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Abstract
The development of codon bias indices (CBIs) remains an active field of research due to their myriad

applications in computational biology. Recently, the relative codon usage bias (RCBS) was introduced as
a novel CBI able to estimate codon bias without using a reference set. The results of this new index
when applied to Escherichia coli and Saccharomyces cerevisiae led the authors of the original publications
to conclude that natural selection favours higher expression and enhanced codon usage optimization in
short genes. Here, we show that this conclusion was flawed and based on the systematic oversight of an
intrinsic bias for short sequences in the RCBS index and of biases in the small data sets used for validation
in E. coli. Furthermore, we reveal that how the RCBS can be corrected to produce useful results and how its
underlying principle, which we here term relative codon adaptation (RCA), can be made into a powerful
reference-set-based index that directly takes into account the genomic base composition. Finally, we show
that RCA outperforms the codon adaptation index (CAI) as a predictor of gene expression when operating
on the CAI reference set and that this improvement is significantly larger when analysing genomes with
high mutational bias.
Key words: codon bias index; gene expression; codon usage; Escherichia coli; highly expressed genes

1. Introduction

Codon usage bias (CUB) is usually defined as a
species-specific deviation from uniform codon usage
in the coding regions of genomic sequences. This
bias is possible due to the redundancy of the genetic
code, which allows differential use of synonymous
codons.1 The particular pattern of bias observed in a
given species is thought to be the product of drift
and selection pressures acting on a number of par-
ameters, but mainly on tRNA gene copy number
and genomic %GC content.2–5 CUB is therefore a
strong species-specific statistic with numerous appli-
cations, such as gene prediction or the identification
of laterally transferred genes.6,7 It was observed
early on that the CUB of individual genes correlates
strongly with their expression level in many microbial
organisms.1,2,8 In these organisms, selective pressure

to optimize translational efficiency during rapid
growth can overcome drift and mutational bias,
leading to highly skewed codon usage patterns
within a genome. Genes that need to be highly
expressed during rapid growth will resort preferen-
tially to a small subset of codons recognized by the
most abundant tRNA species. This deviation from
the overall genomic CUB is known as the ‘major
codon bias’1 and its pattern appears to be highly
uniform among fast-growing bacteria, despite signifi-
cant differences in %GC content.4 A major codon
bias has also been reported to some extent in multi-
cellular eukaryotes, although it is absent in most
mammals and in some bacteria.9–11

Owing to the relationship between CUB and trans-
lational optimization, indices based on this bias can
be applied to predict the expression of individual
gene sequences and can thus play an important role
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in fields such as biotechnology, by assisting in the fine-
tuning of heterologous gene expression.12,13 Many
different indices of CUB have been proposed to
date.14,15 Some indices, like the effective number of
codons (Nc)

16 or the x2 statistic,9 estimate deviation
from true uniformity in codon usage. However, the
vast majority of indices measures deviation from a
subset of putative translationally optimal codons or
genes. The codon bias index (CBI) and the frequency
of optimal codons (Fop), for instance, calculate
codon bias based on a set of ‘optimal’ codons
derived, respectively, either from a subset of genes17

or from the tRNA concentration data.2 Both the
expression measure E(g) and the codon adaptation
index (CAI) circumvent the necessity of categorizing
codons as optimal or non-optimal by using directly
the observed frequency of codons in a reference set
in the calculation of their index.18,19

CAI uses a subset of putative highly expressed
genes in the organism of interest as its reference set,
leading to

CAI ¼
YL

l¼1

wiðlÞ
 !1=L

wi ¼
fij

maxð fxjÞ
; ð1Þ

where fij is the frequency of codon i encoding amino
acid j as observed in the reference set, max( fxj) the
largest frequency among the codons encoding
amino acid j and L the length, in codons, of the
gene sequence of interest. The term wi is called the
relative adaptiveness of codon i and the CAI is com-
puted as the geometric mean of the wi values for all
codons in the sequence.

In E(g),20 three groups of genes are defined in the
organism of interest: RP (ribosomal proteins), TF
(transcription processing factors) and CH (chaperon-
degradation genes). These gene classes are shown to
present high codon biases due to their involvement
in rapid division. The codon usage difference of gene
g relative to gene class S is defined as:

BðgjSÞ ¼
X

a

paðgÞ
X
ðx;y;zÞ¼a

gðx; y; zÞ � sðx; y; zÞj j

2
4

3
5

X
ðx;y;zÞ¼a

gðx; y; zÞ ¼ 1;

ð2Þ

where pa(g) is the frequency of amino acid a in
sequence g, and g(x,y,z) and s(x,y,z) are the frequencies
of synonymous codons in g and S, normalized for each
amino acid. Intuitively, it can be seen that a gene g
sharing codon usage patterns with reference set S
will generate low values for the jg(x,y,z) 2 s(x,y,z)j
differences, leading to an overall low B(gjS) value.
On the basis of the codon usage difference measure,

Karlin et al. then derive the E(g) gene expression
measure as:

EðgÞ ¼ BðgjCÞ
1=2BðgjRPÞ þ 1=4BðgjCHÞ þ 1=4BðgjTFÞ ; ð3Þ

where C represents the set of all protein-coding genes
in the organism of interest. Predicted highly expressed
genes can be defined based on E(g), noting that they
should have high B(gjC) values (strong deviation from
genomic average) and, conversely, low B(gjRP),
B(gjCH) and B(gjTF) values. High E(g) values thus
denote high predicted expression values.

