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Comparable-mass black-hole mergers generically result in moderate to highly spinning holes, whose
spacetime curvature will significantly affect nearby matter in observable ways. We investigate how the
moderate spin of a postmerger Kerr black hole immersed in a plasma with initially uniform density and
uniform magnetic field affects potentially observable accretion rates and energy fluxes. Varying the initial
specific internal energy of the plasma over two decades, we find very little change in steady-state mass
accretion rate or Poynting luminosity, except at the lowest internal energies, where fluxes do not exhibit
steady-state behavior during the simulation timescale. Fixing the internal energy and varying the
initial fixed magnetic-field amplitude and orientation, we find that the steady-state Poynting luminosity
depends strongly on the initial field angle with respect to the black hole spin axis, while the matter accretion
rate is more stable until the field angle exceeds ∼45°. The protojet formed along the black hole spin axis
conforms to a thin, elongated cylinder near the hole, while aligning with the asymptotic magnetic field at
large distances.

DOI: 10.1103/PhysRevD.103.063039

I. INTRODUCTION

Black holes are the unique end point of massive stellar
evolution in our current understanding of stellar astrophys-
ics, informed by Einstein’s general relativity (GR). They
are also the inevitable result of the merger of high-mass
neutron stars, as well as of black holes of all masses,
including the supermassive ones believed to reside at the
centers of most galaxies. Most supermassive black holes
are expected to have significant spin through accretion [1];

even during the course of the merger of initially non-
spinning holes, enough orbital angular momentum is
retained to produce a final hole with a dimensionless spin
of ∼0.69. This spin angular momentum produces an
azimuthal distortion of the surrounding nearby spacetime
(“frame dragging”), acting to concentrate magnetic fields
and potentially produce strong steady-state electromagnetic
characteristics. Spinning supermassive black holes power
active galactic nuclei (AGN) [2,3], with a radio jet likely
powered by the black hole’s spin, mediated by polodial
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magnetic field lines pinned to a surrounding accretion
disk [4].
We are particularly interested in the scenario of black

holes newly formed after merger in a potentially compli-
cated gas-rich environment. Here we expect a transition
from whatever was happening through the merger toward a
new quasisteady state centered on the newly formed black
hole. Generally, the black hole may form in an environment
characterized by a larger-scale magnetic field, perhaps
anchored in the poloidal component of an accretion disk
that had surrounded the premerger binary. For some
configurations of spinning black hole mergers, the final
black hole may be misaligned from the core axis of the
broader accretion disk and its poloidal field. It can be
particularly valuable to understand the general physics
driving jet formation in this kind of environment, which
may be robust against detailed variations in the turbulent
local environment of the black hole at the point of merger.
Toward this end, we consider here a simplified scenario
involving a black hole in an asymptotically uniform
magnetic field within a structureless uniform distribution
of plasma. Though we are primarily interested in this as a
generic model for an accreting binary just after merger, we
can also recognize this as a generalization of spherical
Bondi accretion with a magnetic field and a spinning
black hole.
In the context of the postmerger scenario, we build on

Ref. [5], hereafter referred to as Paper I, where we used the
tools of numerical relativity and ideal general-relativistic
magnetohydrodynamics (GRMHD) to investigate how the
merger of a comparable-mass black hole binary affects a
surrounding plasma. While other studies explore circum-
binary accretion disks [6–10], Paper I took a deliberately
simplistic approach to initial conditions, in order to
elucidate the effects of the merger with minimal assump-
tions about likely matter configurations. In particular, we
explored how an equal-mass black hole binary merger
affects an initially uniform density plasma with uniform
magnetic field parallel to the binary’s orbital angular
momentum vector. A parameter survey was performed,
varying the initial plasma β−1 parameter, to measure the
system’s dependence on the relative strength of the mag-
netic field.
We found that the time development of Poynting lumi-

nosity, which may drive jetlike emissions, is relatively
insensitive to aspects of the initial configuration. In particu-
lar, over a significant range of initialβ−1, the centralmagnetic
field strength is effectively regulated by the gas flow toyield a
Poynting luminosity of 1045−1046ρ-13M8

2 erg s−1, with the
binary black hole massM scaled toM8 ≡M=ð108 M⊙Þ and
ambient density ρ-13 ≡ ρ=ð10−13 g cm−3Þ. We also calcu-
lated the direct plasma synchrotron emissions processed
through geodesic ray tracing. Despite lensing effects and
dynamics, we found that the observed synchrotron flux
varies little leading up to merger.

