameterizing time

between consecutive medical features, these methods may cause either

under-parameterization or over-parameterization [46]. Our previous pa-

per [51]

Data imputation

Methods to deal with missing values can be grouped into three major

categories: 1) Missing completely at random (MCAR); 2) Missing at

random; 3) Not missing at random. Most data imputation approaches

focus on MCAR. There are different data imputation methods, the sim-

plest one involves replacing the missing values with 0, constant values,

or mean/median values [52,53]. This method of data imputation is easy

and fast and generally works well with small datasets, however it may

not be very accurate and is not recommended for use when imputing

categorical variables [54]. The k nearest neighbors (k-NN) approach is

another common method for data imputation. The algorithm uses fea-

17

ture similarity to predict the missing values [55]. The missing values

will be replaced based on how closely the present values match to their

counterparts in other samples. It is reported that the k-NN method for

imputation can achieve much greater accuracy than simple replacement,

however it assumes a relationship exists between the various biomarkers,

is sensitive to outliers and is computationally expensive since it requires

storage of the entire training dataset in local memory. Another popu-

lar imputation method is multivariate imputation by chained equation

(MICE) [56]. This type of imputation works by filling the missing data

multiple times. Multiple Imputations (MIs) are much better than a sin-

gle imputation as it measures the uncertainty of the missing values in a

better way.The chained equations approach is also very flexible and can

handle different variables of different data types (ie., continuous or bi-

nary) as well as complexities such as bounds or survey skip patterns [57].

Deep Learning also affords an approach to data imputation that gener-

ally works very well with both categorical and non-numerical features.

In this approach machine Learning models are stored which use Deep

Neural Networks to impute the missing values [57].

Generalized Estimating Equation (GEE) model

In statistics, GEE model is popular approach for longitudinal studies

with repeated measures through time [58]. The GEE treats each patient

as one cluster, and number of visits are within each cluster. The greatest

18

advantage of GEE is that it could provide robust estimates and does

not require distribution assumption as long as there are enough clusters,

even the model distribution is seriously in error, it still have valid variance

estimate [59–61]. It is reported that GEE is pretty robust as long as you

specify the correct correlation structure is much less prone to efficiency

loss [62].

2. Hierarchical variables

In EHR data, International Classification of Diseases (ICD-9 or ICD-10) for di-

agnoses codes and Healthcare Common Procedure Coding System (HCPCS)

for procedures are two important variables to evaluate patient’s condition.

These codes have a hierarchical structure, for example, 250 is for general

diabetes, 250.1 means diabetes with ketoacidosis. How to fully utilize that

information in the model is still a challenging task [32, 34, 44]. In traditional

analysis, people use grouper software to convert ICD codes into different hi-

erarchical condition category variables (HCC), which is recommended by the

Centers for Medicare and Medicaid Services (CMS). The HCCs only have 86

categories, which significantly reduce the number of ICD codes. Clinical Clas-

sifications Software (CCS) could categorize the ICD diagnosis codes into 283

categories [63] However, such aggregated features may lose some important

detailed information and ignore the sequence relationships among the feature

elements, for example, pneumonia and bronchitis are clearly more related than

pneumonia and obesity [64].

19

2.2 Deep learning in healthcare

Recently, deep learning has gained great interests in images, natural language

processing etc. Different from traditional machine learning, deep learning focuses

on how representation could be learnt from the raw data. The core parts of the

deep learning are composed of multiple processing layers based on neural networks,

which are learnt from data, not from human beings. The deep learning is turned

out to achieve remarkable performances in discovering intricate structures in high

dimensional data. However, the use of deep learning for healthcare has been not

thoroughly explored [65]. In deep learning models, data are processed through a

series of connected hidden layers to yield the results. The accuracy of the deep

learning models will become better and better with the increase of the data size,

especially the deep learning could make correlations and connections from previous

results [29, 65,65,66].

A simplified version of DNN could be represented as a hierarchical neuron

structure with input layer, two hidden layers and output layer. These hidden layers

perform the mathematical functions that could convert raw inputs into meaningful

output. This multi-layered architecture allows deep learning models to complete

classification tasks such as identifying subtle abnormalities in medical images, clus-

tering patients with similar characteristics into risk-based groups [67,68].

One greatest challenge for DNNs is how to link the processes to their outcomes.

Not like the traditional machine learning methods, such as for linear regression,

the parameter coefficients suggest how much the outcome will increase per unit

20

increase for the numerical features. However, for DNNs, it is hard to interpret by

simply checking the inference process. The deeper the network architecture, the

more parameters need to be estimated. It is common for a DNN to have millions

of parameters within the network structure. Furthermore, network architecture

is composed of various components (unit type, activation function, connectivity

pattern, gating mechanisms) and the interactions between these components. Due

to these complications, DNNs are often called black box models. This becomes a big

barrier for deep learning models to be widely applied in healthcare areas [69–72].

In healthcare domain, people are more concerned about how machine learning

methods make the decisions, and whether the decisions have a solid foundation.

For example, Wang reported that though they applied deep learning techniques

for diagnosis of breast cancer, the human doctors still needed to check the results

to make sure the diagnosis was correct [73]. Especially when the model is more

complicated, without interpretation, the outcome prediction will be suspected. If the

model can explain itself, it could convince the users to adopt the model [74]. Thus,

there is urgent need for developing explainable machine learning methods [29,69].

2.2.1 Major techniques in deep learning

Until the last few years, most of the techniques for EHR data analysis were

based on traditional machine learning and statistical techniques such as logistic

regression, support vector machines (SVM), and random forests etc. Recently, deep

learning techniques have achieved great success in many domains through deep

21

hierarchical feature construction and capturing long range dependencies in data in

an effective manner [75]. There has also been a number of publications applying

deep learning to EHR data for clinical informatics tasks, which achieved better

performance than traditional methods. The deep learning was proposed for the

first time in 2006. Deep learning becomes more powerful since 2006 when Hinton

proposed a novel deep structured training model named as deep belief network

(DBN). The general concept of deep learning stems from the artificial neural network

(ANN),which has become very popular research area during the past few decades

[76,77].

For many years, hardware limitations have made DNNs impractical due to

high computational demands for both training and processing, especially for appli-

cations that require real time processing. Recently, advances in hardware and GPU

acceleration, cloud computing and multi-core processing, have enabled DNNs to be

recognized as a significant breakthrough in artificial intelligence [77]. Several major

DNNs architectures are introduced below:

2.2.1.1 Autoencoders and deep autoencoders

An autoencoder is an unsupervised neural network which is designed for fea-

tures extraction using data driven learning through backpropagation algorithm. Ba-

sically, an autoencoder has the same number of input and output nodes. The net-

work is trained to learn an approximate function, so the output is similar to input.

Usually, the number of hidden units is smaller than the input/output layers, which

22

Figure 2.1: Types of deep learning methods.

achieve encoding of the data in a lower dimensional space and extract the most dis-

criminative features. When placing constraints on the network, such as by limiting

the number of hidden units, we can discover interesting structure about the data.

However, when the input data have high dimensions, a single hidden layer

may not be enough to represent all the data. Alternatively, many autoencoders

can be stacked on top of each other to create a deep autoencoder architecture.

Deep autoencoder structures also face the problem of vanishing gradients during

training. A common solution is to use some unsupervised greedy training algorithms

for each layer to complete the pretraining of the hidden layer, and then use the

backpropagation algorithm to optimize and adjust the system parameters of the

entire neural network., which could avoid localized optimization [72,78].

23

Deep autoencoders have been found to predict patient’s future disease classi-

fication which may help clinical decision making using about 700,000 patients from

the Mount Sinai data warehouse. Their results showed that autoencoders performed

significantly better than other approaches, such as Principal component analysis,

Gaussian mixture model, K- means [66]. Fakoor proposed an autoencoder archi-

tecture based on gene expression data from different types of cancer from the same

microarray dataset to detect and classify cancer [36].

2.2.1.2 Recurrent neural network(RNN)

RNN is a deep neural network which is capable of analyzing time series data

where the output depends on the previous computations. RNN is commonly found

in the analysis of text, speech and DNA sequences. RNN usually takes a series of

input and remembers things learnt from prior inputs while generating outputs. In

this way RNNs combine inputs from both the present and the recent past to produce

the outputs. For this reason, RNNs are said to have memories [10, 34,35,65].

However traditional standard RNNs suffer from vanishing and exploding gra-

dient problems, an important variation of RNN is LSTM, which was proposed in

1997 and could solve these issues through introducing news gates, such as in- put

and forget gates. Specifically, LSTM is particularly suitable for applications with

very long lags or unknown sizes in a time series. During the training, the network

learns what to store and when to allow reading/writing to minimize the classifica-

tion errors. Unlike other types of DNNs, the weights of the network of a RNN or a

24

LSTM are fixed and do not change over time. They only differ in the output and

the internal states. These will greatly reduce the total number of parameters to

estimate [29,45,79].

Several papers applied recurrent neural networks with LSTM to electric health

records. When modeling longitudinal EHR data, LSTM were used to establish

relationships between mixed effect observations and future events. Rajkomar used

114,003 patient records from University of California, San Francisco, from 2012 to

2016, and the University of Chicago Medicine from 2009 to 2016 for prediction

tasks [80]. They tried three deep learning models: one based on recurrent neural

networks, one on an attention-based time-aware neural network model, and one

on a neural network with boosted time-based decision stumps. They discovered

that deep learning methods were capable of accurately predicting multiple medical

events (eg., the prediction of in-hospital mortality, readmission, length of stay, and

discharge diagnoses) from multiple centers. Jo combined LSTM and latent topic

modeling for mortality prediction using MIMIC-ii data set and showed their model

significantly outperformed prior models [81].

2.2.1.3 Restricted Boltzmann Machine (RBM)

A RBM was initially proposed in 1986 and is a variant of the Boltzmann

Machine, which is a type of stochastic neural network and can learn a probability

distribution over the inputs through stochastic optimization such as Gibbs sam-

pling [36, 45]. One important characteristic is that RBMs have undirected nodes

25

and no connections between any two visible units or any two hidden units, which

implies that values can be propagated in both the directions. The stacked hierarchi-

cal RBM could form a deep belief network for a supervised learning task. Bayesian

networks are probabilistic graphical models to simulate causality in human reasoning

in the form of a directed acyclic graph, which is mainly used to describe conditional

dependencies between random variables [65,68,77]. Khademi combined a DBN and

Bayesian network to extract features from Microarray data to overcome missing

attributes and noise in a breast cancer genetic detection study. Deep learning ap-

proaches have also outperformed SVM in predicting splicing code and understanding

how gene expression changes by genetic variants [82].

2.2.1.4 Convolutional Neural Networks(CNNs)

CNNs have been widely used to analyze image data. CNNs are regularized

multilayer perceptrons. CNNs do not use predefined kernels, but instead learn lo-

cally connected neurons through a mathematical linear operation. The basic build-

ing blocks of CNNs include convolution layer, activation layer, pooling layer and

fully connected layer. The convolution layer, also called kernel, has some mathe-

matical operations to filter the images into few pixels (such as 3X3, or 5X5), and

then sum up the results into one number to represent all the pixies the filter ob-

served. The activation layer will generate non-linear function to allow the network

to train itself through backpropagation. The activation function is normally ReLu.

The pooling layer is the process of further reducing the matrix size. The final fully

26

connected layer is a traditional multiplayer perception structure, which will convert

the fully connected layer into a list of probabilities of each label [29,77].

Shin presented a combined text-image CNN to identify semantic information

that links radiology images and reports from a typical Picture Archiving and Com-

munication System (PACS) hospital system [83]. Che highlighted that although

DNNs outperform conventional machine learning approaches to predict and classify

clinical events, but the DNNs suffer from the issue of model interpretability, which

is important for clinical adaptation [84].

2.2.1.5 Transfer learning

Transfer learning is a method that a developed model is reused as the starting

point for new model development. The rational is that in some cases, data is difficult

to get or training a model may take a huge amount of time. The basic steps for

transfer learning is first to create a base model and freeze layers so that those layers

will not be changed during the training, then add new trainable layers so that it

could be used for predictions on the new dataset. Generally, transfer learning is used

between similar domains, which is about homogeneous transfer learning, where we

assume the source and target domains have the same feature spaces. Heterogeneous

transfer learning is for those source and target are nonequivalent or no overlapping

domains. The heterogeneous learning is relatively recent area in research, there are

still challenges regarding the model performance [85,86].

Medical images are one of the most important topics in medical sciences. How-

27

ever due to the strict Health Insurance Portability and Accountability Act and other

rule regulations, it is difficult to collect a massive amount of labeled data. Although

transfer learning has proved to be one of the most efficient ways to solve the issue of

insufficient data, since most of the base transfer learning models are based on public

image data, such as as CIFAR-10, which is about 10 classes of images for airplane,

automobile, bird, etc. or imagenet database, which is different from medical do-

main. The transferring between two distant related domain could lead to negative

results. For example, the dog classification model may not be beneficial to COVID

image classification. In this case, the transfer learning is not necessary better than

the performance by a model from scratch [87].

38 different methods for heterogeneous transfer learning methods have been

reviewed and compared. The challenges are that there is little commonalities among

these methods. Each author proposed their methods for their specific problems,

which is of little value to be applied to other study [85].

2.2.1.6 Ensemble learning

Ensemble learning is a special type of learning approach, where it uses multiple

algorithms to obtain better performance than using the individual model alone [88,

89]. Bagging is also called bootstrap aggregating, which is designed to improve the

accuracy and reduce the variance of the modes. The process of the bagging is like

random subspace method except that bagging randomly selects observations from

the original datasets with replacement [90]. Random forest adopted both bagging

28

and random subspace approaches. When random forests select the bootstrapped

set of samples, random foresters also select a small but consistent number of unique

features in the decision tree models. These enable random forests to have two

elements of variability. The final results will be based on the function of all trees in

the random forests. Due to these properties, random forests are considered one of

the most accurate data mining algorithms [91]. Random forests also show that the

predictions from random forest are asymptotically normal [92]. Also, it has been

approved that tree models have universal consistency properties, including random

forests, bagging and other classifiers which use average as a means of obtaining the

rules [93].

2.3 Interpretability

Most predictive machine learning systems in healthcare just provide predic-

tions, however in practice, you have to convince the medical practitioners to accept

the outcomes from such models. Thus, there is a need to integrate interpretable

models with predictions from the medical facilities. Most predictive models are not

prescriptive or causal in nature. In many healthcare applications, explanations are

not sufficient [74, 94–96].

2.3.1 Interpretable models

Two most interpretable models are linear regression and decision trees. The

biggest advantage of linear regression models is linearity, which makes estimation

29

procedure simple and easy to understand through its regression coefficients. The

coefficients may show the relationship between input variables and outcome.Beyond

linear regression, some extensions of the regression are also popular as explain-

able models, such as generalized linear regression model and generalized additive

models(GAM), which enhances the ability of linear regression models to deal with

nonlinear or non Gaussian distributed data. This is one of the main reasons why

the linear model and all similar models are so widespread. The drawback for lin-

ear model is that it only deals with linear relationship, and could oversimply the

complex situation [24].

Decision tree is also considered one of the best models for model interpretabil-

ity due to its nature to mimic the human thinking by creating decision rules based

on previous result. Since decision tree has a graphical structure, the hierarchi-

cal trees structure could provide information about the relative importance of at-

tributes.Decision tree also has some disadvantages, such as it lacks of ability to deal

with linear relationships, and quite unstable. When there are many features, and

the decision tree may be time consuming for large number of features and data in-

puts. [24, 97, 98]. In this section, we will briefly review some popular techniques to

build interpretable deep learning models(see figure2.2.

2.3.2 Types of interpretability methods

Generally, interpretability techniques could be classified into different groups

based on different criteria:

30

Figure 2.2: Types of interpretability methods [3]

2.3.2.1 Before (pre-model), during (in-model), or after (post-model)

This type is based on when these interpretation methods are applicable [24].

Pre-model interpretability usually happens before model selection, which is

more about data interpretability. Through data exploration, we could have a good

understanding of the data before thinking of the model.In-model interpretability

is about how the machine learning methods have inherent interpretability in the

models. The post-model interpretability means how to improve the interpretability

after building a model [24, 99].

31

2.3.2.2 Intrinsic vs. post hoc

Depending on when to obtain the interpretability, interpretable machine learn-

ing techniques can generally be grouped into two categories: intrinsic interpretability

and post hoc interpretability. Intrinsic interpretability refers to integrating inter-

pretability directly to the model structures such as decision tree, rule-based model,

linear model etc. In contrast, the post hoc one needs to create a second model to

explain an existing model. Generally, intrinsic approach could provide more accu-

rate and undistorted explanation, while post hoc could maintain the model accuracy

with less transparent nature [24,99,100].

2.3.2.3 Model-specific vs. model-agnostic

Model-specific interpretation is unique to a single model or group of models.

For example, the interpretation through regression parameter coefficients in a linear

model is a model-specific interpretation, in contrast, model-agnostic tools can be

used for any machine learning models no matter how complicated. These agnostic

methods usually work by analyzing feature input and output and applied after the

model has been trained [99].

2.3.2.4 Local or global

The interpretability could also be classified into global or local based on

whether to explain part of prediction or the entire model. Global interpretability

means inspecting the whole structures and parameters of a complex model, while

32

local interpretability tries to figure out why the model makes the decision through

identifying the contributions of each feature in a specific input of the partial model.

Global interpretability could explain the inner working mechanisms to increase their

transparency. Local interpretability could help uncover the causal relations between

a specific input and its corresponding model prediction. Those two could comple-

ment each other to improve the interpretability [99].

2.3.3 Intrinsic approaches

2.3.3.1 Adding interpretability constraints

Adding monotonic constraints in the models could improve the interpretabil-

ity, since fewer features and monotonicity could make simple and straightforward

relations between features and the prediction. Similarly, pruning the decision tree

could reduce the size of the trees and decrease the complexity to increase the model’s

interpretability [101–103].

Adding meaningful constraints to the model could further improve interpretabil-

ity. Zhang proposed an interpretable CNN through adding a regularization loss to

higher convolutional layers of CNN. Thus, each filter in the conventional layer may

have distinct representations, for example, one filter may represent left eye and

another filter could represent the right eye [104].

33

2.3.3.2 Mimic learning

Mimic learning is another alternative to increase model interpretability [105].

The rationale behind mimic learning is to approximate a complex model using an

easily understandable model such as rule-based model, or linear regression etc. As

long as the approximation is close, the statistical properties of the complex model

will be kept in the interpretable model. Finally, you can get a model with comparable

prediction performance, but it is much easier to understand. For instance, the tree

ensemble model could be represented by a single decision tree.

Che applied mimic learning frameworks to a healthcare data with 398 patients

in ICU and predicted their mortality. The interpretable model showed similar or

better performance than the baseline models including SVM, Logistic regression,

Gradient boosting trees and several DNN approaches such as LSTM, LR-SDA etc.

While the mimic learning model had the desired feature transparency. In their pro-

cess, they first trained a deep neural network with raw patient data, which produced

a vector of class probabilities from last layer. Then they trained a gradient boosting

tree (GBT) model on the raw patient data, and use the deep network’s probability

prediction as the target label. Since GBTs are interpretable linear models, they

were able to assign feature importance to the raw input features while harnessing

the power of deep networks [84,105].

34

2.3.3.3 Attention mechanism

Attention mechanism is another popular method to explain predictions made

by sequential models such as RNN, especially in NLP and image areas [106]. Atten-

tion mechanism has the ability to interpret which parts of the input are attended

through looking at the attention weight matrix.

In machine translation, attention can turn two sentences into a matrix where

the words of one sentence form the columns, and the words of another sentence form

the rows, and then it will correlate the matrix and identify relevant correlation. At-

tention mechanism has been used to solve the problem of generating image caption.

In this case, a CNN was first used to extract feature vectors from an input image,

and then applied LSTM with attention mechanisms to generate descriptions through

a stochastic attention model and deterministic attention. visualization of the atten-

tion weights could add more interpretability when generating a word. Similarly,

attention mechanism has been incorporated in machine translation [107].

2.3.4 Post hoc approaches

Post hoc explanation tries to provide understanding about the models through

a second model. Usually, the second model relies on sampling and labeling to

approximate the decision function of the deep learning models.

35

2.3.4.1 Model-Specific explanation methods

Many model-specific methods are designed for Deep Neural Networks. Two in-

teresting methods are class activation mapping (CAM) and gradient-weighted class

activation mapping” (Grad-CAM). Both of them could be used for visual interpre-

tation.

CAM is to identify the region of interest. Basically, CAM requires a CNN

architecture at one specific layer and then identify which the given input image

belongs [108]. Another visualization method—“gradient-weighted class activation

mapping” (Grad-CAM) is a generalization version of CAM, as it can be applied to

any CNN-based deep learning models [109], these two visualization methods rely

on only one prediction score from a particular output node. As a gradient-based

method, Grad-CAM uses the class-specific gradient information flowing into the

final convolutional layer of a CNN in order to produce a coarse localization map of

the important regions in the image when it comes to classification, making CNN-

based models more transparent.

2.3.4.2 Model-Agnostic explanation methods

1. Feature importance

Feature importance is one agnostic model explanation, which is not limited

to one type of model, but can be widely applied to many different machine

learning models. The features are normally easy to explain and extracted from

raw data through data mining techniques based on domain knowledge. The

36

features could map the representation of the raw data to output. The feature

importance is to identify the statistical contribution of each feature to the

model.

For some tree-based ensemble models, such as gradient boosting machines,

random forests and XGBoost, there are several approaches to measure the

contribution of each feature. The first approach is to calculate the accuracy

gain when a feature is added in tree branches. The second approach measures

the feature coverage, i.e., calculating the relative quantity of observations re-

lated to a feature. The third approach is to count the number of times that a

feature is used to split the data [105,110,111].

2. Local interpretable model-agnostic explanations (LIME)

LIME is proposed to train local surrogate models to explain individual pre-

dictions. The method tries to understand the model by perturbing the input

samples to understand how the predictions change. It starts to change a single

data point and tweak the features values to identify the possible impact on the

output and which features cause the prediction. The output of LIME is a list

of explanations, which suggest the contribution of each feature. LIME is one

of the few methods which could be used for text, image and tabular data. The

advantages of LIME is that it is pretty flexible even you change the machine

learning model, it is still working for the local model. The LIME could use

the features which is not in the machine learning model. The disadvantages

is how to correctly define the neighborhood. Most of the time, the sampling

37

data points follow Gaussian distribution and ignore the correlation among the

features, which may lead to biased estimation [76,112].