Most CBIs have been shown to correlate relatively
well with either mRNA or protein concentration
levels in Saccharomyces cerevisiae and Escherichia
coli.14,15,21–24 These results are relevant even
though it is known that the correlation between
mRNA and protein concentration cannot be perfect
due to several factors, such as translational
initiation/elongation rates and protein half-
life.14,22,25 This non-linear relationship, among other
factors, puts an upper limit on the best correlations
that can be obtained between CBIs and expression
levels.23 In most of these studies, CAI outperformed
other methods in predicting gene expression14 or per-
formed close to proposed improvements or vari-
ations.21,23 Thus, CAI remains as the gold standard
among CBIs. In spite of these successes, CBIs have
several limitations. On the one hand, indices measur-
ing deviation from uniform codon usage have been
shown repeatedly to overestimate deviation for short
sequences.15,26,27 On the other hand, as defined orig-
inally, indices relying on a reference set are only appli-
cable to species in which selection for translational
efficiency has been established. Furthermore, these
methods rely on a species-specific reference set that
needs to be defined. Results are therefore not directly
comparable between different species, although both
CAI and E(g)20 have been shown to be quite resilient
to changes in their reference sets21 and iterative
algorithms have been proposed to derive the CAI
reference sets automatically.28

In 2009, Roymondal et al.29 proposed a novel CBI,
termed relative CUB (RCBS), able to estimate CUB
without a reference set. RCBS can be expressed as:

RCBxyz ¼
f ðx; y; zÞ

f1ðxÞf2ðyÞf3ðzÞ

RCBS ¼
YL

l¼1

RCBxyzðlÞ
 !1=L

�1;

ð4Þ

where L is the length, in codons, of the gene, f(x,y,z)
the observed frequency of codon xyz and f1(x), f2(y)
and f3(z) the observed frequencies of bases x, y and
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z at, respectively, codon positions 1, 2 and 3. In both
cases, frequencies are computed relative to the
sequence of interest. Therefore, for a particular
codon, the method calculates the observed codon fre-
quency and then computes its ratio to the expected
codon frequency, which is derived as the product of
the individual base frequencies at each codon pos-
ition. The sequence index RCBS is computed as the
geometric mean of codon bias over all sequence
codons. Intuitively, it can be seen that codons deviat-
ing from what is expected based on the distribution of
their individual base frequencies will contribute to
larger RCBS values, whereas codons following the
expected distribution will minimize the index.

Roymondal et al. showed that their method corre-
lated significantly with CAI and E(g) in different
E. coli data sets. They also showed that RCBS was a
superior predictor of protein concentration and
protein abundance than CAI and E(g), respectively,
on these same data sets. On the basis of their obser-
vation that RCBS has a strong correlation with gene
length, yielding larger values for shorter gene
sequences and that it correlates well with protein
abundance, the authors concluded that natural selec-
tion favours high expression levels in short genes,
increasing their codon adaptation. In a second publi-
cation, the authors extended their analysis of RCBS
to S. cerevisiae and arrived to the same conclusion
(selection favours high expression levels in short
genes) following the same logic.30 Here, we show
that the positive results reported by Roymondal
et al.29 in E. coli are based on built-in biases within
the small data sets used for validation. Furthermore,
we demonstrate that their conclusion that selection
favours codon optimization in short genes is erro-
neous and stems from systematically ignoring an
intrinsic bias in their method due to undersampling,
which is implicit in short sequences. We proceed to
show how RCBS can be corrected by different means
and how its underlying principle, which we term rela-
tive codon adaptation (RCA), can be applied to differ-
ent reference sets, leading to improved estimations of
gene expression.

2. Materials and methods

2.1. Expression data
To validate the accuracy of different indices at pre-

dicting gene expression, expression data were col-
lected from the Many Microbe Microarrays Database
(M3D). The M3D is a compendium of single-channel
gene expression experiments in E. coli, S. cerevisiae
and Shewanella oneidensis, uniformly normalized
using the log robust multiarray analysis (RMA) and
encompassing over a thousand microarrays from a

single platform (‘Affymetrix’).31,32 Build 6 of the E.
coli M3D database was downloaded from the M3D

server. From this main data set, we selected only 18
experiments done on E. coli str. K-12 growing in log-
phase. For these experiments, 31 different control
sets were identified and used as a benchmark for E.
coli K-12 expression in log-phase. Individual corre-
lations among the 31 control sets were evaluated
(average Pearson r ¼ 0.779+0.091) and found to
be remarkably strong, suggesting that the use of a
unified platform and resource for microarray data
reduces significantly the amount of noise observed
previously in microarray expression data.24 Gene
names, GenBank accession numbers and other identi-
fiers for E. coli K-12, were downloaded from the
EcoGene database33 and cross-referenced on a
Microsoft Excel spreadsheet with the 4149 protein-
coding gene sequences for E. coli str. K-12 substr.
MG1655 available on GenBank. The resulting anno-
tated sequences were then correlated with the M3D

bulk download. This led to an annotated expression
data set containing 31 independent log-phase
expression values for 4029 E. coli protein-coding
genes (Supplementary Table S1).

