

DISSERTATION APPROVAL SHEET

2022

Graduate Program:

Doctor of Philosophy,

NOTE: *The Approval Sheet with the original signature must accompany the thesis or
dissertation. No terminal punctuation is to be used.

Trevor Kroeger

Title of Dissertation: ON THE RESILIENCY OF PHYSICAL UNCLONABLE
FUNCTIONS AGAINST POWER ANALYSIS ATTACKS

Name of Candidate:

Computer Engineering

Ph.D.

Naghmeh Karimi

Dissertation and Abstract Approved:

Computer Engineering
4/25/2022 | 10:14:35 AM EDT

ABSTRACT

Title of dissertation: ON THE RESILIENCY OF
PHYSICAL UNCLONABLE
FUNCTIONS AGAINST
POWER ANALYSIS ATTACKS

Trevor Anthony Paul Kroeger
Candidate of Doctor of Philosophy, 2022

Dissertation directed by: Professor Naghmeh Karimi
Department of Computer Science
and Electrical Engineering

Integrated Circuits (ICs) have made their way into many critical systems that

service transportation, medical, and military industries; areas that are targeted for

maximum disruption of operations and daily life. Whether the motive is monetary

or political, it is clear that ICs require protection from malicious intent. To aid

in the protection of devices various techniques have been developed to identify,

authenticate, and track them. One of the principal security primitives used in

the aforementioned techniques are Physical Unclonable Functions (PUFs). PUFs

produce unique signatures based on the uncontrollable physical variations which

occur during the fabrication of ICs. A PUF’s output is produced when the PUF is

given an input. Together these inputs and outputs are known as Challenge Response

Pairs (CRPs). A PUF’s CRPs are used for authenticating devices or for IC metering

purposes, aiding in the prevention of over-production and IC cloning. The arbiter-

PUF is one of the most popular PUFs broadly adopted by industry because of its

large number of CRPs. Owing to their usefulness in securing ICs, PUFs are also the

focus of attacks. They are vulnerable to modeling attacks in which the adversary

tries to model the PUF’s behavior to predict its response for unseen challenges.

There are two forms of modeling attacks: CRP-based modeling attacks and power-

based modeling attacks.

When attacking a PUF using its power side-channel, the PUF response is pre-

dicted based on the PUF’s power consumption. This research focuses on the power-

based modeling attacks perpetrated against the arbiter-PUF family, and presents

PUFs that are resilient against power-based attacks via inserting the proposed coun-

termeasures. First, investigations are performed on the resiliency of the state-of-the-

art PUFs that were proposed in literature recently to counter modeling attacks such

as analog variants and challenge obfuscation based PUFs. These PUFs are shown to

be successfully compromised through their power side-channel. These investigations

are taken one step further by performing Cross-PUF attacks, where the power traces

of one PUF can be used to model another PUF fabricated from the same GDSII

file. This research shows, for the first time, that such attacks are highly successful

in exposing a previously unexplored vulnerability of PUFs. Further investigations

of power-based modeling attacks are performed by characterizing the e↵ects that

temperature and aging have on both Self-PUF and Cross-PUF attacks. Exploration

of modeling the power is extended to multi-bit response parallel PUFs to show their

vulnerability against power-based attacks. The results of these investigations showed

that the response could still be discerned from the power consumption of the device.

Because of the phenomenon being exploited in the power-based modeling attacks

this research shows that these attacks work not only on the arbiter-PUF, but also its

derivatives. To further improve the understanding of the various power-based mod-

eling attacks, this research uses the Signal-to-Noise Ratio (SNR) to characterize and

assess the vulnerability of the target PUFs to modeling attacks. Finally, to enhance

the resiliency of the targeted PUFs against power-based modeling attacks, a number

of circuit-level countermeasures, based on reducing the SNR and/or confusing the

model, are proposed. These countermeasures appear to be highly successful in pro-

tecting the PUF against the power-based modeling attack. The results have been

extracted first using HSpice simulations, and then the experiments (the attacks and

countermeasures) were performed on FPGA fabric to verify the findings in silicon.

ON THE RESILIENCY
OF PHYSICALLY UNCLONABLE FUNCTIONS

AGAINST POWER ANALYSIS ATTACKS

by

Trevor Anthony Paul Kroeger

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland - Baltimore County in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2022

Advisory Committee:
Dr. Naghmeh Karimi, Chair/Advisor
Dr. Tinoosh Mohsenin
Dr. Chintan Patel
Dr. Ryan Robucci
Dr. Ke Huang

c� Copyright by
Trevor Anthony Paul Kroeger

2022

Dedication

for me

”I think I can, I think I can, I think I can. . . I thought I could, I thought I could.”

– Arnold Munk, The Little Engine that Could

for erika

“There are some things you can’t share without ending up liking each other, and

knocking out a twelve-foot mountain troll is one of them.”

– J.K. Rowling, Harry Potter and the Sorcerer’s Stone

for conrad and greta

“Whether you think you can, or you think you can’t–you’re right.”

– Henry Ford

”Risk something or forever sit with your dreams.”

– Herb Brooks

ii

Acknowledgments

I want to give my profound thanks to everyone who o↵ered me advice and support.
I know there are those who I will unfortunately overlook in acknowledging for which
I apologize.

I will start by thanking my advisor, Dr. Naghmeh Karimi who took me on as her
first PhD student. She provided the spark and insights to the research that got me
through the process. All of my research was performed through collaboration with
persons at Télécom Paris, and I would like to thank Wei Cheng, Jean-Luc Danger,
and Sylvain Guilley for their help, insights, and assistance in performing this work.
Next, I would like to thank my committee. Their flexibility and assistance helped
in getting me into candidacy and through my final defense.

I would be remiss without mentioning all of the assistance from the Johns Hopkins
University Applied Physics Laboratory which provided the funding and flexibility
to obtain this degree while working full time. There were many persons at APL
which provided support for which I am grateful.

I would like to thank my family especially my in-laws Ted and Dr. Rebecca
Hochradel for the support that they gave me and my wife through this process.
I know this would’ve been much harder without them.

To my children, Conrad and Greta, I’m grateful that they will never remember this
and I’m thankful for the much-needed joy and life they provided in times when it
was greatly needed.

Finally, this would’ve never happened without my incredible wife, Erika. She stuck
with me though this season of life. She provided meaningful support, opportune
guidance, and overall belief in me. I want to thank her for getting me across the
finish line, and I know I should’ve trusted the awesomeness more.

iii

Table of Contents

List of Tables viii

List of Figures x

List of Abbreviations xiv

1 Introduction 1
1.1 Problem Statement . 3
1.2 Proposed Solutions . 6
1.3 Contributions . 8
1.4 Research Outline . 10

2 Research Background 11
2.1 Physically Unclonable Functions . 11

2.1.1 PUF Advantages and Applications 12
2.1.2 PUF Evaluation Metrics . 15
2.1.3 Weak and Strong PUFs . 16
2.1.4 Arbiter-PUF Family . 19

2.2 E↵ect of Temperature Change in PUFs 23
2.3 The Impact of Device Aging on PUFs 23
2.4 Targeting PUFs with Machine Learning Models 25

2.4.1 Support Vector Machine . 26

3 Related Work 28
3.1 Challenge-Response Pair based Modeling 28

3.1.1 CRP-based Modeling of the Arbiter PUF 31
3.1.2 Analog PUF Variants . 32
3.1.3 Challenge-Obfuscated PUFs 34
3.1.4 Other Countermeasures against CRP-Based Modeling Attacks 36

3.2 Side-Channel based Modeling . 37

iv

4 Self-PUF Attacks 40
4.1 CRP-based Modeling Attacks . 40

4.1.1 Threat Model . 41
4.1.2 CRP-based Modeling Results 42
4.1.3 Discussions . 44
4.1.4 Contributions . 45

4.2 Power-based Modeling Attacks . 46
4.2.1 Threat Model for Power-based Modeling 48
4.2.2 Power Trace Analysis . 49
4.2.3 Power-based Modeling Results 50
4.2.4 Discussions on Launching Power-based Modeling Attacks on

Protected PUFs . 57
4.2.5 Aging E↵ects on Power-based PUF Modeling 60
4.2.6 Discussions on the Aging Impacts on Power-based Modeling

Attacks . 65
4.2.7 Contributions in Power-based Modeling Attack Investigations 66

5 Modeling Multi-Bit Parallel PUFs 67
5.1 Threat Model . 69
5.2 Expansion to SNR Evaluations . 70
5.3 Power-based Modeling Attack Results 71
5.4 Discussions . 74
5.5 Contributions . 76

6 Cross-PUF Attacks 78
6.1 Threat Model . 79
6.2 Cross-PUF Attack Results . 80
6.3 Temperature e↵ects on Cross-PUF Attacks 84
6.4 Aging E↵ects on Cross-PUF Attacks 86
6.5 Temperature and Aging E↵ects on Cross-PUF Attacks 88
6.6 Discussions . 90
6.7 Contributions . 91

7 Countermeasures to Power-based Modeling Attacks 92
7.1 Self-PUF Countermeasures . 93

7.1.1 Dual Rail Logic . 93
7.1.2 DRL Results . 94
7.1.3 Randomized Initialization Logic 95
7.1.4 RIL Results . 97
7.1.5 DRILL - Combined DRL and RIL Countermeasures 98
7.1.6 DRILL Results . 99
7.1.7 Discussions on Self-PUF Countermeasures 99

7.2 Countermeasures for Multi-bit Parallel PUF Implementations 101
7.2.1 DRILL . 101
7.2.2 Randomized Arbiter Swapping 102

v

7.2.3 Random Response Masking 103
7.2.4 Results of Countermeasures for Multi-bit Parallel PUFs 104
7.2.5 Discussions on Countermeasures for Multi-bit Parallel PUFs . 109

7.3 Cross-PUF Attack Countermeasures 111
7.3.1 DRILL Results . 111

7.3.1.1 E↵ects of Temperature and Aging Misalignment on
Cross-PUF Attacks 112

7.3.2 Cross-PUF Countermeasure Discussions 115
7.4 Contributions . 117

8 Physical Implementation Results 118
8.1 Attack Methodology for FPGA Implemented PUFs 119
8.2 FPGA Implementation Overview . 120
8.3 Unprotected PUF . 122

8.3.1 Discussions on attacking Unprotected FPGA PUFs 124
8.4 Protected PUF . 125

8.4.1 Discussions on attacking Protected FPGA PUFs 127
8.5 Multi-bit Parallel PUFs . 128

8.5.1 Results of attacking Multi-bit Parallel PUFs within FPGAs . 128
8.5.2 Discussions on attacking Parallel PUFs 132

8.6 Contributions . 133

9 Summary and Conclusions 134
9.1 Recapitulation . 134
9.2 Review of major Contributions . 136
9.3 Directions of Future Work . 137
9.4 Conclusion . 138

A Simulation Environment and Data Collection 140
A.1 Simulation Environment . 140

A.1.1 Aging Simulations . 141
A.1.2 Simulation Processes . 142

A.2 Data Extraction . 143
A.3 Simulated Noise . 144
A.4 Support Vector Machine Algorithmic Implementation 144

B FPGA Implementation of Arbiter-PUF 147
B.1 Sakura FPGA Board . 147
B.2 FPGA Implementation . 149

B.2.1 Arbiter-PUF FPGA Structure 150
B.2.2 Arbiter-PUF FPGA Layout 151

B.3 Required Metrics for Each PUF Instance 155
B.4 Measuring Power Consumption . 157

vi

C Investigation Nuances 159
C.1 Investigations on PUF Size . 159
C.2 Investigations on Arbiter-PUF Derivatives 160

Bibliography 162

vii

List of Tables

4.1 The maximum SNR for the traces related to the Arbiter-PUF’s ar-
biter latch and Flip-Flop. 52

4.2 The maximum SNR for the traces related to the Arbiter-PUF’s ar-
biter latch and Flip-Flop. 57

5.1 The maximum SNR when the Flip-Flops are queried in the unpro-
tected parallel PUF with & without averaging. 74

6.1 Accuracy of Cross-PUF attacks on the arbitration latch for each PUF
pair with no added noise. 81

6.2 The maximum SNR for the traces related to the PUF-1’s latch and
Flip-Flop. 84

7.1 Loading on the Capacitors for the DRL technique. 94
7.2 The maximum SNR for the traces when the Flip-Flop is queried in

presence of the proposed countermeasures. 101
7.3 The maximum SNR for the proposed DRILL Protected PUF with

and without averaging. 109
7.4 Uniformity of the PUF instances used in the assessment of the DRILL

countermeasure. 116

8.1 Accuracy of the Self-PUF and Cross-PUF attacks for the unprotected
PUFs by using SVM with the shift-based alignment. 123

8.2 Maximum SNR of the five unprotected PUFs implemented within the
FPGA . 124

8.3 Accuracy of the Self-PUF and Cross-PUF attacks for the PUFs pro-
tected by DRILL. 126

8.4 Maximum SNR of the five DRILL Protected PUFs implemented within
the FPGA . 128

8.5 Multi-bit Parallel PUF predictions of individual responses from im-
plemented PUFs . 131

8.6 Maximum SNR of Multi-bit Parallel PUFs implemented within the
FPGA . 133

viii

B.1 NIST Randomness Test Results . 155
B.2 Uniqueness of the five PUF FPGA instances. 156
B.3 Uniformity of five PUF FPGA instances. 156
B.4 Reliability of five PUF FPGA instances 157

ix

List of Figures

1.1 Distributed Manufacturing of Integrated Circuits 3
1.2 Types of Counterfeit Devices . 3
1.3 SNR and distinguishability metrics for PUF attackability 7
1.4 Pictorial Representation of Paper Outline 10

2.1 IC metering categorization with PUF aided categories highlighted . . 14
2.2 CRP size tradeo↵ and transition from Weak PUFs to/from Strong

PUFs . 17
2.3 The SRAM PUF and Ring-Oscillator PUF; examples of Weak PUFs. 18
2.4 Arbiter-PUF, Loop-PUF, and XOR-PUF examples of Strong PUFs. . 19
2.5 Internal structure of the PUF switch comprised of two multiplexers

selecting the opposite inputs. 20
2.6 Logic tables for the S-R Latch and D Flip-Flop with explanations of

arbitration outputs for responses. 22
2.7 Flowchart for the general operation of the supervised learning algo-

rithms. 26
2.8 An example SVM hyper-plane with classified points 27

3.1 Voltage Transfer Characteristic PUF switching chain 33
3.2 VTC block circuit diagram and non-linearity translation graph 33
3.3 Circuit diagram for the analog switch used in the VTC PUF 34
3.4 Generic challenge obfuscation technique implemented for an arbiter-

PUF. 35
3.5 Block diagram for the implemented Challenge Obfuscation technique 36

4.1 Threat model for CRP-based modeling attacks 41
4.2 The accuracy of the CRP-based modeling attacks on a 64-bit arbiter-

PUF. 43
4.3 The accuracy of the CRP-based modeling attacks on a 64-bit VTC

PUF. 44
4.4 The accuracy of the CRP-based modeling attacks on a 64-bit CO-PUF. 45
4.5 Arbiter-PUF with system components. 47
4.6 A collection of power traces for a 16-bit arbiter-PUF. 47

x

4.7 Components attributing to the current leakage of the PUF which
reveal the response. 48

4.8 Threat model for power-based modeling attacks. 49
4.9 The accuracy of the power-based modeling attacks on a 64-bit Arbiter-

PUF. 52
4.10 The power traces extracted from the VTC PUF. 53
4.11 VTC PUF where arbiter operation highlighted. 54
4.12 The accuracy of the power-based modeling attacks on a 64-bit VTC

PUF. 54
4.13 VTC PUF power traces with their response value highlighted. 55
4.14 The accuracy of the power-based modeling attacks on a 64-bit CO-

PUF. Trained on 500 traces and evaluated on 5000 traces. 57
4.15 A collection of arbiter-PUF power traces highlighting the distinguisha-

bility of the response based on the behavior of the Flip-Flop. 59
4.16 Power traces for di↵erent sized arbiter-PUF implementations high-

lighting the presence of output Flip-Flop leakage. 59
4.17 The accuracy of the power-based modeling attacks on a 64-bit CO-PUF. 60
4.18 Observed power trace variability for the arbiter-PUF from no aging

to 20 weeks. 62
4.19 Accuracy for modeling attacks on 16-bit arbiter-PUFs 63
4.20 Accuracy for modeling attacks on 16-bit VTC PUFs 64

5.1 The tradeo↵ between a single-bit PUF implementation and a multi-
bit PUF implementation whilst conserving the implementation foot-
print. 68

5.2 Power Traces for a single-bit arbiter-PUF and a parallel 2-bit arbiter-
PUF. 69

5.3 Power-based modeling accuracy for the single bit PUF and the Multi-
bit Parallel PUF (with 2-bits). 72

5.4 Two bit Parallel PUF power traces (no added noise) with the response
highlighted. 73

5.5 Hamming weights overlaid on the power traces of a single-bit PUF
and two-bit parallel PUF. 75

5.6 Predicted hamming weights for the power traces at each Flip-Flop
leakage level for increasing the number of multi-bit responses. 75