3. SHAP (SHapley Additive exPlanations)

Shapley value stems from cooperative game theory, which refers to the average

marginal contribution of a feature across all possible combination of features

and is an interaction-based method. The Shapley value is fairly distributed

among feature values and may avoid missing the interaction among the fea-

tures, but the computation is very expensive. SHAP is based on the SHAP

values and extends further. Compared to Shapley value, SHAP represents

an additive feature attribution method and assigns weights to the features

based on their weights in the coalition. The advantages of SHAP is that

they have two alternative estimation approaches, kernel-based and tree based,

thus SHAP could be calculated from more complex nonlinear models. The

SHAP has a solid theoretical foundation that it could provide consistent. For

tree-based model, SHAP implemented a fast algorithm to keep track of what

proportion of all possible subsets, which could reduce the exponential time to

polynomial time [24,112,113].

4. Representation Explanation

There has been a growing interest to understand the functions at differ-

ent layers of CNNs through finding the preferred inputs for neurons at each

layer [113–115]. Since the CNN learns the high level features in the hidden

layers, the role of each neuron or layer could be identified from activation

38

maximization frame work. Starting from random initialization and optimiz-

ing an image to maximally activate the neuron, what individual neuron is

represented could be identified through iterative optimization. However some-

times, the feature visualization may contain very abstract features or there are

too many neurons to check. Lower layer neurons focus on small and simple

patterns, such as object corners. Mid layer neurons could help identify object

parts, such as faces, legs. Higher layer neurons may detect whole objects [105].

Transfer learning is another method to use a layer from one network to solve

a new problem [116].

Feature visualization technique has also been applied to RNNs or LSTM mod-

els. some work examines the representations of the last hidden layer of RNNs

and study the function of different units at that layer, by analyzing the real

input tokens that maximally activate a unit [99]

2.3.5 Interpretability evaluation

Though there is increasing trend in the growing body of research methods

for improving machine learning interpretability, there seems to be very little re-

search on developing measures and approaches for machine learning interpretability

assessment.

One most important component for interpretability assessment is accuracy,

which refers to the actual connection between the given explanation model and the

predictions from the deep learning models [117].

39

It is reported that if the explanation could not have completely faithfully to

the original deep learning models, it could lead to the danger that the explanation

could be an inaccurate representation of the original model. For high-stakes decision

model, even an explainable model with 90% agreement with the original model, it

still means the explanation is wrong 10% of the time [26,117].

Another important measurement is stability, which means similar objects much

have similar explanations. Thus, slight perturbations in the input data should result

in small changes in the predictions [118]. Trust is also one important measure for

interpretability, which is to capture the mutual agreement between the deep learning

model and explanation model [96, 119].

2.3.6 Limitations and challenges of current interpretability methods

The basic logic behind the current explainable machine learning methods is

to find a function which could closely approximate the outputs from the black-box

model. The predictions from the black box models are normally the target of ex-

plainable models, not the original data since generally black box model could achieve

the best performance and we try to understand the deep learning model through

explanation models. The explanation models could always have poor performance

compared to deep learning model, otherwise, there is no need to use deep learning

models.The explanation model may calculate which attributes of the input data in

the black box models are most important regarding correlation, or it could offer

some interpretable models such as linear regression or decision tree to mimic the

40

behavior of the black box.

Most of current explainable models are designed to identify the correlations

between the input features and the predicted outcome,which are unable to to answer

the casual inference questions. For example, smoking could lead to high risk of

cancer, yellow finger is one side effect of smoking. These two features are highly

correlated. These correlation will not affect the prediction accuracy, but could be an

serious issue for causal inference. SHAP value is a popular explanable method which

could show the contributions of each input feature for the outcome, however it uses

all features in the SHAP value calculation regardless the collinearity.The collinearity

could affect the SHAP value calculation. If two variables are highly correlated in

the model, one variable could be less precise, this will lead to underestimation of

parameter [120]. The causal interpretable models could explain the decisions how

the model could be if we change some feature values.

2.4 Decision tree and deep learning models

As deep learning-based techniques is more popular than other learning meth-

ods, more and more work is trying to explore the combination of deep learning and

decision trees. There are different types of models based on how they utilize the

decision trees [121].

41

2.4.1 Neural networks to decision trees

Recent work uses distillation is trying to train a decision tree to mimic a

neural network’s input-output function.The author used the predictions from the

neural network and also the data with the true labels to train the soft decision

tree. However, the tree model has accuracy of 96.7% compared to 99.2% using deep

learning model alone [25].

2.4.2 Decision trees to neural networks

Some work proposed to initialize a deep neural network with decision trees,

where the weights of the neural network were provided by decision trees.Basically

the neural network was built based on the structure of decision tree, so that neural

network had similar structure as the decision tree. However, their model accuracy

was only 96% compared to 98.5% using deep learning models [?].

2.4.3 Mixing deep learning models and decision trees

The Deep Neural Decision Forest was an ensemble approach which utilizes

the vectors from fully connected layer to provide the inputs and internal nodes for

decision trees.The final output was not from deep learning model, but from the

forest. The results showed better performance than benchmark machine learning

models [122] However, they applied very complicated algorithm to embed the full

layer functions to compute the weights and probability distribution in decision trees,

which sacrificed interpretability of the model.

42

In a recent paper, neural backed decision trees were proposed to achieve com-

parable neural network accuracy. They first used the weights from a pretrained

network’s fully connected layer to build a hierarchy tree, then fine tuned the net-

work and then construct features for each image using the neural network, which

were feed into the decision tree to get the final prediction. The final model perfor-

mance matched the neural network performance with a 0.05% margin [121].

Che applied mimic learning frameworks to a healthcare data with 398 patients

in ICU and predicted their mortality. The interpretable model showed similar or

better performance than the baseline models including SVM, Logistic regression.

In their process, they first trained a deep neural network with raw patient data,

which produced a vector of class probabilities from last layer. Then they trained

a gradient boosting tree (GBT) model on the raw patient data and use the deep

network’s probability prediction as the target label, they they try to use feature

importance to the raw input features for explanation [5].

2.5 Deep learning models and mixture models

2.5.1 Gaussian process in deep learning models

Deep neural networks with fully connected layers share a common network

structure which include input layer, several hidden layers and one output layer,

which are composed of the similar core components, like neurons, synapses, weights,

biases and activation functions.Even they may have different hidden layers, for ex-

ample, recurrent neural network has different layer structure as CNN.

43

Figure 2.3: Neural network and Gaussian process

For a single-hidden layer neural network, since the weights and bias parameters

are i.i.d terms, and activation functions are also independent. The final output is

sum of i.i.d terms, thus based on the Central Limit Theorem (CLT), the output is

Gaussian distributed [123]

Lee showed that any infinite wide deep neural network with fully connected

layers including CNN, RNN etc. could be considered as neural network Gaussian

process, which means the output of the neural network can be expressed as a Gaus-

sian process in terms of its input [124].

2.5.2 Mixture density network

In neural network models, the last layer is trained to predict the values. For

each specific input value, its prediction has its own Gaussian curve, for example,

when input value is x0, it is normal curve. The predictions of all predicted values

44

Figure 2.4: Mixture density network, figures from [4]

X forms another distribution. To estimate this distribution of overall input values,

Bishop proposed mixture density network [4]. The mixture density network is from

two component: a neural network and a mixture model. In his method, the neural

network could be any structure which takes input and covers it into outputs. The

mixture model is just a model of probability distributions with weighted sum of

simple distributions, where Gaussian kernel is used to explain that any probability

density function. The mixture structure could allow more flexibility for uncertainty

of the outcomes.

45

Chapter 3: Methodology

In this section, we first describe our LIVE algorithm and show how to imple-

ment it, then we discuss its properties and why it could help improve the model

performance. Finally we summarize the differences between our LIVE algorithm

and several other popular interpretability methods, such as GRAD-CAM, LIME,

and SHAP values.

3.1 Decision tree and regression tree

Decision tree is the foundations for many classical machine learning algorithms

and widely used in many applications for predictive modeling. This tree-based

algorithm is a popular family of non-parametric and supervised methods.

The basic structure of the decision tree includes root node and leaf nodes. The

inputs are passed through the root node and further divided into sets of leaf nodes.

Compared to other algorithms, the decision tree requires less effort for data

preparation and no need for normalization. The most important is that decision

tree is very intuitive and easy to explain.

There are multiple ways to interpret decision tree. See figure 3.1,starting from

the root node, the edge is the rule from one node to another node.We can have the

46

Figure 3.1: Regression tree

overall average value for the outcome, The values in each node will change after

new node is added to the rule path, the difference is the effect of newly added

feature. For example, the overall average is 15, after adding feature 1, the value

of right node becomes 30, which means feature 1 contributes to the increase of 15.

Similarly, feature 2 for right node is 5. We can use a simple formula to decompose

the feature contributions for each leaf node.

yi = ȳ +
n∑

i=1

βi × featurei (3.1)

ȳ is the average values without any features in the tree.

47

Figure 3.2: Decision tree for clustering

For example,

y2 = ȳ + feature1 + feature2 (3.2)

Through solving the above equations, we could easily interpret the contributions of

each feature, such as feature 1 could increase 15, and feature 2 could help increase

5. We could use either generative addition model or linear regression model.

3.2 Clustering

Clustering aims to find and group the data into similarity groups. Generally,

clustering is an unsupervised learning as there is no prior cluster information. De-

cision tree could also be considered as one weak clustering approach, each leaf node

could be treated as a cluster,see figure 3.2.Compared to k-means, k nearest neighbor

algorithm, decision tree clustering is a supervised clustering approach [125].

48

3.3 Bagging and random subspace

Bagging is one ensemble learning method where a random sample of data is

repeatedly taken from the training data, the final results are aggregated from these

samples.The purpose of the bagging is to reduce variance.

Random subspace method is also called attribute bagging, which is to ran-

domly select some features from the entire feature set [126]. Random subspace

method is an attractive choice for high dimensional problems, which has been ap-

plied to gene expression data and fMRI data [127]. It is reported that random

subspace approach could give consistently better results than bagging in both ac-

curacy and stability [128]. Suppose we have D features in the dataset, the basic

process for random subspace is that for each model, randomly choose d (d << D)

features from all D features with replacement and train the model.

3.4 Deep learning models

3.4.1 CNN model

Image classification is one of the core problems in computer vision filed. CCN

model is probably the most widely used model for image classification, which shows

excellent success in the field of pattern recognition and classification. There are two

common strategies using CNN model. One is to design and train CNN model from

scratch, which may need a lot of efforts and time to construct an appropriate model.

Transfer learning is another approach that you could utilize the existing CNN model

49

structure and decrease the training time and may result in lower generalization error.

Since most of existing transfer learning models are based on non-medical im-

ages and many transfer learning models rely on assumption that the source domain

and the target domain have a strong connection. It is reported that transfer learn-

ing models may not significantly improve performance. The models trained from

scratch perform nearly as well as the transferred models [129,130].

Some challenges exist for transfer learning, such as overparameterization, the

expensive computations etc. Most transfer learning models require minimum image

size, such as MobileNet requires at least 224x224, which apparently increases the

running time. In our analysis, we did pilot studies using pneumonia xray data to

compare the performance between transfer learning model and CNN model from

scratch.

3.4.2 Transfer learning models

Transfer Learning is a machine learning method where we could reuse a pre-

trained model as the starting point for a model on a new task. Especially in image

analysis, very few people like to train an entire CNN from scratch. Instead, it is

common to pretrain an existing model and then use it either as an initialization or

a fixed feature extractor for the task of interest. When there is a mismatch in the

domain between the dataset for pretext tasks and the downstream task, the transfer

learning may not work. The pretrained models may converge but it will be stuck

in a local minimum. Thus, the performance will not be better than training from

50

scratch [87].

3.4.3 LSTM model

LSTM is a type of recurrent neural network capable of dealing with longitudi-

nal or time series data problems. LSTM is particularly suitable for applications with

very long lags or unknown sizes in a time series, which has demonstrated superior

performance for modeling sequential data.

Compared to CNN structure, LSTM has several LSTM layers, which includes

a bunch of LSTM cells. The cell includes several important gate structures, which

could control information flow from input to output [131].

3.4.4 Evaluation metrics

AUC, Accuracy, precision, and recall are four popular metrics in evaluation

of model performance. Accuracy is defined as the number of true positives divided

by the total number of true positives and false negatives. Hence, recall shows what

percentage of the actual positives you were able to identify positives.

Recall calculates the number of actual positives the model was able to capture

after labeling it as positive.

Precision is defined as the number of true positives divided by the total number

of positive predictions. Precision is to measure how correct your model’s positive

predictions were, it could measure how accurate the model is in terms of those which

were predicted positive. AUC represents the degree of separability and to measure

51

the extent to which an information filtering system can successfully distinguish

between signal and noise. Similar to Precision and Recall measures, AUC Curves

make an assumption of binary relevance and the ordering among relevant items has

no consequence on the ROC Curves metric [132].

3.5 Problem definition

In this section, we will describe some common problems, then we will propose

our research questions.

3.5.1 Mixture distributions

For single deep learning model, the inputs are assumed i.i.d, thus all the out-

puts are also independently distributed. However, as we know that there are some

correlations among some of input data points, which indicate some common ele-

ments among the outputs, see figure 3.3.In another word, the population has some

sub populations. For example, within 10,000 images data, there should be some

images which share common characteristics, such as both cancer regions are in up-

per corners.The key part is how to find the latent cluster information among the

data points. The traditional approach to calculate the mixing coefficients is through

numerical integration. However, given the huge number of input data points, es-

pecially for image data, it will be cumbersome to do such calculation. Other than

that, the issue of interpretation still exists.

52

Figure 3.3: Mixture distribution

53

3.5.2 Interpretability

It is widely known that deep learning models are black box and lack of in-

terpretability, we need to think of ways to link the feature values to the predicted

values and make it an interpretable model.

3.6 Proposed method

In this section, we describe our proposed algorithm-LIVE to address the above

issues. We start by mathematically formulating the algorithm, then we explain our

approach, then we conclude this section with complexity analysis.

Our algorithm is described in figure 3.4. The core idea of LIVE algorithm is

that we first train a deep learning model and get predicted values for all input data

points, meanwhile, we also train multiple decision trees with raw target values to

assign all input data into different nodes(clusters), then feed the predicted values

from the deep learning models into the leaf nodes of the different trees. For each

tree, we take the average of predicted values in each node, then average the values

from different trees to get the final output for each input data point.

Our approach is similar to random forest regression except that random forest

tree is using the same set of outcomes for clustering and predictions, while our LIVE

algorithm uses two sets of data.The raw outcomes are used for clustering, and the

predictions from deep learning models are used for predictions.

54

Algorithm 1 LIVE algorithm: Part 1: Get newly predicted probabilities

Require: Four inputs

Training dataset D1 = (xi, yi), i = 1, 2, 3, .., n1

Test dataset D2 = (xj, yj), j = 1, 2, 3, .., n2

Deep learning model f(x)

Decision tree models g(x)

Ensure: Two outputs

a. Newly calculated predicted probabilities for both datasets

b. Rules for all the paths of all decision trees

1: Train data to build deep learning model D1
train−−−→ f(x)

2: Get predicted probabilities for training data D1
f(x)−−→ p1

3: Get predicted probabilities for test data D1
f(x)−−→ p2

4: for b = 1 to m trees do

5: Randomly select p features from all features in D1

6: Build decision trees using training data D1

7: Get rules from the decision trees D1
train−−−→ g(x)

8: Recalculate leaf node probabilities , p1,2
D1,2−−→ (D1,2, C1, p1,2, p

∗
1,2)

;where p∗1,2 = 1
c

∑c
i=1 p1,2,j

9: end for

LIV Em(p∗∗1,2; z1, z2, .., zm) = 1
m

=
∑m

b=1 p
∗
1,2

return (D2, R11, R12, ..., Rj,m, p11
∗, p12

∗, ..., p∗j,m

where Rj,m, rule for each testing data point xj

p∗j,m, recalculated predicted values for each testing data

point

55

Figure 3.4: LIVE algorithm

Algorithm 2 LIVE algorithm: Part 2: Get interpretable model

Require: Rules and recalculated predicted values from algorithm 1

(D2, R11, R12, ..., Rj,m, p11, p12, ..., pj,m)

Ensure: Coefficients for each feature for each test data point

1: for j = 1 to n data points do

2: for b = 1 to m trees do

3: Collect features in each rule path and predicted values in

that node (p∗j,b; fj,b)

4: end for

Regression model for data point xj, pj,b = β0 + β + ϵ

5: end for

return Coefficients for each feature

56

3.6.1 LIVE algorithm description

Definition 1: Suppose we have two i.i.d random variables X, Y, which has n

observations , X ∈ Rd, d is the number of features in X, and Y is the outcome

variable.

Definition 2: A deep learning model function f̂(x) , the outcomes of input X

are

f̂(x;D) ∼ N (µ, σ2)

Definition 3: Suppose we have B number of trees, for each tree we have a

function ĝ(x;D). We will randomly take fixed z features from total d features,

which are called randomized classifiers. We use these features to build decision

trees.

Decision tree is considered as a weak cluster method.In a decision tree, each

leaf node is treated as a cluster, all the values in that cluster are taken average as

the node value. If we build B decision trees, within each decision tree, we could

always find the node which has data point X1.

We can get the following formulas for each tree regarding data point x1

For tree k1, we have :

ĝ(Tk1;x1) =
y1 + y2 + y5 + ... + yn

n1

(3.3)

For tree k2, we have :

ĝ(Tk2;x1) =
y1 + y3 + y5 + ... + yn)

n2

(3.4)

...

57

For tree kB, we have :

ĝ(Tkb;x1) =
y1 + y5 + ... + yn

nb

(3.5)

The final average value for data x1 from all above trees will be:

ĝ(x1) =
1

b

n∑
t=1

ĝ(Tkt;x1)

=
1

b
((

1

n1

+
1

n2

.. +
1

nt1

)y1 + ... + (
1

n1

+
1

n2

.. +
1

ntb

)yn)

= a11y1 + a12y2 + ... + a1nyn

= a11f(x1) + a12f(x2) + ... + a1nf(xn) + ϵ

1 = a11 + a12 + ... + aa1n

(3.6)

Similarly, we can expand this equation to all data points.

ĝ(xn) =
1

b

n∑
t=1

ĝ(Tkt;xn)

=
1

b
((

1

n1

+
1

n12

.. +
1

nt1
)y1 + ... + (

1

n1

+
1

n22

.. +
1

ntb

)yn)

= an1f(x1) + an2f(x2) + ... + annf(xn)

(3.7)

We can see that all the data points have the similar formula as (3.5), which

are a mixture distribution. The sum of weights for each yi is equal to 1,and the

coefficients are the mixing rates.

To calculate the overlapping between normal curves, one simple and intuitive

way is to randomly draw sample data points from the distributions and count how

many data points fall in the overlapping regions and non-overlapping areas. See

the figure 3.5, we just need to count how many brown, green and blue data points

58

Figure 3.5: Random trees

within each area and divided by total time points, then we could get the proportion

of overlapping area.

3.6.2 Properties of LIVE algorithm

3.6.2.1 LIVE algorithm is consistent

As mentioned above, we have f̂(x;D) from deep learning model for dataset

D, we also have decision tree function ĝ(x;D), suppose we have m decision trees,

m → ∞, and for each tree we randomly select the features, see figure 3.6, so that

decision trees could cover all the combinations of different features.Within these

trees, we can identify the population samples for each data point. The law of large

number states that if you repeat an experiment independently a large number of

times, the average of the results should be close to the expected mean.In our LIVE

59

Figure 3.6: LIVE is consistent

algorithm, each tree could be considered one experiment, and the multiple trees

are different samples from the overall population.This suggests that estimates from

LIVE algorithm are consistent and close to the population mean.

lim
m→∞

g(x, Tm, Dn) = f̂(x) (3.8)

where T is the decision tree, m is the number of trees, and Dn is number of randomly

selected features.

3.6.2.2 LIVE algorithm is an ensemble approach

The purpose of ensemble algorithm is to combine multiple weak learners to

iteratively improve the model results.We believe one simple Gaussian distribution

may not be sufficient for all the outputs from deep learning models. The mixture dis-

tribution should be more appropriate and flexible for the unknown distribution.We

try to use decision trees as our weak learners to classify the input data into different

clusters to mimic the mixture distributions to reduce the bias.

1. Bias and variance

60

For a given dataset D = (x1, y1), (x2, y2), . . . , (xn, yn), suppose we have a true

function f(x) such that

y = f(x) + ϵ, (3.9)

where ϵ is the noise, and f(x) is the true function of the data, which is unknown.

We need to find a function to approximate the true function.

f̂(x,D)
approximate−−−−−−−→ f(x) (3.10)

where f̂(x,D) is the model we build based on the training data, and our

purpose is to find a function which is close to the true function.

The mean squared error is defined as:

Ex,y,D[(fD(x)−y)2] = Ex,D[(fD(x) − f̂x,D)]2︸ ︷︷ ︸
V ariance

+Ex,y[(f̂x,D − f(x))]2︸ ︷︷ ︸
Bias

+Ex,y[(f(x) − y)]2︸ ︷︷ ︸
Noise

(3.11)

Here variance is defined to measure how much the model output will changes

with different training sets. Bias is to measure the difference between the built

model and the true function, which is the inherent error. Noise is the error

to measure ambiguity due to the data distribution and feature representation

[133–135].

Since in our LIVE algorithm, we only use one training dataset, so only one

prediction is from our deep learning model, thus we don’t have variance in

our equation. The noise term is nothing we can do about it. What we can

improve is the bias using our LIVE algorithm.

61

The bias from deep learning model is defined as

BiasDL =
N∑
i=1

(f̂x,D − f(x))2 (3.12)

In our LIVE algorithm, we replaced f̂x,D with ĝx,D = a11f̂(x1) + a12f̂(x2) +

... + a1nf̂(xn) . Thus, the true function will be changed to equation 3.13 by

simple linear transformation.

f(x, ĝ(x,D)) = a11f(x1) + a12f(x2) + ... + a1nf(xn) (3.13)

we use f(x)∗ to represent the new true function, so

BiasDL =
N∑
i=1

(ĝx,D − f(x)∗)2 (3.14)

To show our LIVE algorithm could reduce bias, we need to prove that BiasLIV E ≤

BiasDL , and we will use induction proof method.