Protein abundance data for E. coli were obtained
from the Supplementary material accompanying the
E. coli cytosol profiling of Ishihama et al.22 This data
set contains normalized exponentially modified
protein abundance index (emPAI) values for 1103
E. coli cytosolic proteins. emPAI values for the 439
proteins for which CAI values were reported were
cross-linked with EcoGene tags and GenBank
sequence data sets as reported above, leading to a
final data set of 359 E. coli proteins for which molecu-
lar weight/mass tags matched (+1) in both annota-
tions (EcoGene and Ishihama et al.) and CAI values
reported in Ishihama et al.22 could be reproduced
(+0.05) based on GenBank gene sequence
(Supplementary Table S2). Protein abundance data
for Mycobacterium smegmatis were obtained from
the Supplementary material accompanying the mass
spectrometry analysis of the M. smegmatis proteome
by Wang et al.34 This data set contains a quantifi-
cation of protein abundance as the number of obser-
vations for a particular protein in a sequence of
experiments. Here, we used the number of obser-
vations in 15 exponential phase experiments as an
indicator of protein concentration in exponential
growth phase. The original data set contains data on
901 distinct proteins, with CAI and observation
numbers provided for 892 proteins. Here, we cross-
linked this data with M. smegmatis protein and
protein-coding sequences downloaded from NCBI.
After combining the data, we obtained a data set of
841 proteins and their corresponding protein-
coding sequences (Supplementary Table S3).
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All other protein and mRNA concentration data
referenced by Roymondal et al.29 were obtained
from the Supplementary material accompanying
their publication and verified using the references
provided therein. To compute additional indices over
these sets, the provided information was cross-linked
with EcoGene tags and GenBank sequences as
described above.

2.2. Computation of codon usage indices
Computation of CAI, RCA, RCBS and the correction

proposed herein (RCBSPC) was done integrally using
custom Microsoft Excel functions, following the
equations presented in this work. The functions are
available at http://research.umbc.edu/~erill/, either
as Visual Basic BAS modules or embedded in a
macro-enabled Excel 2003 spreadsheet that illus-
trates their usage.

In E. coli, CAI was computed using the w values pro-
vided by Sharp and Li.19 For the calculation of RCA,
codon and base frequencies were computed on the
27 highly expressed genes used by Sharp and Li19

and applying 0.0001 pseudo-counts for absent
codons (AGG and TAG). For M. smegmatis, homol-
ogues for the 27 genes in the Sharp and Li data set
were identified through reciprocal BLASTP,35,36 enfor-
cing a maximum e-value of 1023 and a minimum cov-
erage of 40% positives on all BLASTP searches. A total
of 22 M. smegmatis homologues for the Sharp and Li
gene set were identified in this manner and used for
computation of the RCA codon and base frequencies
in this organism. For the pseudo-count correction of
RCBS (RCBSPC), genomic frequencies were computed
on the 4029 E. coli protein-coding gene set of the
M3D expression data set.

2.3. Generation of random sequences
Pseudo-random sequence was generated using two

custom Microsoft Excel functions. A first routine was
created to generate random sequence based on %GC
content and length. This function ensures only that
the generated sequence complies with the provided
%GC content that the sequence is a congruent open
reading frame (no nonsense mutations and terminat-
ing in a stop codon). The second routine uses a pro-
vided codon usage table (including stop codons) as a
base distribution to generate congruent open reading
frames. These functions are available at http://
research.umbc.edu/~erill/, either as Visual Basic BAS
modules or embedded in a macro-enabled Excel
2003 spreadsheet.

2.4. Statistical analysis
The Pearson and the Spearman rank correlation

coefficients and their corresponding P-values were

computed integrally using Microsoft Excel. The
Pearson correlations were computed using built-in
Excel functions. The Spearman rank correlations
were computed using the statistical function set of
Wim Gielis. Throughout the manuscript, the Pearson
correlation coefficients are denoted by r and the
Spearman rank correlation coefficients by r. The
asterisk rating system is used for correlation P-values
[single asterisk (*), P , 0.05–0.01; double asterisks
(**), P , 0.01–0.001; triple asterisks (***), P ,

0.001]. P-values are relative to a two-tailed
Student’s t-test on the null hypothesis (no corre-
lation). For multiple correlations, we report the
mean and standard deviation of the correlation coef-
ficient and the largest P-value among the correlations.

3. Results and discussion

3.1. Dependence of RCBS on sequence length
A major result of Roymondal and colleagues’ appli-

cation of RCBS is the conclusion that natural selection
favours higher expression and heightened codon
optimization for short genes in both the E. coli29

and the S. cerevisiae genomes.30 This finding is based
on two main observations. On the one hand, the
authors observe that RCBS correlates negatively with
gene length. On the other hand, they show that
there is a positive correlation between RCBS and
protein abundance data. This is a surprising result
since a previous work had identified a positive,
rather than a negative, correlation between CBIs and
protein length after controlling for mRNA concen-
trations,14,37 suggesting secondary selection on trans-
lational accuracy for long genes.5,37,38 Moreover, even
though some studies had reported some correlation
between gene length and mRNA concentration in
E. coli and S. cerevisiae,14,24 the correlation turned
out to be weak when controlling for codon bias.14

Moreover, and as stated above, many CBIs tend to
overestimate deviation in short sequences.15,26,27

Thus, it appeared that Roymondal et al. might have
been too eager to identify causation in the corre-
lations they reported, attributing to natural selection
what could be the result of an intrinsic bias in their
index.