5.7 Superimposing 50 traces of the 64-bit PUF in 4-bit parallel settings. . 76
5.8 The attack accuracy targeting a 4-bit response arbiter-PUF for vari-

ous noise levels. 77

6.1 Power traces of two di↵erent PUFs superimposed to highlight their
similarities. 79

6.2 Threat model for the Cross-PUF attack. 80
6.3 Zoomed traces displaying the alignment (by shifting) on the latch. . . 81
6.4 Accuracy of Cross-PUF attacks on the arbitration latch for various

levels of noise. 83

xi

6.5 Accuracy of Cross-PUF attacks on the Flip-Flop for various levels of
noise. 83

6.6 Superimposition of 50 traces of PUF-1 under di↵erent temperatures
to observe the similarities in the collected traces. 85

6.7 The temperature misalignment modeling results for the Self-PUF and
Cross-PUF attacks targeting the leakage from the arbitration latch. . 86

6.8 The temperature misalignment modeling results for the Self-PUF and
Cross-PUF attacks targeting the Flip-Flop leakage. 86

6.9 The modeling accuracy for the Cross-PUF attacks on the original
PUFs targeting the latch in presence of aging misalignments. 88

6.10 The modeling accuracy for the Cross-PUF attacks on the original
PUFs targeting the Flip-Flop in presence of aging misalignments. . . 88

6.11 The modeling accuracy for the Cross-PUF attacks on the original
PUFs targeting the latch in presence of both temperature and aging
misalignments. 89

6.12 The modeling accuracy for the Cross-PUF attacks on the original
PUFs targeting the Flip-Flop in presence of both temperature and
aging misalignments. 90

7.1 Block diagram for the DRL Countermeasure. 94
7.2 Results for implementing the DRL Countermeasure. 96
7.3 Block diagram for the RIL Countermeasure. 96
7.4 Results for implementing the RIL Countermeasure. 97
7.5 Block diagram for the DRILL countermeasure combining the tech-

niques of the DRL and RIL countermeasures. 98
7.6 Results for implementing the DRILL Countermeasure. 100
7.7 Block diagram for the DRILL countermeasure combining the tech-

niques of the DRL and RIL countermeasures. 102
7.8 Block diagram for the RAS Countermeasure. 103
7.9 Block diagram for the RRM Countermeasure. 104
7.10 Results for implementing the DRILL countermeasure for the Multi-

bit PUF. 105
7.11 Results for implementing the RAS Countermeasure. 107
7.12 Results for implementing the combined DRILL and RAS countermea-

sures. 108
7.13 Results for implementing the RRM Countermeasure. 109
7.14 Cross-PUF attacks targeting the Flip-Flop in five PUFs equipped

with the DRILL countermeasure in the presence of di↵erent noise
levels. 112

7.15 The modeling results for the Self-PUF and Cross-PUF attacks tar-
geting the Flip-Flop for the DRILL protected PUFs operating at
di↵erent temperatures. 113

7.16 The modeling accuracy for the Cross-PUF attacks targeting the Flip-
Flop of a DRILL protected PUF in presence of aging misalignments. . 114

xii

7.17 The modeling accuracy for the Cross-PUF attacks targeting the Flip-
Flop of a DRILL protected PUF in presence of both temperature and
aging misalignments. 115

8.1 Block diagram of the attack methodology for the PUF instances in
FPGAs. 120

8.2 Structure of Xilinx Virtex-6 Slice . 121
8.3 Placement of a switch structure within the LUT components of a slice.122
8.4 Traces for the unprotected PUF instance. 123
8.5 Traces for the DRILL protected PUF instance. 126
8.6 Power traces for the PUF-0 Multi-bit Parallel PUF instance zoomed

to highlight the Flip-Flop operation. 129
8.7 Results of attacking unprotected and DRILL protected Multi-bit Par-

allel PUFs. 130

A.1 Simulation Process Block Diagram for performing both normal (no-
age) and aging simulations . 142

A.2 Power trace and response sampling window. 144
A.3 Parameter testing for the SVM model of CRPs. 146
A.4 Parameter testing for the SVM model of Power Traces. 146

B.1 The Sakura-G FGPA board with pertinent measurement components
highlighted. 148

B.2 Measurement setup of the Sakura-G FPGA board. 148
B.3 System diagram for the arbiter-PUF implementation. 149
B.4 Arbiter-PUF implementation for operation within an FPGA. 150
B.5 Physical internal layout of the Spartan-6 FPGA 152
B.6 Layout of the switching component and the variable stage delay within

the FPGA. 153
B.7 Layout of the static delay component within the FPGA. 154
B.8 Layout of the arbitration latch component within the FPGA. 154
B.9 Connected Sakura FPGA Board . 158

C.1 Results of Cross-PUF attacks on 64-bit PUFs 160
C.2 Power traces of 3-XOR PUFs. 161
C.3 Results of Cross-PUF attacks on 3-XOR PUFs. 161

xiii

List of Abbreviations

CRP(s) Challenge and Response Pair(s)
FPGA Field Programmable Gate Array
IC Integrated Circuit
PUF Physical Unclonable Function
SVM Support Vector Machine
IP Intellectual Property
RFID Radio Frequency Identifier
IoT Internet of Things
DRL Dual Rail Logic
RIL Randomized Initialization Logic
DRILL Combined DRL and RIL Countermeasures
RRM Random Response Masking
RAS Randomized Arbiter Swapping
XOR Exclusive OR
S-R Set - Reset
CMOS Complimentary Metal-Oxide Semiconductor
HCI Hot Carrier Injection
BTI Bias Temperature Instability
NBTI Negative Bias Temperature Instability
PBTI Positive Bias Temperature Instability
ML Machine Learning
VTC Voltage Transfer Characteristic
SNR Signal-to-Noise
ASIC Application Specific Integrated Circuit
LUT Lookup Table
GDSII Graphic Design System II (File Type)

xiv

Chapter 1: Introduction

Confidentiality, integrity, and availability are three main factors that need to

be considered when the security of a system is taken into account. Confidentiality

is the capacity to keep data/information from being shared with third parties. In-

tegrity is the adeptness to keep data from being manipulated without authorization.

Availability is the ability to keep systems/data accessible for use. It is through these

principles that the security of systems is evaluated [76].

The core tenets of security can be compromised with the distributed manufac-

turing of Integrated Circuits (ICs) and the integration of Intellectual Property (IP)

into larger and larger designs. In the beginning, end-to-end IC production was per-

formed by a single entity which designed, manufactured, tested, and distributed the

ICs. This process, however, has changed; chips are now developed through a highly

distributed manufacturing process where one company will design the IC (likely

with the integration of IP from other companies), then be fabricated by another

company, who will outsource testing to another company, and then be distributed

by yet another company [66]. This push towards a more distributed manufacturing

process is driven by the increasing complexity of ICs owing to the decrease of tran-

sistors’ feature size. Indeed, with increasing the complexity of integrated circuits,

1

it is not cost-e↵ective for companies to perform all the steps needed for design,

testing, and fabrication of these circuitries locally. Therefore, the fabrication is per-

formed in facilities that serve many fabless companies for an appropriate economy

of scale [22]. With this distributed manufacturing process, it is easy to see how

the aforementioned security principles can be compromised. Indeed, in any step of

realizing a chip (design, manufacturing, etc.) there is an increase in the possibility

of malicious activity [61] as can be seen in Fig. 1.1.

One of the reasons for an adversary to perform malicious actions on ICs is

avarice [12]. It is easy to comprehend how much an entity has to gain in the means

of profit from malevolent IC sales since semiconductors are projected to be a $460

billion industry in 2021, not including the markets that the industry feeds [72].

Other than monetary gains, an adversary’s objective may be to compromise assets

and access secure systems. There is increasing concern in vulnerable hardware being

integrated into military systems. If they were successful, an adversary could gain

access to sensitive/secret data or render defense systems inoperable jeopardizing

national security [56, 61].

There are many actions an adversary can perform at each level of the produc-

tion process (see Figure 1.2) including creating counterfeit devices through cloning

the design, recycling ICs from used devices, shipping ICs that did not meet the

testing specifications and would otherwise be discarded, and overproduction of the

stated IC yield [38]. These actions may undermine the overall quality of the part

and decrease the lifetime of the part causing early failure of the device [39], or result

in financial loss for the designer in the case of overproduction or cloning. Devices

2

Figure 1.1: Distributed Manufacturing of Integrated Circuits

failing before they are expected has long-term e↵ects on industry, government expen-

diture, and public health and safety [12]. These malicious actions call for provision

of secure countermeasures for protecting ICs from adversaries.

Figure 1.2: Types of Counterfeit Devices [38]

1.1 Problem Statement

Extensive research is being performed on securing ICs from the vulnerabilities

inherent to the distributed design and manufacturing process [47]. The mechanisms

employed include IC Metering, recycled IC detection and various techniques for

unique device identification/authentication. The basis for many of these techniques

3

is a security primitive known as a Physically Unclonable Function or PUF [41,48].

PUFs are incredibly useful devices that benefit from natural variations in the

IC manufacturing process to produce unique signatures for each particular realized

IC [32, 70]. The ability to produce these unique values make PUFs the hardware

equivalent of one way functions; they were aptly proposed in 2002 almost simulta-

neously by Pappu et. al. [70] and Gassend et. al. [32] as Silicon Physical Random

Functions. In most instances, a PUF is given a challenge for which it produces a

response, together known as Challenge Response Pairs or CRPs. Since being pro-

posed, PUFs have been integrated into a myriad of di↵erent devices for simple chip

authentication like RFID cards [24] and Smartcards [28]. They are used in systems

of systems, for instance devices in Internet of Things (IoT) networks [19] as well as

more cutting edge technologies such as autonomous vehicles [8], and creating the

basis of cryptocurrencies [64]. PUFs are increasingly being considered for ”master

key” generation. A number of companies have included PUFs in their portfolios,

most notably one of the largest FPGA manufacturers, Xilinx, has begun integrat-

ing PUFs into their devices for consumer use [65]. Similarly, Microsemi has also

integrated PUFs into their reprogrammable devices [79].

To diminish the security, PUFs themselves are natural targets for attackers

and unfortunately the implementation of these primitives can themselves be com-

promised. The attacks that are of increasing concern are of the non-invasive nature.

Modeling of a PUF through its CRPs is one method of compromising the PUF

structures. For this attack, an adversary collects a number of CRPs for creating

a model then uses that model to predict the PUF’s response for the unseen chal-

4

lenges [30]. Another PUF cloning attack method (although a PUF is supposed to be

unclonable) is through its Side-Channel characteristics, namely it’s power. Similar

to modeling through CRPs, the power consumption of the PUF is recorded during

the PUF’s operation, rather than its challenge and paired with the response. This

power trace response pair is then used to train the model and is deployed to predict

the response for unseen challenges [15, 57]. To be clear, in power-based modeling

attacks, a machine learning model is trained by using the PUF’s power traces and

related response bits. This model is then utilized to infer the response of a PUF for

previously unseen traces.

Previous literature indicates countermeasures for preventing CRP-based mod-

eling attacks employing the use of fuses to prevent access to the critical data lines

for the CRPs [83], employing challenge obfuscation techniques essentially encrypt-

ing the challenge before use [31,60,85,91], or attempting to use analog PUF primi-

tives [77, 78, 84].

Currently there is seemingly a lack of analysis of the PUFs’ Side-Channel

based Modeling vulnerabilities and countermeasures. It is important to state that

the reason Power Side-Channel based modeling works is that the components create

leakages within the circuit, as each component draws di↵erent levels of current in

its operation. The models characterize the leakage from the components and the

operation of the circuit can be discerned accordingly [16].

Another interesting topic that is performed in this research is the possibility of

attacking one PUF using the power traces of another PUF manufactured from the

same GDSII File. This attack, known as a Cross-PUF attack, is a newly discovered

5

vulnerability which severely undermines the security of PUFs. This threat makes

the security primitive even more vulnerable since to target a PUF one can build the

model from another PUF.

There exist inherent countermeasures such as limited physical access to ICs

and the perception of the cost of resources to attack these devices. There are also

seemingly simple implementation countermeasures, like increased PUF size, in both

the challenge space and the amount of bits for the PUF response (i.e. multi-bit

PUFs). Increasing the PUF size and creating multi-bit PUFs becomes costly in

terms of the footprint required for the circuit and in terms of the power that is used

in its operation, which might not be feasible for low-cost devices. This research

involves an investigation of whether these countermeasures and assumptions are

enough to preserve security of PUFs when faced with power-based modeling attacks.

1.2 Proposed Solutions

The focus of this research is on the resiliency of PUFs against power analysis

attacks. This research includes the analysis of the power side-channel based model-

ing vulnerability of PUFs and developing appropriate countermeasures. There are

two metrics that are important for predicting responses for power-based modeling

attacks: the Signal-to-Noise Ratio (SNR) between the power and the observed noise

and the distinguishability in the response (shown in Figure 1.3).

For a countermeasure to be successful, it must decrease the SNR of the col-

lected power trace observing a response of a ‘0’ or a ‘1’ within the observed noise

6

Figure 1.3: SNR and distinguishability metrics for PUF attackability. Countermea-
sures need to adjust these metrics as shown to reduce attack viability.

in the circuit. Decreasing the SNR insinuates that it will be di�cult to predict the

response via the model. Methods for doing this are through Dual Rail Logic (DRL)

and Randomized Initialization Logic (RIL) mechanisms and will be presented in

this research in combination as the DRILL countermeasure. DRL uses balanced

Flip-Flops on the PUF output for the response and its inversion so that the com-

bined power output is ideally uniform regardless of the response value. For RIL

a Flip-Flop with an initialization port is used with the initialization port fed by a

random value thereby providing more possible transition characterizations for the

PUF output. Of course DRILL is the utilization of both techniques at the same

time.

To decrease distinguishability, or the discrepancy between the power traces and

the response values, one can add logic to confuse or poison the modeling algorithm.

We develop two methods to achieve this: Random Response Masking (RRM) and

Randomized Arbiter Swapping (RAS). Both of the proposed methods make use of

7

a random number generator. In RRM, an additional logic circuit is used to XOR

the output from a random number generator and the PUF’s response to randomize

the output. RAS is used in the Multi-bit parallel PUFs for swapping the output

bits generated from the PUF instances. The goal of both RAS and RRM is to

create illogical responses for the PUF and poison the modeling algorithm. The

randomization e↵ects of both of these methods are reversed in software to utilize

the correct response bits as the PUF response.

1.3 Contributions

The contributions of this research are as below:

• Show the vulnerability of PUFs (in particular the arbiter-PUF and its family)

against power side-channel based modeling attacks;

• Compare the e↵ectiveness of the power side-channel based modeling attacks

and the CRP-based modeling attacks;

• Show the e↵ect of environmental conditions (e..g, temperature) as well as aging

on the power side-channel based modeling attacks;

• Show the ine↵ectiveness of countermeasures tailored against CRP-based mod-

eling in preventing power-based modeling attacks and develop appropriate

countermeasures against such attacks;

• Develop Cross-PUF attacks for the first time and show their e�ciency in

modeling the PUFs behavior;

8

• Investigate the e↵ect of temperature and aging misalignments in the e�ciency

of the Cross-PUF attacks for both unprotected and protected variants;

• Launch successful power side-channel based modeling attacks on multi-bit par-

allel PUFs;

• Launch power-based attacks on the unprotected variants of single-PUFs, Cross-

PUFs, and parallel PUFs realized in FPGA as well as their protected coun-

terparts equipped with the proposed countermeasures, and show the success

of the attacks in the unprotected implementations and the resiliency of the

protected counterparts against power-based modeling attacks.

9

1.4 Research Outline

This research is composed of 9 chapters outlined in Figure 1.4. Chapter 1

is the Introduction. Chapter 2 contains relevant background material on the sub-

ject. Related work is discussed in Chapter 3. A compendium of Completed Research

comprises Chapters 4 through 8 where Chapter 4 discusses Self-PUF attacks, Chap-

ter 5 investigates attacks on multi-bit parallel response PUFs, Cross-PUF attacks

are discussed in Chapter 6, the countermeasures to the attacks are reviewed in

Chapter 7, and the e↵ectiveness of the attacks and proposed countermeasures eval-

uated on FPGA fabrics are discussed in Chapter 8. Finally the Conclusion makes

up Chapter 9.

Figure 1.4: Pictorial Representation of Paper Outline

10

Chapter 2: Research Background

This chapter presents relevant background information to the work being pre-

sented. Pertinent background on PUFs is reviewed with a focus on the arbiter-PUF,

a principal primitive used in this work. Machine Learning is also discussed since it

is the basis for relevant modeling algorithms.