2. Proof

BiasDL =
N∑
i=1

(f̂x,D − f(x))2 (3.15)

Base case:

• When we have n=2 data points and there is no overlapping

The bias from deep learning model is

BiasDL =
2∑

i=1

(f̂x,D − f(x))2 = (f̂(x1)−f(x1))
2+(f̂(x2)−f(x2))

2 (3.16)

In this case, since no overlapping between two curves, then for data point

x1, it has a1=1, and a2=0, and for data point x1, it has a1=0, and a2=1,

where a1 and a2 are mixing coefficients;

62

Figure 3.7: Two curves without overlapping

for data point 1:

ĝ(x, (x1) = a1f̂(x1) + a2f̂(x2) = 1f̂(x1) + 0f̂(x2) = f̂(x1)

f(x, (x1)) = a1f(x1) + a2f(x2) = 1f(x1) + 0f(x2) = f(x1)

(3.17)

for data point 2:

ĝ(x, (x2)) = a1f̂(x2) + a2f̂(x1) = 1f̂(x2) + 0f̂(x1) = f̂(x2)

f(x, x2) = a1f(x2) + a2f(x1) = 1f(x2) + 0f(x1) = f(x2)

(3.18)

• When we have n=2 data points and there is overlapping

For deep learning model, since we assume there are no correlations be-

tween these two curves, so it has the same bias as the one without over-

lapping. But for LIVE algorithm, we need to consider the overlapping

part. Since we have two curves, the mixing coefficients should be the

same for these two data points.When we build the decision trees,we use

all observations, so each data point will appear in each tree, so we have

m samples for each data point.

63

Figure 3.8: Two curves without overlapping

For data point 1,

ĝ(x, x1) = a1f̂(x1) + a2f̂(x2)

g(x, x1) = a1f(x1) + a2f(x2)

(3.19)

For data point 2:

ĝ(x, x2) = a1f̂(x2) + a2f̂(x1)

g(x, x2) = a1f(x2) + a2f(x1)

(3.20)

64

BiasLIV E =
2∑

i=1

(ĝx,D − f(x))2

= (a1f̂x1 + a2f̂x2 − (a1f(x1) + a2f(x2)))
2

+ (a2f̂x1 + a1f̂x2 − (a2f(x1) + a1f(x2)))
2

= (a1(f̂(x1) − f(x1)) + a2(f̂(x2) − f(x2)))
2

+ (a2(f̂(x1) − f(x1)) + a1(f̂(x2) − f(x2)))
2

= (a1(f̂(x1) − f(x1)))
2 + (a2(f̂(x2) − f(x2)))

2

+ 2a1a2(f̂(x1) − f(x1))(f̂(x2) − f(x2))

+ (a2(f̂(x1) − f(x1)))
2 + (a1(f̂(x2) − f(x2)))

2

+ 2a1a2(f̂(x2) − f(x2))(f̂(x1) − f(x1))

= (a21 + a22)(f̂(x1) − f(x1))
2 + (a21 + a22)(f̂(x2) − f(x2))

2

+ 4a1a2(f̂(x1) − f(x1))(f̂(x2) − f(x2))

(3.21)

BiasDL −BiasLIV E = (f̂x1 − f(x1))
2 + (f̂x12 − f(x2))

2

− [(a21 + a22)(f̂(x1) − f(x1))
2 + (a21 + a22)(f̂(x2) − f(x2))

2

+ 4a1a2(f̂(x1) − f(x1))(f̂(x2) − f(x2))]

= (1 − a21 − a22)(f̂x1 − f(x1))
2 + (1 − a21 − a22)(f̂x2 − f(x2))

2

− 4a1a2(f̂(x1) − f(x1))(f̂(x2) − f(x2))

(3.22)

65

We know that a1+a2 =1, so we replace 1 with (a1+a2)
2 in above equation,

BiasDL −BiasLIV E = ((a1 + a2)
2 − a21 − a22)(f̂x1 − f(x1))

2

+ ((a1 + a2)
2 − a21 − a22)(f̂x2 − f(x2))

2 + 4a1a2(f̂(x1) − f(x1))(f̂(x2) − f(x2))

= 2a1a2(f̂x1 − f(x1))
2 + 2a1a2(f̂x2 − f(x2))

2 − 4a1a2(f̂(x1) − f(x1))(f̂(x2) − f(x2))

= 2a1a2((f̂x1 − f(x1))
2 + (f̂x2 − f(x2))

2 − 2(f̂(x1) − f(x1))(f̂(x2) − f(x2))

= 2a1a2((f̂x1 − f(x1)) − (f̂x2 − f(x2)))
2 ≥ 0

(3.23)

Our equation indicates that bias from deep learning model is always larger

or equal to bias from LIVE algorithm. When there is no overlapping, our

LIVE algorithm has the same bias as the deep learning model.

• Induction step

Assume we have n data points from x1,x2,...,x3, and they have smaller

bias than the bias from deep learning model, thus we have

BiasDL =
N∑
i=1

(f̂x,D − f(x))2

BiasLIV E =
N∑
i=1

(f̂g,D − f(x)∗)2

BiasDL ≥ BiasLIV E

(3.24)

where we treat these n number of curves as on big curve with mixture

distributions, which has a new function f̂(x, xn)∗, and the true function

is f(x, xn)∗.

When we have the n+1 output curve and the overlapping proportion with

66

Figure 3.9: Induction step for proof of LIVE

big mixture distribution curve is a1, thus we convert these n data point

curves and n+1 data point into two data points. Similar to our base

proof, we could have the following proof.

67

BiasDL =
n+1∑
i=1

(f̂x,D − f(x))2

=
n∑

i=1

(f̂x,D − f(x))2 + (f̂n+1 − f(xn+1))
2

≤
n∑

i=1

(ĝx,D − f(x)∗)2 + (f̂n+1 − f(xn+1))
2

= ((f̂(x∗
n) − f(x)∗)2 + (f̂n+1 − f(xn+1))

2

BiasLIV E =
2∑

i=1

(ĝx,D − f(x)∗)2

...

= (a21 + a22)(f̂(x∗
n) − f(x∗

n))2 + (a21 + a22)(f̂(xn+1) − f(xn+1))
2

− 4a1a2(f̂(x1) − f(x1))(f̂(x2) − f(x2))

(3.25)

Similarly, we replace 1 with (a1 + a2)
2, and use the same approach, then

we can get the bias difference between deep learning model and LIVE

algorithm.

BiasDL −BiasLIV E = 2a1a2((f̂x
∗
n − f(x∗

n)) − (f̂xn+1 − f(xn+1)))
2 ≥ 0

(3.26)

The equation could be further expressed as:

BiasDL −BiasLIV E = 2
m∑
i=1

m∑
j=1,j ̸=i

aiaj(f̂(xi) − f(xi) − f̂(xj) − f(xj))
2

(3.27)

Where ai,aj are the overlapping between any two data points, which could

be zero.

Thus, we prove that our LIVE algorithm always provides smaller bias compared

to the bias from deep learning models along, which means that our LIVE could

68

potentially achieve better performance. The magnitude depends on the overlapping

part among data points and the difference between model function and the true

function.

Similarity and difference between LIVE algorithm and existing lit-

erature

Che proposed an interpretable deep models for ICU outcome prediction in

2017 [5]. Their model structure is in Fig 3.10 . They first train a deep learning

model to get the predictions, then use these predictions as outcomes, and build a

Gradient Boosting tree model. Their interpretation algorithm achieved comparable

model performance as the original deep learning models.

LIVE algorithm and their approach share some commonalities that :

1. Both of them use an ensemble approach to combine deep learning model and

tree models.

2. The average predictions for each instance from tree models could be expressed

as a mixture distribution, which is a consistent estimator.

The differences between these two methods are:

1. The tree model structure in their approach is based on predictions from deep

learning model, ours is based on raw outcomes.

2. They try to interpret the results from deep learning models, LIVE targets the

outcomes from tree models.

69

Figure 3.10: ICU model structure in literature [5]

Table 3.1: Sample node information with features in the rule path

Node Features in the rule path

737 [p82, p95, p70, p153, p82, p37, p160, p198, p73, p214]

673 [p77, p126, p90, p132, p126, p186, p195, p23, p51, p232, p51, p0, p186, p187, p90]

740 [p97, p132, p188, p97, p150, p59, p244]

78 [p94, p85, p153, p64, p134, p70, p230, p232, p234, p59, p217, p182, p181, p52, p165, p59]

3.6.2.3 LIVE algorithm is causal interpretable

From LIVE algorithm part 2, we extract the rules from each tree for each data

point.Sample rules could be found in table 3.1.

Suppose we have m decision trees and we would like to know the interpretation

for input data point x1, which could help us explain how we get the predicted values

for x1.

In decision tree 1, following rule path, see figure 3.11, for x1, we can see that:

root → feature1 → feature2 → x1 , so we have y1x1 = f1 + f2, where y1x1 is

the average predicted scores within that node for x1 in tree 1, f1 is the feature 1,

which is a binary value to show whether the feature exists in the rule path or not,f2

70

Figure 3.11: LIVE algorithm is interpretable (1)

Figure 3.12: LIVE algorithm is interpretable (2)

71

is the feature 2 in the rule path.

In decision tree 2, see figure 3.12, we have another rule:

root → feature11 → feature12 → x1, so we have another equation ybx1 =

f11 + f22. For each input data point, after we collect the formulas from all trees, we

could have a sparse linear regression model for that data point. We call it sparse

regression model since for each tree, we only have limited number of features in the

rule path, all other features are set to 0.

If we repeat this process for all b decision trees, we will get a linear regression

matrix described below:

y1

y2

...

yb

=

1

1

...

1

β0 +

f1 f2 f3 ...

f1 f2 f3 ...

...

f1 f2 f3 ...

β =

1

1

...

1

β0 +

1 1 0 0 0 ...

0 0 1 1 0 ...

...

1 0 0 1 1 ...

β (3.28)

For dataset with large number of features, for example, image data may have

thousands of features (pixels) in the image, we may not have all combinations of the

data points. Sparse data is common in this situation.

Most of current interpretability methods are correlation interpretation, not

causal inference. The challenges are due to confounding factors and highly correlated

features. The potential solutions in our LIVE algorithm are :

1) randomization through random subspace method,where randomization could

reduce the probability to have two correlated features in the same model;

2) tree models, where decision tree is robust to multicollinearity. If two features

are highly correlated, only the one with good information gain is kept.

72

3) LASSO approaches.LASSO is the Least Absolute Shrinkage and Selection

Operation, a widely used method for feature selection.

To address the issue of multicollinearity, we use decision tree for variable se-

lection. Decision tree is immune to multicollinearity.Based on an impurity measure

like Gini or entropy,if features A, B are heavily correlated,only one is kept in the

rules, so multicollinearity is not an concern for decision tree [136].

To answer questions like what the model would be if we remove a feature,

we use random subspace approach to mimic the random clinical trial experiment

design. We code the feature in the rule set as 1 or 0 , which is similar to treatment

variable in clinical trial study. Since we randomly choose features, thus each feature

has the same probability to be selected in the tree.Overall,the number of equations

with and without that feature should be similar, which is more like a randomized ex-

periment.These steps could enable us to draw potential causal inference conclusions.

Suppose we have 3 features (a,b,c), we can demonstrate our experiment design in

different scenarios:

1. a,b,c are independent

When we randomly select 2-3 features, we could have the selection sets bc, ac, ab, abc,

we will have four equations below:

ybc = fb + fc;wherefb, fc ∈ 0, 1 (3.29)

yac = fa + fc;wherefa, fc ∈ 0, 1 (3.30)

73

yab = fa + fb;wherefa, fb ∈ 0, 1 (3.31)

yabc = fa + fb + fc; ;wherefa, fb, fc ∈ 0, 1 (3.32)

Apparently, from the above equations, we could easily derive what is the effect

for each feature.

2. a and b are highly correlated, c is independent of a,b

Since decision tree only selects one feature if two features are highly correlated,

so a,b should never be in one set, thus our selection set will be ac,bc,a,ac

ybc = fb + fc;wherefb, fc ∈ 0, 1 (3.33)

yac = fa + fc;wherefa, fc ∈ 0, 1 (3.34)

ya = fa;wherefa ∈ 0, 1 (3.35)

Also, from the above equations, we could calculate the model effect for each

feature, which is not affected by multicollinearity issue since those highly cor-

related features are not in the same model.

In our regression data, there are a lot of zeros in each observation, especially

for image data. There are multiple ways for sparse data analysis. Regularization

74

is one of the mostly widely used methods for feature selection through adding an

additional penalty term for extra more covariates. Least Absolute Shrinkage and

Selection Operator (LASSO) is a popular regularization approach, where LASSO

uses L1 regularization. L1 function is used to remove less important variables from

the model entirely. So generally, if the features on the edges could not contribute to

the model identification, these features will be forced to have 0s for their coefficients.

L2 regularization does not result in any elimination of sparse models or coefficients.

Thus, Lasso Regression is easier to interpret as compared to the ridge regression

[137]. The LASSO approach could filter out unimportant features.

3.6.2.4 Complexity of LIVE algorithm

The LIVE algorithm includes both deep learning model and decision tree

model part. The complexity of deep learning models relies on the deep learning

model structure, which varies based on the chosen model. Our focus is the complex-

ity of decision trees. Our tree models are very similar to random forest model, thus

they have the similar complexity, which could be generalized as big O(mxsxlog(n))

, where m is number of trees, s is the feature size used in the decision tree, n is

the number of samples.For image data, if we treat each pixel as one feature, the

feature size will be the image size (width x height in pixels). The complexity will

be squared, supposing the width=height, for example, from 32x32 to 128x128, the

big O will be increased 16 times. This could be a critical challenging part for large

image data using our LIVE algorithm. Besides the complexity of space and time,

75

in order to get more accurate clustering information, we need as many samples as

possible.

There are two potential ways to solve this issue:

• Parallel computing.

There are already some existing packages for parallelization of decision tree

algorithms or random forest. We can adapt their functions to make LIVE

algorithm parallel for the decision tree part.

• Using smaller image size for clustering step.

As we can see that the complexity is heavily affected by the feature size, so we

may use smaller feature size. For image data, we may reduce the image size,

which may sacrifice the accuracy of the LIVE algorithm, it could significantly

reduce the time and space complexity. For example, we may use 32x32 to

cluster the data, but use 128x128 image size for deep learning models.

• For image data, we may also try image segmentation to group small pixels to

large areas, thus it could reduce image complexity.

3.6.3 Comparison to other interpretability methods

We would like to compare our LIVE algorithm to other popular interpretability

methods. In table 3.2, we summarize the differences among these methods.

First, for model accuracy, we mathematically prove that our LIVE could reduce

model bias which could lead to better model accuracy. On the contrary, SHAP and

76

Table 3.2: Differences between LIVE algorithm and 4 other interpretability methods

Properties Our LIVE SHAP LIME GRAD CAM

Model accuracy Better Same Same NA

Interpretation Causal Correlation Correlation Correlation

LIME methods are local accurate, which means they maintain the same accuracy

as deep learning model. Grad CAM does not contribute to the model accuracy, and

only provides visualization tools to identify important regions. It is claimed that

ICU model could achieve comparable deep learning models.

Second, for model interpretation methods, such as SHAP, LIME and GRAD

CAM , they utilize traditional correlation interpretations, where they ignore the cor-

relations among the features.In our LIVE algorithm,we try different ways to reduce

the correlated features through randomization, tree models and LASSO approach.

Recoding the feature value to 1 or 0 could explain what the model could change if

we have the feature in the model.These could lead to the interpretation to potential

causal inference.

77

Chapter 4: Results

We use two types of datasets to validate our LIVE algorithm: image data and

structured data. Since those two types of data are quite different in the structures

and need different models, we would like to discuss the results in two separate

sections.

4.1 Results for image data

Our image experiments include 2 public image datasets from Kaggle (www.kaggle.com).

4.1.0.1 Vingroup dataset

Vingroup big data institute organized a Kaggle competition using their 18,000

chest radiographs. They released 15,000 images and labeled the regions where the

images have diseases. The labels have 14 classes, which include 13 different diseases

and normal class. To simplify the task, we recode the labels into normal and dis-

eased. We randomly take 9,312 images from the total images. Among these images,

there are 5,788 normal images and 3,524 images with disease. The image size is

2836x2336.

78

Figure 4.1: Sample images from Vingroup big data

4.1.0.2 Pneumonia x ray dataset

This image data is provided by a research group from University of California,

San Diego, where they collected and labeled a total of 5,232 chest X-ray images from

children, including 3,883 characterized as depicting pneumonia (2,538 bacterial and

1,345 viral) and 1,349 normal from a total of 5,856 patients. In the test dataset,

there are 234 normal images and 390 pneumonia images (242 bacterial and 148 viral)

from 624 patients. The image size is 1024x1024.

4.1.1 Model structures

Since our LIVE algorithm is based on model output,not inner structures of

the model,we would like to test whether our algorithm works for different model

structures.

79

Figure 4.2: Sample image from Pneumonia data

4.1.1.1 CNN model

In our two image analysis, we use a 7-layer CNN model with dropout rate 0.2.

The general procedures to construct the CNN model from scratch are listed below:

The network structure is illustrated in figure 4.3. There are 7 convolution lay-

ers in our network structure. After each convolution layer, there is a normalization

layer. After that there is max pooling layer and drop out layer. The last layer of

our model is a fully connected layer. Our self defined model has the comparable

performance as the one reported in literature. It is reported by Vingroup institute

that their average AUC for all 14 diseases is 0.93. The highest AUC of our own

CNN model is 0.929 [39].

For pneumonia dataset,it is reported that their AUC is 0.968, our AUC is

0.949. However their model is based on a much larger dataset with 108,312 images

and retrained with pneumonia model [16]. In a recent study they achieved AUC

0.95 using pneumonia image data alone with a deep learning model, which is the

80

Figure 4.3: CNN model structure

81

same as ours [138].

4.1.1.2 Transfer learning model

There are two major ways to customize a pretrained model:

1) Extract the fixed features

Generally, it removes the last fully connected layer, then treats the rest of

layers as fixed features for the new dataset. You simply add a new classifier on top

of the pretrained model.

2) Fine-tuning the pretrained model

In this approach, you not only replace and retrain the classifier on top of the

pretrained model, but also fine-tune the weights of the pertained network by contin-

uing the backpropagation. This will allow us to fine tune the feature representation

in the base model.

Although there are different types of transfer learning models, they have dif-

ferent limitations. In table 4.1, we can see that InceptionV3 and MobileNet require

the minimum image size at least 75x75 and 128x128, which may limit our analysis

when we have smaller image size like 32x32 and 16x16. VGG16 and VGG19 both

work for image size starting from 32x32.Since VGG16 has relative less parameters

but has the same accuracy as VGG19, we chose VGG16 for our transfer learning

model.We select the Adam optimizer from Keras with the learning rate of 0.001.

We also tried ResNet50, which worked with image size from 32x32, but it showed

poorer performance. We did not show here.

82

Table 4.1: Some transfer learning models [1]

Model Size (MB) Top-1 Accuracy Parameters Depth

Time (ms)

per inference

step (CPU)

Minimum image

size needed

InceptionV3 92 77.90% 23.9M 189 42.2 75x75

ResNet50 98 74.90% 25.6M 107 58.2 32x32

VGG19 549 71.30% 143.7M 19 84.8 32x32

VGG16 528 71.30% 138.4M 16 69.5 32x32

MobileNet 16 70.40% 4.3M 55 22.6 128x128

VGG16 is a convolutional neural network model for large image recognition.

The model achieves 92.7% top-5 test accuracy in ImageNet, which is a dataset of

over 14 million images belonging to 1000 classes. It is one of the famous models.

VGG16 was trained for weeks and was using NVIDIA Titan Black GPU’s (see figure

4.4 for the structure of VGG16) [18]. For VGG 16, we import all model weights

and obtained the last layer of the pretrained model, then we add our own dense

layer.

4.1.2 Experiment design

We categorize our experiment methods into the following groups and try to

answer the following questions.

83

Figure 4.4: VGG 16 model structure [6]

4.1.2.1 Impact of image sizes

It is reported that larger image size may not obtain the optimal model per-

formance. In their experiments, image size with 256x256 achieved the best perfor-

mance. 32x32 image size may get close performance compared to 320x320 image

size [139]. Our figure 4.5 shows one chest image with 6 different resolutions un-

der consideration for deep learning inputs (16x16,32x32,64x64,128x128,224x224 and

512x512). Visually from these images, the low resolution samples at 16x16 and

32x32 have limited observable quality, the other images have similar quality.

The image sizes could have a large impact on our algorithm. Since decision

trees are the core part of our algorithm, and it is already known that decision trees

require more memory and more time. Due to the graphics processing unit memory

constraints, we only evaluate the impact of image sizes from 16x16 to 512x512 using

84

Figure 4.5: Pneumonia images with different sizes

pneumonia dataset and Vinbig data based on AUC performance and running time.

4.1.2.2 Impact of number of epochs

Similar to random forest, we would like to determine the number of decision

trees we need to use. In order to do that, we test the effect of different number of

epochs on the model performance from 1 to 100 epochs.

4.1.3 Results of impact of epoches

We use the our own CNN model for both datasets. For Vinbig data, we use

70% as training and 30% as testing data, for pneumonia data we use the default

training data and testing data. Figure 4.6 shows that after 30 epochs, the accuracy

for training data and testing data is stable. We choose 30 epochs for all our models.

85

Figure 4.6: Impact of number of epochs

Figure 4.7: Impact of number of decision trees

4.1.3.1 Impact of number of decision trees

We use both pneumonia data and Vingbig data to check the number of decision

trees needed for the analysis (image size 64x64). We find the model performance of

AUC is pretty stable after 300 decision trees for both models. We chose 300 trees

for all the models.

86

Table 4.2: Impact of different image sizes for Pneumonia data

Our LIVE algorithm

Image size
AUC

CNN training Decision trees

Pneumonia time(mins) time (mins)

16x16 0.923 1.7 1

32x32 0.927 1.6 3

64x64 0.936 1.8 25

128x128 0.949 3.2 107

224x224 0.937 8.3 420

512x512 0.923 15.6 NA

4.1.4 Results of impact of image size

From table 4.2, we can find the training time for image size below 128 is

pretty similar, however it is almost doubled after image size 128x128. For the

running time of our LIVE algorithm, the whole process is extremely slow after image

size 64x64,because we significantly increase the number of features after image size

32x32,so the running time is almost exponentially increased from several minutes to

several hours. However,the AUCs show an increasing pattern from image size 16x16

to image size 128x128, then a decreasing trend after 128x128. Considering the trade

off between running time of our LIVE algorithm and AUC of deep learning model,

we decide not to pursuit LIVE algorithm for image size 512x512. Similar pattern is

found in our Vinbig dataset, see table 4.3. The best performance occurred at image

87

Table 4.3: Impact of image sizes for Vingbig data

Image size
AUC

CNN training

Vinbig time(mins)

16x16 0.887 1.6

32x32 0.915 2.8

64x64 0.926 1.9

128x128 0.929 3.3

224x224 0.874 7

512x512 NA NA

size 128x128, and after that the performance decreases.