In their study, Roymondal et al. analyse and validate
the length dependency of RCBS with randomization
studies of E. coli sequences. Their randomization
method is manifestly unclear and the E. coli genes
to be randomized are ‘selected’ by the authors
without proper justification. Nonetheless, the sup-
porting material (Tables SIIA and SIIB in Roymondal
et al.29) seems to confirm that the strong (r ¼
0.812) inverse power-law-shaped correlation
observed between RCBS and E. coli gene length still
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applies to randomized E. coli sequences (r ¼ 0.999***
for both tables, Supplementary Fig. S1). In spite of
this, the authors chose to ignore the length depen-
dency of RCBS in their subsequent analysis, arguing
that ‘smaller sequences have a greater probability of
resulting in high value of RCBS (.0.5), but there is
nothing to prevent longer sequences from having
high RCBS’. To analyse whether the observed effect
was limited to E. coli sequences or constituted a
general property of the RCBS index, here we computed
RCBS for randomly generated sequences using differ-
ent %GC content values (Fig. 1A) and CUBs (Fig. 1B).

Our results on randomly generated sequence
support the notion that RCBS has an inherent
inverse power-law-shaped bias towards short
sequences, regardless of %GC content (Pearson r ¼
0.953***, Spearman rank r ¼ 0.858***) and

particular CUBs (r ¼ 0.921***, r ¼ 0.820***). This
length dependency is a consequence of undersam-
pling effects in short sequences, which induce overes-
timation of both the f(xyz) and the f1(x), f2(y) and
f3(z) terms in Equation (2). Undersampling is more
pronounced in the larger space of codon frequencies
[ f(xyz)], leading to consistent overestimation of
f(xyz) over its expected value [ f1(x) . f2(y) . f3(z)].
This leads to extremely large RCBS values for short
sequences and to the observed inverse power-law dis-
tribution. Our data thus confirm that the correlation
between RCBS and gene length observed in E. coli
can be reproduced in random sequences and is there-
fore intrinsic to the RCBS index. It is a mathematical
artefact due to undersampling in short sequences
and, as such, it cannot be attributed to natural selec-
tion or to any other evolutionary process.

3.2. Analysis of RCBS on E. coli microarray expression
data

In the seminal RCBS paper, Roymondal et al. vali-
date the RCBS index against different cDNA microar-
ray data sets.39,40 They report very weak
correlations, which they attribute to the noisy nature
of microarray data. However, the most probable
cause of the weak correlations observed is their use
of log expression ratios, rather than log expression
values, as the basis for their correlations. Using log
expression ratios to evaluate a CBI might arguably
make sense for the data set of Tao et al.,39 which com-
pares log-phases on minimal and rich media, but it is
clearly unjustified for the data set of Richmond
et al.,40 which analyses induction of heat-shock
response genes. Even in the Tao et al.39 data set, the
use of log ratios can introduce undesired effects,
such as a low ratio for ammonia assimilation genes,
which are induced in minimal media to exploit
ammonia as a nitrogen source. To correctly analyse
the performance of the RCBS index on mRNA
expression data, here we computed the RCBS and
CAIs on the 4029 gene sequences derived from the
M3D data set, and we compared their values with
mRNA log copy numbers in the 31 independent con-
trols for experiments involving E. coli K-12 in log-
phase growth.

The results in Fig. 2 reveal that RCBS correlates
poorly with mRNA log expression values using both
the Pearson (r ¼ 0.258+0.028***) and the
Spearman rank (r ¼ 0.299+0.024***) correlation.
RCBS also correlates moderately with CAI (r ¼
0.433***, r ¼ 0.448***). In contrast, and in agree-
ment with previous studies,14,23,24 CAI correlates
moderately well with log expression values (r ¼
0.530+0.063***, r ¼ 0.467+0.041***). To deter-
mine whether the poor performance of RCBS was

Figure 1. Distribution of RCBS values versus length for 10 000
random-coding sequences generated using (A) random
20–80% GC content and length (1–3000 bp) or (B) E. coli,
H. influenzae or T. thermophilus CUB and random length
(1–1500 bp).
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due to its strong built-in dependency on length, we
re-computed these correlations for genes with
sequence lengths above 1000 bp. This led to a
subset of 1541 genes in our expression data set. In
this gene set, the correlation of RCBS with sequence
length is extremely weak (r ¼ 20.086***,
r ¼ 20.080**). Controlling for sequence length in
this way reduces vastly the difference in correlation
with log expression values between RCBS (r ¼
0.489+0.054***, r ¼ 0.430+0.045***) and CAI
(r ¼ 0.528+0.053***, r ¼ 0.474+0.044***) and
improves their mutual correlation significantly (r ¼
0.870***, r ¼ 0.798***). As expected, this effect is
mainly due to an increase in RCBS correlation with
log expression, rather than a decrease in CAIs, since
CAI shows very weak correlation with length (r ¼
0.114***, r ¼ 0.143***) on the 4029 E. coli gene
set (Supplementary Fig. S2).