2.1 Physically Unclonable Functions

Physically Unclonable Functions, or PUFs as they are commonly called, are

the hardware equivalent of a one-way function, i.e., they take an input and produce

a unique output in a way that it is infeasible to determine the input from the

output [32,70]. Unlike the algorithmic one-way functions, which can be reproduced

through the proper implementation of their algorithm, PUFs are unclonable which

means that the same design will not produce the same output in another chip.

A PUF’s unclonablity is caused by the imperfections of the IC’s manufacturing

process resulting in random variations in the transistors specification. When an IC

is manufactured, process variations are unavoidable and unpredictable. PUFs are

carefully constructed to make use of these variations in a way to produce an output

unique with respect to those variations [32,70]. The security requirements of PUFs

11

are outlined in ISO/IEC 20897-1:2020 [42]. Equation 2.1 shows the function (f) of

a PUF, it takes an input C, so-called challenge, and produces the response R. A

challenge and its corresponding response is referred to as Challenge Response Pair

(CRP). This function (f) is unique to each implementation (i) of a PUF such that

none of their functions are the same. Although this equation seems very simple it

is in fact enormously complicated.

R = fi(C) (2.1)

2.1.1 PUF Advantages and Applications

There are three key advantages of using PUFs in ICs. The first advantage

is that they do not store sensitive information in memory, rather it is generated

on-demand. If sensitive information is stored then an adversary can read said infor-

mation out of the memory; this on-demand nature is important as it requires more

e↵ort for an attacker to gain access to the sensitive data. The second advantage is

that since the sensitive information from a PUF is generated within the device itself,

invasive attacks (those attacks that physically manipulated the IC) become much

more di�cult. Manipulation of the circuit may result in a change in the behavior

of the PUF which will prevent the correct information from being generated and

may destroy the circuit entirely. The third and final advantage is that PUFs require

less hardware than traditional cryptography implementations (both can be used for

device authentication) which reduces the space and cost of implementation [41].

12

PUFs take an active role in securing devices. To protect the devices, in a dis-

tributed manufacturing process, companies employ IC metering techniques where

one of the key components used in these techniques are PUFs. IC metering, some-

times referred to as hardware metering, is the methodology employed by designers

to enable the tracking, identification, and/or control of individual chips [47]. Fig-

ure 2.1 shows the various di↵erent categories related to IC metering with the types

closely associated with PUFs highlighted. In fact, PUFs can play a role in all types

of IC metering with the exception for passive reproducible nonfunctional identifica-

tion techniques which consist of assigning a chip an ID value (e.g., a serial number)

that is imprinted on the device or stored accessibly in the chip.

For passive unclonable types of IC metering, PUFs are used quite naturally,

producing values in which an individual device can be verified. It is easy to ex-

trapolate how IC overproduction is prevented by using PUFs. This protection is

provided by the fact that if the unique identifier provided by a PUF, embedded in

a non-legitimate IC, is being validated against the registry of devices held by the

designer/distributor, it is easily flagged [47].

In active IC metering methodologies, PUFs are used more creatively. A com-

mon method for active internally controlled types is through state transition obfus-

cation, which utilizes a PUF to initialize a state machine. When implemented, the

device starts in a NULL state (initialized by the PUF) where the designer needs to

verify the operation and provide the proper state transitions to get the IC into a

functioning state [10]. PUFs can also be used for locking (obfuscating) an IC so that

each IC requires a unique identifier (or key) specifically generated for each individual

13

chip. This key is used to unlock the internal portions of the chip responsible for its

proper functionality [47].

Figure 2.1: IC metering categorization with PUF aided categories highlighted [47].

Other than IC metering, PUFs are used mainly for authentication purposes

or for generating keys for cryptographic modules. For example, RFIDs and Smart-

cards make use of PUFs for authentication. RFIDs and Smartcards are very simple

unpowered devices that are used to authenticate transactions. This authentication

could be as simple as providing building access or as important as providing access to

bank accounts. PUFs are well-suited for this purpose since they have a lightweight

design, are cheap to manufacture, and quickly produce their unique values [94].

Thanks to their lost-cost, a PUF can also be used to produce values that can

be employed for secure communications either between devices or between the device

and a server. It can be also used for device authentication, in particular for Internet

of Thing (IoT) devices as they are low cost primitives [27, 55, 88]. An example of

device authentication in a network of systems can be seen in the research presented

by Chatterjee et. al. [19]. Here, the authors create a distributed public-private key

exchange methodology that utilizes a distribution of verifier and prover nodes to

14

provide verification of node to node communications using PUFs.

To summarize, PUFs find their usefulness in two primary functions: key gen-

eration and authentication [41].

2.1.2 PUF Evaluation Metrics

According to the PUF’s related standards, these primitives should meet the

following requirements:

• Randomness - The indication that the response bits conform to a uniform

distribution i.e. how random are the output bits.

• Uniqueness - There is significant variation across implementations of the PUF

such that they are distinguishable from one another.

• Uniformity - There is an equal balance of ‘0’s and ‘1’s in the response set.

• Reliability/Stability - The response to the same challenge is not changed by

the change of environmental conditions (e.g. temperature) or over time (due

to device aging mechanisms).

To be able to use a PUF in authentication and other purposes, it is important

to ensure that the above metrics follow the requirements [17,81,89]. Specifically the

stated requirements for randomness for a PUF are evaluated using the benchmarks

provided by NIST in Bassham et. al. [14].

15

2.1.3 Weak and Strong PUFs

There are two broad categories of PUFs: Weak and Strong PUFs. The dis-

tinction between Weak and Strong PUFs has to do with their challenge space. Weak

PUFs have a small challenge space containing few or sometimes a single challenge.

Strong PUFs have an exponentially large challenge space [41]. Another di↵erence

between the two is the number of response bits generated from the PUF. Typically

Weak PUFs produce many response bits per challenge and Strong PUFs produce

only a few. There exists a dichotomy between the number of challenges and re-

sponses; as the challenge space increases the amount of responses that are yielded

from the PUF decreases and so the PUF transitions from being a Weak PUF to a

Strong PUF. The general conservation rule for the CRP duality is:

#challenges ⇤#responses = 2n

or to represent this adequately in terms of n:

n = log2(#challenge) + log2(#responses)

This equation makes visualization of the relationship easier to comprehend

and is shown in Figure 2.2 [17].

Communities of practice use entropy to standardize the metrics by which PUFs

are evaluated. Entropy for a PUF relates to its predictably. In relation to the

previous discussions on duality, the predictability of PUFs with a small challenge

space (i.e., Weak PUFs) are relatively high, meaning that these sorts of PUFs have a

low entropy. The SRAM PUF, for example, takes a single challenge (the request for

16

Figure 2.2: CRP size tradeo↵ and transition from Weak PUFs to/from Strong
PUFs [17].

the response) and produces its response. Conversely, a PUF with a large challenge

space (i.e., Strong PUFs) has a high entropy, with very low predictability, because its

challenge space is exponential. The arbiter-PUF displays this exponential challenge

space and it is generally considered to be infeasible to check the responses of all the

challenges [17].

Weak PUFs are primarily used for key generation. Accordingly, they are

also commonly known as Physically Obfuscated Keys (POKs). Two types of Weak

PUFs that are mainly used are memory-based PUFs (i.e. SRAM PUFs), and Ring-

Oscillator variants (as shown in Figure 2.3) [43]. Since their challenge space is so

small their responses must not be disclosed. The key advantage of Weak PUFs is

secure key storage, where the key is generated reliably by the PUF and not stored

within a memory structure and therefore more di�cult to extract [41].

The other category of PUFs are Strong PUFs which are useful for identification

and authentication purposes (as well as key generation) [41]. Strong PUFs benefit

17

Figure 2.3: The SRAM PUF [36, 71] and Ring-Oscillator PUF [63]; examples of
Weak PUFs.

from having a vast challenge space and therefore do not need to have complete

secrecy in their CRP generation. Types of Strong PUFs (as shown in Figure 2.4)

include physical structures (i.e., Optical PUFs [70]), and delay-based PUFs such

as the arbiter-PUF and its derivatives (XOR-PUF, Interpose PUF, Feed Forward

PUF), and loop-variant PUFs (Loop PUF, Bistable Ring PUF) [7]. To increase the

reliability of the PUF, error correction techniques may need to be employed. This

error correction may take place in extra implementation logic within the device or,

depending on the application, error correction processes can occur o↵ of the device

in which the PUF is implemented [41].

18

Figure 2.4: Arbiter-PUF [32], Loop-PUF [20], and XOR-PUF [93] examples of
Strong PUFs.

2.1.4 Arbiter-PUF Family

The arbiter-PUF is one of the most popular PUFs because of its small size and

large CRP range [15]. It is a delay-based PUF that forms the foundation of various

other PUF variants such as the XOR-PUF, Feed-Forward PUF, and Interpose PUF

(among others). Other reasons for its widespread adoption can be attributed to the

relative simplicity in its implementation and its e↵ectiveness in producing unique

values. It utilizes a large challenge space, in fact the total number of challenges

is 2n (where n is the number of stages it includes) which makes it attractive for

19

implementation (note that this makes it a Strong PUF). Its structure was first

proposed by Gassend et al. [32] as a Silicon Random Function; its design was one of

the first PUFs proposed. The structure of the arbiter-PUF is shown in Figure 2.4.

The arbiter-PUF has a single input trigger which feeds a series of connected

switches leading to an arbitration component. The top and bottom inputs to the

initial switch are connected to the input trigger. The following switches are con-

nected with each of the top outputs and each of the bottom outputs connected to

the corresponding lines on the inputs to the next switch, creating a top and bot-

tom path through the entire structure. Each switch is composed of two multiplexers

which select the appropriate top and bottom lines to pass through to correct output.

Each bit of the challenge is provided to one of the switches (these are the select lines

to the internal multiplexers), if the challenge bit is a ‘0’ then the top and bottom

paths are not switched, however if the challenge is a ‘1’ the paths are swapped. The

switch component of the arbiter-PUF is shown in Figure 2.5.

Figure 2.5: Internal structure of the PUF switch comprised of two multiplexers
selecting the opposite inputs.

At the end of the switching chain the arbiter takes both the top and bottom

paths as inputs and determines the final PUF response which is then sent to the

20

system components which include a register for storing the result. The arbiter can

be realized with an S-R latch with the S and R inputs connected to the top and

bottom paths, or a Flip-Flop with the input connected to the top and the bottom

connected to the clock. During its operation, the arbiter-PUF is queried with a

transition on input trigger after the challenge is provided to the switches. This edge

propagates through all of the switches compounding the delays of the individual

paths. The arbiter then utilizes the edge arrivals from the top and bottom paths

to determine if the response is a 0 or a 1. In this sense, it is the sign of the delay

di↵erence between the top and bottom paths that builds the response of the PUF.

Figure 2.6 shows the logic tables for the S-R Latch and Flip-Flop to support

how the top and bottom paths are adjudicated. If, for the S-R Latch, the top path

is faster, the S (set input), arrives first there is a ‘0’ response. If the bottom path

is faster, then the R (reset input) is triggered first resulting in a ‘1’ response. This

device works because when both of the inputs, S and R, are ‘1’s they hold the current

value on the output of the latch. For the Flip-Flop, both paths are resting at ‘0’.

If the top path is faster then a ‘1’ is waiting at the Flip-Flop input when the clock

input sees the rising edge of the bottom path. Otherwise if the top path is slower

then the input will be a ‘0’ when the rising edge is seen on the bottom path [32].

The response of the arbiter-PUF is determined by the sign of the summation

of the delay di↵erences in the top and bottom paths for each challenge. The delays

of each of the stage i can be represented by the di↵erence of �1,i for when the

challenge is ‘1’ and �0,i for when the challenge is ‘0’. The challenge is broken down

to its bit components where ci is the bit for each stage. The total delay, �Di,

21

Figure 2.6: Logic tables for the S-R Latch [17] and D Flip-Flop with explanations
of arbitration outputs for responses.

can be represented by the cumulative delay in previous stages �Di�1, switched or

unswitched based on the challenge bit (ci) for the current stage (i), with the current

stage delay added �ci,i. The total delay di↵erence is shown in Equation 2.2.

�Di = �Di�1 ⇤ (1� 2 ⇤ ci) + �ci,i (2.2)

Recall that ultimately the response (r) of a n bit challenge arbiter-PUF is just

the sign of the cumulative delay:

r = sign(�Dn) (2.3)

These equations are integral to the understanding of how the arbiter-PUF is

modeled [15].

22

2.2 E↵ect of Temperature Change in PUFs

Temperature a↵ects device operation. In fact, manipulation of temperature

can be used to perform attacks on integrated circuits. In Kumar et al. [52] they use

temperature manipulation to perform fault attacks on cryptographic algorithms. If

a significant temperature change is experienced, the circuit can operate outside of

its intended bounds. For instance in an arbiter-PUF, the temperature change can

a↵ect the race of the top and bottom paths resulting in a change in the response. In

other words, if the di↵erence between the top and bottom race is small, then with a

slight temperature change, the race will change flipping the response bit. Gassend

et al. studied the e↵ects of temperature on PUFs in 2003 showing that with the

temperature change as low as 10�C the PUF response can be changed [33].

2.3 The Impact of Device Aging on PUFs

Aging has a non-negligible e↵ect on the performance and operation of inte-

grated circuits, including PUFs. As a device is aged, it deteriorates. Specifically for

Complementary Metal Oxide Semiconductor (CMOS) technology, the major e↵ects

of aging occur based on two primary factors: Hot Carrier Injection (HCI) and Bias

Temperature-Instability (BTI) [53, 69].

There are two types of BTI: positive (PBTI) and Negative (NBTI). Although

the e↵ects from both types occur in devices, the main contribution to degradation

comes from the NBTI’s e↵ect on PMOS transistors. NBTI has two separate e↵ect

23

phases: the stress phase and the recovery phase. The transistor is in the stress

phase when the threshold voltage exceeds the gate-source voltage. When this phase

occurs the threshold voltage increases due to a rise in the positive interface traps

developing in the Silicon-Silicon Dioxide interface. The e↵ect is partially recoverable

when the threshold voltage is below the gate-source voltage (i.e., when the transistor

turns o↵) which is when it is in the recovery phase. Continued stressing of the tran-

sistor eventually leads to threshold voltage drifting overtime, although the amount

depends on the transistor’s supply voltage, temperature, and the amount of time

the transistor is in the stress phase [46].

Hot Carrier Injection (HCI) primarily a↵ects NMOS transistors. A hot carrier

is an electron which gets stuck in the dielectric in the gate of a transistor and occurs

due to the repetitive switching of a transistor on and o↵ [37]. The HCI causes

changes in the threshold voltage and the operating current. The e↵ects of HCI are

permanent and cannot be reversed [92]. This research considers the e↵ect of both

BTI and HCI.

Similar to temperature, aging is discussed by Gassend et al. [33], not in detail

but rather as a note of future research that must be performed. Since the afore-

mentioned suggestion, experiments have been run to assess the e↵ects of aging on

PUF circuits. Karimi et al. [44, 45] showed that aging highly a↵ects the reliability

of PUF circuits; thus analysis of aging should be done early in the design process so

that circuitry can be added to mitigate its e↵ects. Experiments, in both simulation

and in real silicon, show that there is an increase in the bit error rate of the PUF

circuit over time. Specifically observing the arbiter PUF it is shown that the aging

24

a↵ects the arbitration component (the S-R latch responsible for adjudicating the

response) more than the delay components. It is hypothesized that this is due to

the asymmetric operation that occurs on the latch. Recall that the degradation

e↵ects of NTBI occur when the PMOS transistor is in stress, when the gate-source

voltage is greater than the threshold voltage in the PMOS transistor [44, 45].

2.4 Targeting PUFs with Machine Learning Models

Although a PUF is supposed to be unclonable, as the name states, they can in

fact be cloned via Machine Learning (ML) schemes [30]. Supervised ML algorithms

require the model to be trained with data to determine the parameters of the model.

The model is then used to classify new data. The general process for developing

and testing the model is shown in Figure 2.7. First, the data is separated into a set

for training and a set for testing. Next, the training data is used to build a model.

This step is known as the training phase. Finally, in the evaluation phase the model

is used to predict the response from the data in the testing data set. Comparing

the number of correctly predicted responses to the total number of test responses

gives the accuracy of the model. If the accuracy is in an acceptable range then the

model is ready to be deployed [13].

In unsupervised learning, the data is unlabeled and the algorithm attempts

to group said data into logical categories. When new data is added to the system,

the learning algorithm updates and attempts to place the data into one of the log-

ical categories. There are a number of ways to constrain these type of algorithms,

25

Figure 2.7: Flowchart for the general operation of the supervised learning algo-
rithms.

including but not limited to the following: specifying the number of expected cate-

gories; limiting the number of points in a category; and/or specifying the closeness

of data points to one another [13].