Here we extend the results of Paper I, paying special
focus to the plasma dynamics near the remnant black hole.
In particular, we concentrate on the initial magnetic field
angle relative to the remnant black hole’s spin axis, and on
the initial temperature of the plasma.
Great uncertainty still exists about the environment

immediately around supermassive black holes. Even for
Sgr A�, the closest, most-studied black hole in the
Universe, the best estimates for plasma temperature,
density, and magnetic field strength vary by orders of
magnitude [11–14]. Similarly, the low-density gas around
M87 also appears to be described by a radiatively ineffi-
cient accretion flow, but it produces powerful radio jets on
enormous galactic scales [15–18]. Therefore, we acknowl-
edge that the parameters used in this paper represent only a
small region of the potential astrophysical parameter space,
but we will show that these idealized conditions still
provide valuable insight into some of the fundamental
questions about the behavior of magnetized accretion flows
around supermassive black holes.
We begin by describing the numerical methods we used

in our simulations in Sec. II. In Sec. III, we provide the
details of the parameter space survey, and in Sec. IV, we
present results from all configurations considered.
Section IVA considers how varying the initial specific
internal energy (a proxy for temperature) affects bulk
behavior such as mass accretion rates and Poynting
luminosity. Section IV B considers how varying the initial
magnetic field direction affects bulk behavior such as mass
accretion rates and Poynting luminosity. In Sec. IV C, we
more closely investigate the nature of the “protojet” region
that develops in the vicinity of rotating spacetimes, intro-
ducing several measures to help quantify the jet features.
Throughout our paper, unless otherwise noted, we use
geometrized units where G ¼ c ¼ 1, and greek (latin)
indices are space-time (space) indices.

II. METHODS

In Paper I, the aforementioned black hole binary sim-
ulations in an initially uniform plasma were carried out
using the “moving puncture” formalism [19,20], with a
simultaneous evolution of the space-time metric and MHD
fields, using the McLachlan [21,22] implementation
of the BSSNOK equations [23–25] for the former,
and the IllinoisGRMHD [26,27] implementation of the
conservative GRMHD equations (see, e.g., Ref. [28]).
For the new simulations presented here, since we consider

the postmerger end state of the system, it is more computa-
tionally efficient to use a fixed Kerr background with mass
and spin appropriate to the spacetime after the merger of an
equal-mass, nonspinning binary with initial ADM mass
M ¼ 1: M ¼ 0.97, a=M ¼ 0.69 [19,20,29,30]. There are
still infinitely many ways to express such a spacetime
as a metric; we choose the horizon-penetrating “Kerr-
Schild” slicing used by Refs. [31,32], as implemented by
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NRPy+ [33,34]. This slicing has the advantage of placing
the horizon at a fixed constant radial coordinate value,
identical to that of the better-known Boyer-Lindquist
slicing: rhor ¼ rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. It has been used for

IllinoisGRMHD evolutions of Fishbone-Moncrief initial
conditions as part of the community EventHorizonTelescope
comparison project [35] and validated within the NRPy+
infrastructure to satisfy the ADM constraints. While the
numerical simulations of each configuration use the
Einstein Toolkit’s Cartesian mesh-refinement driver called
Carpet [36,37], for the purpose of postprocessing data
analysis with GRMHD_analysis, a suite of PYTHON-based
tools [38], we regularly interpolateMHD fields to a spherical
polar grid. Additionally, avoiding the spacetime evolution
greatly reduces the computational cost of our studies.
Our primary diagnostic is again the EM (Poynting)

luminosity:

LPoynt ≡ lim
r→∞

I
r2SrdΩ; ð1Þ

where Sr is the radial component of the relativistic
Poynting vector, expressed in terms of the fluid four-
velocity ua and magnetic four-vector ba:

Si ≡ αTi
EM;0 ¼ α

�
b2uiu0 þ

1

2
b2gi0 − bib0

�
: ð2Þ

Rather than relyon theEinsteinToolkitMultipole
thorn’s output of the spherical harmonic ðl; mÞ components
ofLPoynt, as we did in Ref. [5], we output the 3DMHD field
data onto the aforementioned spherical coordinate mesh
with uniform sampling in each of the coordinate directions
(r, θ, ϕ) and perform the analysis in postprocessing. This
output procedure used first-order Lagrange polynomial
interpolation, as supplied by the EinsteinToolkit.
We apply the same postprocessing suite to estimate the

rate of accretion of fluid into the black hole as well (while

in Ref. [5] we used the Outflow code module in the
Einstein Toolkit). In particular, we calculate the flux of
fluid across the event horizon S via

_M ¼ −
I
S

ffiffiffi
γ

p
αD

�
vi −

βi

α

�
dσi; ð3Þ

where D≡ ραu0 is the Lorentz-weighted fluid density, and
σi is the ordinary (flat-space) directed surface element of
the horizon.
Armed with these, the Poynting efficiency ηEM can be

computed from

ηEM ≡ LPoynt

_M
: ð4Þ

III. NEW ILLINOISGRMHD RUNS

Our investigations began with a canonical case, “KS,” of
a single Kerr black hole in Kerr-Schild coordinates sur-
rounded by plasma with uniform density and pressure,
initially satisfying a polytropic equation of state P ¼ κρΓ,
with Γ ¼ 4=3, appropriate for a radiation-pressure-domi-
nated gas. The plasma is threaded by a uniform-magnitude
magnetic field oriented parallel to the hole’s spin axis (k̂).
The initial fluid density, pressure, and magnetic field
strength are the same as those used in Paper I’s canonical
configuration, yielding a fluid that is everywhere magneti-
cally subdominant, with β−1 ¼ Pmag=Pgas ¼ 0.025. The
canonical configuration’s pressure is dominated by the
radiation Prad ¼ ða=3ÞT4, implying a temperature of
T ¼ 2.906 × 105 K. Working from this canonical case,
we carried out two suites of simulations at moderate
resolutions.
In the first suite, we kept the magnetic field oriented

parallel to the spin axis, but varied the initial polytropic
coefficient κ in the uniform plasma, and thus the uniform
specific internal energy ϵ, and hence the gas temperature of
the plasma. These configurations are presented in Table I.