The fact that for sequences over 1000-bp long,
RCBS correlates well with CAI and is able to predict
expression levels with similar accuracy constitutes in
itself a significant result, since both methods rely on
a markedly different set of assumptions. CAI estimates
the deviation from the major codon bias, as derived
from a set of highly expressed genes,19 whereas
RCBS estimates deviation from uniformity within the
sequence. The strong correlation between both
indices for sequences above 1000 bp indicates that
at these lengths single-sequence information is
enough to properly estimate codon bias. It should
be noted that this estimation is independent of the
bias source and even of the sequence genomic
context. RCBS is thus by construction generic and, in
principle, equally suited to detect bias from different
sources without assuming the existence of a major

codon bias.28 In this respect, the strong correlation
with CAI observed in E. coli supports the well-
established notion that translational efficiency selec-
tion is the most important source for codon bias in
this species.18

3.3. Pseudo-count correction for RCBS
Having established that the poor performance of

RCBS as a predictor of gene expression is due to its
length dependency, here we introduce a correction
method for RCBS. Owing to its simultaneous esti-
mation of sequence-based frequencies for both
codons and codon positions, an analytical length-
correction factor, such as the one implemented for
the MILC-based expression level predictor,15 is
impracticable for RCBS. Nonetheless, RCBS can be cor-
rected generically by applying genome-derived
pseudo-counts to prevent bias overestimation in
short sequences.41 In this approach, both codon and
codon position frequencies are estimated following:

fðxyzÞ ¼ f ðxyzÞLþ gðxyzÞS
Lþ S

fið jÞ ¼
fið jÞLþ gið jÞ � S

Lþ S
;

ð5Þ

where L is the length in codons of the sampled
sequence, g(xyz) the observed frequency of codon
xyz among genomic-coding regions, gn(m) the
observed frequency of base m at codon position n,
also in genomic-coding regions, and S the weight on
pseudo-counts (or priors), also measured in codons.
The pseudo-count corrected version of RCBS
(RCBSPC) is then computed as in Equation (2), but
substituting f(xyz) and fn(m) by f(xzy) and fn(m),
respectively.

The pseudo-count weight can be adjusted by
observing that the RCBS dependency on length (i.e.
the observed inverse power-law distribution) starts
to flatten out for sequences larger than 1000 bp
and that this effect is independent on the nature of
the sequences analysed (Fig. 1 and Supplementary
Fig. S3). Following this observation, a pseudo-count
weight (S) of 300 was used to compute RCBSPC. For
S ¼ 300, genomic pseudo-counts dominate and
dampen sequence-based frequencies up to lengths
near 1000 bp. From this point onwards, sequence-
derived frequencies start to dominate and are able
to provide reasonable estimates of codon bias, as
described in the previous section. When tested
against the gene expression data set, RCBSPC improved
significantly the correlation with log expression values
(r ¼ 0.462+0.047***, r ¼ 0.415+0.035***) and
with CAI (r ¼ 0.820***, r ¼ 0.753***; Table 1,
Supplementary Fig. S4A).

Figure 2. Distribution of CAI and RCBS values versus the average
of normalized log expression values over 31 independent
experiments for 4029 E. coli genes.
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3.4. Analysis of RCBS on E. coli protein abundance data
Roymondal et al. based their claim that selection

favours codon optimization and the higher expression
of smaller proteins on the good correlation observed
both between RCBS and protein concentration data
and between the RCBS and the CAI and E(g) indices.
We have reported above that the correlation of CAI
with RCBS improves significantly with the pseudo-
count correction of RCBS, or when sequence length
is controlled for. The same effect was observed for
the correlation of RCBS with E(g) when the data
from Karlin et al.18 were analysed. The correlation
of RCBS with E(g) over the 96 genes analysed by
Karlin et al. (r ¼ 0.730***, r ¼ 0.820***) is again
improved by RCBSPC (r ¼ 0.844***, r ¼ 0.894***;
Supplementary Fig. S4B). Roymondal et al. also
observed that RCBS correlates better (r ¼ 0.453***)
than E(g) (r ¼ 0.262**) with the relative molecular
abundance (RMB) of 96 E. coli proteins growing on
glucose minimal medium.18 Here, we tested the cor-
relation of RCBS, RCBSPC and CAI with the log
protein abundance for these same genes and for the
data set of Eyre-Walker38 (45 genes).