2.4.1 Support Vector Machine

Support Vector Machine (SVM) is a supervised learning method which is ef-

fective in modeling the arbiter-PUF [30]. The SVM scheme classifies the data by

describing a hyper-plane. If the data is on one side of the plane then it is classified

as one thing and if it’s on the other side then it is classified as something else. If

the data is not linearly separable then there are two options: allow for an accept-

able amount of error or use a kernel function to manipulate the hyperplane to a

non-linear space [90].

The standard equation for an SVM hyperplane is shown in Equation 2.4.

wTx� b = 0 (2.4)

Classifying items based on this hyper-plane is rather simple. In Equation 2.4,

26

x represents the data point to be classified and the result is that data point’s clas-

sification.

wTx1 � b = 1

wTx0 � b = �1

(2.5)

In Equation 2.5 it can be observed that x1 is classified as a 1 and x0 is classified

as �1. An example hyper-plane from Equation 2.4 is shown in Figure 2.8, with

examples of x1 and x0.

Figure 2.8: An example SVM hyper-plane with classified points [21].

In the training phase, the training set is used to build the model; for PUFs the

training data are the challenges (or power traces) and the labels are the response

values for those challenges. When training the model, the goal of the algorithm is to

maximize the margin (shown in Figure 2.8) between the labeled data while correctly

classifying each of the data elements [21].

27

Chapter 3: Related Work

A principle concept of this research is investigating the resiliency of PUFs,

and in particular, the known arbiter-PUFs family against the modeling attacks and

improving their resiliency against such attacks. The methods utilized in modeling

are Machine Learning (ML) algorithms which have been extensively paired with

Hardware Security [9]. Moreover ML applications have been found to be both

beneficial and detrimental in terms of PUF security [26, 30, 54]. The two main

avenues for utilizing ML schemes to a model PUF are through its CRPs as well as

its power consumption.

3.1 Challenge-Response Pair based Modeling

In CRP-based modeling, the primary goal is to learn the mechanism by which

the PUF manipulates the challenge to get the response. Recall in Equation 2.1,

CRP Modeling attempts to discern the function (f) in this equation [75]. The

ability to model a PUF fundamentally compromises its security as it clearly violates

a PUF’s unclonablity. For weak PUFs the model can be as simple as storage of

the PUF response, since weak PUFs have a limited set of CRPs, but for strong

PUFs, such as the arbiter-PUF, the modeling is more complicated which is where

28

ML methodologies come into play [75].

To model a PUF’s function, a set of CRPs must be collected. An adversary

could collect said CRPs from the target device when it is still in its enrollment

phase, before the PUF is locked and access to those lines is restricted through

anti-fuses. The enrollment phase is the time when the manufacturer, developer,

or distributor creates a list of CRPs to legitimately use the PUF at a later time.

This attack requires the attacker to have physical access to the device at a specific

stage in its fabrication [83], or it can happen when the adversary eavesdrop on the

communication lines between the verifier (say server) and the device including the

PUF (i.e., prover) in IoT frameworks or other communication networks. To remove

the specificity in the timing of the physical attack, an adversary can develop the

skills to invasively extract the CRPs from the target device. In this style of attack,

an attacker physically infiltrates the device to gain access to the traces on the IC

corresponding to the challenge and response. This process is very precise as the

attacker must be careful to not change the functionality of the actual PUF circuit

which can inadvertently occur if the physical structure of the PUF is altered [30].

Another method of obtaining a device’s CRPs occurs through eavesdropping. In

this method an adversary lies in wait collecting CRPs from the device as it sends

them out during normal operation. Eventually the adversary will collect enough

CRPs to build the model of the device and carry out their intended attack [74].

Other methods for obtaining a set of a device’s CRPs can occur from situations

besides accessing the device itself. For instance, gaining access to the master list of

CRPs from the manufacturer, developer, or distributor through insider threats or

29

traditional cyber attack methods.

Regardless of the method of collection, a set of CRPs is required to create a

model of the device. The actual number of CRPs needed depends on the size of the

PUF (how many bits comprise its challenge); the larger the PUF, the more CRPs

are required to make a robust model. As stated in Rührmair et al. [74], to achieve

an accuracy of 99% in a 64-bit arbiter-PUF, 2555 CRPs are needed and for a 128-bit

arbiter-PUF, 5570 CRPs are needed for the same level of accuracy. The tradeo↵ for

the increased security from a larger PUF size is an increase in the overall footprint

and the time required to query the PUF [74].

Previously, the reliability of the arbiter-PUF has been attacked through re-

sponse repeatability exploitation. By such repetition and extracting the challenges

that result in unstable responses, timing information of the PUF stages are extracted

and the related PUF eventually is modeled [23]. Recently researchers proposed the

Interpose PUF, an arbiter-PUF variant which used an intermediate arbitration chain

to add a random bit to the challenge of another arbiter-PUF. They aimed at mak-

ing the targeted PUF resilient to CRP-based modeling attacks [67]. However, this

structure has since been thwarted using ML techniques [7,18,87]. This displays the

evolving landscape of PUF vulnerability research.

CRP-based modeling of a PUF is a well known vulnerability therefore re-

searchers have created various countermeasures to thwart this type of modeling.

The countermeasures specifically discussed here are the use of analog PUF variants

or deploying Challenge Obfuscation schemes. Note that using obfuscated challenges

prevent the adversary from having access to the real CRPs related to the deployed

30

PUF and modeling it through its CRPs. Similarly, the methods that encrypt re-

sponses also prevent the leakage of CRPs to the adversary [82, 94]. This research

shows that although such countermeasures make the PUFs secure against CRP-

based attacks, they cannot tackle power-based attacks.

3.1.1 CRP-based Modeling of the Arbiter PUF

Before countermeasures are discussed it is important to understand how CRPs

are modeled. First, individual PUFs may require a transformation for their CRPs

to be easily modeled as is the case for the arbiter-PUF. Recall in the total delay

equation (Equation 2.2), the di↵erence of the delay of paths selected based on a

given challenge is the sum of all the delays of the switches for each of the switching

components based on their individual challenge bits. The total delay di↵erence can

also be rewritten as:

�Dn = �!w T�!� (3.1)

In Equation 3.1, the delay components have been assembled into �!w and the

challenge components into
�!
� . The lengths of �!w and

�!
� are equal to n+1 (n is the

length of the challenge as well as the number of switches in the delay chain). Here

�!
� can be found based on Equation 3.2.

�i =
nY

l=i

(1� 2cl)for1 i n

�n+1 = 1

(3.2)

31

The �!w is composed of the di↵erential delay in each stage as well as components

of the delay in the previous stage to track the inversion due to switching.

w1 = �0,1 � �1, 1

wi = �0,i�1 + �1,i�1 + �0,i � �1,i

wn+1 = �0,n � �1, n

(3.3)

When expressing the total delay for the arbiter-PUF in the form of Equa-

tion 3.1 it is easy to see that this conforms to the hyperplane definition of a SVM

(Equation 2.4). Hence SVM can be a good candidate for modeling arbiter-PUFs

using its CRPs [15,75]. Please note that this does not exclude the e�ciency of some

other ML schemes for modeling the PUF as well.

3.1.2 Analog PUF Variants

One technique to thwart the CRP-based modeling of a PUF is to use analog

PUF variants where the response is generated from a space that is continuous (e.g.,

0V to 1V) rather than the discrete points (e.g., ‘0’ or ‘1’) in the digital realm. Here,

the randomness is introduced by having a continuous operating space. There are

several PUFs developed to operate in the analog domain [77,78,84].

One analog variant is the Voltage Transfer Characteristic (VTC) PUF which

was proposed to address the arbiter-PUF’s vulnerability against CRP-based model-

ing attacks [84]. As shown in Figure 3.1, its similarity to arbiter-PUF is apparent.

The VTC PUF is composed of a series of switching components equal to the

32

Figure 3.1: Voltage Transfer Characteristic PUF switching chain; note its semblance
to an arbiter-PUF [84].

number of challenge bits. Before each of these switching components is a VTC block

which non-linearly translates the voltage. The circuitry and function of the VTC

block can be seen in Figure 3.2.

Figure 3.2: VTC block circuit diagram and non-linearity translation graph [84].

The VTC PUF is fed with an input edge of V dd/2, which puts the voltage

translation from the VTC block in the area of largest variance and non-linearity.

The switches are Transmission Gate based analog switches transferring the voltage

level rather than the edge propagation The circuitry for this is shown in Figure 3.3.

Finally the analog voltage levels, of the top and bottom traces, are compared

to one another in a sense amplifier to determine which is greater. The main dif-

ference between the VTC PUF and the arbiter-PUF is its operation in the analog

33

Figure 3.3: Circuit diagram for the analog switch used in the VTC PUF [84].

domain, performing voltage translations and eventual voltage comparison rather

than comparing the sign of the path delay [84].

3.1.3 Challenge-Obfuscated PUFs

Another method for countering CRP-based modeling attacks is through chal-

lenge obfuscation. Challenge obfuscation is the art of methodologically manipu-

lating the input challenge such that it becomes something di↵erent. In this case,

the challenge that is passed to the device is not necessarily the challenge that is

being provided to the PUF. In general, the challenge obfuscation technique is an

addition to a standard PUF implementation. As an example, challenge obfuscation

circuitry can be added to the incoming challenge bits of the arbiter-PUF as shown in

Figure 3.4. The desired goal of challenge obfuscation is to provide an unknown chal-

lenge to the PUF, the result is that the CRP seen by the attacker will be incorrect

and will confuse or poison the attacker’s CRP set [31,60,82,85, 91,94].

Zalivaka et al. [91] present a comprehensive PUF system whereby one compo-

34

Figure 3.4: Generic challenge obfuscation technique implemented for an arbiter-
PUF.

nent is a circuit for challenge obfuscation that modifies the challenge before applying

it to the arbiter-PUF. Here the input challenge (C) is adjusted with a programmable

nonce (↵) to produce a new input challenge (Ĉ) which can be expressed as shown in

Equation 3.4 and the corresponding circuit implementation is shown in Figure 3.5.

Note that the e↵ects of challenge obfuscation are cascading, meaning that the result-

ing obfuscated challenge (Ĉ(t)) is dependent on the previously generated obfuscated

challenge (Ĉ(t� 1)).

2

66666666664

Ĉ0(t)

Ĉ1(t)

...

ĈN�1(t)

3

77777777775

=

2

66666666664

0 0 0 · · · ↵0

0 1 0 · · · ↵1

...
...

...
. . .

...

0 0 · · · 1 ↵N�1

3

77777777775

⇥

2

66666666664

Ĉ0(t� 1)

Ĉ1(t� 1)

...

ĈN�1(t� 1)

3

77777777775

�

2

66666666664

C0(t)

C1(t)

...

CN�1(t)

3

77777777775

(3.4)

When employed in the protection of a circuit, the relation between challenge

and responses becomes more complex than they were in their original form as they

35

Figure 3.5: Block diagram for the implemented Challenge Obfuscation technique
presented in [91] and replicated here.

are now a product of the input challenge (C), a nonce (↵), and the previously gen-

erated obfuscated challenge ((Ĉ(t� 1))). This CRP generation technique increases

the modeling complexity for would-be CRP-based attackers.

3.1.4 Other Countermeasures against CRP-Based Modeling Attacks

Analog PUF variants and challenge obfuscation are not the only protections

from CRP-based modeling. Other methods attempt to confuse or poison the mod-

eling algorithm. To do this they intentionally attempt to poison the responses once

a while, so the adversary model is fed with incorrect responses; thus results in poor

modeling of the PUF and induces mispredictions in the operation of the model.

One of the methods that is used to poison ML algorithms is the use of a mis-

leading PUF. In this methodology a ‘Fake PUF’ is implemented in the device and

challenges are queried on the decoy device. The queries of the Fake PUF are per-

formed between those of the genuine PUF such that an eavesdropping attacker will

36

collect illegitimate CRPs. If the attacker attempts to model a PUF with these CRPs

their model will fail at modeling the genuine PUF due to the poisoned dataset [35].

Poisoning takes a lead in another creative methodology for preventing CRP-

based modeling attacks utilizing adversarial ML techniques. In this methodology

the attacker’s ML modeling e↵orts are craftily poisoned with inputs that inten-

tionally create mistakes in the attacker’s model. This poisoning is performed in

the Adversarial PUF using a modified CRP technique which systematically flips

the output response for carefully chosen challenges to make the model intention-

ally make the wrong prediction [86]. Ebrahimabadi et al. [26] also used machine

learning to decide when to poison the PUF response such that it cannot be mod-

eled. This protocol level approach is used in authentication of IoT devices. Another

adversarial-learning based protection scheme against CRP-based attacks was pro-

posed in [54]. This scheme estimates the modeling accuracy that an adversary may

achieve and toggles the transmitted responses if the estimated accuracy is beyond

a pre-defined threshold value. Note that most of these methods protect the PUFs

against CRP-based modeling attacks, and don’t consider implications on the power

consumption of the device.

3.2 Side-Channel based Modeling

Various forms of side-channels such as acoustic [34], Radio Frequency/ electro-

magnetic [68, 73], and power [15, 57], may be exploited to compromise the security.

Side-channel based attacks can be exceptionally e↵ective in compromising ICs and

37

leaking sensitive data; particularly for PUFs the power side-channel is of interest.

In these attacks, rather than a set of CRPs being collected, underlying side-channel

characteristics are gathered.

For power-based modeling attacks, the power consumption (current draw) of

the circuit is collected along with the PUF response. More specifically, the side-

channel characteristic of interest is the current draw during the time that the PUF is

being queried until its response is stable. This information is collected for a number

of di↵erent challenge queries. This combination of power trace and response, creates

the trainable feature set for the ML algorithm. In this case, the actual challenge

does not matter, only the current draw and the eventual response [15,57] are needed

for modeling the PUF. This modeling is possible due to the current leakage of the

components that make up the PUF circuitry. Note that here the current draw of

the entire power trace is not required; only the power trace for those components

that clearly show the di↵erence between a response being a ‘0’ and a ‘1’ are needed.

It is important to note that the loading on the components a↵ects their current

draw so that with increased loading, the power consumption of the components is

higher [15, 57].

Modeling the PUF via its power traces is more e�cient than through its CRPs.

In the power-based modeling, a model can be directly trained on portions of the

power trace in which the components discern the response. If the noise of the

circuit is minimal, then the current draw of the critical components for discerning

the PUF’s response makes its response readily identifiable without modeling [15]. In

reality there will be systematic noise when collecting the power traces from the IC

38

containing the PUF. This noise includes the measurement noise as well as the current

draw of the other components and circuitry within the IC which exist outside of the

PUF circuit. In power attacks, the Signal-to-Noise Ratio (SNR) serves to represent

the feasibility of being able to attack a circuit. The generally accepted calculation

of SNR is presented in Equation 3.5 and is the ratio of the variance of the signal

(inter-variance) and the variance of the noise (intra-variance) [62, § 4.3.2].

SNR =
Var(Signal)

Var(Noise)
(3.5)

Research on the arbiter-PUF shows that a plausible SNR for a real silicon

implementation is around 1.81 [29].

39

Chapter 4: Self-PUF Attacks

This chapter pertains to the results and discussions on Self-PUF attacks. Self-

PUF attack data is collected from the same PUF that is intended to be attacked. For

instance CRPs or power traces collected from a PUF are used to attack the PUF

from which they were collected. These attacks are the traditional way in which

devices are compromised.

4.1 CRP-based Modeling Attacks

The conventional way to exploit PUFs via modeling is through the use of

their CRPs. While this type of attack is not novel, it is important to conduct

as a baseline. CRP-based modeling is an attractive method for exploiting PUFs

because it does not involve invasive manipulation of the device or in some cases

the device does not need to be physically accessible at all as the CRPs used for

device authentication can be eavesdropped and used for modeling the deployed

PUF. In other words, they are a straightforward type of attack to execute. This

straightforwardness makes CRP-based modeling attacks a focus for investigation

and for developing countermeasures. The CRP-based modeling attack results are

shown for two selected countermeasures: an analog PUF variant (the VTC PUF,

40

see Section 3.1.2), and a Challenge Obfuscated PUF (hereafter referred to as a CO-

PUF, see Section 3.1.3) alongside the results for a regular unprotected arbiter-PUF.

Before discussing the results of the attack, it is important to understand the threat

model.

4.1.1 Threat Model

In this attack an adversary is attempting to make a model of the PUF based

on its CRPs. The acquisition of the CRPs is usually performed when the chip is still

“open” (in its enrollment phase) to interrogate for any challenge. The attack occurs

afterward, when the IC has been deployed in a critical system, to retrieve valuable

information (in the post-customization phase). This process is shown in Figure 4.1.

Note that this attack can be also launched when a device is authenticated using a

server or a controller node through its CRPs, for example in IoT frameworks where

the CRPs are transferred via wireless communications and thus can be eavesdropped

by the adversary.

Figure 4.1: Threat model for CRP-based modeling attacks in which an attacker
collects CRPs, creates a model, and then deploys said model to exploit the IC.