4.1.5 Performance comparison

From figure 4.8 , we can see LIVE algorithm consistently shows better perfor-

mance than deep learning models alone, especially for image size below 128x128 with

about 0.02-0.03 improvement in AUCs. However, this improvement is not obvious

for vintage dataset with image size above 128. There are several possible reasons:

1. For Vintage images, since CNN already achieves a higher AUC around 0.95,

there is not so much improvement room for LIVE algorithm.

2. Due to the running time concern, we follow the default rule from random

forests, where the squared root of total features are used by default. This may

not be the optimal number of features used in the model.

88

Figure 4.8: Performance for Pneumonia data CNN vs LIVE

3. Also with increased image size, we may not have enough data for clustering

in decision trees. For example, the image size 128x12 has 128x128=16,384

features. However, we only have 5000 images to train the clustering algorithm,

this may limit the performance of LIVE algorithm.

4.1.6 Results for transfer learning

The performance of transfer learning models with different structures shows

the similar result.Our LIVE algorithm consistently performs better than transfer

learning models alone. We only look at images with sizes from 32 to 128 since 32x32

is the minimum size required for transfer learning. Also, since transfer learning

models require 3 channel images,we need to convert our grayscale images to color

89

Figure 4.9: Performance for Vinbig data CNN vs LIVE

90

Figure 4.10: Performance for VGG16 vs LIVE

ones, which substantially increases the data size.Due to the limited computing re-

sources on Kaggle platform, our transfer learning model were crashed at image size

224x224.

4.1.7 Performance of LIVE algorithm with smaller image size

As we see previously, the running time is almost 7 hours for image size 224x224.

To overcome this issue, we explore whether we could use a smaller image size for

clustering, but still use the large image size for deep learning model. In table 4.4 and

table 4.5, we compare the performance of the CNN models with image size 128x128,

and LIVE algorithm with different smaller image sizes. We can see even we use a

much smaller image size 16x16, our LIVE algorithm could still achieve comparable

performance or better performance than the deep learning models with larger image

size. This is very important since slow process could be a key factor to prevent the

application of our LIVE algorithm to large image size.

91

Table 4.4: Performance with smaller image size for Vinbig data

CNN model with image size 128x128

Dataset Image size AUC Accuracy Recall Precision

Vinbig 128x128 0.959 0.896 0.886 0.763

LIVE algorithm with small image sizes

Image size AUC Accuracy Recall Precision

16x16 0.951 0.888 0.888 0.767

32x32 0.952 0.887 0.887 0.765

64x64 0.958 0.894 0.894 0.777

Table 4.5: Performance with smaller image size for Pneumonia data

CNN model with image size 128x128

Dataset Image size AUC Accuracy Recall Precision

pneumonia 128x128 0.929 0.864 0.857 0.792

LIVE algorithm with small image sizes

Image size AUC Accuracy Recall Precision

16x16 0.939 0.861 0.859 0.788

32x32 0.946 0.861 0.859 0.788

64x64 0.945 0.861 0.859 0.788

92

4.2 Results for visualization

In figure 4.11, figure 4.12, we plot the identified regions from different algo-

rithms. In these figures, the rectangle regions are labeled by experienced doctors,

which are used to compare the accuracy of the identified regions from the different

algorithms. In table ??,we can see the coefficients from our LIVE algorithm, where

the coefficients could be easily to be projected to the raw image to show the regions

with interest of region. The images show our LIVE algorithm has slightly higher

accuracy compared to LIME, SHAP and Grad-CAM. Our LIVE algorithm could

limit the ROI to few data points, though SHAP has similar performance,SHAP val-

ues also have many more wrong points which may lead to biased directions since

SHAP values use all features without considering the correlations among features.

Especially in image data, the neighbor pixels are generally highly correlated.These

multicollearity may lead to biased estimates,however our LIVE algorithm removes

high correlated variables from the model.

Similar to SHAP values, our coefficients show how each feature contributes to

the outcome.Table 4.8 shows some coefficients from the sparse regression model.The

variable column is the list of some pixels in the image. The negative estimate value

may suggest that pixel is not an interested pixel.The pixels with positive estimates

would increase the predicted risk scores.The coefficients also show the magnitude

effect on the predicted probabilities.For example, p84 has coefficient 0.09687, which

means pixel 84 is our region of interest, it could increase the probability by 0.0987.

Unlike feature importance, our model is really explainable by giving the contribution

93

Figure 4.11: Visualization for Vinbig data 1

94

Table 4.6: Region of interest for Figure 4.11

0 0.40237 0 0 0

0.17272 0.28849 0 0 0.2356

0 0 0.35878 0 0

0 0.14884 0 0.17832 0

0.10174 0 0.38078 0.03525 0

0 0.4215 0.10384 0.3171 0

Table 4.7: Region of interest for Figure 4.12

0.50907 0 0.26608 0.20648 0.28083 0.07385

0 0 0 0 0 0.18528

0.018 0 0.17499 0.4316 0.26412 0.36887

0.17184 0 0 0 0.08599 0

0.43065 0 0 0 0 0.01536

0.48194 0.55527 0 0 0 0

95

Figure 4.12: Visualization for Vinbig data 2

96

score for each feature.

To get region of interest for large area, we could aggregate the neighbourhood

into one big areas, see table ??, which is for figure 4.11. There are couple of methods

for those interpolation, such as nearest neighbor, bilinear etc. Since the coefficients

are individual contributions of the features, we can either sum them together to get

the region contribution to the predictions or use the average values, or even randomly

take one value from that region.We can see the value 0.358 in red color means

this region contributes 0.35 to the whole predicted disease probability. The light

regions could show how LIVE algorithm makes decision through the coefficients.

The negative coefficients are coded as 0. Some identified regions by LIVE algorithm

are beyond the labels by doctors, which may be due to the noise region in the raw

images. However the two ROI are consistent with doctor’s labeled region, which is

better than traditional GRAD-CAM or SHAP algorithms. Similar to table 4.8, our

LIVE algorithm could also identify the key regions for figure 4.12.

The ROI from GRAD-CAM and LIME is too large and may not provide much

useful information for doctors.

4.3 Results for Structured dataset

4.3.1 Data source

A research group made a synthetic dataset based on the health facts database

available through UC Irvine Machine Learning Repository, which could also be

found in kaggle website. This dataset represented 10 years of clinical data with 130

97

Table 4.8: Some regression coefficients for interpretation using Vinbig data

Variable DF
Parameter Standard

t Value P value

Estimate Error

Intercept 1 0.56795 0.02125 26.73 <.0001

p243 1 -0.09944 0.02822 -3.52 0.0005

p84 1 0.09687 0.02891 3.35 0.0009

p134 1 0.09435 0.02817 3.35 0.0009

p118 1 0.08269 0.02886 2.87 0.0043

p125 1 0.08305 0.02957 2.81 0.0052

p223 1 0.07264 0.0285 2.55 0.0111

p228 1 0.0627 0.02826 2.22 0.027

p96 1 0.05471 0.02816 1.94 0.0526

p28 1 0.0538 0.02892 1.86 0.0635

p225 1 0.05207 0.02806 1.86 0.0641

p127 1 0.0535 0.0292 1.83 0.0675

p205 1 0.04849 0.02749 1.76 0.0783

p172 1 0.04881 0.02811 1.74 0.0831

p207 1 0.04838 0.02922 1.66 0.0985

p95 1 0.04193 0.02882 1.45 0.1464

p250 1 0.03238 0.02889 1.12 0.2629

p241 1 0.00789 0.02873 0.27 0.7839

98

hospitals, 100,000 encounters, and 71,518 unique patients. The study outcome is

whether the patient has readmission within 30 days post hospital discharge and 56

variables were selected in the models.

4.3.2 Challenges of this dataset

4.3.2.1 Irregular time series

Irregular time series data is very common in healthcare, which may be due

to different number for hospital visits for different patients, or different number of

tests for each hospital visits. Often, conventional methods used for handling time

series data could introduce bias and make strong assumptions on the underlying

data generation process. In table 4.9, we can see the number of visits could range

from 1 to 40, and 98% have less than 6 visits. The unequal numbers of visits are

one type of data irregularity. GEE model and LSTM model are used for this data

analysis.

• GEE model

GEE model allows different number of visits for different patients. We used

autocorrelation to control the relationship of different visits within the same

patient.

• LSTM

The LSTM model could incorporate the time spans between consecutive medi-

cal features to handle the irregularity. This category of methods demonstrates

99

Table 4.9: Frequency of irregular hospital visits

visits Total Patient Percent
Cumulative Cumulative

Frequency Percent

1 7242 57.03 7242 57.03

2 3345 26.34 10587 83.38

3 1054 8.3 11641 91.68

4 467 3.68 12108 95.35

5 253 1.99 12361 97.35

6 337 2.65 12698 100

the possibility to fully utilize available data.

4.3.2.2 Hierarchical variables

In EHR, there are several diagnosis codes with hierarchical structures, such

as ICD and CPT codes. ICD 10 codes have more than 70,000 numerical codes and

CPT codes have 15,000 codes. These codes are hierarchical in nature, see table

4.10. We can see some sample ICD codes,which have different structures from the

traditional variables.

Several efficient representations for ICD code using various types of neural

networks have been reported. Through deep learning, high-dimensional data can be

transformed to continuous real-valued concept vectors that efficiently capture their

latent relationship from data. Such representations have been shown to improve the

performance of various complex tasks [140].

100

Table 4.10: Sample diagnosis codes

diagnosis code 1 diagnosis code 2 diagnosis code 3

78 250 414

719 438

435

38 599 250

780 577 E942

599 250.02 41

784 782 250

250.13 276 276

522 682

101

Figure 4.13: Frequency of diagnosis code

102

4.3.2.3 Word embedding

In this dataset, we have 769 different diagnosis codes, and each code has differ-

ent frequency, see figure 4.13.This sparse variable creates a challenge for traditional

model approach. To overcome this issue, we borrow some ideas from word embed-

ding technique to address this question. Word embedding is an efficient way for

dense representation in which similar words have a similar encoding.

In natural language processing (NLP), we generally use word2vec or similar

packages to convert the word into numbers, then use the word embedding to get

dense representation.Also, NLP could easily handle sentences with different length

[141].For our data, we already have the numerical values for most of the variables,and

their values represent the similarity of each number.For example, age 10 is more

similar to age 20 than age 90.We first use the padding technique to fill the missing

with 0 if the patient does not have that visit. After this, all patients have the same

length. We treat each variable as a unique word and transform their original values

by adding a different constant value so their original values could have different

meanings. For example, age 10 and number of visits 10 are different. We can simply

add 1000 to variable number of visits, thus they could have different values with

different meanings.

4.3.3 Models for diabetes dataset

We try a LSTM model with one extra embedding layer before the LSTM layer

to account for the sparsity of the diagnosis codes (figure ??). GEE model is used

103

Figure 4.14: LSTM model with embedding layer

as the baseline model.

We also plot the model performance against the number of trees for LIVE

algorithm, and find after 100 trees, the model performance is pretty stable,see figure

4.15.

4.3.4 Model results for structured data

Our baseline GEE model could achieve AUC with 0.76. Our result shows that

after adding word embedding,the model performance increases from 0.76 to 0.793

(see table 4.11). The LIVE algorithm increases the model AUC from 0.793 to 0.813.

104

Figure 4.15: Impact of number of decision trees for Diabetes data

Table 4.11: Performance comparison between LSTM and LIVE

Algorithms AUC Accuracy Recall Precision

Repeated LR (GEE) 0.76 0.724 0.724 0.716

LSTM with embedding layer 0.793 0.745 0.745 0.737

LIVE 0.813 0.763 0.762 0.756

105

Figure 4.16: Interpretation and Visualization for diabetes data

4.3.5 Interpretation and visualization for diabetes dataset

The following figure 4.16 could demonstrate how our LIVE algorithm could

help interpret the model and also the visualization explanation. Based on LASSO

regression, the coefficients could represent how each variable contributes to the prob-

ability score. For example, the number of lab procedures, number of inpatients and

historical time in hospitals could significantly increase the chance of readmission

in the next 30 days. Since this is a linear model, the coefficients also suggest the

magnitude of the risk. For example, number of inpatients could increase 0.039 in

overall risk probability.

106

Chapter 5: Conclusion and future work

5.1 Conclusion

In this paper, we briefly reviewed the deep learning models and healthcare.

We also discussed the black box property of deep learning models. Interpretability is

an essential part for knowledge discovery and model justification in critical applica-

tions. We summarized the taxonomy of the existing machine learning interpretabil-

ity methods, and also discussed their limitations and challenges.The accuracy of the

interpretable models and the causal analysis due to high correlations among the

features from these models are two key issues in the current approaches.To address

these above issues, we proposed our LIVE algorithm.

We started from the predictions of deep learning model, which are assumed

to be independent normal distributions. We believe there are always some sub-

groups within the population. Samples within one group are more similar that

other samples in other groups. The mixture distribution could be better to ad-

dress the heterogeneous issues in the whole samples. We treated each individual

prediction as one normal distribution,and tried to find the property of the mixture

distribution among the individual predictions.To calculate the mixing coefficients,

we applied the random subspace method to calculate the mixing coefficients, which

107

could lead to a consistent estimates. We also attempted to mathematically prove

that our LIVE algorithm could reduce the bias.

To reduce the bias of interpretation due to high correlated features, we tried

multiple approaches to reduce the correlation issues in the data. In multivariate

linear model, the features are based on the process to calculate the mixing coeffi-

cients for new predictions. Our explanation model is faithful to the new predictions

from our LIVE algorithm. In our LIVE algorithm, decision tree models could avoid

feature collinearity issue which is one key challenge question in traditional interpre-

tation methods, such as SHAP and LIME. Also, to extract valid feature values, we

used random clinical trial experiment design, each time we randomly selected the

data features. Through this randomization procedure, we could always have a data

point with a specific feature and another data point without that specific feature,

thus this could answer the question what the model output could be without certain

features.

Our LIVE algorithm is based on the prediction results from the deep learning

models, not anything in the structure or the layers, thus our explanation is model

agnostic.Our multivariate regression model is based on each individual instance and

we don’t try to interpret all instances, so it is a local interpretation approach.

Our algorithm could also be used for visualization interpretation and ROI.

Since the coefficients from the linear model are indicators of the contribution of

each feature. We can provide a saliency map to indicate the contributions of each

feature base on their coefficients. We may use the features with biggest coefficients

and significant p values as the ROI.

108

To validate our algorithms, we used different datasets including two image

datasets and one structured data.We also tried different model structures. In our

structured data model, we proposed a new method for hierarchical variable like ICD

codes, where we applied word embedding technique to deal with it.

Our preliminary experimental results show that:

• Our proposed LIVE algorithm could achieve consistent better performance

compared to deep learning model alone, even slightly, especially for small

image size under 128x128. It also show modest improvement for structured

data.

• Our proposed LIVE algorithm could be potentially for causal interpretation,

the coefficients could indicate the magnitude effect on the predicted values.

Also, reducing multicollinearity among features and randomization of the fea-

tures in the model could lead to better causal inference.

• Our proposed LIVE algorithm could be applied to different deep learning

models and different types of data.

• Our proposed LIVE algorithm could be used for identification of region of

interests and provide comparable or better performance than the traditional

visualization approaches, such as LIME, SHAP and Grad-CAM.

However, we also realized the disadvantages of our LIVE algorithm, which

became our goals in the future work.

1. Expand our LIVE algorithm to different types of outcomes and data types

109

Currently we focus on binary outcomes since binary outcome is one of most

important research in healthcare.The outcomes with continuous data or mul-

ticlass outcome could be converted to dichotomous variable.

2. The bottleneck of our algorithm is the running time for large image size

The running time could be one important measure for evaluation of inter-

pretable models. Our LIVE has a complexity with O(mxsxlog(n)) , which

could be a big disadvantage. We should either develop an approach using par-

allel computing or think of ways to reduce the dimension of the image size. For

example, we may preprocess the image to remove some regions which has no

information, or just extract the primary part,which may significantly reduce

the running time.

3. High dimensional data

In our experiments with image data, we noticed that our LIVE algorithm

performance is very similar to deep learning model for large image sizes. This

could be due to small datasets. Since for image size 128x128, we have 15,000

features, which may need at least 150,000 images if we use rule of thumb that

one feature needs ten samples. Currently we only have 5000 in the training

dataset. in order to make accurate estimates of the coefficients, we need large

number of datasets.

4. Uncertainty in deep learning model

Though deep learning models have been widely used in several research ares,

110

however uncertainty is also one challenge question, which may prevent the deep

learning model to have reliable estimates for a deep learning model’s decision.

The most common method to estimate the uncertainty is to use a different

model to predict the uncertainty. For example, estimating the distribution over

deep learning functions could be applied to estimate uncertainties in neural

networks [142,143].

In our LIVE algorithm, we also tried to apply mixture distribution approach

to make the model more robust and flexible for the uncertainty, where we built

a tree model to estimate the data uncertainty.However we are lack of data to

evaluate our estimates of the uncertainty. For example, in our pneumonia

experiment, LIVE suggested several potential ROI for infected region,some of

them may be false segmented areas,however due to lack of data support, we

may not verify whether our findings are true or false.

5. Lack of ground truth causal inference

Although we theoretically proposed several solutions to make the interpre-

tation more casual interpretation, we are lack of true data to support our

conclusion, though we can demonstrate that we could reduce the correlations

among the features.

5.2 Future work

Based on the above limitations of LIVE algorithm, in the future we would like

to focus on following areas:

111

1. Image segmentation to reduce complexity

Image segmentation is a process to partition the image into linked homoge-

neous regions, which could be a potential way to reduce the complexity of our

LIVE algorithm.The image segmentation could simplify the representation of

an image. The image segmentation could reduce an input image from millions

of pixels to a few thousand clusters without losing model performance. There

are different methods in the field of image segmentation, such as hierarchical

clustering-based methods could deal with dataset with arbitrary shape and

attribute type [144].

2. Uncertainty analysis Since in healthcare, when the algorithm is used for diag-

nostic assistance, people need to know the confidence of the algorithm, which

includes uncertainty estimates. We would like to extend our current method

for uncertainty estimates. We would like to seek more data or collaborate with

medical doctors for further analysis.

3. Data preprocessing and data augmentation

Currently we use the raw image data without further preprocessing. There is

a lot redundant regions in the image data which may not be related to the

outcome, for example,head or neck part in the images may not be helpful for

lung disease prediction.

In our experiments, we find due to the limited training dataset, for image size

above 128, our LIVE algorithm does not perform very well since the trees don’t

have enough data to find the related images or overlapping images. We may

112

adopt the data augmentation technique to increase our training data pool.

4. Text data

Text data is another major area which need deep learning models, however

due to the data limit, it is hard to find a public healthcare data with text. We

may try to obtain some text data to see whether our algorithm is applied to

natural language processing data.

113

Appendix A: Programs codes

This section includes the data source, program codes for Vinbig data , pneu-

monia data and diabetes dataset.

A.1 Data sources

VinBig data:

https://www.kaggle.com/code/xhlulu/vinbigdata-process-and-resize-to-jpg/notebook

Chest X-Ray Images(Pneumonia):

https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia

Diabetes data

https://www.kaggle.com/datasets/brandao/diabetes

A.2 Codes for Vinbig data

The following codes include image preprocessing for image size

16x16,32x32,64x64,128x128,224x224 and 512x512.