The results, summarized in Table 2, indicate that
RCBS outperforms CAI and RCBSPC in both data sets,
although the difference is less noticeable in the
larger data set of Karlin et al. The better performance
of RCBS in the protein data sets thus contradicts the
results on mRNA expression data reported above.
Furthermore, it is also inconsistent with the improved
correlation of RCBSPC with both CAI and E(g) on both
data sets. To explore the nature of this apparent dis-
crepancy, here we tested the performance of RCBS,
CAI and RCBSPC against the more recent and larger

protein concentration data set of Ishihama et al.22

The results, summarized in Table 3, are in broad
agreement with those obtained in the former data
sets. RCBS provides again the best correlation with
protein concentration (r ¼ 0.710***, r ¼ 0.588***),
followed by CAI and then RCBSPC. To control for
sequence length, we selected again sequences over
1000-bp long, leading to a subset of 170 genes.
When controlling for sequence length in this way,
the differences between RCBS and CAI become mar-
ginal. In agreement with this finding, the mutual cor-
relation between RCBS and CAI goes up from
moderate (r ¼ 0.640***, r ¼ 0.618***) in the original
set to strong (r ¼ 0.904***, r ¼ 0.861***) in the
.1000-bp data set. As before, the statistically signifi-
cant increase in similarity between CAI and RCBS
results for the .1000 data set does not stem from
a worse performance of CAI (its correlation with rela-
tive protein abundance actually improves). Instead,
they arise from a drop in RCBS performance,
suggesting that its enhanced correlation on the
whole-length data set could be due to an artefact in
the protein data.

3.5. Analysis of E. coli protein abundance data
Having shown above that RCBS presents a strong

built-in bias with sequence length, the results of
Table 3 strongly suggest that the observed superiority
of RCBS in the protein data sets might be the result of
a similar bias in the protein concentration data. To
test this hypothesis, we analysed the correlation
between molecular mass and log protein abundance
in the data set of Ishihama et al. As it can be seen in

Table 1. Summary of RCBS, CAI and RCBSPC correlation with log expression values and with CAI

Correlation with log expression Correlation with CAI

Pearson r Spearman r Pearson r Spearman r

RCBS 0.258+0.028*** 0.299+0.024*** 0.434*** 0.448***

CAI 0.530+0.063*** 0.467+0.041*** 1.000 1.000

RCBSPC 0.462+0.047*** 0.415+0.035*** 0.820*** 0.753***

For each index, correlation values with log expression data reflect the mean and standard deviation of independent corre-
lations with the 31 available experiments over 4149 genes.

Table 2. Correlation of RCBS, CAI and RCBSPC indices with log RMB
for the 96 gene set of Karlin et al.18 and with log protein
concentration for the 45 gene set of Eyre-Walker38

Eyre-Walker, 45 genes Karlin et al., 96 genes

Pearson r Spearman r Pearson r Spearman r

RCBS 0.708*** 0.777*** 0.453*** 0.508***

CAI 0.616*** 0.705*** 0.405*** 0.443***

RCBSPC 0.621*** 0.652*** 0.404*** 0.451***

Table 3. Correlation of RCBS, CAI and RCBSPC indices with emPAI-
estimated protein abundance22 for the original set of 359 genes
and those with lengths larger than 1000 bp (170 genes)

Ishihama et al. (full) 359
genes

Ishihama et al.
(.1000 bp) 170 genes

Pearson r Spearman r Pearson r Spearman r

RCBS 0.710*** 0.588*** 0.616*** 0.501***

CAI 0.590*** 0.469*** 0.611*** 0.511***

RCBSPC 0.533*** 0.432*** 0.590*** 0.487***
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Fig. 3, log protein abundance and molecular mass cor-
relate quite well under an inverse power-law distri-
bution (r ¼ 20.429***, r ¼ 20.381***). Correlation
coefficients are nearly identical for the 359 subset
analysed above (r ¼ 20.439***, r ¼ 20.421***),
but the strength of this correlation falls dramatically
in the length-controlled (.1000 bp) data set
(r ¼ 20.120, r ¼ 20.182*).

The results in Fig. 3 confirm that there is a strong
correlation between protein molecular mass (or
length) and the estimated protein concentration in
the data set of Ishihama et al. Similar, albeit weaker,
correlations can be observed in the Eyre-Walker
(r ¼ 20.319*, r ¼ 20.492***) data set and in that
of Karlin et al.18 (r ¼ 20.214*, r ¼ 20.254*). This
result is significant in several ways. On the one hand,
it establishes that there is a length-dependent bias
in the estimation of protein concentration by three
separate groups and methods.22,38 Furthermore, it
suggests that this bias follows an inverse power-law
distribution, strongly overestimating the concen-
tration of smaller proteins. The causes for this bias
are not easy to discern, but there are several processes
that might be concurrently contributing to the
observed distribution. Having established that mRNA

concentration does not appear to be length-depen-
dent (r ¼ 0.026+0.015*, r ¼ 0.026+0.017 on
the 4029 gene sequences derived from the M3D

data set; Supplementary Fig. S5), it seems likely that
from a biological standpoint protein concentration
can be affected by three main parameters: translation
initiation and elongation rates and protein
turnover.14,22,25