41

4.1.2 CRP-based Modeling Results

What follows are the CRP-based modeling attacks for an unprotected arbiter-

PUF, the VTC PUF, and the CO-PUF. The details of the simulation environment,

logistics, and the data extraction are shared in Appendix A. The results are pre-

sented in terms of the accuracy of the attack. A simple method of assessing accuracy

is the ratio of the correctly predicted responses and the total number of responses

tested (as can be seen in Equation 4.11). Each set of results shares the number of

CRPs that are used for creating the model and the number used for testing.

Accuracy(%) =
Predicted Correctly

Total Tested
⇤ 100% (4.1)

Arbiter-PUF

The results for attacking the arbiter-PUF through its CRPs are shown in

Figure 4.2 (note that the axis starts at 95%). The results are for attacking a 64-bit

arbiter-PUF and are evaluated using 5000 randomly chosen CRPs. As shown, with

just 1000 CRPs the PUF’s response can be predicted correctly approximately 97%

of the time.

VTC PUF

Figure 4.3 shows the results of attacking a 64-bit instance of the VTC PUF.

Although the training accuracy is high the evaluation accuracy hovers a little over

50% (evaluated using 6000 CRPs). This accuracy is as expected for the protection

1
The accuracy equation is used for assessing the accuracy of all the attack results presented in

this research.

42

Figure 4.2: The accuracy of the CRP-based modeling attacks on a 64-bit arbiter-
PUF. Evaluated on 5000 CRPs.

provided by the VTC PUF and shows that it meets its goal of mitigating the CRP-

based model attack. As a point of interest the di↵erence in accuracy between the

training accuracy and the evaluation accuracy is likely due to overfitting of the

model. In order for the model to reach convergence in training it must essentially

learn the responses for the challenges seen in the training dataset. So the model

memorizes the result rather than finding the pattern required to use the model on

unseen challenges.

CO-PUF

The results of CRP-based modeling attacks on the CO-PUF are shown in

Figure 4.4. Here the model was evaluated on 5000 CRPs. Both the training accuracy

and the evaluation accuracy are very low. The training accuracy trends towards

50% and the evaluation accuracy is just over 50%. The evaluation accuracy is as

expected for the implementation of a PUF that employs challenge obfuscation, and

43

Figure 4.3: The accuracy of the CRP-based modeling attacks on a 64-bit VTC PUF.
Evaluated on 6000 CRPs.

the results confirm its mitigation of CRP-based modeling attacks. The low accuracy

in the training data shows that the obfuscation technique is e↵ective at manipulating

challenges in an unpredictable way. The training accuracy’s convergence to 50%

makes sense with the thought that there are more random samples being added

to the training data and therefore the model gets worse as it is unable to fit to a

pattern.

4.1.3 Discussions

There is value, as shown here and in literature, of mitigating CRP-based mod-

eling attacks however, there are issues with the solely focusing on such attacks. The

first issue in CRP-based modeling is the large number of CRPs required to create a

model of the PUF. An adversary would need considerable access to either the device

itself or its communications to gather the required amount of traces for an accurate

44

Figure 4.4: The accuracy of the CRP-based modeling attacks on a 64-bit CO-PUF.
Evaluated on 5000 CRPs.

model. The second issue is with the accessibility to the portions of the circuit that

would reveal the CRPs. After the device’s enrollment phase those traces are ren-

dered inaccessible through anti-fuses. Gaining access to the traces is still possible

through physical probing but only to the most sophisticated attacker as physical

manipulation may damage or change the PUF. Finally CRPs are rarely exchanged

in the clear; there is likely some form of encryption that prevents mere logging of

the CRPs to prevent eavesdropping as a feasible collection tactic. These issues make

practical CRP attacks improbable.

4.1.4 Contributions

From the stated CRP-based modeling results it is shown that:

1. The arbiter-PUF is attackable through its CRPs (as mentioned in previous

research studies [15, 74,75]);

45

2. Both the VTC PUF and CO-PUF are e↵ective countermeasures against CRP-

based modeling attacks.

The CRP-based modeling attacks are of interest as this type of modeling is

the conventional modus operandi of investigations on the security of PUFs. It is

therefore the most common vulnerability for the development of countermeasures.

4.2 Power-based Modeling Attacks

In power-based modeling attacks, information from the power side-channel of

the PUF is collected in tandem with the PUF’s response to create the model of

the device. The side-channel information gathered is the current draw of the device

referred to as a power trace. Instead of modeling the function using the challenge

response pairs, the physical characteristics of the power consumption or current

leakage of the device are used in modeling.

Before discussing the power attacks, it is important to point out that following

every instance of a PUF there will be system components that surround the PUF.

The particular system components of interest are those involved with using and

storing the response of the PUF. This interest in turn means that the arbiter-PUF

in Figure 2.4 is more accurately represented in a system as shown in Figure 4.5

with a register (Flip-Flop) and a load (simulated by an added capacitance C). The

rationale for the addition of these components is that whenever a PUF is being used

it will need to store the response in some way before it is either used in internal

logic or sent for authentication.

46

Figure 4.5: Arbiter-PUF with system components.

The process for querying a PUF is to provide the challenge to the switches then

the rising edge to the input and waiting for the response to become stable before

registering it in the output Flip-Flop. The period of time from the rising input edge

till the registration of the response is the period in time that the current is sampled

to create the power traces. Examples of power traces during the sampling period

are shown in Figure 4.6.

Figure 4.6: A collection of power traces for a 16-bit arbiter-PUF.

Observing the power traces with the structure of the PUF in mind there are

components that are integral to distinguishing the response of the PUF. These

components of course are the arbiter and the response Flip-Flop. Figure 4.7 shows

47

these components and highlights their leakage contributions to the power trace of the

device. It is these portions of the power trace which will reveal the most information

about the PUF’s response.

Figure 4.7: Components attributing to the current leakage of the PUF which reveal
the response.

4.2.1 Threat Model for Power-based Modeling

The threat model for power-based modeling attacks is shown in Figure 4.8.

An attacker monitors the power consumption of the device while it is in operation,

extracting the power for the periods of time that the PUF is being queried. These

traces, as previously mentioned, correspond to the physical operation of the device

and are used to train a model from which the response can be inferred. This model

can then be used to attack the device at a later time once it has been deployed in

a system of interest to the adversary.

48

Figure 4.8: Threat model for power-based modeling attacks.

4.2.2 Power Trace Analysis

The information discernible in the power traces of the device can be assessed

by the SNR of said traces. To calculate the SNR the originally presented equation

(Equation 3.5) is expanded in context to these power traces.

To represent the SNR in this way, suppose that there is a collection of i number

of power traces (x) with j number of samples for a response r. Then a per sample

mean and variance can be obtained for a response r through the following equations:

µr(j) =
1

N

N�1X

i=0

xi(j) , �
2
r(j) =

1

N

N�1X

i=0

(xi(j)� µr(j))
2 (4.2)

where r can be either 0 or 1 for a single bit PUF. The equations in 4.2 expand

the SNR equation to the following:

SNR(j) =
1

2

[(µ0(j)� µ0(j)+µ1(j)
2)2 + (µ1(j)� µ0(j)+µ1(j)

2)2]

[�2
0(j) + �2

1(j)]
(4.3)

49

For the investigations within this research the observation of the maximum

point of equation 4.3 is the principal concern.

From a vulnerability standpoint, traces with a high SNR are more likely to be

successfully attacked than those with low SNR. This rate of success is because the

signal, the di↵erentiability of a 0 and a 1, is high when the SNR is high as such the

SNR is a measure of the feasibility of an adversary’s attack.

Note that the SNR calculation only makes sense when there is noise introduced

to the power traces. For these results noise introduced by adding gaussian noise to

the extracted power traces. The process for adding noise is given in Appendix A.

4.2.3 Power-based Modeling Results

The results of Self-PUF power-based modeling attacks are shared below for the

arbiter-PUF, VTC PUF, and the CO-PUF. The details of the simulation environ-

ment, logistics, and the data extraction are shared in Appendix A. The accuracy is

still the ratio of correctly predicted results over the total number tested as shown in

the accuracy Equation 4.1. The gaussian noise added to these results was � ={2.5e-

4, 16e-4, 32e-4, 64e-4}. The noise levels were chosen to determine the level at which

the attack accuracy would start to degrade. The attack accuracy for targeting both

latch and Flip-Flop are discussed (with the exception of the VTC PUF). Each set

of results shares the number of traces that are used for creating the model and the

number used for testing.

50

Arbiter-PUF

The power-based modeling attack results for attacks on the arbiter-PUF are

shown in Figure 4.9. The presented results are for an instance of a 64-bit arbiter-

PUF trained on 500 power traces and evaluated on 5000. The SNR results are

presented in Table 4.1 for both the arbiter and Flip-Flop at each of the investigated

noise levels.

Without noise, attacking the arbiter has a very high level of success (> 99%).

When noise with � =2.5e-4 is added, the accuracy drops to just 90.4%. At greater

levels of noise the attack starts to fail because the signal is hidden by the noise

completely, as seen in Table 4.1. For the larger noise values the SNR becomes very

low.

The attack, when the Flip-Flop is targeted, is much more successful. The

SNR, from Table 4.1 for � =32e-4 and � =64e-4 is 0.08 and 0.023 respectively, are

very low yet there is still a high level of accuracy in the attack. The accuracy of

the power-based modeling attack dips to below 100% once the noise level reaches

� =32e-4. At � =64e-4 the accuracy falls to just below 90%.

The result of the attack on the latch and Flip-Flop show that arbiter-PUFs are

not only vulnerable to CRP-based modeling attacks but also those based on model-

ing the power. These attacks have been investigated in literature previously [15,57]

but it is presented here to be used as a point of comparison for eventual investiga-

tions in to countermeasures to the power-based modeling attack. The fact that the

attack can occur at SNR levels far below that seen in real devices is concerning as

it points to just how powerful these attacks are.

51

Figure 4.9: The accuracy of the power-based modeling attacks on a 64-bit Arbiter-
PUF. Trained on 500 traces and evaluated on 5000 traces.

Table 4.1: The maximum SNR for the traces related to the Arbiter-PUF’s arbiter
latch and Flip-Flop.

� = 2.5e-4 � = 16e-4 � = 32e-4 � = 64e-4

Latch 0.183488 0.006920 0.001671 0.001244

Flip-Flop 12.320019 0.308742 0.079990 0.022701

VTC PUF

The VTC PUF was proposed as a modeling-resilient counterpart of the arbiter-

PUF recently in Vijayakumar et al. [84]. As was shown in Section 4.1.2, these PUFs

are e↵ectively resistant to CRP-based modeling attacks. However, this research

attacked VTC PUFs for the first time and showed that these PUFs can be modeled

by monitoring their power consumption [50].

Before delving into the power-based modeling attacks, a discussion on the

power traces of the VTC PUF is necessary. The power traces for the VTC PUF

are di↵erent from those for the arbiter-PUF shown in Figure 4.6 due to it operating

based on analog voltages. The traces for the VTC PUF are shown in Figure 4.10.

Seen in this figure is a power spike when the response query starts followed

52

Figure 4.10: The power traces extracted from the VTC PUF.

by slight oscillations due to the transition through the VTC Blocks and analog

switches. The leakage from the arbiter operation can be seen midway through the

power trace characterized by the apparent switchbacks in the trace. The arbiter

operation is highlighted in Figure 4.11.

The results of attacking the aforementioned VTC PUF traces are shown in

Figure 4.12. These results are for the no noise situation of attacking the arbiter of

the VTC PUF. The accuracy of attacking the arbiter is approximately 83% when

2000 traces are used to model the PUF. There is only moderate increase in success

of the attack when increasing the number of attack traces to 8000 as the accuracy

only increases to approximately 85% in this case. The results of attacking the PUF

using its arbiter (latch) show that the PUF is vulnerable to power-based modeling

53

Figure 4.11: VTC PUF where arbiter operation highlighted.

attacks. The leveling o↵ of the result may show that there may be a limit to the

accuracy that can be achieved by attacking the latch. The misclassified responses

are very likely close to the boundary between being classified as a ‘0’ or a ‘1’ and

therefore are more di�cult responses to distinguish.

Figure 4.12: The accuracy of the power-based modeling attacks on a 64-bit VTC
PUF. Evaluated on 6000 traces.

Returning the attention to the traces, it can be seen via Figure 4.13 that the

outputs do create groupings in which the power gives away the response of the PUF.

54

Some mixing of the power traces for each response value occurs which is where the

model has di�culty distinguishing their value.

Figure 4.13: VTC PUF power traces with their response value highlighted.

CO-PUF

The CO-PUF, like the VTC PUF, was implemented to protect against CRP-

based modeling attacks [91]. This protection is provided by the fact that the attacker

does not have access to the actual challenge being given to the PUF rather the

CRP set they are working with contains the challenge that is observed before it is

obfuscated. This CRP set confuses the modeling algorithm because the challenges

don’t reflect the actual value of the switches used for the response query.

This addition to the PUF was very e↵ective in thwarting CRP-based modeling

attacks, however the technique of challenge manipulation serves little to no success

in doing the same for thwarting power-based modeling attacks. There is no existing

research on the power-based modeling of challenge obfuscation techniques outside

of that presented in [51]. The power-based modeling results suggest that these

55

types of modeling attacks circumvent such protections by bypassing the use of the

challenge entirely. If the challenge is not needed by the model to determine the

response of the PUF then such protections will not be e↵ective.

Figure 4.14 shows the accuracy of the power-based modeling attacks on the

CO-PUF. For attacks on the latch the accuracy is very high when there is no noise

present (again > 99%). When there is added noise of � =2.5e-4 the accuracy

drops to 88.8% and decreases ever closer to 50% for the higher noise levels. At

first glance, targeting the latch appears to be somewhat di�cult to attack in the

presence of additional noise showing again that it is not the best avenue for the

power-based modeling attack to be performed. However, if the attention is turned

to the system components in which the response Flip-Flop lies, the e↵ectiveness

of the attack becomes more evident. When attacking the Flip-Flop the results are

very promising; achieving 100% accuracy for no noise and the first two levels of noise

(� ={2.5e-4, 16e-4}. When � =32e-4 the accuracy only drops to 99.4% and when

� =64e-4 the accuracy drops to 87.4%. These accuracies are no di↵erent than those

seen by the unprotected arbiter-PUF showing that the challenge obfuscation is not

an e↵ective countermeasure for these attacks. As it is shown in these results, the

location or focus of the attack is highly important and can drastically change the

e↵ectiveness of the attack therefore it is important to know exactly when to launch

the attack, in this case it is the time that the Flip-Flop is queried.

The SNR of the power traces for the CO-PUF are shown in Table 4.2. At

� =2.4e-4, the noise level for which the modeling attack on the arbiter latch was

successful, the SNR is 0.157530. This result is far below the level seen in real silicon.

56

Figure 4.14: The accuracy of the power-based modeling attacks on a 64-bit CO-PUF.
Trained on 500 traces and evaluated on 5000 traces.

At the greater noise levels it can be seen that the SNR is significantly smaller showing

that the noise is masking the e↵ects seen in the latch. For the Flip-Flop the SNR

at � =32e-4 is 0.07999 which is also below the noise level seen in real silicon. The

low levels of SNR for which the attack is successful show, just like the arbiter-PUF,

how powerful these attacks are at compromising PUFs.

Table 4.2: The maximum SNR for the traces related to the Arbiter-PUF’s arbiter
latch and Flip-Flop.

� = 2.5e-4 � = 16e-4 � = 32e-4 � = 64e-4

Latch 0.157530 0.005831 0.001893 0.001463

Flip-Flop 12.320019 0.308742 0.079990 0.022701

4.2.4 Discussions on Launching Power-based Modeling Attacks on

Protected PUFs

The results showed that the arbiter PUF and its (supposed) resilient coun-

terparts were all vulnerable against power side channel attacks. Also the attack

57

required less information than CRPs to achieve a high accuracy of attack. Recall

that the CRP based modeling attacks required 1000 traces to achieve an accuracy of

97% (for this research’s implementation as it may vary slightly from one technology

to another) and from literature approximately 2500 to achieve 99% accuracy [74],

whereas the power-based modeling presented here achieved > 99% with just 500

traces. It is also observed that, even though the latch is attackable, the Flip-Flop is

a much better attack point on the PUFs. The Flip-Flop is such a great target that

when viewed without noise the response can be easily determined as seen in Fig-

ure 4.15. However, noise is unavoidable in real circuits therefore additional noise is

added to the power traces here before modeling the PUFs. Even with the additional

noise the leakage from the Flip-Flop is highly considerable. That being said the latch

is still important in investigations as it behaves as the arbiter determining the PUF

response based on the underlying physical manufacturing variations being exploited

(time delays for the arbiter-PUF, voltage levels for the VTC PUF). The Flip-Flop

is a system component and will always be present to register the response before

being used. However, to make the arbiter-PUF family resilient against power-based

attacks that target such the Flip-Flop, in this research a few circuit level modifica-

tions are proposed to the circuitry storing the PUF response [51] (discussed later in

this chapter).