TABLE I. Initial field configurations for the canonical case and temperature-varied simulations. vAlf is the Alfvén
speed [Eq. (B2)]; cs is the fluid sound speed [Eq. (B1)]; and the temperature T is deduced assuming a radiation-
dominated gas.

T

Name ρ0 p0 b0 σ0 ϵ0 vAlf cs ×105ρ1=4-13 K

KS 1 0.2 0.1 0.005 0.60 0.0743 0.385 2.91
KS_k2e-2 � � � 0.02 � � � � � � 0.06 0.0958 0.157 1.63
KS_k4e-2 � � � 0.04 � � � � � � 0.12 0.0925 0.214 1.94
KS_k6e-2 � � � 0.06 � � � � � � 0.18 0.0894 0.254 2.15
KS_k9e-2 � � � 0.09 � � � � � � 0.27 0.0854 0.297 2.38
KS_k3e-1 � � � 0.3 � � � � � � 0.90 0.0673 0.426 3.22
KS_k4e-1 � � � 0.4 � � � � � � 1.20 0.0619 0.453 3.46
KS_k6e-1 � � � 0.6 � � � � � � 1.80 0.0542 0.485 3.82
KS_k9e-1 � � � 0.9 � � � � � � 2.70 0.0466 0.511 4.23
KS_k2e0 � � � 2.0 � � � � � � 6.00 0.0333 0.544 5.17
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In the second suite, we kept the initial canonical temper-
ature fixed, and varied the angle θB between the initial
global magnetic field and the black hole spin. The angles
chosen were 15°, 30°, 40°, 45°, 50°, 60°, 70°, 75°, 80°,
and 90°.
The basic IllinoisGRMHD simulations were carried

out with a set of ten nested fixed refinement levels, centered
at the origin. Each level was cubical, with dimensions
Ln ∈ f1024.00M; 624.64M; 312.32M; 145.92M; 52.48M;
26.24M; 13.12M; 6.56M; 3.80M; 2.38Mg. The grid spac-
ing of the largest, coarsest grid (L0 ¼ 1024M) was
dx0 ¼ 20.48M; each subsequent level of refinement used
twice the resolution of the one before, with dx9 ¼ M=25 ¼
0.04M for the finest level. The entire mesh was offset by
half the finest grid spacing (dx9=2) in each direction, to
avoid placing the curvature singularity r ¼ 0 on a grid
point.
For analysis, the fields representing fluid density ρ, fluid

pressure p, fluid three-velocity vi, and magnetic field Bi

were interpolated onto an evenly spaced spherical-polar
grid of size r ∈ ½0.35M; 150M�, θ ∈ ½0; π�, and ϕ ∈ ½0; 2π�,
with Nr ¼ 450, Nθ ¼ 50, Nϕ ¼ 50; hence Δr ≈M=3,
Δθ ≈ π=50, Δϕ ≈ 2π=50. The interpolation method used
was a simple first-order Lagrange polynomial interpolation
scheme, supplied by EinsteinToolkit’s Carpet
mesh-refinement driver [39].

IV. RESULTS

A. Dependence on plasma temperature

In Paper I, we investigated the dependence of the
Poynting luminosity on initial density and magnetic field
strength while holding fixed the initial specific internal
energy ϵ0. As noted then, the luminosity should satisfy the
scaling relation

LPoyntðtÞ ¼ ρ0M2Fðt=M; ϵ0; σ0Þ; ð5Þ

where σ0 ≡ b20=ð2ρ0Þ is the initial ratio of magnetic to rest-
mass energy density, and Fðt=M; ϵ0; σ0Þ is a dimensionless
function of time. Paper I primarily addressed the σ0
dependence of FðtÞ, while leaving ϵ0 fixed.
Here we investigate the variation in infall rate and

Poynting luminosity with ϵ0, which serves as a proxy
for the initial plasma temperature T0. For a gamma-law gas,

p ¼ ðΓ − 1Þρϵ ⇒ ϵ ¼ p
ðΓ − 1Þρ ¼ 3p

ρ
;

where we have assumed Γ ¼ 4=3. The set of configurations
are presented in Table I. In analogy to our varying of
magnetic field strength in Paper I, here we vary the
polytropic constant κ over 2 orders of magnitude; as a
result, the initial gas pressure P0 and specific internal

energy ϵ0 also vary over 2 orders of magnitude, while the
temperature varies by roughly a factor of 3.
In Fig. 1, we show the Poynting luminosity LPoynt during

the evolution of each of the initial temperature configura-
tions listed in Table I. We see that the luminosity generally
takes longer to settle down with higher ϵ0, due to the lower
Alfvén speed in these cases. After settling, however, the
late-stage luminosity shows little variation with ϵ0, except
for the case of the very lowest ϵ0. This case shows
extremely high luminosity, which shows no sign of settling
down over the simulation time.
To complement the Poynting luminosity, in Fig. 2 we

show the accretion rate over time of the same configura-
tions. Again, the lowest-temperature case, ϵ0 ¼ 0.06,
shows the least stable behavior.