114

A.2.1 CNN model for Vinbig

func t i on to convert g r e y s c a l e to 3 channel , x i s the image data ,

and s i i s the s i z e you want to convert ;

de f to rgb (x , s i) :

x rgb = np . z e r o s ((x . shape [0] , s i , s i , 3))

f o r i in range (3) :

x rgb [. . . , i] = x [. . . , 0]

r e turn x rgb

read raw image f i l e s ;

import keras

import os

t r a i n=pd . r ead c sv (’/ kagg le / input / l u n g l a b e l / t r a i n . csv ’)

t r a i n=t r a i n [[’ image id ’ , ’ c l a s s i d ’]] . groupby (’ image id ’)

t r a i n=t r a i n . max () . r e s e t i n d e x ()

path = ’ . . / input / lungpred / t ra in c ropped 224 / ’

f i l e s = [os . path . s p l i t e x t (f i l ename) [0] f o r f i l ename

in os . l i s t d i r (path)]

import pandas as pd

f i l e 1=pd . DataFrame (f i l e s , columns =[’ image id ’])

t r a i n=pd . merge (f i l e 1 , t ra in , on=’ image id ’)

115

recode outcome to binary va lue s ;

t r a i n [’ cancer ’]= np . where (t r a i n [’ c l a s s i d ’]==14 ,0 ,1)

get the data and l a b e l s from f i l e ;

l a b e l s =[]

data =[]

d a t a d i r = ’ . . / input / lungpred / t ra in c ropped 224 / ’

f o r i in range (t r a i n . shape [0]) :

data . append (d a t a d i r + t r a i n [’ image id ’] . i l o c [i]+ ’ . png ’)

l a b e l s . append (t r a i n [’ cancer ’] . i l o c [i])

d f=pd . DataFrame (data)

df . columns =[’ images ’]

d f [’ cancer ’]= l a b e l s

t r a i n=df

t r a i n [’ cancer ’] . va lue count s ()

s p l i t the f i l e s i n to t r a i n i n g and t e s t i n g ;

X train , X val , y t ra in , y t e s t = t r a i n t e s t s p l i t (t r a i n [’ images ’] , \ \

t r a i n [’ cancer ’] , t e s t s i z e =0.3 , random state =1234)

import time

116

t r a i n=pd . DataFrame (X tra in)

t r a i n . columns =[’ images ’]

####r e p l a c e the raw l a b e l s with binary ;

t r a i n [’ i sup grade ’]= y t r a i n

v a l i d a t i o n=pd . DataFrame (X val)

v a l i d a t i o n . columns =[’ images ’]

####r e p l a c e the raw l a b e l s with binary ;

v a l i d a t i o n [’ i sup grade ’]= y t e s t

t r a i n [’ i sup grade ’]= t r a i n [’ i sup grade ’] . astype (s t r)

v a l i d a t i o n [’ i sup grade ’]= v a l i d a t i o n [’ i sup grade ’] . astype (s t r)

b a t c h s i z e =32

reshape the images in to d i f f e r e n t image s i z e s f o r d i f f e r e n t

exper iments ;

l s =[16 ,32 ,64 ,128 ,224]

comp=[]

convert image in to array va lue s f o r d i f f e r e n t image s i z e s .

f o r i in range (5) :

t r =[]

117

i m g s i z e=l s [i]

s t a r t t i m e=time . time ()

t r a i n i n g data ;

f o r img in t r a i n [’ images ’] :

img arr = cv2 . imread (img , cv2 .IMREAD GRAYSCALE)

r e s i z e d a r r = cv2 . r e s i z e (img arr , (img s i ze , i m g s i z e))

t r . append ([r e s i z e d a r r])

x t r a i n=np . array (t r)

t e s t i n g data ;

t e s t =[]

f o r img in v a l i d a t i o n [’ images ’] :

img arr = cv2 . imread (img , cv2 .IMREAD GRAYSCALE)

r e s i z e d a r r = cv2 . r e s i z e (img arr , (img s i ze , i m g s i z e))

t e s t . append ([r e s i z e d a r r])

x t e s t=np . array (t e s t)

x t r a i n=np . array (t r)

x t e s t=np . array (t e s t)

x t r a i n = np . array (x t r a i n)/255

x t e s t = np . array (x t e s t)/255

118

x t r a i n = x t r a i n . reshape (−1 , img s i ze , img s i ze , 1)

x t e s t = x t e s t . reshape (−1 , img s i ze , img s i ze , 1)

y t r a i n=np . array (y t r a i n)

y t e s t=np . array (y t e s t)

input shape=(img s i ze , img s i ze , 1)

d e f i n e CNN model

input = Input (input shape , name=’ input ’)

l a y e r=Conv2D(img s i ze , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ ,\\

padding=’same ’) (input)

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=Conv2D(32 , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ ,\\

padding=’same ’) (l a y e r)

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=Conv2D(64 , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ ,\\

padding=’same ’) (l a y e r)

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=Conv2D(64 , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ ,\\

padding=’same ’) (l a y e r)

119

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=MaxPooling2D (p o o l s i z e =(2 , 2)) (l a y e r)

l a y e r=Conv2D(128 , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ ,\\

padding=’same ’) (l a y e r)

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=Conv2D(128 , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ ,\\

padding=’same ’) (l a y e r)

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=MaxPooling2D (p o o l s i z e =(2 , 2)) (l a y e r)

l a y e r=Conv2D(256 , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ , \\

padding=’same ’) (l a y e r)

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=Conv2D(256 , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ ,\\

padding=’same ’ , name=’ f i n a l ’) (l a y e r)

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=MaxPooling2D (p o o l s i z e =(2 , 2)) (l a y e r)

l a y e r = Dropout (0 . 5) (l a y e r)

l a y e r = Flat ten (name=’ f l a t t e n ’) (l a y e r)

120

output = Dense (1 , name=”Dense 10nb ” , a c t i v a t i o n =’ sigmoid ’) (l a y e r)

model = Model (inputs =[input] , outputs =[output])

model . compi le (l o s s =’ b ina ry c ro s s ent ropy ’ ,\\

opt imize r=keras . op t im i z e r s .Adam(l r =0.0001 ,\\

decay=1e −7) , met r i c s = [’ accuracy ’])

x t ra in1 , x t e s t1 , y t ra in1 , y t e s t 1 = \\

t r a i n t e s t s p l i t ((x t r a i n) , (y t r a i n) , t e s t s i z e =0.2 ,

random state=i)

model . f i t (x=x tra in1 , y=y tra in1 , b a t c h s i z e=batch s i z e ,

epochs =30, verbose =1, v a l i d a t i o n d a t a =(x te s t1 , (y t e s t 1)))

output da ta s e t s f o r d e c i s i o n t r e e models in LIVE algor i thm ; \\

d t x t r a i n=pd . DataFrame (np . asar ray (x t r a i n) . r a v e l () . reshape \\

(x t r a i n . shape [0] , i m g s i z e ∗ i m g s i z e))

d t x t e s t=pd . DataFrame (np . asar ray (x t e s t) . r a v e l () . reshape \\

(x t e s t . shape [0] , i m g s i z e ∗ i m g s i z e))

d t x t r a i n [’ yhat ’]= model . p r e d i c t (x t r a i n) . r a v e l ()

d t x t e s t [’ yhat ’]= model . p r e d i c t (x t e s t) . r a v e l ()

end time=time . time ()

p r i n t (end time−s t a r t t i m e)

121

from s k l e a r n . met r i c s import r o c a u c s c o r e

roc=r o c a u c s c o r e (y t e s t , model . p r e d i c t \\

(np . asar ray (x t e s t)) . r a v e l ())

d i f f=end time−s t a r t t i m e

comp . append ([i , d i f f , roc])

p r i n t (roc , d i f f)

d t x t e s t [’ y t e s t ’]= y t e s t

d t x t r a i n [’ y t ra in ’]= y t r a i n

fn1=”/kagg le / working / v i n c r o p t e s t ” + s t r (l s [i]) + ” . csv ”

d t x t e s t . t o c s v (fn1 , index=False)

fn2=”/kagg le / working / v i n c r o p t r a i n ” + s t r (l s [i]) + ” . csv ”

d t x t r a i n . t o c s v (fn2 , index=False)

A.2.2 VGG16 model for Vinbig data

t r a n s f e r l e a r n i n g model us ing VGG 16

import keras

import os

from t en so r f l o w . keras . a p p l i c a t i o n s . vgg16 import VGG16

from t en so r f l o w . keras . a p p l i c a t i o n s import ResNet50

from t en so r f l o w . keras . op t im i z e r s import SGD

t r a i n=pd . r ead c sv (’/ kagg le / input / l u n g l a b e l / t r a i n . csv ’)

122

t r a i n=t r a i n [[’ image id ’ , ’ c l a s s i d ’]] . groupby (’ image id ’)

t r a i n=t r a i n . max () . r e s e t i n d e x ()

path = ’ . . / input / lungpred / t ra in c ropped 224 / ’

##path = ’ . . / input / v intage / t r a i n / ’

f i l e s = [os . path . s p l i t e x t (f i l ename) [0] f o r f i l ename

in os . l i s t d i r (path)]

import pandas as pd

f i l e 1=pd . DataFrame (f i l e s , columns =[’ image id ’])

t r a i n=pd . merge (f i l e 1 , t ra in , on=’ image id ’)

t r a i n [’ cancer ’]= np . where (t r a i n [’ c l a s s i d ’]==14 ,0 ,1)

l a b e l s =[]

data =[]

d a t a d i r = ’ . . / input / lungpred / t ra in c ropped 224 / ’

##d a t a d i r = ’ . . / input / v intage / t r a i n / ’

f o r i in range (t r a i n . shape [0]) :

##data . append (d a t a d i r + t r a i n [’ image id ’] . i l o c [i]+ ’ . png ’)

data . append (d a t a d i r + t r a i n [’ image id ’] . i l o c [i]+ ’ . png ’)

l a b e l s . append (t r a i n [’ cancer ’] . i l o c [i])

d f=pd . DataFrame (data)

df . columns =[’ images ’]

123

df [’ cancer ’]= l a b e l s

t r a i n=df

t r a i n [’ cancer ’] . va lue count s ()

X train , X val , y t ra in , y t e s t = t r a i n t e s t s p l i t (t r a i n [’ images ’] ,

t r a i n [’ cancer ’] , t e s t s i z e =0.3 , random state =1234)

import time

t r a i n=pd . DataFrame (X tra in)

t r a i n . columns =[’ images ’]

t r a i n [’ i sup grade ’]= y t r a i n

v a l i d a t i o n=pd . DataFrame (X val)

v a l i d a t i o n . columns =[’ images ’]

v a l i d a t i o n [’ i sup grade ’]= y t e s t

t r a i n [’ i sup grade ’]= t r a i n [’ i sup grade ’] . astype (s t r)

v a l i d a t i o n [’ i sup grade ’]= v a l i d a t i o n [’ i sup grade ’] . astype (s t r)

b a t c h s i z e =32

124

l s =[32 ,64 ,128]

comp=[]

auc =[]

f o r i in range (3) :

t r =[]

i m g s i z e=l s [i]

s t a r t t i m e=time . time ()

f o r img in t r a i n [’ images ’] :

img arr = cv2 . imread (img , cv2 .IMREAD GRAYSCALE)

r e s i z e d a r r = cv2 . r e s i z e (img arr , (img s i ze , i m g s i z e))

t r . append ([r e s i z e d a r r])

x t r a i n=np . array (t r)

t e s t =[]

f o r img in v a l i d a t i o n [’ images ’] :

img arr = cv2 . imread (img , cv2 .IMREAD GRAYSCALE)

r e s i z e d a r r = cv2 . r e s i z e (img arr , (img s i ze , i m g s i z e))

t e s t . append ([r e s i z e d a r r])

x t e s t=np . array (t e s t)

125

x t r a i n=np . array (t r)

x t e s t=np . array (t e s t)

x t r a i n = np . array (x t r a i n)

x t e s t = np . array (x t e s t)

x t r a i n = x t r a i n . reshape (−1 , img s i ze , img s i ze , 1)

x t e s t = x t e s t . reshape (−1 , img s i ze , img s i ze , 1)

y t r a i n=np . array (y t r a i n)

y t e s t=np . array (y t e s t)

input shape=(img s i ze , img s i ze , 1)

base model = VGG16(weights=”imagenet ” , i n c l u d e t o p=False , \\

input shape =[img s i ze , img s i ze , 3])

##base model = InceptionV3 (weights=”imagenet ” , \\

i n c l u d e t o p=False , input shape =[128 ,128 ,3])

base model . t r a i n a b l e = Fal se #### Not t r a i n a b l e weights

from ten so r f l o w . keras import l aye r s , models

f l a t t e n l a y e r = l a y e r s . F lat ten ()

d e n s e l a y e r 1 = l a y e r s . Dense (50 , a c t i v a t i o n =’ re lu ’)

d e n s e l a y e r 2 = l a y e r s . Dense (20 , a c t i v a t i o n =’ re lu ’)

126

p r e d i c t i o n l a y e r = l a y e r s . Dense (1 , a c t i v a t i o n =’ sigmoid ’)

model = models . S equent i a l ([

base model ,

f l a t t e n l a y e r ,

d en s e l aye r 2 ,

p r e d i c t i o n l a y e r])

model . compi le (

opt imize r=SGD(l r =0.01) ,

l o s s =’ b ina ry c ro s s ent ropy ’ ,

met r i c s =[’ accuracy ’] ,

)

model . f i t (to rgb (x t ra in , i m g s i z e) , y t ra in , \\

epochs =30, v a l i d a t i o n s p l i t =0.1 , b a t c h s i z e =32)

##d t x t r a i n=pd . DataFrame (np . asar ray (x t r a i n) . r a v e l () . reshape \\

(x t r a i n . shape [0] , i m g s i z e ∗ i m g s i z e))

##d t x t e s t=pd . DataFrame (np . asar ray (x t e s t) . r a v e l () . reshape \\

(x t e s t . shape [0] , i m g s i z e ∗ i m g s i z e))

127

from s k l e a r n . met r i c s import r o c a u c s c o r e

roc2=r o c a u c s c o r e (y t e s t , model . p r e d i c t \\

(to rgb (x t e s t , i m g s i z e)) . r a v e l ())

auc . append ([l s [i] , roc , roc2])

p r i n t (auc)

The f o l l o w i n g i s to output to csv f i l e f o r LIVE algor i thm ;

##d i f f=end time−s t a r t t i m e

##comp . append ([i , d i f f , roc])

##p r i n t (roc , d i f f)

##d t x t e s t [’ y t e s t ’]= y t e s t

##d t x t r a i n [’ y t ra in ’]= y t r a i n

##fn1=”/kagg le / working / v i n r e s t e s t ” + s t r (l s [i]) + ” . csv ”

##d t x t e s t . t o c s v (fn1 , index=False)

##fn2=”/kagg le / working / v i n r e s t r a i n ” + s t r (l s [i]) + ” . csv ”

##d t x t r a i n . t o c s v (fn2 , index=False)

A.2.3 Visualization codes using LIME,SHAP and GRAD CAM

here i s the GRAD CAM v i s u a l i z a t i o n

pos =[10]

128

hm=[]

l a s t c o n v l a y e r = model . g e t l a y e r (’ conv2d 11 ’)

f o r i i in range (1) :

x=x t e s t [9 : 1 0 , : , : , :]

preds=model . p r e d i c t (np . asar ray (x))

num = np . argmax (preds)

from keras import backend as K

from keras . p r e p r o c e s s i n g import image

from keras . a p p l i c a t i o n s . vgg16 import p r eproce s s input ,

d e c o d e p r e d i c t i o n s

import numpy as np

ot=model . output [: , 0]

grads = K. g r a d i e n t s (ot , l a s t c o n v l a y e r . output) [0]

poo l ed grads = K. mean(grads , a x i s =(0 , 1 , 2))

p r i n t (’ poo l ed grads : ’ , poo l ed grads . shape)

i t e r a t e = K. func t i on ([model . input] , [poo led grads , \\

l a s t c o n v l a y e r . output [0]])

poo l ed grads va lue , c onv l aye r ou tpu t va lu e = i t e r a t e ([x])

We mult ip ly each channel in the f e a t u r e map array

by ”how important t h i s channel i s ” with regard to the

e lephant c l a s s

129

f o r i in range (l en (poo l ed g rad s va lue)) :

c onv l aye r ou tpu t va lu e [: , : , i] ∗= poo l ed g rad s va lue [i]

The channel−wise mean o f the r e s u l t i n g f e a t u r e map

i s our heatmap o f c l a s s a c t i v a t i o n

heatmap = np . mean(conv laye r output va lue , a x i s=−1)

##shape :14∗14

heatmap = np . maximum(heatmap , 0)

heatmap /= np . max(heatmap) ##shape :14∗14

heatmap

hm. append ([pos [i i] , heatmap])

LIME we t r i e d 1000 sample po in t s ;

import l ime

from l ime import l ime image

e x p l a i n e r = l ime image . LimeImageExplainer ()

exp lanat ion = e x p l a i n e r . e x p l a i n i n s t a n c e (x t e s t [9 : 1 0 , : , : , :] , \\

model . p red i c t , h i d e c o l o r =0, num samples=1000)

f o r SHAP value ;

import shap

130

s i n c e we have two inputs we pass a l i s t o f inputs to the e x p l a i n e r

e x p l a i n e r = shap . GradientExpla iner (model , [x t ra in , x t r a i n])

we exp la in the model ’ s p r e d i c t i o n s on the f i r s t 19 samples

o f the t e s t s e t

shap va lues = e x p l a i n e r . shap va lues ((x t e s t [0 : 1 9 , : , : , :]))

sh=np . asar ray (shap va lues) . reshape (19 ,16 ,16)

only keep the p o s i t i v e impact part

sh [sh<0]=0

A.2.4 Codes for LIVE algorithm

Tree models f o r LIVE algor i thms

import numpy as np ## l i n e a r a lgebra

import pandas as pd ## data proce s s ing , CSV f i l e I /O (e . g . pd . r ead c sv)

Input data f i l e s are a v a i l a b l e in the ” . . / input /” d i r e c t o r y .

For example , running t h i s (by c l i c k i n g run or p r e s s i n g S h i f t+Enter)\\

w i l l l i s t a l l f i l e s under the input d i r e c t o r y

import os

import cv2

import PIL

131

from IPython . d i s p l a y import Image , d i s p l a y

from keras . a p p l i c a t i o n s . vgg16 import VGG16, p r e p r o c e s s i n p u t

Plo t l y f o r the i n t e r a c t i v e viewer (s ee l a s t s e c t i o n)

import p l o t l y . g raph obj s as go

from s k l e a r n . met r i c s import cohen kappa score

from s k l e a r n . m o d e l s e l e c t i o n import t r a i n t e s t s p l i t

from keras . models import Sequent ia l , Model , load model

from keras . a p p l i c a t i o n s . vgg16 import VGG16, p r e p r o c e s s i n p u t

from keras . p r e p r o c e s s i n g . image import ImageDataGenerator ,\\

load img , img to ar ray

from keras . models import Sequent i a l

from keras . l a y e r s import Conv2D , MaxPooling2D , Dense , Dropout , Input ,\\

Flatten , BatchNormalization , Act ivat ion

from keras . l a y e r s import GlobalMaxPooling2D

from keras . models import Model

from keras . op t im i z e r s import Adam, SGD, RMSprop

from keras . c a l l b a c k s import ModelCheckpoint , Callback , EarlyStopping

from keras . u t i l s import t o c a t e g o r i c a l

from t en so r f l o w . keras . p r e p r o c e s s i n g . image import ImageDataGenerator

import gc

import skimage . i o

132

from s k l e a r n . m o d e l s e l e c t i o n import KFold

f o r dirname , , f i l enames in os . walk (’/ kagg le / input ’) :

f o r f i l ename in f i l enames :

p r i n t (os . path . j o i n (dirname , f i l ename))

Any r e s u l t s you wr i t e to the cur r ent d i r e c t o r y are saved as output .

import t en s o r f l ow as t f

from t en so r f l o w . python . keras import backend as K

from s k l e a r n . met r i c s import r o c a u c s c o r e

from s k l e a r n . met r i c s import ro c cu rve

from s k l e a r n . t r e e import D e c i s i o n T r e e C l a s s i f i e r

de f f i nd path (node numb , path , x) :

path . append (node numb)

i f node numb == x :

re turn True

l e f t = False

r i g h t = False

i f (c h i l d r e n l e f t [node numb] !=−1):

l e f t = f ind path (c h i l d r e n l e f t [node numb] , path , x)

i f (c h i l d r e n r i g h t [node numb] !=−1):

r i g h t = f ind path (c h i l d r e n r i g h t [node numb] , path , x)

133

i f l e f t or r i g h t :

r e turn True

path . remove (node numb)

re turn Fal se

de f g e t r u l e (path , column names) :

mask = ’ ’

f o r index , node in enumerate (path) :

##We check i f we are not in the l e a f

i f index != len (path)−1:

Do we go under or over the th r e sho ld ?

i f (c h i l d r e n l e f t [node] == path [index +1]) :

mask += ”(df [’{} ’]<= {}) \ t ” .\\

format (column names [f e a t u r e [node]] , th r e sho ld [node])

e l s e :

mask += ”(df [’{} ’] > {}) \ t ” .\\

format (column names [f e a t u r e [node]] , th r e sho ld [node])

We i n s e r t the & at the r i g h t p l a c e s

mask = mask . r e p l a c e (”\ t ” , ”&”, mask . count (”\ t ”) − 1)

mask = mask . r e p l a c e (”\ t ” , ””)

re turn mask

from s k l e a r n . met r i c s import r o c a u c s c o r e

134

from s k l e a r n . met r i c s import ro c cu rve

import random

import time

from s k l e a r n . t r e e import D e c i s i o n T r e e C l a s s i f i e r

from sc ipy . s t a t s . mstats import gmean

pi =[16 ,32 ,64 ,128]

rocc =[]

f o r m in range (0 , 1) :

fname1=’ v inb ig cnn / v i n c ro p t r a in ’+ s t r (p i [m]) + ’ . csv ’

fname2=’ v inb ig cnn / v i n c r o p t e s t ’+ s t r (p i [m]) + ’ . csv ’

p r i n t (fname1)

t r a i n=pd . r ead c sv (fname1)

t e s t=pd . r ead c sv (fname2)

newdata=pd . DataFrame ([])

regdata =[]

imp=pd . DataFrame ([])

ru=pd . DataFrame ([])

regdata=pd . DataFrame ([])

s t a r t t i m e=time . time ()

fd=pd . DataFrame ([])

t r a i n . columns = [’ v’+ col name f o r col name in t r a i n . columns]

135

t e s t . columns = [’ v’+ col name f o r col name in t e s t . columns]

t r a i n . yhat=np . l og (t r a i n . vyhat/(1− t r a i n . vyhat))

t e s t . yhat=np . l og (t e s t . vyhat/(1− t e s t . vyhat))

t ra in new=pd . DataFrame ([])

t e s t [’ vy t ra in ’]= t e s t [’ vy te s t ’]

t e s t=t e s t . drop ([’ vy te s t ’] , a x i s =1)

##t e s t=t e s t . i l o c [1 : 5]

##t e s t=t r a i n

##ds=t r a i n . append (t e s t)

##t r a i n=t r a i n [((t r a i n [’ vyhat ’] >0 .67) & (t r a i n [’ vy t ra in ’]==1)) | \\

((t r a i n [’ vyhat ’] <0 .6) & (t r a i n [’ vy t ra in ’]==0))]

##t e s t [’ vy t ra in ’]=(t e s t [’ vyhat ’] >0 .67)∗1

##t e s t [’ vy t ra in ’]= t e s t [’ vy te s t ’]

##t e s t 1=t e s t . sample (f r a c =0.05 , r e p l a c e=True , random state =2)

y t r a i n=t r a i n [’ vy t ra in ’]

y t e s t=t e s t [’ vy t ra in ’]

##y t e s t=t r a i n [’ vy t ra in ’]

t r a i n y h a t=t r a i n [’ vyhat ’]

##t r a i n y h a t=xx2 [’ pred lstm ’]

136

##t r a i n y h a t=t r a i n 2 [’ yhat ’]

##t r a i n y h a t=xx raw [’ pred lstm ’]

t e s t y h a t=t e s t [’ vyhat ’]

##t e s t y h a t=t r a i n [’ vyhat ’]

d t x t r a i n=t r a i n . drop ([’ vy t ra in ’ , ’ vyhat ’] , a x i s =1)

##d t x t r a i n=d t x t r a i n [d t x t r a i n . columns [6 0 0 : 2 4 0 0]]

d t x t e s t=t e s t . drop ([’ vy t ra in ’ , ’ vyhat ’] , a x i s =1)

##d t x t e s t=d t x t e s t [d t x t e s t . columns [6 0 0 : 2 4 0 0]]

##d t x t e s t=d t x t r a i n

f o r i in range (2 0 0 0) :

p r i n t (i)