Another interesting observation is that the size of the PUF does not matter

for targeting the leakage of the output Flip-Flop. Figure 4.16 shows power traces

for a 16-bit, 24-bit, and 64-bit arbiter PUF. In each set of traces the leakage of the

Flip-Flop is highlighted and shows that the leakage is independent of PUF size. This

58

Figure 4.15: A collection of arbiter-PUF power traces highlighting the distinguisha-
bility of the response based on the behavior of the Flip-Flop.

indi↵erence means that increasing the PUF size does not increase the resiliency of

PUF against power-based modeling attacks.

Figure 4.16: Power traces for di↵erent sized arbiter-PUF implementations highlight-
ing the presence of output Flip-Flop leakage.

The final observation that stands out from the results is that the arbiter-

PUF and CO-PUF have nearly identical results. This similarity should be expected

due to the fact that the CO-PUF is a modified version of the arbiter-PUF. The

modifications are also only placed on the challenge input and since the challenge

is settled in the switches before the PUF is queried for a response, the additional

circuitry does not change the power trace. This lack of change can be verified by

59

observing the power traces of the arbiter-PUF and CO-PUF as seen in Figure 4.17.

Comparing the SNR for the arbiter-PUF in Table 4.1 and that of the CO-PUF in

Table 4.2, indeed even the SNR observed for each of the noise levels is nearly the

same. From these observations it is assumed that the CO-PUF and the arbiter-

PUF display the same vulnerability to power-based modeling attacks. The same

observation is expected for other derivatives of arbiter-PUF such as XOR-PUF [93]

and FEED-Forward PUF [11].

Figure 4.17: The accuracy of the power-based modeling attacks on a 64-bit CO-PUF.
Trained on 500 traces and evaluated on 5000 traces.

The results of the VTC PUF showed that it was indeed vulnerable to the

power-based modeling attacks on the latch. Due to the leveling o↵ of the results

shown by increasing the number of training traces there may be a maximum achiev-

able accuracy of approximately 85%.

4.2.5 Aging E↵ects on Power-based PUF Modeling

The following section expands on the understanding of the PUF’s vulnerability

to power-based modeling attacks by observing how device aging a↵ects the accuracy

of the attack. The motivation for investigating the e↵ects of aging on the modeling

60

attacks is that an adversary very likely will not create and deploy the model at

the same time. This observation means that an age di↵erential, between the target

device and the model, will be unavoidable. As previously mentioned, transistors

degrade over time due to the stresses placed on them. The primary culprits of this

degradation are HCI and BTI which are simulated for the results presented here.

For the logistics of performing aging simulations see Appendix A. The variability

in the power traces due to these e↵ects is shown in Figure 4.18 from no aging (i.e.,

a fresh IC) to 20 weeks. Over the 20 week time period there exists a significant

variation in the power traces. A close up view of the traces show that as expected

there is larger variability early in the life of the IC.

In these results a model is created at a specific age of the device using data

collected from the PUF at that age. The model is then deployed on data collected

from the PUF at di↵erent ages. As an example a model of the PUF is created after

one week using data from that week. This model is then subsequently deployed to

predict the responses from the power traces of the PUF at those other ages.

Arbiter-PUF

Recall that when the attacker develops the model of the PUF there will be a

period of time before they are able to deploy said model to attack the device. The

e↵ects of this age di↵erence on the power-based modeling of the PUF were previously

uninvestigated. The results of attacking the arbitration latch of an arbiter-PUF over

time are shown in Figure 4.19. In these results a 16-bit arbiter-PUF was simulated

for twenty weeks and attacked with models developed at zero weeks, one week, ten

61

Figure 4.18: Observed power trace variability for the arbiter-PUF from no aging to
20 weeks.

weeks, and twenty weeks. These models were deployed against the other weeks to

get a measure as to how e↵ective they were at modeling the PUF over time. The

model created at week zero (the model of a fresh device) has limited usefulness

due to the fact that it is ine↵ective at modeling the PUF, since after just two

weeks the accuracy drops to approximately 65%. The model created at one week of

aging fairs a little better however the accuracy drops blow 90% after five weeks of

additional aging. The inaccuracy of these early developed models’ ability to attack

the di↵erently aged device puts a lifetime on them and their usefulness. At week

62

ten, the developed model shows much more stability the attack accuracy falls o↵

fairly gently and at week twenty the model is still able to predict the PUF’s behavior

with over 90% accuracy. The latter aged models perform better over larger periods

of times which expands their usefulness lifetime.

Figure 4.19: Accuracy for modeling attacks on 16-bit arbiter-PUFs (aged between
0 and 20 weeks) when the training model was extracted from an X-week old device,
where X2 {0, 1, 10, 20}. The portions shown with dashed lines represent the cases in
which the attacker uses the model of the PUF to extract the previous PUF responses.

VTC PUF

Investigating the e↵ects of aging on the analog counterpart of the arbiter-PUF

(i.e., VTC PUF) is performed in this thesis for the first time. Figure 4.20 shows the

results of attacking the arbiter of a 16-bit VTC PUF over twenty weeks. A model

of the VTC PUF was created for zero weeks, one week, ten weeks, and twenty

weeks and then deployed against the rest of the weeks. The results of modeling are

63

quite similar to those of the arbiter-PUF with early models performing poorly as

compared to models created using information from the latter weeks. As observed

in the figure, the fresh PUF model accuracy drops below 80% when deployed on

the PUF after one week. The model developed from the power traces at one week

of aging drops below 90% after the PUF has aged to five weeks. The power-based

model developed at ten weeks of aging is able to achieve over 90% accuracy when

deployed on power traces from week three to week twenty. Again this is similar to

the results shown by the arbiter-PUF.

Figure 4.20: Accuracy for modeling attacks on 16-bit VTC PUFs (aged between 0
and 20 weeks), when the training model was extracted from an X-week old device,
where X2 {0, 1, 10, 20}. The portions shown with dashed lines represent the cases in
which the attacker uses the model of the PUF to extract the previous PUF responses.

64

CO-PUF

Recall that the CO-PUF is an extension of the arbiter-PUF therefore its power

traces will follow the behaviors of the standard implementation of the arbiter-PUF.

This similarity is shown in Section 4.2.4. Thereby, similar to the arbiter-PUF, the

misalignment between the aging of the CO-PUF used to create the model and the

targeted CO-PUF results in a lower modeling accuracy.

4.2.6 Discussions on the Aging Impacts on Power-based Modeling

Attacks

The experimental results show that aging has a large e↵ect on the ability to

model a PUF via its power traces when the PUF’s arbiter (in this case an S-R latch)

is targeted. Models developed from power traces early in the PUF’s lifecycle have

di�culty achieving high accuracy in latter ages of the device as seen in the results

of both the arbiter-PUF and the VTC PUF. This phenomenon is not startling due

to the variations in the PUF created by aging; recall that the aging e↵ects are more

significant in the early stages of the device lifetime. Also as seen in the results,

the models created after the initial large variations due to aging appear to have a

window of usefulness. With the decreasing accuracy (however gradual it is) it seems

that after a period of time the model will fail to achieve the performance needed to

accurately model the PUF.

These results show that an adversary will have limited success if using a model

created from power traces from the early life of the device. Since the early period

65

of time is when the PUF is with the manufacturer and distributor this is a likely

time for an attacker to develop a model of the PUF to be later deployed. As it has

been shown this model may have limited usefulness. Furthermore an attacker likely

cannot wait too long before deploying the model as its accuracy degrades with the

age of the PUF.

4.2.7 Contributions in Power-based Modeling Attack Investigations

The above results confirmed that PUFs are vulnerable to power-based model-

ing attacks. Furthermore it was shown that countermeasures for CRP-based model-

ing do not protect against power-based modeling attacks which provides motivation

for extending countermeasure investigations to power-based modeling attacks. The

results of the aging simulations when targeting the arbitration latch showed that

there are e↵ects on the power-based models due to the age at which they are devel-

oped and deployed. Earlier age models perform poorly when deployed on the older

PUF, and there appears to be an inherent lifetime for the model’s usefulness when

targeting the arbitration latch. In summary this section shows:

1. the vulnerability of PUFs to power side-channel based modeling;

2. the ine↵ectiveness of CRP modeling countermeasures in preventing against

power-based modeling;

3. the e↵ects of aging misalignments targeting the arbitration latch between the

template and targeted PUFs on power-based modeling attacks.

66

Chapter 5: Modeling Multi-Bit Parallel PUFs

The operation of a PUF can be expanded to produce more bits to be used

for authentication and other applications, e.g., secret key generation. Certainly

this expansion must be done to authenticate devices since a simple ‘1’ or ‘0’ will not

di↵erentiate more than two situations. To generate multiple bit of response, One can

query the PUF multiple times providing di↵erent challenges each time, then utilize

a linear shift register on the output to capture the desired number of response bits

for the response bit vector [91]. This method utilizes the same PUF multiple times

which does not increase the di�culty of a power-based modeling attack. These

challenges can be provided externally or can be generated internally from the first

given challenge bit-stream. Another method for producing more response bits is

through multi-bit parallel PUFs where multiple instances of the PUF are resided in

the chip. Considering the area and power overhead of including several PUFs in the

chip, usually a combination of both methods are used, i.e., inclusion of a few PUFs

but repeatedly querying them. One may think of including of multiple PUFs in the

design with smaller size to impose less area and power overhead. Such an example

is shown in Figure 5.1. However, this makes the PUF structure more vulnerable to

CRP-based attacks.

67

Figure 5.1: The tradeo↵ between a single-bit PUF implementation and a multi-bit
PUF implementation whilst conserving the implementation footprint.

Accordingly, to conserve space on devices, as well as power consumption, it is

likely that the instances of PUF are limited to only a few in number. In multi-bit

parallel PUF implementations all instances of the PUF operate at the same time

which of course means that they will be drawing power at the same time and due

to e�ciency likely register their outputs at the same time. This timing means that

the leakages from the di↵erent components will all be present in the sampled power

trace. Comparison of the traces for a single-bit PUF and for a 2-bit response parallel

PUF are shown in Figure 5.2. Here it can be seen that the leakages in the power

traces overlap which motives us to investigate the power-based modeling attacks in

these parallel PUF implementations.

When performing power-based modeling attacks on parallel PUFs. If all re-

sponses are equally likely then the chances of randomly guessing the correct output

is 1
2# of Response Bits . For example for a 2-bit parallel PUF the accuracy of a chance guess

68

Figure 5.2: Power Traces for a single-bit arbiter-PUF and a parallel 2-bit arbiter-
PUF.

is 25%. This lower expected chance creates a lower bound for the attack accuracy

for multi-bit parallel PUFs.

It is noteworthy to mention that there are negligible e↵ects on CRP-based

attacks. Due to the fact that multi-bit parallel PUFs are multiple instances of the

PUF, each bit in the response can be modeled individually. The ability to model

each bit individually makes the CRP-based modeling attack similar to deploying on

multiple instances of the single-bit PUF.

5.1 Threat Model

The Threat model for this attack is similar to that shown in Section 4.2.1. The

adversary collects power traces and creates a model. The portion of the attack that

changes is that instead of attempting to infer a single response bit the adversary

must infer two response bits.

There are methodologies that an attacker can employ to increase the SNR of

69

their attacks. One such method is to repetitively play the challenges and average

their traces. In this process the same challenge is given to the PUF multiple times

and all of the power traces are averaged to reduce the overall SNR in the attack.

These repetitive queries will assist the attacker in increasing their attack accuracy.

5.2 Expansion to SNR Evaluations

To characterize the SNR of a multi-bit parallel PUF, the SNR Equation 4.3

needs to be expanded to include the additional bits, recall that this is the expansion

of the SNR from Equation 3.5. The SNR is still the ratio of the variance of the signal

over the variance of the noise however the individual points now include samples

from the expanded response space. If L is an individual point in the sample trace

then L0, L1, L2, and L3 are samples for responses of 00(0), 01(1), 10(2), and 11(3)

respectfully. This expanded SNR equation characterizes the distinguishability of the

responses and is used for analysis of multi-bit parallel PUFs with two response bits.

SNR =
Var([Mean(L0),Mean(L1),Mean(L2),Mean(L3)])

Mean([Var(L0),Var(L1),Var(L2),Var(L3)])
. (5.1)

A generalized version of the SNR equation for any number of bits can extrapolated

from Equation 3.5. Similar to Section 4.2.2 suppose that there is a collection of i

number of power traces (x) with j number of samples for a response r. Then a per

sample mean and variance can be obtained for a response r through the following

Equations 4.2. In this the response is any available response from a PUF therefore

70

the number of responses R is:

R = 2n (5.2)

where n is the number of parallel response bits (for a 2-bit parallel PUF n = 2

and r 2 {0, 1}, for a 4-bit parallel PUF R = 4 and r 2 {0, 1, 2, 3}). If r is the

individual response then the average of all the response means is:

µq(j) =
1

R

R�1X

r=0

µr(j) (5.3)

Finally, the SNR equation for any size (n) parallel PUF is as follows:

SNR(j) =
1

R
⇤
PR

r=0(µr(j)� µq(j))2PR
r=0 �

2
r(j))

(5.4)

5.3 Power-based Modeling Attack Results

The results of the power-based modeling attack on a single-bit PUF and a

multi-bit PUF (with two response bits) are shown in Figure 5.3. In these results

a 64-Bit two-bit response parallel PUF was implemented in addition to the previ-

ous results from a single-bit PUF. For these results gaussian noise was added for

� ={2.5e-4, 9.5e-4, 16e-4, 32e-4, 64e-4}. Here only the Flip-Flop was attacked as it

was shown to be a better attack point than the latch. The attack on the single bit

PUF (as shown before) was highly successful only decreasing in accuracy (to 90%)

when the highest added noise level was attacked. Comparing this to the results of

the two-bit parallel PUF there is a large di↵erence in the achieved attack accuracies

71

in the noise levels where � >2.5e-4. The accuracy decrease to at � >9.5e-4 to 95%

and continues decreasing to 55% when � >64e-4.

Figure 5.3: Power-based modeling accuracy for the single bit PUF and the Multi-bit
Parallel PUF (with 2-bits).

This decrease in accuracy shows that increasing the number of response bits

does increase the confusion of the power-based modeling algorithm. However 50% is

greater than the accuracy of randomly guessing the response bits. Figure 5.4 shows

the traces for the two-bit parallel PUF implementation when there is no added

noise with the responses colorized based on their value. As shown in the traces

for the Flip-Flop leakage there are four distinct trace lines, one for each response:

00 (red), 01 (blue), 10 (yellow), 11 (green). They appear at three apparent levels:

one for 00 (hamming weight=0), one for 01 and 10 (hamming weight=1), and one

for 11 (hamming weight=2). Since the levels for 00 and 11 are unique it can be

assumed that most of these are being classified correctly and most of the inaccuracy

is generated by di↵erentiating 01 and 10.

Figure 5.3 also shows the accuracy of the more sophisticated averaging attack

72

Figure 5.4: Two bit Parallel PUF power traces (no added noise) with the response
highlighted.

where the adversary uses multiple queries of the same challenge and averages their

power traces to increase the SNR. In this investigation the number of averaged traces

is 10. Here it can be seen that the averaging technique does in fact increase the

attack accuracy as the accuracy does not drop until � =32e-4 and only to 95%. The

accuracy when � =64e-4 is higher at 83%. The SNR calculated from Equation 5.1

can be seen in Table 5.1. It can be observed that the averaging technique increase

the SNR to levels greater than that of a single bit PUF implementation, and the

corresponding increases in accuracy show that it is equivalently attackable. With

averaging, the SNR seems to increase by a factor equal to the number of traces. In

this case the number of averaged traces is 10 and accordingly the SNR increases by

a factor of 10 as expected when dealing with averages of mean and variances from

independent and identically distributed random variables [40].

73

Table 5.1: The maximum SNR when the Flip-Flops are queried in the unprotected
parallel PUF with & without averaging.

� = 2.5e-4 � = 9.5e-4 � = 16e-4 � = 32e-4 � = 64e-4

Non-averaging 9.713419 0.658853 0.232567 0.062253 0.016153

Averaging 94.948925 6.666043 2.344949 0.589082 0.146669

5.4 Discussions

The results of the multi-bit parallel PUF show that increasing the parallelism

of the PUF implementations decreases the accuracy in straightforward power-based

modeling attacks. The accuracy can be boosted significantly through averaging the

power traces for repeated challenges. It is apparent that this averaging technique

also serves to increase the SNR by a factor equivalent to the number of traces

averaged.

The power traces from multi-bit parallel PUFs have apparent power levels in

the response traces which coincidentally correspond to the hamming weight of the

response vector. The hamming weighs are shown in Figure 5.5 overlaid on the power

traces from a single-bit PUF and a two-bit parallel PUF. The simultaneous switching

of the response Flip-Flop from a ‘0’ to a ‘1’ creates the apparent power levels which

in turn corresponds to the hamming weight of the response vector ranging between

0 and n where n is the number of bits in the response vector.