FIG. 1. Poynting luminosity as a function of time for the
temperature configurations listed in Table I. Dotted lines indicate
data from a higher-resolution run.

FIG. 2. Accretion rate j _Mj as a function of time for the
temperature configurations listed in Table I. Color labels are
the same as for Fig. 1.
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The settling-down time for these configurations also
depends on temperature, being later for the higher-temper-
ature cases. To investigate the steady state for each
configuration, we use a time-average value for each
configuration, from a common starting time of t ¼
2; 000M until the end of the available data. In Fig. 3,
we show the resulting Poynting luminosity LPoynt (top
panel), accretion rate _M (middle panel), and resulting
efficiency ηEM [Eq. (4)] (bottom panel). For each configu-
ration, the “error bars” shown are simply the standard
deviation over the time window.
It is noticeable that both the Poynting luminosity LPoynt

and mass accretion rate _M are highest for the lowest values
of κ, and hence fluid temperature, though subject to greater
variations in time. There also appears to be a shallow local
minimum in LPoynt around κ ¼ 0.1, and in _M around
κ ¼ 0.5; the combination of these yields a minimum in
efficiency ηEM around κ ¼ 0.3, close to our canonical case.
However, as this is a shallow minimum, the efficiency is
around 20% over most of our temperature range.

B. Dependence on magnetic field orientation

Here we investigate the effect of varying the angle θB
between the Kerr spin vector a⃗ and the initial orientation of
the uniform magnetic field B⃗. In practice, we fix the former
—a⃗ ¼ ak̂—and vary the latter. However, we demonstrate
in the Appendix C that we achieve equivalent results when
fixing the field direction and varying a⃗ instead.
In Fig. 4, we show the late-time state of the magnetic

field integral curves passing near the central black hole, for
the KS_B45deg configuration. The black hole has not
only twisted and concentrated the field, but has tilted it
toward the spin axis (z direction), but only out to a
radius r≲ 30M.
In Fig. 5, we show the time development of the Poynting

luminosity LPoynt during the evolution of each of the initial
magnetic-field orientations θB. It is clear that the “post-
settling” luminosity has a strong dependence on θB.
Looking at the late-time (t≳ 1; 500M) behavior of the

systems, in Fig. 6 we plot LPoynt as a function of initial
inclination angle θB. We also show a fit (dashed red line) of
these LPoynt data points to a functional form quadratic in the
cosine of θB, similar to that seen by Ref. [40] in the force-
free limit. Our results seem to show a flatter behavior at low
and high θB, captured better by a hyperbolic tangent
dependence on θB (solid blue line), but we cannot rule
out the cos2 θB scaling. It is entirely possible that the
inclusion of MHD and matter (as opposed to the force-free
scenario) introduces additional physics scaling that lead to
a steeper, more step-function-like behavior.
As we can see in Fig. 4, even at late times, the magnetic

field lines are only oriented toward the BH spin axis

FIG. 3. Steady-state Poynting luminosity LPoynt (top panel),
accretion rate _M (middle panel), and resulting efficiency ηEM
(bottom panel) for the temperature studies, as a function of the
temperature proxy κ. Plotted points are time averages from t ¼
2; 000M onwards, with “error bars” given by the standard
deviation over the same time interval.
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relatively close to the hole itself, remaining substantially
along its initial direction further out. We can try to quantify
the transition region from the BH’s “sphere of influence” by
examining the Poynting luminosity over a set of extraction
spheres. In Fig. 7, we show the integrand in Eq. (1)—
essentially the Poynting vector, weighted by the local area
measure—as a function of ðθ;ϕÞ for R ∈ f20M; 30M;
40M; 50Mg for the KS_B45deg configuration. We see
that the angular location (i.e., “point in the sky”) of peak
contribution moves with extraction radius; we also see that

the tube seems to contract in angle. We will attempt to
quantify these observations in Sec. IV C.
In Fig. 8, we show the rate of mass loss into the Kerr

horizon, _M [Eq. (3)] during the evolution of each of the
initial magnetic-field orientations θB. Again, the accretion
rates for different θB’s show little variation until t ≈ 300M.
Even at late times, the different configurations’ _M’s deviate
by only around 50%, with the highest rates associated with
the greatest deviation of the initial magnetic field angle. As
with the Poynting luminosity, we can produce a time-
averaged accretion for the steady state (t > 1; 500M) of
each configuration. This is presented in Fig. 9. Viewed in
this way, we see that the steady-state accretion rate is
relatively constant for 0° ≤ θB ≲ 40°, dropping off steeply
for larger θB.
In Fig. 10, we plot the resulting efficiency [Eq. (4)].

Dominated by the field orientation, it shows levels of∼25%
for small θB, dropping an order of magnitude for θB ≳ 40°.

C. Features of protojet

In studies of black-hole neutron star mergers, Ref. [41]
identifies an “incipient, magnetized jet” as an “unbound,
collimated, mildly relativistic outflow (Lorentz factor of
∼1.2), which is at least partially magnetically dominated.”
Informally, we identify a “protojet” as a magnetically
dominated region showing concentrated twisting of mag-
netic field lines, and strong localized Poynting flux [42–
44]. We use the term “protojet” here, because while it
shows intense winding of magnetic fields in a traditional
jetlike funnel region, the net fluid flow in this region is
inward, with a low Lorentz factor. In this subsection, we

FIG. 6. Steady-state (t > 1; 500M) Poynting luminosity as a
function of field alignment angle θB. The luminosity is calculated
as a “late-time average” value in each case—the average value for
all t > 1; 500M. Error bars show the rms deviation from the time-
average values, beginning at t ¼ 1; 500M. The solid (blue) and
dashed (red) curves are best-fit results from assuming a hyper-
bolic tangent or cosine-squared dependence on θB, respectively.