An exponential negative correlation between protein
turnover and length has been reported for yeast and
higher eukaryotes,42,43 suggesting that a similar
trend might be also present in prokaryotes. In addition,
and regardless of codon optimization, it makes sense to
assume that the amount of misreadings and frame-
shifts during translation must be proportional to
length. If Boolean outcomes and conditional indepen-
dence are assumed for these events, the amount of
properly formed protein should follow a binomial dis-
tribution, yielding exponential decay with length.
Finally, methodological factors may also come into
play. Protein concentration in 2D gels is assessed by
measuring the average intensity of spots.25,44 Since
smaller proteins diffuse more readily than larger
ones, they become more difficult to detect and this
introduces a systematic bias in the detection limit.
Abundant small proteins are more likely to be detected
than less abundant proteins of the same size. This bias
is length-dependent and tends to disappear for large
proteins (O’Farrell, 2009, Personal communication).
The liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) techniques used by Ishihama
and colleagues are in principle less sensitive to biases
in their lower detection limit.45 However, it is apparent
from Fig. 3 that the mass-dependent bias in protein
concentration stems, at least partially, from a bias in
the method’s detection limit.46

The identification of a negative correlation between
protein concentration estimates and protein length
accounts for the superior performance of RCBS in
these data sets, but it also casts doubts on the validity
of using protein concentration data for the evaluation
of CBIs or, conversely, using these indices to estimate
protein concentration. Historically, prediction of
expression by CBIs has been assessed indistinctly with
both mRNA21 and protein18,22,34,38 concentration
data. Here, we find that for large data sets, the most
well-established index (CAI) yields similar correlations
(r ¼ 0.530*** for mRNA and r ¼ 0.590*** for
protein) in E. coli. This suggests that the practice of
using either type of data indistinctly, although
unfounded, might be justified. Selection for transla-
tional optimization is carried out at the gene level by
assessment of essential protein concentrations during
log-phase growth. This means that, even without
methodological biases, the non-linearity in the coup-
ling of transcription, translation and post-translation

Figure 3. Distribution of emPAI-estimated log protein abundance
versus molecular mass for the 1103 proteins reported by
Ishihama et al.22 and the subset used in this study (359
proteins, see Materials and methods). The overall shape of the
distribution is in broad agreement with the log protein
abundance versus length plot reported in Fig. S7 of Ishihama
et al. The correlation coefficients under a power-law
distribution are: r ¼ 20.429***, r ¼ 20.381*** for the 1103
protein set and r ¼ 20.429***, r ¼ 20.394*** for the 359
protein set. The Pearson correlation coefficients under a linear
distribution are r ¼ 20.318*** and r ¼ 20.304***,
respectively. For the 359 protein subset, the correlation
between molecular mass and gene length is very strong (r ¼
0.999***, r ¼ 0.999***). The dotted line underscores the
length-dependent bias in the method’s lower detection limit.
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processes imposes an upper threshold on the perform-
ance of any bias index. For instance, high turnover rates
for a log-phase-required protein will select for
increased codon optimization, yielding to an overesti-
mation of protein concentration based on bias
indices. On the other hand, genomic location and pro-
moterefficiency can increase mRNA concentrations for
key log-phase proteins, leading to reduced codon
optimization and incorrect estimates from indices.

3.6. The RCA index and its application to different
reference sets

Owing to its reliance on the query sequence alone,
the RCBS index has a strong bias towards short
sequences. This length dependency prevents its appli-
cation to sequences shorter than 1000 bp. With more
than half of the E. coli gene set below 1000 bp
(Supplementary Fig. S6), length dependency thus
becomes a severe handicap for the application of
RCBS. As shown above, the length dependency of
RCBS can be corrected with genomic pseudo-counts,
but this in turn limits its application to complete
genomes, and its performance on short sequences is
still noticeably weak. In spite of these pitfalls, the
basic principle behind RCBS (computing codon devi-
ation from expected codon frequencies as relative
codon frequencies) remains sound. Relative codon
frequencies provide a sensible estimate of deviation
from expected codon usage if provided with large
enough samples to infer frequencies from. This is illus-
trated by the reasonable predictions of gene
expression obtained with RCBS when controlling for
sequence length. In order to exploit the potential of
relative codon frequencies as a CBI without requiring
genomic corrections or limiting their usage to
sequences larger than 1000 bp, here we extend the
basic principle of relative codon frequencies, which
we term RCA, by defining its generic application to
any reference sequence set. Formally,

RCA ¼
YL

i¼1

RCAxyzðlÞ
 !1=L

RCAxyz ¼
xðx; y; zÞ

x1ðxÞx2ðyÞx3ðzÞ
;

ð6Þ

where x(xyz) is the observed frequency of codon xyz in
any particular reference gene set, xn(m) the observed
frequency of base m at codon position n in the same
reference set, and L the length in codons of the
query sequence. Like CAI and RCBS, RCA is computed
as the geometric mean of the RCAxyz term for each
codon xyz in the sequence of interest.

As defined above, RCA makes use of a given refer-
ence set to compute observed and expected codon

frequencies. In this sense, RCA is similar to other
reference-set-based indices, but most notably to CAI,
since it makes use of a single reference set that can
be defined following the same principles applied to
CAI.19 Like CAI, RCA is also amenable to iterative
algorithms designed to identify the reference set
without prior biological knowledge.28,47 Since it is
also defined on a reference set, RCA should not
present significant length dependencies if its refer-
ence set is well-defined.26,27 There is, however, an
important difference between CAI and RCA. In CAI,
the relative adaptiveness of a codon (wi) is computed
as the ratio between the frequency of that codon in
the reference set and the largest frequency among
its synonymous codons [Equation (1)]. This implicitly
assumes that the background nucleotide distribution
is uniform. The inability to take into account back-
ground nucleotide composition is a fundamental
problem of many CBIs.27 Assuming a uniform back-
ground nucleotide composition is a major drawback
for those indices relying on a uniform null hypothesis,
like Nc. However, it can also skew the results of indices
based on reference sets, like CAI, leading them to
attribute to translational selection the patterns of
mutational bias observed in the reference set.