Extrapolating the levels for larger PUFs can be seen in Figure 5.6 which con-

tains the hamming weight for multi-bit parallel PUFs from one to four response

bits.

The knowledge of the hamming weight of the response vector is helpful in

74

Figure 5.5: Hamming weights overlaid on the power traces of a single-bit PUF and
two-bit parallel PUF.

Figure 5.6: Predicted hamming weights for the power traces at each Flip-Flop leak-
age level for increasing the number of multi-bit responses.

revealing which responses may be misclassified by the model. The model should be

able to find what the hamming weight of the response vector is and further modeling

can occur to successfully predict the response.

Indeed the hamming weight prediction does occur as can be seen in the traces

for a four-bit parallel PUF as seen in Figure 5.7. Correspondingly the results of

attacking said PUF are shown in Figure 5.8. These results show that increasing the

75

size does in fact create the predicted hamming weight bins and also increasing the

size of the PUF hampers the attack in its own right, however it is still vulnerable

to a sophisticated attacker.

Figure 5.7: Superimposing 50 traces of the 64-bit PUF in 4-bit parallel settings.
Note that HW(Resp) denotes the hamming weight of a 4-bit response Resp.

Although parallel PUFs are more di�cult to attack however due to area and

power overhead constraints large scale parallel PUFs cannot be readily implemented,

i.e., the number of the 1-bit PUFs are limited. The attacks can also be enhanced

through leveraging averaging techniques to increase the SNR and the overall at-

tackablity of the PUF, such as the averaging of the power traces. This averag-

ing technique creates a further basis for investigating specific countermeasures for

power-based modeling attacks (as is done in Chapter 7).

5.5 Contributions

The results of the power-based modeling of multi-bit parallel PUFs showed

that they could be successfully modeled through their power traces. It was also

shown that the accuracy of the power-based models were increased through averag-

76

Figure 5.8: The attack accuracy targeting a 4-bit response arbiter-PUF for various
noise levels. Note the accuracy for randomly guessing the output of a 4-bit PUF is
6.25%.

ing multiple power traces from the same challenge to increase the SNR of the attack.

Furthermore it was observed that the power traces realized in the Flip-Flop can be

characterized by the hamming weight of the response vectors which serve to reveal

characteristics of the response even when a misprediction of the model occurs.

77

Chapter 6: Cross-PUF Attacks

Normally when a PUF is attacked through its power traces the developed

model is used to attack the same PUF from which they were collected. In this thesis

we moved one step further and showed the feasibility of the Cross-PUF attacks in

which the power traces used to create the model are collected from one PUF and

the model is then used to attack another PUF. We first proposed these Cross-PUF

attacks in [49] as novel investigations into the PUF’s vulnerability to said attacks.

This attack can be successful as the power traces that are extracted are very similar

for PUFs realized from same GDSII file.1 The ability to attack any PUF with a

similar GDSII file gives the attacker the opportunity to build a model from a PUF

in their possession and attack all others. The ability to model and attack a PUF

in this way presents a significant vulnerability and urges the community to develop

strong countermeasures against such attacks.

Cross-PUF attacks are successful due to the similarities in the leakages ob-

served within the power traces from multiple PUFs (those that would be realized

from the same GDSII file) seen in Figure 6.1. In this figure the traces for two PUFs

are shown. At the end of the trace the leakages introduced by the Flip-Flop are

1
The GDSII file contains all of the information including geometries used to create an IC.

78

very similar. Furthermore the leakages introduced by the arbitration latch are also

similar, which provides motivation for attempting to attack one PUF with the model

created from another.

Figure 6.1: Power traces of two di↵erent PUFs superimposed to highlight their
similarities.

Note that cross attacks cannot be performed with a PUF’s CRPs considering

the unique fingerprints (CRPs) of PUFs. Indeed, if this type of attack were possible

then basis for using a PUF wouldn’t exist as they would not produce unique values.

6.1 Threat Model

The threat model for Cross-PUF attacks is quite interesting since the attacker

does not need access to the device prior to the attack. When the manufacturer

sells the IC, the adversary can acquire one of the devices and create a power-based

model. Other devices, made from the same GDSII file, will get sold and integrated

into critical systems. When the adversary comes across another IC with the PUF

realized from the same GDSII file, the previously created model can be deployed and

attack said device. This threat model is shown in Figure 6.2. This ability removes a

barrier for the attacker as they only need momentary access to the device to perform

their attack.

79

Figure 6.2: Threat model for the Cross-PUF attack.

6.2 Cross-PUF Attack Results

For the cross-PUF attacks five 16-bit arbiter-PUFs that all were realized from

the same design were simulated (see Figure 4.5 for the diagram of the arbiter-

PUF with system components). In these results both the arbitration latch and the

response Flip-Flop were targeted, their contributions to the power traces are shown

in Figure 4.7.

Attacks in the Absence of Noise

The results of Cross-PUF attacks using the leakage from the arbitration latch

are shared in Table 6.1. The accuracies highlighted in the diagonal of the table are

the results of Self-PUF attacks on the PUF (attacking the PUF with a model from

its own power traces). The other accuracies are for Cross-PUF attacks on other

PUFs. All of the Self-PUF attacks achieved accuracies above 99% rea�rming the

latch’s vulnerability to power-based modeling attacks. For the Cross-PUF attacks

the accuracy ranges from 94% to greater than 99%, showing that the PUFs’ arbiter

latch are vulnerable to the novel Cross-PUF attacks. When performing the Cross-

80

PUF attacks on the latch the traces had to be aligned; that is they had to be shifted

so the power trace samples corresponding to the latch leakage were presented to

the deployed model in similar fashions. As seen in Figure 6.1 the leakage from the

latches of di↵erent PUFs is not aligned. This misalignment is due to the variations

in delay before the arbitration latch. For Cross-PUF attacks to be successful the

leakage from the latch had to be shifted so that they were appropriately aligned with

the leakage of the modeled device. Without the realignment of the latch’s power

traces (as seen in Figure 6.3) the attacks failed.

Table 6.1: Accuracy of Cross-PUF attacks on the arbitration latch for each PUF
pair with no added noise.

Modeled

PUF

Traces used

for Training

Attacked PUF

PUF1 PUF2 PUF3 PUF4 PUF5

PUF1 200 0.9998 0.9605 0.9965 0.9997 0.9483

PUF2 200 0.9454 0.9987 0.9776 0.9517 0.9545

PUF3 200 0.9735 0.9997 0.9983 0.9775 0.9494

PUF4 200 0.9936 0.9700 0.9815 0.9975 0.9470

PUF5 200 0.9880 0.9951 0.9640 0.9855 0.9895

Figure 6.3: Zoomed traces from Figure 6.1, displaying the alignment (by shifting)
on the latch.

Turning the attention to the Flip-Flop component, the power traces for a

stated arbiter-PUF are shown in Figure 4.15 with the trace’s response highlighted.

It is apparent from this figure that the response outputs are clearly visible, as

81

previously shown, therefore this attack is trivial. This result reinforces that PUFs

are highly vulnerable to power-based modeling attacks perpetrated on the leakage

on Flip-Flop.

Attacks with Added Noise

To simulate the e↵ects of real circuits the same five PUFs were attacked with

added noise. To add a level of realism, gaussian noise with � ={2.5e-4, 9.5e-4, 16e-4,

32e-4, 64e-4} was added to the power traces post simulation. In these results 2,000

traces were used for training and tested was performed against 11,000 traces.

The results of Cross-PUF attack on the latch are shown in Figure 6.4 for

the various levels of added noise. In these attacks PUF-1 was used to develop

the model which was deployed on the remaining PUFs. With added noise with

� =2.5e-4 the attack was successful with Cross-PUF attack accuracies of 92% or

more. The accuracy significantly drops at the higher noise levels, likely due to the

noise completely masking the signal in the arbitration latch.

When focusing the attack on the leakage of the Flip-Flop the accuracy of

attack is 100% for � ={2.5e-4, 9.5e-4, 16e-4}. When � =32e-4 the accuracy is still

99% as shown in the graph of Figure 6.5. When the noise reaches � =64e-4 the

accuracy drops to between 82% and 89%. These results show that the Cross-PUF

attack targeting the response Flip-Flop is possible even in the presence of high levels

of noise. This observation reinforces previous notions that the Flip-Flop leakage is

an e↵ective attack point on PUFs for power-based modeling attacks, showing that

the leakage from the Flip-Flop is vulnerable to Cross-PUF attacks in the presence

of noise.

82

Figure 6.4: Accuracy of Cross-PUF attacks on the arbitration latch for various levels
of noise. PUF-1 was used to create the model and deployed against the other PUF
instances.

Figure 6.5: Accuracy of Cross-PUF attacks on the Flip-Flop for various levels of
noise. PUF-1 was used to create the model and deployed against the other PUF
instances.

To characterize the level of noise present in these attacks the SNR was calcu-

lated for each of the di↵erent levels of noise (see Table 6.2). Recall that Fukushima

et al. [29] showed that the SNR of a silicon implementation of an arbiter-PUF is 1.81.

83

The SNR for the latch when there were successful Cross-PUF attacks at � =2.5e-4

was 0.235. For the successful attack on the Flip-Flop at � =32e-4 the SNR was

0.078. Both of these levels of SNR are much lower than those seen in real silicon

implementations.

Table 6.2: The maximum SNR for the traces related to the PUF-1’s latch and
Flip-Flop.

� = 2.5e-4 � = 16e-4 � = 32e-4 � = 64e-4

Latch 0.235314 0.009083 0.002350 0.001593

Flip-Flop 12.320019 0.308742 0.079990 0.022701

6.3 Temperature e↵ects on Cross-PUF Attacks

The objective of this section is to see if the Cross-PUF attack is feasible when

there is a temperature misalignment between the modeled PUF and the target

one. We investigate the e↵ects of this temperature mismatch on the power-based

modeling of PUFs as well as the Cross-PUF attack [49]. This investigation is critical

due to the fact that an adversary attempting to model the PUF will likely not

perform the Cross-PUF attack when the devices are at the same temperature (indeed

this is true for Self-PUF attacks as well). This temperature misalignment may cause

failures in the modeling attack due to the changing behavior of the PUF at di↵erent

temperatures; thus need to be investigated. The temperature e↵ects on the power

traces for a single PUF are shown in Figure 6.6.

In Figure 6.6 it can be observed that the power traces for the PUF are con-

tracted in lower temperatures, i.e., the PUF operates faster. Despite the fact that

these traces are for the same PUF, the leakage induced by the latch occurs at a

di↵erent period in time. To achieve success for the Self-PUF attack the traces

84

Figure 6.6: Superimposition of 50 traces of PUF-1 under di↵erent temperatures to
observe the similarities in the collected traces.

have to be shifted to align the latch leakages similar to the process used to make

similar temperature Cross-PUF attacks successful. Since the e↵ect of temperature

misalignment on the latch leakage is similar to the innate variation between PUFs,

the same shifting process can be used for Cross-PUF attacks on devices of di↵erent

temperatures. The leakage created by the Flip-Flop still occur with the rising clock

edge therefore temperature has little e↵ect on the attack.

The results of attacking the latch and Flip-Flop are shown in Figure 6.7 and

Figure 6.8 respectively. These results show that the Self-PUF attacks, on both

the latch and the Flip-Flop, at di↵erent temperatures achieve similar accuracies for

all levels of noise. Comparing the results of the Cross-PUF attack on the latch

from Figure 6.4 to those presented in Figure 6.7 indicate there is little di↵erence in

the resulting accuracies due to the temperature misalignment. This observation is

similar when comparing the results in Figure 6.8 to those from Figure 6.5. These

results serve to show that temperature misalignment has little e↵ect on the ability

to perform power-based modeling attacks as well as Cross-PUF attacks.

85

Figure 6.7: The temperature misalignment modeling results for the Self-PUF and
Cross-PUF attacks targeting the leakage from the arbitration latch.

Figure 6.8: The temperature misalignment modeling results for the Self-PUF and
Cross-PUF attacks targeting the Flip-Flop leakage.

6.4 Aging E↵ects on Cross-PUF Attacks

Similar to the temperature misalignment, the e↵ects of aging must be investi-

gated. Aging misalignments are less controllable than temperature as the attacker

86

may not be aware of the exact operation of the device or its overall usage, therefore

aging misalignments between the target device and the device used as a reference are

inevitable when performing the Cross-PUF attacks. The results of the attack on the

latch are shown in Figure 6.9 and the results of attacking the Flip-Flop are shown

in Figure 6.10. For these experiments the reference PUF was trained using 1,000

power-traces and tested against 11,000 power-traces. The reference PUF (PUF-1)

was un-aged, whereas PUF-2 was aged from 0 to 24 months in two month incre-

ments. Comparing the Latch results of Figure 6.9 each successive two month result

shows little variability in the success of the attack. There is a slight decrease in the

accuracy of the attack for traces with noise of � =2.5e-4 going from 93% un-aged

to 88% at an age of 24 months. Furthermore, comparing these results with those

presented in Figure 6.4 shows that the accuracy of attack is very similar to those of

the unaged attack. The Flip-Flop results, shown in Figure 6.10, indicate that the

accuracy of the attack is much greater than those seen by attacking the latch. It is

similar in the fact that the results do not change from those seen from the attacks

absent of aging as compared to Figure 6.5. In fact the attack is so resilient that

there are negligible e↵ects from aging on the accuracy when attacking the Flip-Flop.

These results show that aging does not have a large e↵ect on the Cross-PUF

attacks of either the latch or Flip-Flop. They also confirm that the Flip-Flop remains

the better target for attack. Here it is important to recall that in Figure 4.18 the

traces of highest variability were from the young or new PUFs, therefore utilizing

the un-aged traces of the reference PUF, as was done here, should result in a worst

case scenario for these attacks.

87

Figure 6.9: The modeling accuracy for the Cross-PUF attacks on the original PUFs
targeting the latch at 80�C in presence of aging misalignments. The model was
built based on the power traces of the un-aged PUF-1 and used to attack PUF-2
operating at the same temperature.

Figure 6.10: The modeling accuracy for the Cross-PUF attacks on the original PUFs
targeting the Flip-Flop at 80�C in presence of aging misalignments. The model was
built based on the power traces of the un-aged PUF-1 and used to attack PUF-2
operating at the same temperature.

6.5 Temperature and Aging E↵ects on Cross-PUF Attacks

In the previous sections the e↵ects of aging and temperature were explored in

relation to the Cross-PUF attack. Here the e↵ect of both of these environmental

88

conditions are taken into account simultaneously. It is plausible that the attacker

may in fact not be able to align both the temperature and the age of the reference

PUF and the target PUF, therefore investigating the impact of attacking a PUF in

presence of both of these misalignments is required.

The results of attacking the latch with the combined misalignment are shown

in Figure 6.11. Interestingly there seem to be some e↵ect on the attack in this case

which was not the case separately (see Figure 6.7 for temperature and Figure 6.9

for aging). As seen in Figure 6.11 the accuracy of the high levels of noise remain the

same. However, the accuracy of the attack on traces with noise at sigma =2.5e-4

decrease from 90% down to 75% displaying a rather significant decrease.

For the Flip-Flop the results (see Figure 6.12) are similar to just tempera-

ture misalignments (Figure 6.8) and aging e↵ects (Figure 6.10). Here the result of

attacking the Flip-Flop is una↵ected by the combined misalignments.

Figure 6.11: The modeling accuracy for the Cross-PUF attacks on the original
PUFs targeting the latch in presence of both temperature and aging misalignments.
The model was built based on the power traces of the un-aged PUF-1 in 60�C, and
tested based on the traces extracted from the aged PUF-2 operating at 80�C.

89

Figure 6.12: The modeling accuracy for the Cross-PUF attacks on the original PUFs
targeting the Flip-Flop in presence of both temperature and aging misalignments.
The model was built based on the power traces of the un-aged PUF-1 in 60�C, and
tested based on the traces extracted from the aged PUF-2 operating at 80�C.

The takeaway from these results is that the accuracy of attacking the latch

is slightly e↵ected by the combined e↵ects of temperature and aging misalignments

whereas the Flip-Flop attack results are mostly una↵ected. These results make the

proposed attacks highly applicable according to the considered threat model, where

the adversary does not have to take any control of the temperature or age of the

target PUF, especially when targeting the Flip-Flop.

6.6 Discussions

Cross-PUF attacks on the arbiter-PUF proved to be successful even in the

presence of considerable noise showing that these attacks can be performed on PUFs

that are created with the same GDSII file. They also confirm that both the latch

and the Flip-Flop can be attacked, and certify that the Flip-Flop is the superior

90

attack point as displayed in the high levels of accuracy present in both the Self-PUF

and Cross-PUF results. Since these components (arbitration latch, output Flip-

Flop) are present in the derivatives of the arbiter-PUF, the Cross-PUF attack is a

vulnerability present in all of them.

Validity is added to the attacks on simulated traces by observing that the

attacks are performed at noise levels much higher than what would be seen in

real devices. This success provides confidence that the attacks would be viable if

performed on silicon implementations of the PUF.