##x t r a i n 1 1=d t x t r a i n . sample (random . rand int (15 , 16) , a x i s =1)

##the f o l l o w i n g i s to t ry randomly obse rvat i on s e l e c t i o n ;

##x t r a i n 1 1=x t r a i n 1 1 . sample (random . randint (9000 , 9001) , a x i s =0)

the f o l l o w i n g i s f o r d i f f e r e n t f e a t u r e s e l e c t i o n s ;

x t r a i n 1 1=d t x t r a i n . sample (random . rand int (10 , 40) , a x i s =1)

c h i f e a t u r e=x t r a i n 1 1 . columns

c h i f e a t u r e=l i s t (c h i f e a t u r e)

##c h i f e a t u r e=l i s t (x t r a i n 1 1 . columns)+[’ vyhat ’]

t r e e = D e c i s i o n T r e e C l a s s i f i e r (random state =42, \\

min samp l e s l ea f =5, c r i t e r i o n =’entropy ’)

t r e e . f i t (d t x t r a i n [c h i f e a t u r e] , y t r a i n)

137

to get node in fo rmat ion ;

n nodes = t r e e . t r e e . node count

c h i l d r e n l e f t = t r e e . t r e e . c h i l d r e n l e f t

c h i l d r e n r i g h t = t r e e . t r e e . c h i l d r e n r i g h t

f e a t u r e = t r e e . t r e e . f e a t u r e

th r e sho ld = t r e e . t r e e . th r e sho ld

l e a v e i d = t r e e . apply (d t x t r a i n [c h i f e a t u r e])

x cp1=d t x t e s t [c h i f e a t u r e] . copy ()

x cp1 [’ death ’]= y t e s t

x cp1=x cp1 . r e s e t i n d e x ()

add pred i c t ed va lue s from deep l e a r n i n g model to t r e e data ;

x cp1 [’ l stm pred ’] = t e s t y h a t . va lue s

X=(np . asar ray (d t x t e s t) . astype (np . f l o a t 3 2))

x cp1 [’ id ’]= x cp1 . index+1

paths={}

f o r l e a f in np . unique (l e a v e i d) :

p a t h l e a f = []

f i nd path (0 , pa th l ea f , l e a f)

paths [l e a f] = np . unique (np . s o r t (p a t h l e a f))

r u l e s = []

get the r u l e in fo rmat ion which i s f o r LASSO r e g r e s s i o n ;

f o r key in paths :

138

r u l e s . append ([key , g e t r u l e (paths [key] , c h i f e a t u r e)])

##yhat2= t r e e . p r ed i c t p roba (x t r a i n []) [: , 1]

d f=pd . DataFrame (r u l e s)

df . columns =[’ node ’ , ’ ru l e s ’]

to e x t r a c t f e a t u r e s from the r u l e s ;

d f [’ ru l e ’]= df [’ ru l e s ’] . s t r . f i n d a l l (r ” (? <=\ [) ([ˆ]]+)(?=\])”)

x cp2=d t x t r a i n [c h i f e a t u r e] . copy ()

x cp2 [’ death ’]= y t r a i n

x cp2=x cp2 . r e s e t i n d e x ()

x cp2 [’ l stm pred ’] = t r a i n y h a t . va lue s

X=(np . asar ray (d t x t r a i n [c h i f e a t u r e]) . astype (np . f l o a t 3 2))

x cp2 [’ pred node ’]= t r e e . t r e e . apply (X)

r e a s s i g n Id in case the id numbers in both t r a i n i n g \\

and t e s t i n g data ;

x cp2 [’ id ’]= x cp2 . index +10000

X2=(np . asar ray (d t x t e s t [c h i f e a t u r e]) . astype (np . f l o a t 3 2))

x cp1 [’ pred node ’]= t r e e . t r e e . apply (X2)

x cp=x cp2

##x cp=pd . concat ([x cp1 , x cp2] , s o r t=False , i g n o r e i n d e x=True) .\\

f i l l n a (0)

139

x cp [’ pred lstm ’] = x cp . groupby (’ pred node ’) [’ l stm pred ’] . \ \

trans form (’ mean ’)

x cp [’ pred ct ’] = x cp . groupby (’ pred node ’) [’ l stm pred ’] . \ \

trans form (’ count ’)

x cp [’ pred dt ’]= t r e e . p r ed i c t p roba (d t x t r a i n [c h i f e a t u r e]) [: , 1]

x c p t r=x cp [[’ id ’ , ’ pred lstm ’ , ’ death ’ , ’ pred node ’ ,\\

’ l s tm pred ’ , ’ pred dt ’ , ’ pred ct ’]]

##x c p t r [’ order ’]= i

x c p t r = x c p t r . a s s i g n (order=i)

t ra in new=tra in new . append (x c p t r)

x111=x cp [[’ pred node ’ , ’ pred lstm ’ , ’ pred ct ’]] . d r o p d u p l i c a t e s ()

merge t r a i n i n g and t e s t i n g data toge the r by node ;

x3=x cp1 . merge (x111 , l e f t o n =’pred node ’ , \\

r i g h t o n =’pred node ’ , how=’ l e f t ’)

ds=x3 [c h i f e a t u r e]

x3 [’ pred dt ’]= t r e e . p r ed i c t p roba (d t x t e s t [c h i f e a t u r e]) [: , 1]

x3=x3 [[’ id ’ , ’ pred lstm ’ , ’ death ’ , ’ pred node ’ ,\\

’ l s tm pred ’ , ’ pred dt ’ , ’ pred ct ’]]

x3 [’ order ’]= i

get the data from a l l the t r e e s ;

newdata=newdata . append (x3)

importance = t r e e . f e a t u r e i m p o r t a n c e s

140

imp1=pd . DataFrame (l i s t (z ip (importance , c h i f e a t u r e)))

imp1 [’ order ’]= i

imp=imp . append (imp1)

##nd=x3 [’ pred node ’]

##df=df [df [’ node ’]== i n t (nd)]

##ru=ru . append (df)

ds [’ id ’]= x3 [’ id ’]

r e g r e s s i o n data f o r r e g r e s s i o n model ;

regdata=regdata . append (ds)

get the new auc f o r p r ed i c t ed va lue s from LIVE ;

xx2=pd . DataFrame (newdata [[’ pred lstm ’ , ’ id ’ , ’ death ’ , ’ l stm pred ’]] . \ \

groupby (’ id ’) . mean ())

##xx2

r o c a u c s c o r e (xx2 . death , xx2 . pred l s tm)

A.2.4.1 SAS code for LASSO regression model

the f o l l o w i n g i s SAS code f o r LASSO/Ridge or E l a s t i c net r e g r e s s i o n ;

data regdata ;

s e t regdata ;

array f e a t u r e v : ;

do over a ;

##∗ recode a l l f e a t u r e va lue s to 0 or 1

141

depending whether they are miss ing or \\

not in the r u l e path ;

a=(a>0)∗1;

end ;

run ;

proc g l m s e l e c t data=regdata ;

model pred l s tm = v : / s e l e c t i o n=l a s s o (stop=L1 L1choice=r a t i o L1=.4)

run ;

A.2.4.2 Visualization for LIVE algorithm

The f o l l o w i n g i s f o r v i s u a l i z a t i o n o f LIVE algor i thm ;

import matp lo t l i b . pyplot as p l t

import matp lo t l i b . image as img

import numpy as np

import cv2

im = cv2 . imread (’ id13 . png ’)

from IPython . d i s p l a y import Image , d i s p l a y

import matp lo t l i b . pyplot as p l t

import matp lo t l i b . cm as cm

##∗c o e f f i c i e n t s from l a s s o r e g r e s s i o n models ;

p = [0 . 0 2 3 4 , −0 . 2 8 9 9 7 , . . . , 0 . 1 8 6 5 3]

142

o r i g i n a l i m a g e = np . array (p) . reshape (16 ,16)

f o r W in range (1 6) :

f o r H in range (1 6) :

new width = i n t (W ∗ width/ o r i g i n a l i m a g e . shape [0])

new height = i n t (H ∗ he ight / o r i g i n a l i m a g e . shape [1]

)

r e s i z e i m a g e [new width] [new height] =\\

r e s i z e i m a g e [new width] [new height]+ o r i g i n a l i m a g e [W] [H]

r e s i z e i m a g e [r e s i z e image <0] = 0

heatmap = np . u int8 (255 ∗np . asar ray (r e s i z e i m a g e) . reshape (6 , 6))

import keras

j e t = cm. get cmap (” j e t ”)

alpha =0.8

Use RGB va lues o f the colormap

j e t c o l o r s = j e t (np . arange (2 5 6)) [: , : 3]

jet heatmap = j e t c o l o r s [heatmap]

Create an image with RGB c o l o r i z e d heatmap

jet heatmap = keras . p r e p r o c e s s i n g . image . a r ray to img (jet heatmap)

jet heatmap = jet heatmap . r e s i z e ((im . shape [1] , im . shape [0]))

jet heatmap = keras . p r e p r o c e s s i n g . image . img to ar ray (jet heatmap)

143

Superimpose the heatmap on o r i g i n a l image

superimposed img = jet heatmap ∗ alpha + im

superimposed img = keras . p r e p r o c e s s i n g . image .\\

ar ray to img (superimposed img)

d i s p l a y (superimposed img)

A.3 Codes for pneumonia data

A.3.1 SAS code for data creation

∗∗∗∗ the f o l l o w i n g i s f o r pneumonia image data

import os

from s k l e a r n . met r i c s import r o c a u c s c o r e

l a b e l s = [’PNEUMONIA’ , ’NORMAL’]

de f datafunc (d a t a d i r) :

data = []

f o r l a b e l in l a b e l s :

path = os . path . j o i n (data d i r , l a b e l)

c lass num = l a b e l s . index (l a b e l)

f o r img in os . l i s t d i r (path) :

t ry :

img arr = cv2 . imread (os . path . j o i n (path , img) ,\\

cv2 .IMREAD GRAYSCALE)

144

r e s i z e d a r r = cv2 . r e s i z e (img arr , (img s i ze , i m g s i z e))

data . append ([r e s i z e d a r r , c lass num])

except Exception as e :

p r i n t (e)

re turn np . array (data)

l s =[32 ,64 ,128 ,224]

from t en so r f l o w . keras . a p p l i c a t i o n s . vgg16 import VGG16

from t en so r f l o w . keras . a p p l i c a t i o n s import ResNet50

from t en so r f l o w . python . keras . models import Sequent i a l

from t en so r f l o w . python . keras . l a y e r s import Dense , Flatten ,

\\ GlobalAveragePooling2D

auc =[]

from t en so r f l o w . keras . a p p l i c a t i o n s . vgg16 import p r e p r o c e s s i n p u t

import time

t i =[]

f o r i in range (1 , 3) :

i m g s i z e=l s [i]

p r i n t (i m g s i z e)

s t a r t t i m e=time . time ()

t r a i n = datafunc (’ . . / input /pnunomia/ che s t x ray / che s t x ray / t ra in ’)

145

t e s t = datafunc (’ . . / input /pnunomia/ che s t x ray / che s t x ray / te s t ’)

x t r a i n =[]

y t r a i n =[]

x t e s t =[]

y t e s t =[]

f o r f ea ture , l a b e l in t r a i n :

x t r a i n . append (f e a t u r e)

y t r a i n . append (l a b e l)

f o r f ea ture , l a b e l in t e s t :

x t e s t . append (f e a t u r e)

y t e s t . append (l a b e l)

x t r a i n = np . array (x t r a i n)/255 .0

x t e s t = np . array (x t e s t)/255 .0

x t r a i n = x t r a i n . reshape (−1 , img s i ze , img s i ze , 1)

x t e s t = x t e s t . reshape (−1 , img s i ze , img s i ze , 1)

y t r a i n=np . array (y t r a i n)

y t e s t=np . array (y t e s t)

import keras

input shape=(img s i ze , img s i ze , 1)

input = Input (input shape , name=’ input ’)

l a y e r=Conv2D(32 , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ , \\

padding=’same ’) (input)

146

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=Conv2D(32 , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ , \\

padding=’same ’) (input)

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=Conv2D(64 , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ , \\

padding=’same ’) (l a y e r)

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=Conv2D(64 , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ , \\

padding=’same ’) (l a y e r)

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=MaxPooling2D (p o o l s i z e =(2 , 2)) (l a y e r)

l a y e r=Conv2D(128 , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ , \\

padding=’same ’) (l a y e r)

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=Conv2D(128 , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ , \\

padding=’same ’) (l a y e r)

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=MaxPooling2D (p o o l s i z e =(2 , 2)) (l a y e r)

l a y e r=Conv2D(256 , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ , \\

147

padding=’same ’) (l a y e r)

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=Conv2D(256 , k e r n e l s i z e =(2 , 2) , a c t i v a t i o n =’ re lu ’ ,\\

padding=’same ’ , name=’ f i n a l ’) (l a y e r)

l a y e r=BatchNormal izat ion () (l a y e r)

l a y e r=MaxPooling2D (p o o l s i z e =(2 , 2)) (l a y e r)

l a y e r = Dropout (0 . 5) (l a y e r)

l a y e r = Flat ten (name=’ f l a t t e n ’) (l a y e r)

output = Dense (1 , name=”Dense 10nb ” , a c t i v a t i o n =’ sigmoid ’) (l a y e r)

model = Model (inputs =[input] , outputs =[output])

model . compi le (l o s s =’ b ina ry c ro s s ent ropy ’ , opt imize r=SGD(l r =0.0001) ,\\

metr i c s = [’ accuracy ’])

model . f i t (x=x t ra in , y=y t ra in , b a t c h s i z e=batch s i z e ,\\

epochs =30, verbose =1, v a l i d a t i o n d a t a =(x t e s t , y t e s t))

end time=time . time ()

to t =(end time−s t a r t t i m e)/60

p r i n t (l s [i] , t o t)

auc=r o c a u c s c o r e (y t e s t , model . p r e d i c t (x t e s t) . r a v e l ())

t i . append ([l s [i] , s t a r t t ime , end time , tot , auc])

p r i n t (auc)

output CNN model p r e d i c t i o n s to csv ;

148

d t x t r a i n=pd . DataFrame (np . asar ray (x t r a i n) . r a v e l () . \ \

reshape (5216 , i m g s i z e ∗ i m g s i z e))

d t x t e s t=pd . DataFrame (np . asar ray (x t e s t) . r a v e l () . \ \

reshape (624 , i m g s i z e ∗ i m g s i z e))

d t x t r a i n [’ yhat ’]= model . p r e d i c t (x t r a i n) . r a v e l ()

d t x t e s t [’ yhat ’]= model . p r e d i c t (x t e s t) . r a v e l ()

d t x t e s t [’ y t e s t ’]= y t e s t

d t x t r a i n [’ y t ra in ’]= y t r a i n

fn1=”/kagg le / working / pneute s t ” + s t r (l s [i]) + ” . csv ”

d t x t e s t . t o c s v (fn1 , index=False)

fn2=”/kagg le / working / pneut ra in ” + s t r (l s [i]) + ” . csv ”

d t x t r a i n . t o c s v (fn2 , index=False)

import datet ime

base model = VGG16(weights=”imagenet ” , i n c l u d e t o p=False ,

input shape =[img s i ze , img s i ze , 3])

#base model = InceptionV3 (weights=”imagenet ” , i n c l u d e t o p=False ,\\

input shape =[128 ,128 ,3])

base model . t r a i n a b l e = Fal se ## Not t r a i n a b l e weights

from ten so r f l o w . keras import l aye r s , models

f l a t t e n l a y e r = l a y e r s . F lat ten ()

d e n s e l a y e r 1 = l a y e r s . Dense (50 , a c t i v a t i o n =’ re lu ’)

149

d e n s e l a y e r 2 = l a y e r s . Dense (20 , a c t i v a t i o n =’ re lu ’)

p r e d i c t i o n l a y e r = l a y e r s . Dense (1 , a c t i v a t i o n =’ sigmoid ’)

model = models . S equent i a l ([

base model ,

f l a t t e n l a y e r ,

d en s e l aye r 2 ,

p r e d i c t i o n l a y e r

])

from ten so r f l o w . keras . c a l l b a c k s import EarlyStopping

model . compi le (

opt imize r =’adam ’ ,

l o s s =’ b ina ry c ro s s ent ropy ’ ,

met r i c s =[’ accuracy ’] ,

)

model . f i t (to rgb (x t ra in , i m g s i z e) , y t ra in , epochs =30, \\

v a l i d a t i o n s p l i t =0.1 , b a t c h s i z e =20)

auc1=r o c a u c s c o r e (y t e s t , model . p r e d i c t (to rgb (x t e s t , i m g s i z e)) . \ \

r a v e l ())

auc2=r o c a u c s c o r e (y t e s t , model . p r e d i c t (to rgb (x t e s t , i m g s i z e)) . \ \

r a v e l ())

auc . append ([l s [i] , auc1 , auc2])

p r i n t (auc)

150

#tot =(end time−s t a r t t i m e)/60

#p r i n t (l s [i] , t o t)

t i . append ([l s [i] , s t a r t t ime , end time , to t])

d t x t r a i n=pd . DataFrame (np . asar ray (x t r a i n) . r a v e l () . \ \

reshape (5216 , i m g s i z e ∗ i m g s i z e))

d t x t e s t=pd . DataFrame (np . asar ray (x t e s t) . r a v e l () . \ \

reshape (624 , i m g s i z e ∗ i m g s i z e))

d t x t r a i n [’ yhat ’]= model . p r e d i c t (to rgb (x t ra in , i m g s i z e)) . r a v e l ()

d t x t e s t [’ yhat ’]= model . p r e d i c t (to rgb (x t e s t , i m g s i z e)) . r a v e l ()

d t x t e s t [’ y t e s t ’]= y t e s t

d t x t r a i n [’ y t ra in ’]= y t r a i n

fn1=”/kagg le / working / pneute s t ” + s t r (l s [i]) + ” . csv ”

d t x t e s t . t o c s v (fn1 , index=False)

fn2=”/kagg le / working / pneut ra in ” + s t r (l s [i]) + ” . csv ”

d t x t r a i n . t o c s v (fn2 , index=False)

A.3.2 Codes for LIVE algorithm and visualization

The other parts are very similar to Vinbig data, so just use the same code

with pneumona data

151

A.4 Codes for diabetes data

A.4.1 data preprocessing

We adopted a pub l i c p reproce s s ed datase t from Github , \\

https : // github . com/andrewwlong/ d i a b e t e s r e a d m i s s i o n / blob / master / d i a b e t i c d a t a . csv ,

then we used a SAS code to c r e a t e the datase t f o r our experiment :

read the above csv f i l e to SAS ;

FILENAME REFFILE DISK ’ d i a b e t i c d a t a . csv ’ ;

PROC IMPORT DATAFILE=REFFILE r e p l a c e

DBMS=CSV

OUT=WORK. ds ;

GETNAMES=YES;

RUN;

only keep the l a s t 6 v i s i t s i f the pa t i en t has more than 6 v i s i t s ;

proc s o r t data=ds ; by pat i en t nbr descending encounte r id ;

data ds ;

r e t a i n time ;

s e t ds ;

by pa t i en t nbr descending encounte r id ;

i f f i r s t . pa t i en t nbr then time =0;

152

time +1;

run ;

data ds1 ;

s e t ds ;

i f time <7;

time=7−time ;

run ;

get the p a t i e n t s with the readmiss ion s t a t u s in the l a s t v i s i t ;

we got 6342 p a t i e n t s ;

proc s o r t data=ds1 ; by pa t i en t nbr time ;

data adm ;

s e t ds1 ;

by pa t i en t nbr time ;

i f f i r s t . pa t i en t nbr and o u t p u t l a b e l =1;

run ;

remove those p a t i e n t s from the populat ion to get c o n t r o l groups ;

proc s q l ; c r e a t e t a b l e c o n t r o l as s e l e c t d i s t i n c t pa t i en t nbr

from ds1 where pa t i en t nbr not in (s e l e c t pa t i en t nbr from adm) ; qu i t ;

get a balanced c o n t r o l data by s imple random s e l e c t i o n ;

153

proc s u r v e y s e l e c t data=c o n t r o l out=c t r l sampsize =6342;

run ;

data tmp ;

s e t adm(in=a) c t r l ;

i f a=1 then readm=1; e l s e readm=0;

keep pa t i en t nbr readm ;

run ;

proc s q l ; c r e a t e t a b l e phd ds

as s e l e c t ∗ , readm from ds1 , tmp where ds1 . pa t i en t nbr=tmp . pa t i en t nbr ;

qu i t ;

data l s tm long ;

s e t phd ds ;

most data have va lue s l e s s than 2 , so we need to a r t i f i c a l l y add

some numbers to make sure they have d i f f e r e n t meanings .

array dd race As ian race Caucas ian rac e H i span i c

gender Male max glu 300 max glu serum Norm A1Cresult 8

A1Cresult Norm r e p a g l i n i d e S t e a d y repag l in ide Up

n a t e g l i n i d e S t e a d y g l i me p i r i d e S t e a d y g l imep i r ide Up

g l i p i z i d e S t e a d y g l i p i z i d e U p g lybur ide Steady

154

glybur ide Up tolbutamide Steady p i o g l i t a z o n e S t e a d y

p iog l i t a zone Up r o s i g l i t a z o n e S t e a d y r o s i g l i t a z o n e U p

acarbose Steady acarbose Up m i g l i t o l S t e a d y to lazamide Steady

i n s u l i n S t e a d y insu l in Up change No diabetesMed Yes

med Emergency Trauma

med Family med InternalMedic ine

med Nephrology med Orthopedics med Other

med Radio log i s t med Surgery med UNK;

do i=1 to dim(dd) ;

dd{ i}=i ∗3+dd{ i } ;

end ;

num procedures = num procedures +500;

t i m e i n h o s p i t a l = t i m e i n h o s p i t a l +550;

number diagnoses = number diagnoses +600;

number inpat ient = number inpat ient +620;

number outpatient = number outpatient +680;

number emergency = number emergency +780;

num medications = num medications +880;

age group = age group +980;

num lab procedures = num lab procedures +1100;

d iag 1 = diag 1 +1500;

d iag 2 = diag 2 +1500;

155

run ;

here i s the l i s t o f v a r i a b l e s we want to keep in the model ;