FIG. 4. B-field stream lines in the vicinity of the BH (spinning
in the k̂ direction) at time t ≈ 2; 000M for a magnetic field
initially uniform in strength, and everywhere pointing along
îþ k̂, 45° off the BH spin direction (configuration KS_B45deg).
Gray shells indicate coordinate radii R ∈ f30M; 50M;
70M; 90Mg.

FIG. 5. Poynting luminosity as a function of time for the B-field
angle configurations. Thick and thin lines indicate higher and
lower resolution for the same physical configuration.
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attempt to clarify this definition by studying more carefully
the nature of the magnetic fields and Poynting vector at
late times.

1. Beam size

To evaluate the Poynting luminosity at a radius R, we
integrate the Poynting vector over a coordinate sphere at
that radius [Eq. (1)]. Figure 7 shows the distribution of the
integrand (that is, the Poynting vector weighted by the local
angular Jacobian) over the sphere, with contours showing
regions containing 10%, 50%, and 90% of the Poynting
flux. We estimate the size of the protojet by calculating the
solid angle subtended by the 50% contours. At late times,
we can plot this solid angle as a function of the extraction
radius. In Fig. 11, we show the width of the beam in the
northern hemisphere as measured from the 50% contours
for each of the configurations. We see that the solid angular
width is smaller for the larger field initial inclination angles
θB. Moreover, the width generally decreases with radius,

FIG. 7. Local integral contribution to Eq. (1) as a function of
ðθ;ϕÞ for extraction at R ¼ 20M, 30M, 40M, and 50M for the
KS_B45deg configuration. The solid (dashed) white contours in
the northern hemisphere show the regions enclosing 50% (90%)
of the contribution to the total Poynting luminosity.

FIG. 8. Accretion rate j _Mj as a function of time for the B-field
angle configurations.

FIG. 9. Steady-state (t > 1; 500M) accretion rate as a function
of field alignment angle θB. Error bars show the rms deviation
from the time average, beginning at t ¼ 1; 500M.
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especially for configurations with θB ≳ 15° (upper panel).
For extraction radii R ∈ f20M; 40Mg, the falloff in angular
width is approximately 1=R2—fast enough to keep the jet’s

FIG. 12. Local integral contribution to Eq. (1) as a function of
ðθ;ϕÞ for extraction at 30M, for magnetic-field alignments
θB ∈ f15°; 30°; 45°; 60°g. The solid (dashed) white contours in
the northern hemisphere show the regions enclosing 50% (90%)
of the contribution to the total Poynting luminosity.

FIG. 10. Steady-state (t > 1; 500M) Poynting efficiency ηEM
[Eq. (4)] as a function of field alignment angle θB.

FIG. 11. Upper panel: solid angle subtended by 50% contour of
Sr in the northern hemisphere at t ¼ 2; 000M as a function of
extraction radius R. Lower panel: 50-percentile “area” of jet,
formed by multiplying upper-panel widths by R2. The inset
shows the near-leveling off of the area until R ∼ 40M for
intermediate configuration angles.
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absolute cross-sectional area roughly constant, or “pencil-
like” (lower panel).

2. Beam shape

As can be seen from Fig. 7, the cross-sectional shape of
the beam deviates strongly from circular when the magnetic
field is misaligned with the black hole spin. We present in
Fig. 12 the beam shape as represented by the 50% contour
for a range of field alignments, measured at R ¼ 30M.
For an aligned field, the beam cross section is annular at

all extraction radii, as the magnetic field drops to zero on
the axis due to symmetry. Here we see that the beam shape
becomes steadily less annular with increasing θB.
Simultaneously, the overall luminosity decreases, and the
beam weakens, becoming harder to distinguish from the
rest of the sphere. For this reason, we omit the correspond-
ing plots for θB > 60°.

3. Beam position

We present in Fig. 13 the positions of the center of the
protojet for each configuration, showing how it varies with
extraction radius. To avoid high-frequency variations, at
each extraction radius R, we decompose the Poynting
vector over the sphere into (real) spherical harmonics up
to l ¼ 2:

SrRðθ;ϕÞ≡
X2
l¼0

SlmYm
l ðθ;ϕÞ: ð6Þ

The center positions are then the maxima of this smoothed
functional form.While the jet positions are properly given as
a pair of angles ðθ;ϕÞ, we find it easier to display as a pair of
Cartesian-like projected coordinates X ≡ sin θ cosϕ, Y≡
sin θ sinϕ, so that the hole’s spin direction lies unambigu-
ously at the origin in each panel.
From the figure, we can see that all configurations have

jet directions that approach the asymptotic initial magnetic
field direction at large R (denoted by × in the figure). As we
move inward along each configuration’s curve, we see
twisting of the jet direction around the origin (that is, the
BH spin axis). For initial inclination angles θB between 0°
(i.e., parallel to the spin axis) and ∼60°, the jet direction
approaches the spin axis for small R. For larger θB, the jet’s
direction stops short of the pole.
The azimuthal (Y-direction) offset at finiteR appears to be

a result of frame dragging in the background spacetime, as is
the jet itself. There is no precise transition radiuswhere the jet
direction switches from being aligned predominantly with
the hole’s spin to its asymptotic direction, but the transition
appears to occur withinR ∼ 20M. This is consistent with the
observations of Ref. [45], in their studies of jet twisting in
tilted accretion tori.