In contrast to CAI, for any given reference set, the
RCA index first computes the expected frequency of
a codon based on its positional base frequencies.
It then measures codon adaptation as the deviation
of the observed codon frequency from the expected
codon frequency. Thus, RCA takes explicitly into
account sequence composition in the calculation of
each RCAxyz term and should be able to provide

Figure 4. Distribution of RCAvalues versus length for the 4029 E. coli
genes in the M3D-derived expression data set, 5000 randomly
generated sequences of random length (6–6999 bp) with
random %GC content in the 20 2 80% range and 5000
randomly generated sequences of random length (6–6999 bp)
following the E. coli CUB. Correlation coefficients are as follows:
E. coli genes (r ¼ 0.122***, r ¼ 0.173***), E. coli CUB random
sequence (r ¼ 20.0138, r ¼ 0.005) and 20–80% GC random
sequence (r ¼ 0.012, r ¼ 0.025).
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more robust and accurate estimates of gene
expression. This improvement in accuracy should be
more apparent in cases of high mutational bias and/
or lowered selection for translational efficiency, in
which CAI may easily be mislead by mutational bias
artefacts in the reference set.

Here, we investigated the benefits of using RCA as a
CBI by establishing first the absence of a systematic
bias with length and by analysing then the perform-
ance of the RCA index at predicting expression data
in E. coli and M. smegmatis. For E. coli, RCA frequency
computations were carried out using the original
reference set (27 genes) of Sharp and Li.19 For
M. smegmatis, 22 orthologues of the Sharp and Li
genes were identified through reciprocal BLASTP and
used to compute the relative frequencies for RCA.
The presence of an intrinsic length dependency in
RCA was assessed by analysing the correlation of
RCA values with gene length in both E. coli and
randomly generated gene sequences. As before,
random gene sequences were generated both for a
broad range of %GC contents or following the CUB
of E. coli. Fig. 4 shows that, as expected, RCA does
not present any intrinsic bias with gene length. RCA
shows a slight yet significant (r ¼ 0.122***, r ¼

0.173***) linear positive correlation with gene
length for E. coli genes, but none with randomly
generated gene sequence. This indicates that the
observed correlation is not due to an intrinsic
mathematical artefact of the RCA index.
Furthermore, the observed correlation for E. coli
genes is in accordance with similar correlations
reported previously for CAI in E. coli and S. cerevi-
siae.14,37 The fact that no significant correlation with
sequence length can be observed for RCA values on
artificial gene sequences provides further support to
the hypothesis of selection for translational efficiency
in long gene sequences.37

To assess the validity of RCA as a predictor of gene
expression, we used CAI as a benchmark forcomparison.
Apart from the remaining golden standard among
CBIs, CAI is based on the same set of assumptions as
RCA and uses identical reference sets, thereby allow-
ing direct comparisons between the two methods.

The results in Table 4 show that even in a genome
with low mutational bias like E. coli, RCA is able to
slightly outperform CAI on both mRNA and protein
data sets. Furthermore, the difference between both
methods becomes significantly more pronounced
when analysing the M. smegmatis mass spectrometry
proteomic data reported by Wang et al.34

Mycobacteria present heavy mutational biases, with
genomic %GC contents ranging from 57%
(Mycobacterium leprae) to 67% (M. smegmatis) that
have a strong effect on their CUB. However, it has
been shown that translational selection can still play
a significant role in the CUB of mycobacteria.48 By
integrating the background base composition into
its computation, RCA takes directly into account the
effects of mutational bias on codon usage, allowing
it to provide considerably more accurate predictions
of gene expression than CAI in genomes with strong
mutational bias. As shown in Table 4, this allows
RCA to significantly outperform CAI in M. smegmatis,
yielding correlation coefficients with expression data
(r ¼ 0.525***, r ¼ 0.464***) that are remarkably
close to those reported by both CAI and RCA in E.
coli. The improved reliability of RCA for estimating
expression levels in different organisms and
contexts thus makes this index a superior choice for
undertaking and benchmarking predictions of gene
expression.
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Table 4. Correlation of CAI and RCA indices with M3D mRNA log expression values and emPAI-estimated protein abundance22 in E. coli
and with protein abundance data in M. smegmatis34

M3D data set, 4149 genes Ishihama et al. (full) 359
genes

Wang et al. (M. smegmatis)
841 genes

Pearson r Spearman r Pearson r Spearman r Pearson r Spearman r

RCA 0.540+0.068*** 0.478+0.045*** 0.603*** 0.453*** 0.525*** 0.464***

CAI 0.530+0.063*** 0.467+0.041*** 0.590*** 0.469*** 0.346*** 0.354***

Protein abundance data in M. smegmatis34 are estimated from the number of observations of each protein in multiple
experiments.
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