%l e t colname=A1Cresult 8

A1Cresult Norm acarbose Steady acarbose Up age group

change No diabetesMed Yes gender Male d iag 1 d iag 2

g l im e p i r i d e S t ea d y g l imep i r ide Up g l i p i z i d e S t e a d y

g l i p i z i d e U p g lybur ide Steady glybur ide Up

i n s u l i n S t e a d y insu l in Up max glu 300 max glu serum Norm

med Emergency Trauma med Family med InternalMedic ine

med Nephrology med Orthopedics med Other med Radio log i s t

med Surgery m i g l i t o l S t e a d y n a t e g l i n i d e S t e a d y

num lab procedures num medications num procedures

number diagnoses number emergency number inpat ient

number outpatient p i o g l i t a z o n e S t e a d y p iog l i t a zone Up

race As ian race Caucas ian rac e H i span i c

r e p a g l i n i d e S t e a d y repag l in ide Up r o s i g l i t a z o n e S t e a d y

r o s i g l i t a z o n e U p t i m e i n h o s p i t a l

to lazamide Steady to lbutamide Steady readm ;

we need to convert the data from long format to wide

format ;

proc s o r t data=l s tm long ; by pa t i en t nbr time ;

156

proc t ranspose data=l s tm long out=out1 ;

var &colname . ;

by pa t i en t nbr time ;

qu i t ;

proc t ranspose data=out1 d e l i m i t e r= out=dswide (drop= name) ;

by pa t i en t nbr ;

var co l 1 ;

id name time ;

run ;

r e p l a c e miss ing va lue s with 0 ;

data l stm wide ;

s e t dswide ;

;

array t numer ic ;

do over t ;

i f t =. then t =0;

end ;

run ;

A.4.2 Deep learning model and LIVE method

read the data f i l e ;

157

diab= pd . r ead c sv (”LSTM WIDE 1126 . csv ”)

y0=(diab [” readm 6 ”])

df0=diab . drop ([’ readm 6 ’ , ’ pat i ent nbr ’ , ’ readm 1 ’ , ’ readm 2 ’ , ’ readm 3 ’ ,\\

’ readm 4 ’ , ’ readm 5 ’] , a x i s =1)

auc =[]

app=pd . DataFrame ([])

f o r i i in range (1) :

#df1=np . array (df0) . reshape (l en (df0) , 1 , 294)

x t ra in , x t e s t , y t ra in , y t e s t = t r a i n t e s t s p l i t (df0 , y0 , \\

t e s t s i z e =0.3 , random state=i i)

v o c a b s i z e = 50000

#max length = x . shape [1]

#max length=743

max length=df0 . shape [1]

d e f i n e our LSTM model with word embedding l a y e r ;

model = Sequent i a l ()

#model . add (LSTM(10) , input shape =(1 ,294)))

model . add (Embedding (vocab s i z e , 2 0 , i nput l eng th=max length))

model . add (Flat ten ())

model . add (Dense (1 , a c t i v a t i o n =’ sigmoid ’))

compile the mode

model . compi le (opt imize r =’adam ’ , l o s s =’ b inary c ro s s ent ropy ’ ,\\

158

metr i c s =[’AUC’ , ’ acc ’])

model . f i t (np . array (x t r a i n) , np . array (y t r a i n) , \\

v a l i d a t i o n d a t a =(np . array (x t e s t) ,\\

np . array (y t e s t)) , epochs =30, b a t c h s i z e =32)

yhat = model . p r e d i c t ((x t e s t) , verbose =0)

p r i n t (r o c a u c s c o r e (y t e s t , yhat))

use SAS l o g i s t i c to check the v a r i a b l e s e l e c t i o n ;

we use gee model f o r repeated l o g i s t i c r e g r e s s i o n ;

f o r gee model i f us ing a l l va r i ab l e , the model could not converge ,

#so we use l o g i s t i c model f o r v a r i a b l e s e l e c t i o n ;

proc l o g i s t i c data=l s tm long 1124 ;

model readm=A1Cresult 8

A1Cresult Norm

acarbose Steady

acarbose Up

age group

change No

diabetesMed Yes

d iag 1

d iag 2

159

encounte r id

gender Male

g l im e p i r i d e S t ea d y

g l imep i r ide Up

g l i p i z i d e S t e a d y

g l i p i z i d e U p

g lybur ide Steady

glybur ide Up

i n s u l i n S t e a d y

insu l in Up

max glu 300

max glu serum Norm

med Emergency Trauma

med Family

med InternalMedic ine

med Nephrology

med Orthopedics

med Other

med Radio log i s t

med Surgery

160

med UNK

m i g l i t o l S t e a d y

n a t e g l i n i d e S t e a d y

num lab procedures

num medications

num procedures

number diagnoses

number emergency

number inpat ient

number outpatient

p i o g l i t a z o n e S t e a d y

p iog l i t a zone Up

race As ian

race Caucas ian

rac e H i span i c

time

r e p a g l i n i d e S t e a d y

repag l in ide Up

r o s i g l i t a z o n e S t e a d y

r o s i g l i t a z o n e U p

t i m e i n h o s p i t a l

161

to lazamide Steady

to lbutamide Steady / s e l e c t i o n=stepwi s e ;

run ;

we used the above s e l e c t e d v a r i a b l e s f o r our GEE model ;

proc genmod data=l s tm long 1124 ;

c l a s s pa t i en t nbr ;

model

readm=A1Cresult 8

acarbose Steady

age group

diabetesMed Yes

d iag 1

med UNK

num procedures

number diagnoses

number inpat ient

number outpatient

number inpat ient

t i m e i n h o s p i t a l

to lazamide Steady

/ d i s t=bin maxiter =1000;

repeated s u b j e c t= pat i en t nbr / type=ind maxiter =1000 ;

162

output out=t e s t pred=pred ; ;

;

run ; ;

we should only check the auc f o r time =6; the l a s t v i s i t ;

ods output WilcoxonScores=WilcoxonScore ;

proc npar1way wi lcoxon data= t e s t ;

c l a s s readm ;

var pred ;

where time =6;

run ;

data AUC;

s e t WilcoxonScore end=eo f ;

r e t a i n v1 v2 1 ;

i f n =1 then v1=abs (ExpectedSum − SumOfScores) ;

v2=N∗v2 ;

i f e o f then do ;

d=v1/v2 ;

Gini=d ∗ 2 ; AUC=d+0.5;

put AUC= GINI=;

keep AUC Gini ;

163

output ;

end ;

run ;

our LIVE method , s i m i l a r to the proce s s in image a n a l y s i s

f o r j in range (1) :

#t e s t 1=t e s t . sample (f r a c =0.05 , r e p l a c e=True , random state =2)

t r a i n y h a t= model . p r e d i c t (x t ra in , verbose =0)

#t r a i n y h a t=xx2 [’ pred lstm ’]

#t r a i n y h a t=t r a i n 2 [’ yhat ’]

#t r a i n y h a t=xx raw [’ pred lstm ’]

t e s t y h a t= model . p r e d i c t (x t e s t , verbose =0)

d t x t r a i n=x t r a i n

#d t x t r a i n=d t x t r a i n [d t x t r a i n . columns [6 0 0 : 2 4 0 0]]

d t x t e s t=x t e s t

#d t x t e s t=d t x t e s t [d t x t e s t . columns [6 0 0 : 2 4 0 0]]

newdata=pd . DataFrame ([])

regdata =[]

imp=pd . DataFrame ([])

ru=pd . DataFrame ([])

regdata=pd . DataFrame ([])

s t a r t t i m e=time . time ()

fd=pd . DataFrame ([])

164

t ra in new=pd . DataFrame ([])

f o r i in range (1 , 2 0 0) :

p r i n t (i)

x t r a i n 1 1=d t x t r a i n . sample (random . rand int (10 , 80) , a x i s =1)

c h i f e a t u r e=x t r a i n 1 1 . columns

c h i f e a t u r e=l i s t (c h i f e a t u r e)

#c h i f e a t u r e=l i s t (x t r a i n 1 1 . columns)+[’ vyhat ’]

t r e e = D e c i s i o n T r e e C l a s s i f i e r (random state =42, \\

min samp l e s l ea f =5, c r i t e r i o n =’entropy ’)

t r e e . f i t (d t x t r a i n [c h i f e a t u r e] , y t r a i n)

n nodes = t r e e . t r e e . node count

c h i l d r e n l e f t = t r e e . t r e e . c h i l d r e n l e f t

c h i l d r e n r i g h t = t r e e . t r e e . c h i l d r e n r i g h t

f e a t u r e = t r e e . t r e e . f e a t u r e

th r e sho ld = t r e e . t r e e . th r e sho ld

l e a v e i d = t r e e . apply (d t x t r a i n [c h i f e a t u r e])

x cp1=d t x t e s t [c h i f e a t u r e] . copy ()

x cp1 [’ readm ’]= y t e s t

x cp1=x cp1 . r e s e t i n d e x ()

x cp1 [’ l stm pred ’] = t e s t y h a t

165

X=(np . asar ray (d t x t e s t) . astype (np . f l o a t 3 2))

x cp1 [’ id ’]= x cp1 . index+1

paths={}

f o r l e a f in np . unique (l e a v e i d) :

p a t h l e a f = []

f i nd path (0 , pa th l ea f , l e a f)

paths [l e a f] = np . unique (np . s o r t (p a t h l e a f))

r u l e s = []

f o r key in paths :

r u l e s . append ([key , g e t r u l e (paths [key] , c h i f e a t u r e)])

#yhat2= t r e e . p r ed i c t p roba (x t r a i n []) [: , 1]

d f=pd . DataFrame (r u l e s)

df . columns =[’ node ’ , ’ ru l e s ’]

d f [’ ru l e ’]= df [’ ru l e s ’] . s t r . f i n d a l l (r ” (? <=\ [) ([ˆ]]+)(?=\])”)

x cp2=d t x t r a i n [c h i f e a t u r e] . copy ()

x cp2 [’ readm ’]= y t r a i n

x cp2=x cp2 . r e s e t i n d e x ()

x cp2 [’ l stm pred ’] = t r a i n y h a t

166

#x cp2 [’ l stm pred ’] = r f . p r e d i c t (x t r a i n)

#x cp2 [’ p r ed t r ee ’]= t r e e . p r ed i c t p roba (d t x t r a i n [c h i f e a t u r e]) [: , 1] ho

X=(np . asar ray (d t x t r a i n [c h i f e a t u r e]) . astype (np . f l o a t 3 2))

x cp2 [’ pred node ’]= t r e e . t r e e . apply (X)

#x cp2 [’ pred lstm ’] = x cp2 . groupby (’ pred node ’) [’ l stm pred ’] \ \

. t rans form (’ mean ’)

x cp2 [’ id ’]= x cp2 . index +10000

X2=(np . asar ray (d t x t e s t [c h i f e a t u r e]) . astype (np . f l o a t 3 2))

x cp1 [’ pred node ’]= t r e e . t r e e . apply (X2)

x cp=x cp2

#x cp=pd . concat ([x cp1 , x cp2] , s o r t=False ,\\

i g n o r e i n d e x=True) . f i l l n a (0)

x cp [’ pred lstm ’] = x cp . groupby (’ pred node ’)\\

[’ l s tm pred ’] . t rans form (’ mean ’)

x cp [’ pred ct ’] = x cp . groupby (’ pred node ’) [’ l stm pred ’] . \ \

trans form (’ count ’)

x cp [’ pred dt ’]= t r e e . p r ed i c t p roba (d t x t r a i n [c h i f e a t u r e]) [: , 1]

x c p t r=x cp [[’ id ’ , ’ pred lstm ’ , ’ readm ’ , ’ pred node ’ ,\\

’ l s tm pred ’ , ’ pred dt ’ , ’ pred ct ’]]

#x c p t r [’ order ’]= i

x c p t r = x c p t r . a s s i g n (order=i)

167

t ra in new=tra in new . append (x c p t r)

x111=x cp [[’ pred node ’ , ’ pred lstm ’ , ’ pred ct ’]] . d r o p d u p l i c a t e s ()

x3=x cp1 . merge (x111 , l e f t o n =’pred node ’ , r i g h t o n =’pred node ’ ,\\

how=’ l e f t ’)

ds=x3 [c h i f e a t u r e]

x3 [’ pred dt ’]= t r e e . p r ed i c t p roba (d t x t e s t [c h i f e a t u r e]) [: , 1]

x3=x3 [[’ id ’ , ’ pred lstm ’ , ’ readm ’ , ’ pred node ’ , ’ l stm pred ’ , ’ pred dt ’ , ’ pred ct ’]]

x3 [’ order ’]= i

newdata=newdata . append (x3)

importance = t r e e . f e a t u r e i m p o r t a n c e s

imp1=pd . DataFrame (l i s t (z ip (importance , c h i f e a t u r e)))

imp1 [’ order ’]= i

imp=imp . append (imp1)

#nd=x3 [’ pred node ’]

#df=df [df [’ node ’]== i n t (nd)]

#ru=ru . append (df)

ds [’ id ’]= x3 [’ id ’]

regdata=regdata . append (ds)

#xx=pd . DataFrame (newdata [[’ pred lstm ’ , ’ id ’ , ’ readm ’ , ’ l stm pred ’]] \ \

. groupby (’ id ’) . median ())

xx=pd . DataFrame (newdata [[’ order ’ , ’ pred lstm ’ , ’ id ’ , ’ readm ’ ,\\

168

’ l s tm pred ’ , ’ pred node ’ , ’ pred ct ’]] . groupby (’ id ’) . agg ([’ mean ’ , ’ count ’]))

e l ap sed t ime = time . time () − s t a r t t i m e

xx2=pd . DataFrame (newdata [[’ pred lstm ’ , ’ id ’ , ’ readm ’ ,\\

’ l s tm pred ’ , ’ pred dt ’]] . groupby (’ id ’) . mean ())

#xx2 [’ p red l ’]= new2 . groupby (’ id ’) . pred l s tm . apply (s t a t s . gmean)

auc22=r o c a u c s c o r e (xx2 . readm , xx2 . pred l s tm)

169

Bibliography

[1] tlmodel. https://keras.io/api/applications/.

[2] Mohd Javaid, Abid Haleem, Ravi Pratap Singh, Rajiv Suman, and Shanay
Rab. Significance of machine learning in healthcare: Features, pillars and
applications. International Journal of Intelligent Networks, 2022.

[3] Talal AA Abdullah, Mohd Soperi Mohd Zahid, and Waleed Ali. A review of
interpretable ml in healthcare: Taxonomy, applications, challenges, and future
directions. Symmetry, 13(12):2439, 2021.

[4] Christopher M Bishop. Mixture density networks. 1994.

[5] Zhengping Che, Sanjay Purushotham, Robinder Khemani, and Yan Liu. Inter-
pretable deep models for icu outcome prediction. In AMIA annual symposium
proceedings, volume 2016, page 371. American Medical Informatics Associa-
tion, 2016.

[6] vgg16structure. https://neurohive.io/en/popular-networks/vgg16/.

[7] Peter Groves, Basel Kayyali, David Knott, and Steve Van Kuiken. Accelerat-
ing value and innovation. The ’big data’ revolution in healthcare: Accelerating
value and innovation, (January):1–22, 2013.

[8] Bonnie Feldman, Ellen M. Martin, and Tobi Skotnes. Big Data in Healthcare
- Hype and Hope. Dr.Bonnie 360 degree (Business Development for Digital
Health), 2013(1):122–125, 2012.

[9] William H. Shrank, Teresa L. Rogstad, and Natasha Parekh. Waste in the
US Health Care System: Estimated Costs and Potential for Savings. JAMA
- Journal of the American Medical Association, 322(15):1501–1509, 2019.

[10] Kee Yuan Ngiam and Ing Wei Khor. Big data and machine learning algorithms
for health-care delivery. The Lancet Oncology, 20(5):e262–e273, 2019.

170

https://keras.io/api/applications/
https://neurohive.io/en/popular-networks/vgg16/

[11] David W. Bates, Suchi Saria, Lucila Ohno-Machado, Anand Shah, and Gabriel
Escobar. Big data in health care: Using analytics to identify and manage high-
risk and high-cost patients. Health Affairs, 33(7):1123–1131, 2014.

[12] V Shyamala Susan, K Juliana Gnana Selvi, and Ir Bambang Sugiyono
Agus Purwono. Big data in healthcare: Applications and challenges. Ad-
vanced Analytics and Deep Learning Models, pages 351–363, 2022.

[13] Isaac Bankman. Handbook of medical image processing and analysis. Elsevier,
2008.

[14] Justin Ker, Lipo Wang, Jai Rao, and Tchoyoson Lim. Deep learning applica-
tions in medical image analysis. Ieee Access, 6:9375–9389, 2017.

[15] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta,
Tony Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya,
et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays with
deep learning. arXiv preprint arXiv:1711.05225, 2017.

[16] Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina CS Valentim,
Huiying Liang, Sally L Baxter, Alex McKeown, Ge Yang, Xiaokang Wu,
Fangbing Yan, et al. Identifying medical diagnoses and treatable diseases
by image-based deep learning. Cell, 172(5):1122–1131, 2018.

[17] Vasiliki Diamantopoulou, Aggeliki Tsohou, and Maria Karyda. General data
protection regulation and iso/iec 27001: 2013: Synergies of activities towards
organisations’ compliance. In International Conference on Trust and Privacy
in Digital Business, pages 94–109. Springer, 2019.

[18] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[19] Erico Tjoa and Cuntai Guan. A survey on explainable artificial intelligence
(xai): Toward medical xai. IEEE transactions on neural networks and learning
systems, 32(11):4793–4813, 2020.

[20] Alejandro Barredo Arrieta, Natalia Dı́az-Rodŕıguez, Javier Del Ser, Adrien
Bennetot, Siham Tabik, Alberto Barbado, Salvador Garćıa, Sergio Gil-López,
Daniel Molina, Richard Benjamins, et al. Explainable artificial intelligence
(xai): Concepts, taxonomies, opportunities and challenges toward responsible
ai. Information fusion, 58:82–115, 2020.

[21] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608, 2017.

[22] Bryce Goodman and Seth Flaxman. European union regulations on algorith-
mic decision-making and a “right to explanation”. AI magazine, 38(3):50–57,
2017.

171

[23] Raha Moraffah, Mansooreh Karami, Ruocheng Guo, Adrienne Raglin, and
Huan Liu. Causal interpretability for machine learning-problems, methods
and evaluation. ACM SIGKDD Explorations Newsletter, 22(1):18–33, 2020.

[24] Christoph Molnar. Interpretable machine learning. Lulu. com, 2019.

[25] Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft
decision tree. arXiv preprint arXiv:1711.09784, 2017.

[26] Cynthia Rudin. Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nature Machine Intel-
ligence, 1(5):206–215, 2019.

[27] C Mary Schooling and Heidi E Jones. Clarifying questions about “risk factors”:
predictors versus explanation. Emerging themes in epidemiology, 15(1):1–6,
2018.

[28] Amelia Jean Averitt. Machine Learning Methods for Causal Inference with
Observational Biomedical Data. Columbia University, 2020.

[29] Benjamin Shickel, Patrick James Tighe, Azra Bihorac, and Parisa Rashidi.
Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for
Electronic Health Record (EHR) Analysis. IEEE Journal of Biomedical and
Health Informatics, 22(5):1589–1604, 2018.

[30] M. K. Ross, W. Wei, and L. Ohno-Machado. ”Big data” and the electronic
health record. Yearbook of medical informatics, 9:97–104, 2014.

[31] Liang Hong, Mengqi Luo, Ruixue Wang, Peixin Lu, Wei Lu, and Long Lu.
Big data in health care: Applications and challenges. Data and information
management, 2(3):175–197, 2018.

[32] Pranjul Yadav, Michael Steinbach, Vipin Kumar, and Gyorgy Simon. Mining
electronic health records (EHRs): A survey. ACM Computing Surveys, 50(6),
2018.

[33] Rebecca Hermon and Patricia Williams. Big data in healthcare: What is it
used for? Proceedings of the 3rd Australian eHealth Informatics and Security
Conference, pages 40–49, 2014.

[34] Chonho Lee, Zhaojing Luo, Kee Yuan Ngiam, Meihui Zhang, Kaiping Zheng,
Gang Chen, Beng Chin Ooi, and Wei Luen James Yip. Big Healthcare Data
Analytics: Challenges and Applications. pages 11–41, 2017.

[35] Volker Tresp, J. Marc Overhage, Markus Bundschus, Shahrooz Rabizadeh,
Peter A. Fasching, and Shipeng Yu. Going Digital: A Survey on Digitaliza-
tion and Large-Scale Data Analytics in Healthcare. Proceedings of the IEEE,
104(11):2180–2206, 2016.

172

[36] Daniele Ravi, Charence Wong, Fani Deligianni, Melissa Berthelot, Javier
Andreu-Perez, Benny Lo, and Guang Zhong Yang. Deep Learning for Health
Informatics. IEEE Journal of Biomedical and Health Informatics, 21(1):4–21,
2017.

[37] Bogus law Cyganek, Manuel Graña, Bartosz Krawczyk, Andrzej Kasprzak, Pi-
otr Porwik, Krzysztof Walkowiak, and Micha l Woźniak. A Survey of Big Data
Issues in Electronic Health Record Analysis. Applied Artificial Intelligence,
30(6):497–520, 2016.

[38] Anima Singh, Girish Nadkarni, Omri Gottesman, Stephen B. Ellis, Erwin P.
Bottinger, and John V. Guttag. Incorporating temporal EHR data in predic-
tive models for risk stratification of renal function deterioration. Journal of
Biomedical Informatics, 53:220–228, 2015.

[39] Hieu H Pham, Tung T Le, Dat Q Tran, Dat T Ngo, and Ha Q Nguyen. In-
terpreting chest x-rays via cnns that exploit hierarchical disease dependencies
and uncertainty labels. Neurocomputing, 437:186–194, 2021.

[40] Tim Hulsen, Saumya S. Jamuar, Alan R. Moody, Jason H. Karnes, Orsolya
Varga, Stine Hedensted, Roberto Spreafico, David A. Hafler, and Eoin F. McK-
inney. From big data to precision medicine. Frontiers in Medicine, 6(MAR):1–
14, 2019.

[41] Sabyasachi Dash, Sushil Kumar Shakyawar, Mohit Sharma, and Sandeep
Kaushik. Big data in healthcare: management, analysis and future prospects.
Journal of Big Data, 6(1), 2019.

[42] Clemens Scott Kruse, Rishi Goswamy, Yesha Raval, and Sarah Marawi. Chal-
lenges and Opportunities of Big Data in Health Care: A Systematic Review.
JMIR Medical Informatics, 4(4):e38, 2016.