4. Jet Strength

We noted at the start of this subsection that our “protojet”
has not yet been demonstrated to produce ultrarelativistic
particle speeds. In particular, as in Paper I, fluid inflow in
the jet region is both subrelativistic and inward-pointing.
While analyzing the aftermath of a BHNS merger, the
authors of Ref. [41] encounter a similar situation; they point
out, however, that strong magnetic dominance in the
asymptotic jet region is expected to lead to much higher
Lorentz factors: Γ ∼ b2=2ρ [46].
In our case, the peak energy ratio drops to below ∼5

outside a few horizon radii, implying that actual relativistic
jet conditions may not be reached for the fluid particles
present. This can be misleading, as the MHD fluid is ion
dominated, and unlikely to be the source of significant
high-energy EM emission. If a mechanism is present to
seed the magnetically pressure-dominated region with
electrons or electron-positron pairs, these can be expected
to experience much greater accelerations, leading perhaps
to jetlike electromagnetic emission.

V. DISCUSSION

In this paper, we have extended the work of Ref. [5]
(Paper I), focusing on the steady-state behavior of plasma
around a postmerger Kerr black hole. While Paper I
featured merging equal-mass nonspinning black hole
binary systems, with a spacetime dynamically simulated

FIG. 13. Pseudojet center positions for the B15, B30, B45,
B60, and B75 configurations, in the Kerr hole’s “northern”
hemisphere, as determined by the maxima of the harmonically
smoothed Poynting vector function [Eq. (6)] at t ¼ 2; 000M.
Each dashed line connects the positions for all configurations,
determined at a certain extraction radius R. The × symbols show
the initial direction of the asymptotic magnetic field for each
configuration.
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via the moving puncture formalism, here we concentrated
on the end state of such a merger, a single spinning Kerr
black hole with mass Mfinal ¼ 0.97M and dimensionless
spin a=Mfinal ¼ 0.69. Since the spacetime is quiescent after
merger, we used a fixed Kerr-Schild metric representation
of the spacetime to reduce the computational load and
simplify postsimulation analysis. Nevertheless, the initial
MHD fields are fully dynamical, and our canonical MHD
configuration is that of Table I of Paper I. We have
concentrated on the Poynting luminosity LPoynt, mass
accretion rate _M, and resulting “Poynting efficiency”
ηEM of different initial plasma configurations.
First, we investigated the dependence of LPoynt and _M on

the specific internal energy of the plasma for fixed fluid
density. We find that higher-temperature configurations
take longer to settle down to a steady state, due to the lower
Alfvén speed in these cases. After reaching a steady state, it
is noticeable that both the Poynting luminosity LPoynt and

the mass accretion rate _M are highest for the lowest
temperatures, though subject to greater variations in time.
There also appear to be shallow local minima in both
steady-state LPoynt and _M around moderate temperatures;
the combination of these yields a Poynting efficiency ηEM
of around 20% over most of our temperature range, with a
shallow minimum close to our canonical configuration.
Returning to the canonical configuration, we also studied

the result of varying the angle θB between the asymptotic
magnetic field and the Kerr hole’s spin direction. We found
that LPoynt falls swiftly with θB, consistent with expect-
ations from force-free MHD. We found that the mass
accretion rate is less sensitive to θB until around 40°,
dropping steeply thereafter.
We note here that the cos2 θB dependence noted for

force-free MHD [40] was only confirmed in the low-spin
limit (a=M ¼ 0.1), and even then, imperfectly so. We
emphasize that the steeper behavior seen in this paper is
empirical, and while we suggested a hyperbolic tangent as a
“smooth step function” that better captures the behavior
seen, we do not propose that this functional form has any
particular theoretical support. We will note that (as seen in
Paper I) the accompanying plasma in our Ideal GRMHD
simulations induce a greater amplification of the magnetic
field—and hence the Poynting luminosity—than is seen in
pure force-free simulations. If this amplification itself is
stronger for aligned-field situations, then this will cause a
sharper dropoff with alignment angle than might be
expected for force-free.
Looking at the mass-accretion rate in Fig. 9 further

emphasizes this two-regime picture, where nearly aligned
fields yield generally low mass accretion, high Poynting
luminosity, and consequently high efficiency (Fig. 10),
while significantly misaligned fields show the opposite
behavior. The transition between these two regimes appears
to be around θB ¼ 45°.