[43] Satya Narayan Shukla and Benjamin M. Marlin. Modeling Irregularly Sampled
Clinical Time Series. 2018.

[44] Mohammad Taha Bahadori and Zachary Chase Lipton. Temporal-Clustering
Invariance in Irregular Healthcare Time Series. (ii):1–16, 2019.

[45] Gloria Hyun-Jung Kwak and Pan Hui. DeepHealth: Deep Learning for Health
Informatics. 2019.

[46] Samee U Khan, Albert Y Zomaya, and Assad Abbas. Handbook of Large-Scale
Distributed Computing in Smart Healthcare. Springer, 2017.

[47] Kaiping Zheng, Jinyang Gao, Kee Yuan Ngiam, Beng Chin Ooi, and Wei
Luen James Yip. Resolving the bias in electronic medical records. In Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 2171–2180, 2017.

173

[48] Peter EH Schwarz, Jiang Li, Heiko Wegner, Stefan R Bornstein, Joana Lind-
ström, and Jaakko Tuomilehto. An accurate risk score based on anthropomet-
ric, dietary, and lifestyle factors to predict the development of type 2 diabetes:
response to schulze et al. Diabetes care, 30(8):e87–e87, 2007.

[49] Philip B Weerakody, Kok Wai Wong, Guanjin Wang, and Wendell Ela. A
review of irregular time series data handling with gated recurrent neural net-
works. Neurocomputing, 441:161–178, 2021.

[50] Zachary C Lipton, David C Kale, Charles Elkan, and Randall Wetzel.
Learning to diagnose with lstm recurrent neural networks. arXiv preprint
arXiv:1511.03677, 2015.

[51] Xiaoxing Wu, Hsin-Yao Wang, Peichang Shi, Rong Sun, Xiaolin Wang, Zhixiao
Luo, Fanling Zeng, Michael S Lebowitz, Wan-Ying Lin, Jang-Jih Lu, et al.
Long short-term memory model–a deep learning approach for medical data
with irregularity in cancer predication with tumor markers. Computers in
Biology and Medicine, 144:105362, 2022.

[52] Therese D Pigott. A review of methods for missing data. Educational research
and evaluation, 7(4):353–383, 2001.

[53] Mutamba T Kayembe, Shahab Jolani, Frans ES Tan, and Gerard JP van
Breukelen. Imputation of missing covariate in randomized controlled trials
with a continuous outcome: Scoping review and new results. Pharmaceutical
statistics, 19(6):840–860, 2020.

[54] Zhongheng Zhang. Missing data imputation: focusing on single imputation.
Annals of translational medicine, 4(1), 2016.

[55] Arjun Puri and Manoj Gupta. Review on missing value imputation techniques
in data mining. In Proceedings of the International Conference on Machine
Learning and Computational Intelligence, Sydney, Australia, pages 6–11, 2017.

[56] Anil Jadhav, Dhanya Pramod, and Krishnan Ramanathan. Comparison of
performance of data imputation methods for numeric dataset. Applied Artifi-
cial Intelligence, 33(10):913–933, 2019.

[57] Yanjie Duan, Yisheng Lv, Wenwen Kang, and Yifei Zhao. A deep learning
based approach for traffic data imputation. In 17th International IEEE con-
ference on intelligent transportation systems (ITSC), pages 912–917. IEEE,
2014.

[58] Ming Wang. Generalized estimating equations in longitudinal data analysis:
a review and recent developments. Advances in Statistics, 2014, 2014.

[59] James W Hardin and Joseph M Hilbe. Generalized estimating equations. chap-
man and hall/CRC, 2002.

174

[60] David A Freedman. On the so-called “huber sandwich estimator” and “robust
standard errors”. The American Statistician, 60(4):299–302, 2006.

[61] Alan E Hubbard, Jennifer Ahern, Nancy L Fleischer, Mark Van der Laan,
Sheri A Satariano, Nicholas Jewell, Tim Bruckner, and William A Satari-
ano. To gee or not to gee: comparing population average and mixed models
for estimating the associations between neighborhood risk factors and health.
Epidemiology, pages 467–474, 2010.

[62] Zibo Tian, John S Preisser, Denise Esserman, Elizabeth L Turner, Paul J
Rathouz, and Fan Li. Impact of unequal cluster sizes for gee analyses of
stepped wedge cluster randomized trials with binary outcomes. Biometrical
Journal, 64(3):419–439, 2022.

[63] Christin Juhnke, Susanne Bethge, and Axel C Mühlbacher. A review on
methods of risk adjustment and their use in integrated healthcare systems.
International journal of integrated care, 16(4), 2016.

[64] Mieke Deschepper, Kristof Eeckloo, Dirk Vogelaers, and Willem Waegeman.
A hospital wide predictive model for unplanned readmission using hierarchical
icd data. Computer methods and programs in biomedicine, 173:177–183, 2019.

[65] Amir Mosavi and Material Engineering. Deep Learning : a Review Deep
Learning : a Review. (July), 2017.

[66] Riccardo Miotto, Li Li, Brian A. Kidd, and Joel T. Dudley. Deep Patient:
An Unsupervised Representation to Predict the Future of Patients from the
Electronic Health Records. Scientific Reports, 6(January):1–10, 2016.

[67] Nishita Mehta and Anil Pandit. Concurrence of big data analytics and health-
care: A systematic review. International Journal of Medical Informatics,
114(January):57–65, 2018.

[68] Mihalj Bakator and Dragica Radosav. Deep learning and medical diagnosis:
A review of literature. Multimodal Technologies and Interaction, 2(3), 2018.

[69] Ahmad Al-Aiad, Rehab Duwairi, and Manar Fraihat. Survey: Deep Learn-
ing Concepts and Techniques for Electronic Health Record. Proceedings of
IEEE/ACS International Conference on Computer Systems and Applications,
AICCSA, 2018-November:1–5, 2019.

[70] Fan Yang, Mengnan Du, and Xia Hu. Evaluating Explanation Without
Ground Truth in Interpretable Machine Learning. 2019.

[71] Ben Dickson. EXPLAINABLE AI: LEARNING HOW AI MAKES DECI-
SIONS.: EBSCOhost. page 15, 2019.

175

[72] Luciano Caroprese, Pierangelo Veltri, Eugenio Vocaturo, and Ester Zumpano.
Deep learning techniques for electronic health record analysis. 2018 9th Inter-
national Conference on Information, Intelligence, Systems and Applications,
IISA 2018, pages 1–4, 2019.

[73] Yichuan Wang, Lee Ann Kung, and Terry Anthony Byrd. Big data analytics:
Understanding its capabilities and potential benefits for healthcare organiza-
tions. Technological Forecasting and Social Change, 126:3–13, 2018.

[74] Yi Luo, Huan-Hsin Tseng, Sunan Cui, Lise Wei, Randall K. Ten Haken, and
Issam El Naqa. Balancing accuracy and interpretability of machine learn-
ing approaches for radiation treatment outcomes modeling. BJR—Open,
1(1):20190021, 2019.

[75] Awais Ashfaq. Predicting clinical outcomes via machine learning on electronic
health records. Number 58. 2019.

[76] Kenneth David Strang and Zhaohao Sun. Hidden big data analytics issues in
the healthcare industry. Health Informatics Journal, 2019.

[77] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T. Dud-
ley. Deep learning for healthcare: Review, opportunities and challenges. Brief-
ings in Bioinformatics, 2017.

[78] Saroj Kumar Pandey and Rekh Ram Janghel. Recent Deep Learning Tech-
niques, Challenges and Its Applications for Medical Healthcare System: A
Review. Neural Processing Letters, 50(2):1907–1935, 2019.

[79] Rocio Vargas, Amir Mosavi, and Ramon Ruiz. Deep learning: a review.
Advances in Intelligent Systems and Computing, 2017.

[80] Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M. Dai, Nissan Hajaj,
Michaela Hardt, Peter J. Liu, Xiaobing Liu, Jake Marcus, Mimi Sun, Patrik
Sundberg, Hector Yee, Kun Zhang, Yi Zhang, Gerardo Flores, Gavin E. Dug-
gan, Jamie Irvine, Quoc Le, Kurt Litsch, Alexander Mossin, Justin Tansuwan,
De Wang, James Wexler, Jimbo Wilson, Dana Ludwig, Samuel L. Volchen-
boum, Katherine Chou, Michael Pearson, Srinivasan Madabushi, Nigam H.
Shah, Atul J. Butte, Michael D. Howell, Claire Cui, Greg S. Corrado, and Jef-
frey Dean. Scalable and accurate deep learning with electronic health records.
npj Digital Medicine, 1(1):1–10, 2018.

[81] Yohan Jo, Lisa Lee, and Shruti Palaskar. Combining lstm and latent topic
modeling for mortality prediction. arXiv preprint arXiv:1709.02842, 2017.

[82] Mahmoud Khademi and Nedialko S Nedialkov. Probabilistic graphical models
and deep belief networks for prognosis of breast cancer. In 2015 IEEE 14th
International Conference on Machine Learning and Applications (ICMLA),
pages 727–732. IEEE, 2015.

176

[83] Hoo-Chang Shin, Le Lu, Lauren Kim, Ari Seff, Jianhua Yao, and Ronald M
Summers. Interleaved text/image deep mining on a very large-scale radiology
database. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1090–1099, 2015.

[84] Zhengping Che, Sanjay Purushotham, Robinder Khemani, and Yan Liu. Dis-
tilling Knowledge from Deep Networks with Applications to Healthcare Do-
main. pages 1–13, 2015.

[85] Oscar Day and Taghi M Khoshgoftaar. A survey on heterogeneous transfer
learning. Journal of Big Data, 4(1):1–42, 2017.

[86] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer
learning. Journal of Big data, 3(1):1–40, 2016.

[87] Shuteng Niu, Meryl Liu, Yongxin Liu, Jian Wang, and Houbing Song. Distant
domain transfer learning for medical imaging. IEEE Journal of Biomedical
and Health Informatics, 25(10):3784–3793, 2021.

[88] Lior Rokach. Ensemble-based classifiers. Artificial intelligence review, 33(1):1–
39, 2010.

[89] Robi Polikar. Ensemble based systems in decision making. IEEE Circuits and
systems magazine, 6(3):21–45, 2006.

[90] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[91] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[92] Stefan Wager. Asymptotic theory for random forests. arXiv preprint
arXiv:1405.0352, 2014.

[93] Gérard Biau, Luc Devroye, and Gäbor Lugosi. Consistency of random forests
and other averaging classifiers. Journal of Machine Learning Research, 9(9),
2008.

[94] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter,
and Lalana Kagal. Explaining explanations: An overview of interpretability
of machine learning. Proceedings - 2018 IEEE 5th International Conference
on Data Science and Advanced Analytics, DSAA 2018, pages 80–89, 2019.

[95] Muhammad Aurangzeb Ahmad, Ankur Teredesai, and Carly Eckert. Inter-
pretable machine learning in healthcare. Proceedings - 2018 IEEE Interna-
tional Conference on Healthcare Informatics, ICHI 2018, page 447, 2018.

[96] Zachary C Lipton. THe of Model The Interpretability. Acm, (june 2018):1–28,
2018.

177

[97] Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. Explainable artificial in-
telligence: A survey. In 2018 41st International convention on information and
communication technology, electronics and microelectronics (MIPRO), pages
0210–0215. IEEE, 2018.

[98] Xuhong Li, Haoyi Xiong, Xingjian Li, Xuanyu Wu, Xiao Zhang, Ji Liu, Jiang
Bian, and Dejing Dou. Interpretable deep learning: Interpretation, inter-
pretability, trustworthiness, and beyond. arXiv preprint arXiv:2103.10689,
2021.

[99] Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for interpretable machine
learning. Communications of the ACM, 63(1):68–77, 2019.

[100] Arun Das and Paul Rad. Opportunities and challenges in explainable artificial
intelligence (xai): A survey. arXiv preprint arXiv:2006.11371, 2020.

[101] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. A survey of methods for explaining black box
models. ACM Computing Surveys, 51(5):1–45, 2018.

[102] Diogo V. Carvalho, Eduardo M. Pereira, and Jaime S. Cardoso. Machine learn-
ing interpretability: A survey on methods and metrics. Electronics (Switzer-
land), 8(8):1–34, 2019.

[103] Finale Doshi-Velez and Been Kim. Towards A Rigorous Science of Inter-
pretable Machine Learning. (Ml):1–13, 2017.

[104] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolu-
tional neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8827–8836, 2018.

[105] Mengnan Du, Ninghao Liu, and Xia Hu. Techniques for interpretable machine
learning. Communications of the ACM, 63(1):68–77, 2020.

[106] Joost Bastings, Wilker Aziz, and Ivan Titov. Interpretable Neural Predictions
with Differentiable Binary Variables. pages 2963–2977, 2019.

[107] Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. 3rd International Confer-
ence on Learning Representations, ICLR 2015 - Conference Track Proceedings,
pages 1–15, 2015.

[108] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Tor-
ralba. Learning deep features for discriminative localization. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2921–
2929, 2016.

178

[109] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In Proceedings of the IEEE
international conference on computer vision, pages 618–626, 2017.

[110] Katherine J Strandburg. RULEMAKING AND INSCRUTABLE AUTO-
MATED DECISION TOOLS Author (s): Katherine J . Strandburg
Source : Columbia Law Review , Vol . 119 , No . 7 , SYMPOSIUM :
Common Law for the Age of AI (NOVEMBER 2019), pp . 1851-1886
Published by : Columbia Law Review Association , Inc . Stable URL :
https://www.jstor.org/stable/10.2307/26810852 REFERENCES Linked ref-
erences are available on JSTOR for this article : reference # references tab

contents You may need to log in to JSTOR to access the linked references .
RULEMAKING AND INSCRUTABLE AUTOMATED DECISION TOOLS.
119(7):1851–1886, 2019.

[111] Gabriëlle Ras, Marcel van Gerven, and Pim Haselager. Explanation Methods
in Deep Learning: Users, Values, Concerns and Challenges. pages 19–36, 2018.

[112] Scott M. Lundberg and Su In Lee. A unified approach to interpreting
model predictions. Advances in Neural Information Processing Systems, 2017-
December(Section 2):4766–4775, 2017.

[113] Harmanpreet Kaur, Harsha Nori, Samuel Jenkins, Rich Caruana, Hanna Wal-
lach, and Jennifer Wortman Vaughan. Interpreting Interpretability: Under-
standing Data Scientists’ Use of Interpretability Tools for Machine Learning.
CHI Conference on Human Factors in Computing Systems Proceedings, pages
1–14, 2020.

[114] Federico Baldassarre and Hossein Azizpour. Explainability Techniques for
Graph Convolutional Networks. 2019.

[115] Cao Xiao, Edward Choi, and Jimeng Sun. Opportunities and challenges in
developing deep learning models using electronic health records data: A sys-
tematic review. Journal of the American Medical Informatics Association,
25(10):1419–1428, 2018.

[116] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson.
Understanding neural networks through deep visualization. arXiv preprint
arXiv:1506.06579, 2015.

[117] Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. Machine learn-
ing interpretability: A survey on methods and metrics. Electronics, 8(8):832,
2019.

[118] David Alvarez-Melis and Tommi S Jaakkola. On the robustness of inter-
pretability methods. arXiv preprint arXiv:1806.08049, 2018.

179

[119] Radwa ElShawi, Youssef Sherif, Mouaz Al-Mallah, and Sherif Sakr. Inter-
pretability in healthcare: A comparative study of local machine learning in-
terpretability techniques. Computational Intelligence, 37(4):1633–1650, 2021.

[120] Matthew Ryan Lavery, Parul Acharya, Stephen A Sivo, and Lihua Xu. Num-
ber of predictors and multicollinearity: What are their effects on error and
bias in regression? Communications in Statistics-Simulation and Computa-
tion, 48(1):27–38, 2019.

[121] Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne
Petryk, Sarah Adel Bargal, and Joseph E Gonzalez. Nbdt: neural-backed
decision trees. arXiv preprint arXiv:2004.00221, 2020.

[122] Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota
Bulo. Deep neural decision forests. In Proceedings of the IEEE international
conference on computer vision, pages 1467–1475, 2015.

[123] Yang Zhao, Zoie Shui Yee Wong, and Kwok Leung Tsui. A Framework of Re-
balancing Imbalanced Healthcare Data for Rare Events’ Classification: A Case
of Look-Alike Sound-Alike Mix-Up Incident Detection. Journal of healthcare
engineering, 2018(2010):6275435, 2018.

[124] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey
Pennington, and Jascha Sohl-Dickstein. Deep neural networks as gaussian
processes. arXiv preprint arXiv:1711.00165, 2017.

[125] Bing Liu, Yiyuan Xia, and Philip S Yu. Clustering through decision tree con-
struction. In Proceedings of the ninth international conference on Information
and knowledge management, pages 20–29, 2000.

[126] Tin Kam Ho. The random subspace method for constructing decision forests.
IEEE transactions on pattern analysis and machine intelligence, 20(8):832–
844, 1998.

[127] Ludmila I Kuncheva, Juan J Rodŕıguez, Catrin O Plumpton, David EJ Linden,
and Stephen J Johnston. Random subspace ensembles for fmri classification.
IEEE transactions on medical imaging, 29(2):531–542, 2010.

[128] Robert Bryll, Ricardo Gutierrez-Osuna, and Francis Quek. Attribute bagging:
improving accuracy of classifier ensembles by using random feature subsets.
Pattern recognition, 36(6):1291–1302, 2003.

[129] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-
training. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 4918–4927, 2019.

[130] Jiquan Ngiam, Daiyi Peng, Vijay Vasudevan, Simon Kornblith, Quoc V Le,
and Ruoming Pang. Domain adaptive transfer learning with specialist models.
arXiv preprint arXiv:1811.07056, 2018.

180

[131] G Maragatham and Shobana Devi. Lstm model for prediction of heart failure
in big data. Journal of medical systems, 43(5):111, 2019.

[132] David MW Powers. Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation. arXiv preprint arXiv:2010.16061,
2020.

[133] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the
bias/variance dilemma. Neural computation, 4(1):1–58, 1992.

[134] Gavin Brown, Jeremy Wyatt, Rachel Harris, and Xin Yao. Diversity creation
methods: a survey and categorisation. Information fusion, 6(1):5–20, 2005.

[135] Pedro Domingos. A unified bias-variance decomposition. In Proceedings of
17th international conference on machine learning, pages 231–238. Morgan
Kaufmann Stanford, 2000.

[136] Sotiris B Kotsiantis. Decision trees: a recent overview. Artificial Intelligence
Review, 39(4):261–283, 2013.

[137] R Muthukrishnan and R Rohini. Lasso: A feature selection technique in pre-
dictive modeling for machine learning. In 2016 IEEE international conference
on advances in computer applications (ICACA), pages 18–20. IEEE, 2016.

[138] Kevin Z Xin, David Li, and Paul H Yi. Limited generalizability of deep
learning algorithm for pediatric pneumonia classification on external data.
Emergency Radiology, 29(1):107–113, 2022.

[139] Carl F Sabottke and Bradley M Spieler. The effect of image resolution on
deep learning in radiography. Radiology. Artificial intelligence, 2(1), 2020.

[140] Fei Teng, Yiming Liu, Tianrui Li, Yi Zhang, Shuangqing Li, and Yue Zhao.
A review on deep neural networks for icd coding. IEEE Transactions on
Knowledge and Data Engineering, 2022.

[141] Jose Camacho-Collados and Mohammad Taher Pilehvar. Embeddings in nat-
ural language processing. In Proceedings of the 28th international conference
on computational linguistics: tutorial abstracts, pages 10–15, 2020.

[142] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok
Lee, Matthias Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter
Jung, Ribana Roscher, et al. A survey of uncertainty in deep neural networks.
arXiv preprint arXiv:2107.03342, 2021.

[143] Alexander Kurz, Katja Hauser, Hendrik Alexander Mehrtens, Eva Krieghoff-
Henning, Achim Hekler, Jakob Nikolas Kather, Stefan Fröhling, Christof von
Kalle, Titus Josef Brinker, et al. Uncertainty estimation in medical image
classification: systematic review. JMIR Medical Informatics, 10(8):e36427,
2022.

181

[144] Himanshu Mittal, Avinash Chandra Pandey, Mukesh Saraswat, Sumit Kumar,
Raju Pal, and Garv Modwel. A comprehensive survey of image segmentation:
clustering methods, performance parameters, and benchmark datasets. Mul-
timedia Tools and Applications, pages 1–26, 2021.

182

	List of Tables
	List of Figures
	Introduction
	Healthcare and healthcare data
	Deep learning in healthcare
	What is interpretability
	What is causal interpretability
	Current interpretability methods and limitations
	Major interpretation methods
	Limitations and challenges for current interpretability algorithms

	Problem statement
	Statement of purpose
	Proposed approaches
	Contributions

	Background
	Healthcare data
	Properties of EHRs
	Challenges in EHR data

	Deep learning in healthcare
	Major techniques in deep learning

	Interpretability
	Interpretable models
	Types of interpretability methods
	Intrinsic approaches
	Post hoc approaches
	Interpretability evaluation
	Limitations and challenges of current interpretability methods

	Decision tree and deep learning models
	Neural networks to decision trees
	Decision trees to neural networks
	Mixing deep learning models and decision trees

	Deep learning models and mixture models
	Gaussian process in deep learning models
	Mixture density network

	Methodology
	Decision tree and regression tree
	Clustering
	Bagging and random subspace
	Deep learning models
	CNN model
	Transfer learning models
	LSTM model
	Evaluation metrics

	Problem definition
	Mixture distributions
	Interpretability

	Proposed method
	LIVE algorithm description
	Properties of LIVE algorithm
	Comparison to other interpretability methods

	Results
	Results for image data
	Model structures
	Experiment design
	Results of impact of epoches
	Results of impact of image size
	Performance comparison
	Results for transfer learning
	Performance of LIVE algorithm with smaller image size

	Results for visualization
	Results for Structured dataset
	Data source
	Challenges of this dataset
	Models for diabetes dataset
	Model results for structured data
	Interpretation and visualization for diabetes dataset

	Conclusion and future work
	Conclusion
	Future work

	Programs codes
	Data sources
	Codes for Vinbig data
	CNN model for Vinbig
	VGG16 model for Vinbig data
	Visualization codes using LIME,SHAP and GRAD CAM
	Codes for LIVE algorithm

	Codes for pneumonia data
	SAS code for data creation
	Codes for LIVE algorithm and visualization

	Codes for diabetes data
	data preprocessing
	Deep learning model and LIVE method

	Bibliography