Finally, we investigated the form of the “protojet”
formed by the spacetime dragging of plasma and magnetic
field lines. We showed how the jet width varies with radius,
and how the jet direction moves continuously from aligning
with the black-hole spin axis for small Rð≲5MÞ to adopting
the direction of the asymptotic magnetic field for R≳ 30M.
Having summarized the main results of our investiga-

tions, we may ask what implications these have for the
astrophysical question of electromagnetic counterparts of
black-hole mergers. As noted above, we see little variation
in either mass-accretion rate or Poynting luminosity over a
broad range of specific internal energies around our
canonical value. We do see a strong dependence on the
angle θB between the black hole’s spin and the global
magnetic field, with luminosity dropping quickly as
the misalignment angle increases. Additionally, while the
protojet is aligned with the black hole spin in the strong-
gravity region (within a few Schwarzschild radii of the
horizon), it soon relaxes to lie parallel to the initial
asymptotic magnetic field direction. Expectations of jet
alignment are ambiguous in the absence of surrounding
matter: should they align with the hole’s spin or with the
asymptotic magnetic field [40,47]? Our results indicate a
transition between the two states, with the hole’s spin’s
influence declining rapidly with distance. Assuming that the
asymptotic magnetic field is seeded by the plasma, our result
here agrees qualitatively with GMRHD explorations by
Ref. [48] of tilted-disk simulations of highly spinning black
holes,where the jet alignswith theblackhole spin at r ¼ 4M,
but with the disk’s angular momentum at r ¼ 40M.
This latter observation raises the question of what we

should assume for the shape, strength, and orientation of
the external magnetic field. This is a complicated question,
beyond the scope of this paper, which we have neglected in
favor of a survey over orientations, regardless of cause.
In astrophysical units, the steady-state luminosity for our

canonical case is consistent with the “peak” luminosity of
Paper I, but it drops steeply as the angle θB between spin
and asymptotic magnetic field increases, to about 10% of
its maximum. The rate of dropoff in θB is consistent with
the cosðθBÞ2 expectations from force-free models, or with a
slightly steeper step function. We can combine the results
of Paper I with the θB dependence seen in Fig. 6 to obtain a
more general expression for the steady-state Poynting
luminosity at arbitrary spin inclination angle θB to the
asymptotic magnetic field direction:

LPoynt;steady ≈ 1046ρ-13M2
8HðθBÞ erg s−1; ð7Þ

whereHðθBÞ is a function that captures the smooth steplike
behavior observed in Fig. 6.
In performing the studies presented here, we have

fulfilled some of the additional investigations outlined in
the discussion of Paper I, focusing on the bulk behavior of
MHD fields around the postmerger Kerr black hole. Since
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the work here was performed on a postmerger stationary
Kerr background spacetime, a full radiation transport
treatment of the resulting MHD fields using, e.g., the
Pandurata code [49] could not be expected to produce
novel results including an EM signature of the merger
process, and we did not attempt it here.
Meanwhile, other extensions of Paper I are being carried

out in parallel to this work, looking at the effect of
significant spins on the premerger black holes [50].
With these in place, we anticipate turning our attention
to rotationally supported matter distributions and magnetic
field configurations, and to more realistic inclusion of
radiation transport with the fully dynamical merging binary
metric, using new developments in Pandurata.
During review of this paper, we became aware of

complementary angular studies being carried out using
the Athena++ code [51], using a higher central black-hole
spin and a Γ ¼ 5=3 nonrelativistic plasma, at a lower
temperature than our canonical case. While broad con-
clusions from that work are consistent with ours here, the
different conditions do give rise to some significant
differences, including a maximum jet power at intermediate
angles θB, rather than the monotonic decline we observe
with increasing θB. These differences suggest a richer
parameter space still waits to be explored in future work.
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APPENDIX A: KERR-SCHILD BACKGROUND

The form of the background Kerr metric used for the
evolutions is one frequently called “Kerr-Schild” by accre-
tion-disk theorists [32]:

ds2 ¼ −
�
1 −

2Mr
ρ2

�
dt2 þ 4Mr

ρ2
dtdr −

4ar2 sin2 θ
ρ2

dtdϕ

þ
�
1þ 2Mr

ρ2

�
dr2 − 2a

�
1þ 2Mr

ρ2

�
sin2 θdrdϕ

þ ρ2dθ2 þ A sin2 θ
ρ2

dϕ2; ðA1Þ

where Δ≡ r2 − ð2MrÞ þ a2, ρ2 ≡ r2 þ a2 cos2 θ, and
A≡ ððr2 þ a2Þ2Þ − a2Δ sin2 θ. To be used in the
EinsteinToolkit, this metric must be decomposed
into its “3þ 1” form—lapse function α, shift vector βi, and
three-metric γij, as well as the associated extrinsic curvature
Kij—and transformed into a Cartesian coordinate basis. An
explicit listing of these “3þ 1” fields for the Kerr-Schild
metric (still in a spherical-polar coordinate basis) can be
found in the Appendix of Ref. [52].
As the radial and polar coordinates here are unchanged

from that of the original Boyer-Lindquist form, the horizon
is still a coordinate sphere defined by ΔðrÞ ¼ 0: rþ ¼
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
.

APPENDIX B: DIAGNOSTICS

The sound speed cs of the initial fluid configuration can
be calculated as [53]

c2s ¼
∂p
∂ρ ¼ 1

h

�
χ þ p

ρ2
κ

�
;

where χ ≡ ð∂p∂ρÞϵ, κ ≡ ð∂p∂ϵÞρ.
For an ideal fluid, χ ¼ ðΓ − 1Þϵ, κ ¼ ðΓ − 1Þρ, and the

above simplifies to

c2s ¼
ΓðΓ − 1Þϵ
1þ Γϵ

¼ 4ϵ

9þ 12ϵ
ðB1Þ

for the Γ ¼ 4=3 fluid we use here. For our canonical case,
ϵ0 ¼ 0.6, and cs ≈ 0.385.
We will also be interested in quantities that may help us

predict when magnetorotational instability (MRI) is impor-
tant. To this end, we calculate the Alfvén speed

vAlf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2

ρð1þ ϵÞ þ pþ b2

s
; ðB2Þ

where ρ is the baryonic density, ϵ the specific internal
energy (thus ρϵ is the internal energy density), p is the fluid
pressure, and b2 is the magnetic energy density.
It may be useful to compare our results with the Bondi

accretion rate, even though the latter is strictly defined for
hydrodynamic fluids, and on a Schwarzschild background.
From Chap. 14 and Appendix G of Ref. [54], we find that
for a polytrope with Γ < 5=3, the Bondi accretion rate is
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_MBondi ≈ 4πλsM2ρ∞a−3∞ ; ðB3Þ

where ρ∞ ≡mn∞ is the rest-mass energy density evaluated
infinitely far away from the black hole, a∞ is the asymp-
totic sound speed, and the constant λs is

λs ≡
�
1

2

� Γþ1
2ðΓ−1Þ

�
5 − 3Γ

4

�
− 5−3Γ
2ðΓ−1Þ

:

For the Γ ¼ 4=3 plasma we use in these studies,
λs ¼ 1=

ffiffiffi
2

p
≈ 0.7071. Moreover, for our canonical plasma

configuration, ρ∞ ¼ 1, p∞ ¼ κρΓ∞ ¼ 0.2, and a∞ ¼ cs.
Then the Bondi accretion rate is (with M ¼ 1)

_MBondi;canonical ≈ 4π
1ffiffiffi
2

p c−3s ≈ 156:

APPENDIX C: ROBUSTNESS OF NUMERICAL
RESULTS

1. Puncture or fixed Kerr?

For these investigations, we assumed a fixed Kerr
background in the Kerr-Schild slicing of Appendix A. In
principle, we should allow the black-hole background to
react to the influx of matter, which should increase the
black hole’s mass while decreasing its (dimensionless)
spin, as the fluid is initially at rest in the zero-angular-
momentum (ZAMO) frame. To do this, we would have to
use puncture-like initial data and enable feedback in the
evolutions.
However, for massive (M ∼ 108 M⊙) black holes in a

low-density (∼10−13 g cm−3Þ plasma, the infalling mass
and angular momentum are entirely negligible.
To justify this, we perform an evolution of our canonical

system using the quasi-isotropic Kerr metric [55] with the
same Kerr parameters (M ¼ 0.97, χ ¼ 0.69). This metric
can be evolved with the standard puncture formalism. With
matter feedback enabled (by setting the IllinoisGRMHD
parameter update_Tmunu to true), the total matter
content of the domain (and hence the MHD fluid density
ρ) is coupled to the black hole massM. WithM ¼ 1 in code
units, we choose ρ0 ¼ 10−6. With this initial code-units
density, the horizon mass of the black hole increases by
∼20% over the course of 1000M of evolution. Dropping to
ρ0 ¼ 10−8 and scaling b0 accordingly decreases the accre-
tion rate by a factor of ∼100, indicating that the accretion
roughly scales linearly with the fluid density.
A code-units density of ρ0 really means ρ0M=M3.

The length unit appearing in the denominator is

∼1.5ðM=M⊙Þ km; thus, the density in physical units will
be ρ0M=ð3.375ðM=M⊙Þ3Þ km−3. For our canonical total
mass M ¼ 108 M⊙, this becomes

ρ ¼ ρ0
108 M⊙

3.375 × 1024
km−3 ≈ 50ρ0 g cm−3:

Thus our choice of ρ0 ¼ 10−6 in code units is equivalent to
a physical density of ∼5 × 10−5 g cm−3. As this is more
than 7 orders of magnitude greater than our assumed
canonical plasma density (10−13 g cm−3), we conclude that
for all configurations considered in the main text, the black
hole mass could increase by no more than one part in 106,
even with feedback switched on.

2. Varying B or a direction?

As mentioned in Sec. IV B, we investigate the θB
dependence of our results by keeping a⃗≡ ak̂ and setting
B⃗ ¼ B cos θB for one representative case. However, we
instead choose the spin vector to be oriented as
a⃗ ¼ a sin π=4îþ a cos π=4k̂, with B⃗ ¼ Bk̂.
In Fig. 14, we show the Poynting luminosity LPoynt for

two configurations with θB ¼ 75°, with either a⃗ or B⃗ fixed
along the z axis. We can see that the two curves track
exactly until after the peak, where small differences begin
to set in.
In this figure, we also demonstrate how the luminosity

changes with resolution, and with field orientation in the
equatorial plane.

FIG. 14. Poynting luminosity LPoynt as a function of time for
θB ¼ 75°, tilting either the B-field or the spin vector a⃗.
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