Furthermore, Cross-PUF attacks are highly successful despite having a mis-

alignment in temperature and age between the modeled and attacked PUFs. This

observation makes the attack more realistic as the adversary may not be able to

control the temperature of the target PUF nor the age di↵erence between the de-

vices.

6.7 Contributions

This section showed the e↵ectiveness of power side-channel modeling based

attacks where the the target PUF and the PUF used for modeling are di↵erent

yet realized from the same GDSII file. This attack proved to be successful even

when the noise level is high and when there are temperature and age misalignments

between the devices. Finally the attack can be expanded to other derivatives of

the arbiter-PUF such as XOR-PUF and FEED-FORWARD PUF by targeting the

flip-flop in both structures would result in a similar attack accuracy.

91

Chapter 7: Countermeasures to Power-based Modeling Attacks

It has been shown that power-based modeling attacks are extremely powerful in

attacking PUFs. These attacks exploit the leakage of the arbitration latch and that

of the Flip-Flop component storing the PUF response. This Flip-Flop, as previously

shown, is the component of greatest vulnerability to power-based modeling attacks

when compared to the leakage from the latch. Due to the fact that an attacker

will focus on the most exposed attack vector, the countermeasures concentrate on

mitigating the vulnerabilities created by the Flip-Flop storage component.

In addition to launching successful Self-PUF and Cross-PUF attacks, this re-

search develops e�cient countermeasures to tackle such attacks. There are two

avenues to investigate mitigation of power-based modeling attacks. The first avenue

is to reduce the SNR of the leakage to levels that are indistinguishable by the mod-

eling algorithm. Reducing the SNR seen in the power traces sets out to ensure that

the modeling algorithm is unable to characterize the responses since the traces can

reveal less about the eventual response. The second avenue, to thwart power-based

modeling attacks, is to increase the unpredictability of the responses through tech-

niques that serve to confuse and poison the modeling program. In this technique

the model becomes corrupted by inputs that do not logically make sense with data

92

presented to and/or learned by the model.

The proposed countermeasures either attempt to reduce the SNR or increase

the randomness of the response output. The following are descriptions of the coun-

termeasure and the results of their implementation on PUF circuitry. Due to the

fact that all silicon implementations of PUFs will have systematic noise the following

levels of gaussian noise were added to the power traces post simulation: � ={2.5e-4,

16e-4, 32e-4, 64e-4}. For a single bit response PUF the ideal mitigation accuracy is

50%. At this accuracy the model is e↵ectively guessing the response therefore it is

the ideal accuracy for protected single bit PUF.

7.1 Self-PUF Countermeasures

7.1.1 Dual Rail Logic

Our first countermeasure is based on using Dual Rail Logic (DRL). The block

diagram for the methodology is shown in Figure 7.1. The S-R latch that makes up

the arbiter in the arbiter-PUF typically has a primary and complementary output

(Q and Q̄). In this mitigation method, both of these outputs feed separate Flip-

Flops: one is used for the output of the Flip-Flop whereas the other is used as a

decoy. The decoy Flip-Flop, by storing the inverted response, will present a leakage

that is complementary to that of the genuine response output. The complementary

leakage makes the power traces seen for a ‘0’ and a ‘1’ similar, and by doing so

reduces their SNR.

In the implementation shown in Figure 7.1 there are design characteristics that

93

Figure 7.1: Block diagram for the DRL Countermeasure.

must be accounted for: the loading on the primary response and the loading of the

decoy. To determine the best methodology for loading three cases were investigated:

a low balanced load, a high balanced load, and an unbalanced load. The values

of the capacitors simulating these loads are shown in Table 7.1. These loading

characteristics will determine the importance of loading on the implementation of the

DRL countermeasure. This countermeasure was inspired by methods in [62, § 7.3].

Table 7.1: Loading on the Capacitors for the DRL technique.
Loading C (fF) C 0(fF)

Low 0 0
High 250 250

Unbalanced 250 0

7.1.2 DRL Results

The DRL countermeasure was implemented on a 64-bit arbiter-PUF and was

assessed for levels of gaussian noise at � ={2.5e-4, 16e-4, 32e-4, 64e-4}. In these

results there were 500 power traces used for testing and developing the model and

5000 power traces were used to evaluate the model.

The results of the DRL countermeasure are shown in Figure 7.2. First, it can

94

be seen that there is considerably high accuracy of attack on the the unbalanced

load, with near 100% accuracy for � 32e-6. At the highest � of 64e-6 the accuracy

is still quite high at 88%. These results nearly identical to that of an unprotected

arbiter-PUF implementation when compared with the results from Section 4.2.3.

This result means that the unbalanced load provides no protection to the circuit.

Looking towards the balanced loading scenarios it can be seen that both the high and

low balanced loads are nearly identical. This observation means that the amount

of loading does not matter. For the noiseless traces, the model still achieves 100%

accuracy however in the presence of noise at � =2.5e-4 the accuracy starts to drop

to 93% for the low balanced situation and to 96% for the high balance situation.

At higher levels of noise the accuracy drops closer and closer to 50%. This drop in

accuracy shows that the DRL countermeasure can mitigate the power-based mod-

eling attack as the accuracies are less than an unprotected arbiter-PUF. However,

its mitigation is dependent having su�cient levels of noise in the circuit. Note that

in real-silicon there is noise. Therefore, the cases of no-noise or very little noise are

not realistic, and were used as basis for our experiments.

7.1.3 Randomized Initialization Logic

The next countermeasure is Randomized Initialization Logic (RIL). In this

countermeasure a Flip-Flop that contains a set input is used to randomly set the

Flip-Flop between challenge queries. This countermeasure involves connecting the

set input to a pseudorandom number generator which is seeded by the challenge

95

Figure 7.2: Results for implementing the DRL Countermeasure.

input. Note that the random bit can also be provided externally. The block diagram

of this countermeasure is shown in Figure 7.3.

Figure 7.3: Block diagram for the RIL Countermeasure.

By randomly setting the Flip-Flop between challenges the characteristics of

the leakage from the Flip-Flop change. Now instead of only transitioning from ‘0’

to ‘0’ or ‘0’ to ‘1’ it transitions from ‘1’ to ‘0’ and ‘1’ to ‘1’ as well. The high spikes

in leakage come from transitions of the Flip-Flop, originally that is only when the

response is a ‘1’ (the transition from ‘0’ to ‘1’). When the response is a ‘0’ (the

96

Flip-Flop stays at ‘0’) there is little leakage from the device. With random setting

transitions can occur with the Flip-Flop being a ‘0’ (going to a ‘1’) or a ‘1’ (going to

a ‘0’). Also low levels of leakages will be seen for ‘0’ to ‘0’ and ‘1’ to ‘1’ situations.

The additional transitions seen in the output serve to lower the SNR due to the

assumption that the model will have di�culty determining if the PUF response is

staying at ‘0’ or ‘1’, or if it is transitioning to or from a response of ‘1’.

7.1.4 RIL Results

The results of the power-based modeling attacks on a PUF with the RIL

countermeasure are shown in Figure 7.4. These results are quite promising. The

first observation to be made is that RIL protects the PUF even when there is no

noise present; the accuracy is 79%. As the noise gets higher the attack accuracy

decreases by about 5%. When at � =64e-4 the accuracy is only 60%. This result

shows that the countermeasure was successful at driving down the SNR to levels

low enough to create di�culties for the model to distinguish the response clearly.

Figure 7.4: Results for implementing the RIL Countermeasure.

97

7.1.5 DRILL - Combined DRL and RIL Countermeasures

The DRILL countermeasure investigates the results of combining the DRL

and RIL countermeasures to determine their combined e↵ectiveness at mitigating

power-based modeling attacks. The countermeasures were implemented together on

a 64-bit arbiter-PUF. For the DRL portion of the circuit a balanced capacitance

approach was chosen with both capacitors being set to 0fF . The implementation of

DRILL on the arbiter PUF is shown in Figure 7.5, with the portions of the circuit

pertaining to DRL highlighted in blue and those for RIL highlighted in yellow.

For the RIL connections it is important to note that the set input on both of

the Flip-Flops is directly connected to the pseudorandom number generator. These

connections mean that the Flip-Flops will be unset or set to the same value allowing

them to retain their complementary values and complementary leakages for which

they are valued in mitigated the attack.

Figure 7.5: Block diagram for the DRILL countermeasure combining the techniques
of the DRL (highlighted in blue) and RIL (highlighted in yellow) countermeasures.

98

7.1.6 DRILL Results

The results of the DRILL countermeasure are shown in Figure 7.6. The result

of the attack when no noise is present is actually worse (i.e., higher accuracy of

modeling) than when using the RIL countermeasure by itself. This result means

that there are underlying features of the DRL technique that reveal the challenge.

The di↵erence is likely the di↵erence in the process variations seen by the two

Flip-Flops which can be clearly observed when there is no noise present in the

circuit As mentioned earlier, in real circuits noise will always be present; thus the

no noise case is unrealistic. When noise is introduced the countermeasure actually

performs as expected. When � =2.5e-4 the accuracy of the attack on the DRILL

protected PUF is only 64%; a reduction of 10% lower than the RIL countermeasure

showing that it is more e↵ective at countering the attack with noise. For higher

noise levels the accuracy of the attack is approximately 50% the level at which the

model is e↵ectively guessing the response, indicating the countermeasure operates

as expected in high noise situations.

It is important to state that noise is not a countermeasure, it is a naturally

occurring phenomenon which will always occur in real systems.

7.1.7 Discussions on Self-PUF Countermeasures

The DRL, RIL, and DRILL countermeasures were e↵ective at mitigating the

power-based modeling attack on the PUFs for which they were implemented. For

DRL it is important to point out that the unbalanced load provided no protection to

99

Figure 7.6: Results for implementing the DRILL Countermeasure.

the circuit. It can be observed in Table 7.2 that the SNR of the DRL countermeasure

for the unbalanced loading situation and the unprotected arbiter-PUF are virtually

the same corroborating its ine↵ectiveness. Both the high and low balanced load

situations had nearly identical results. Together these facts show that the amount

of loading does not matter so long as the loading is balanced. This observation is

important since a portion of DRL is a decoy Flip-Flop. When implementing the

PUF for use, this decoy may be forgotten and therefore may unintentionally be left

unloaded creating an imbalance.

RIL provided protection even to the noiseless traces. The protection provided

by RIL was successful at minimizing the SNR. As shown within Table 7.2, the

levels of are significantly less than the SNR in the unprotected PUF. The di�culty

in the RIL countermeasure is ensuring that the pseudorandom number generator’s

operation does not inadvertently reveal more information of the circuit1.

1
This is out of scope for these investigations.

100

Note that in real silicon the existence of noise is unavoidable. Therefore, our

DRILL countermeasure is highly powerful in real silicon. Once noise was introduced

to the circuit the countermeasure performed well providing even better protection

than the RIL countermeasure.

Table 7.2: The maximum SNR for the traces when the Flip-Flop is queried in
presence of the proposed countermeasures.

� = 2.5e-4 � = 16e-4 � = 32e-4 � = 64e-4

Unprotected Arbiter-PUF 12.224361 0.299846 0.079410 0.021712

DRL H. Bal. Load 0.766351 0.020974 0.005704 0.001650

DRL L. Bal. Load 0.431002 0.010695 0.004800 0.001697

DRL Unbal Load 10.760024 0.285023 0.079133 0.022343

RIL 0.420705 0.068503 0.022047 0.007547

DRILL 0.034492 0.001739 0.000761 0.000970

7.2 Countermeasures for Multi-bit Parallel PUF Implementations

When dealing with implementations of multi-bit parallel PUFs the previously

mentioned countermeasures need to be expanded. Also the circuitry within the

parallel PUF presents an opportunity to develop additional countermeasures. The

two new countermeasures are Randomized Arbiter Swapping (RAS) and Random

Response Masking (RRM). These two countermeasure serve to attempt to confuse

and poison the power-based modeling of the PUF by introducing more randomness

in the response.

7.2.1 DRILL

Recall that the DRILL countermeasure combines the DRL and RIL coun-

termeasures. This combination creates complementary switching Flip-Flops (from

101

DRL) and randomly sets the Flip-Flops to increase the switching characteristics

that are observed by the registering the response (RIL). This technique again serves

to reduce the SNR to make the response indistinguishable through the PUFs power

traces. The implementation for the DRILL technique on a two-bit parallel response

PUF is shown in Figure 7.7. Extension of the countermeasure is fairly straight-

forward as the countermeasure is just implemented on the outputs of both of the

PUFs.

Figure 7.7: Block diagram for the DRILL countermeasure combining the techniques
of the DRL (highlighted in blue) and RIL (highlighted in yellow) countermeasures.
Shown for a multi-bit parallel PUF.

7.2.2 Randomized Arbiter Swapping

The RAS countermeasure takes advantage of the multiple PUF outputs in the

parallel PUF. Each output of the PUF is fed into two multiplexers that randomly

swap the outputs of the PUF. The select lines of the multiplexers are connected to

102

a pseudo random number generator to provide the random value for switching. If

swapped then the response of PUF-0 becomes the response of PUF-1. This technique

serves to poison the model of the PUF such that the response vector bits, ‘01’ and

‘10’ become indistinguishable by being randomly swapped. The swapping must be

reversed during the processing of the response when it is being used.

Figure 7.8: Block diagram for the RAS Countermeasure.

7.2.3 Random Response Masking

Figure 7.9 shows the block diagram for the RRM countermeasure. It takes

the output of each of the implemented PUFs and XORs them with a bit randomly

produced by a pseudo random number generator. This algorithm straightforwardly

produces an output that is meant to confuse the modeling algorithm by randomly in-

verting the response value. The model should not be able to determine the response

at a level that is beyond a chance guess. Like RAS the e↵ects of the countermeasure

on the response must be reversed in post processing of the response.

103

Figure 7.9: Block diagram for the RRM Countermeasure.

7.2.4 Results of Countermeasures for Multi-bit Parallel PUFs

This section discusses the results of the various countermeasures for a two bit

response parallel PUF. Recall that the probability of guessing the correct response

of a two-bit parallel PUF is 25%. At this accuracy the model is e↵ectively guessing

the response therefore it is the ideal accuracy for a protected PUF.

As previously discussed, an adversary can average the power traces for multiple

trace collections of a single challenge to boost the SNR of the attack. This method-

ology is utilized here to assess the e↵ectiveness of the countermeasures under this

more sophisticated attack. The power traces within these results had added gaus-

sian noise of � ={2.5e-4, 9.5e-4, 16e-4, 32e-4, 64e-4} and all results were extracted

from a 64-bit challenge two-bit parallel response arbiter-PUFs with the stated coun-

termeasure.

104

DRILL Results

The results of the DRILL countermeasure for a two-bit parallel PUF are shown

in Figure 7.10. The results of the non-averaging power trace modeling attack show

that there is 100% accuracy when attacking traces with noise equal to and less than

� =2.5e-4. The higher level of noise experience modeling accuracies closer to the

ideal protected circuit accuracy of 25%. This result shows that in su�cient noise, if

the adversary cannot gather traces for averaging, DRILL works as a countermeasure.

Figure 7.10: Results for implementing the DRILL countermeasure for the Multi-bit
PUF.

When the adversary uses traces averaging to increase the SNR the results get

worse as expected. For no noise and � =2.5e-4 there is 100% accuracy in the attack.

At � =9.5e-4 the accuracy decreases slightly to 95% and then drops further to 67%

at � =32e-4 on its way to the ideal chance accuracy. Clearly DRILL is less e↵ective

when averaging is employed but the accuracy eventually heads towards 25% when

there is su�cient noise.

105

Note that the DRILL countermeasure does mitigate the power-based modeling

attack in real silicon measurement (in presence of realistic noise). As it will be seen

(in Chapter 8, the operating noise of a real implementation corresponds to noise

levels of � >16e-4 and for these levels of noise DRILL preforms well.

RAS Results

The RAS countermeasure attempts to confuse/poison the model developed

for predicting the response. The results of the model on a RAS protected two-bit

parallel arbiter-PUF are shown in Figure 7.11. The non-averaging results show that

there is an accuracy of about 75% across all cases except where the power trace

is completely hidden amongst the noise at � =64e-4 where the accuracy drops to

50%. Even when averaging is employed the accuracy is stable at 75%. This result

makes sense given the understanding of the implementation of the countermeasure.

The response values are being randomly swapped between the two PUFs therefore

the response vector of ‘00’ and ‘11’ will be unchanged. If the modeling algorithm

is e↵ective it will correctly predict these two sets of outputs giving it an accuracy

of 50%. The remaining response outputs are ‘01’ and ‘10’ which can be randomly

swapped since there are just two outputs here the accuracy of guessing is these

responses is 25%. It can be deduced that total model accuracy of 75%. In this case

it is the combination of the accuracy of predicting ‘00’ and ‘11’ as well as guessing

the ‘01’ and ‘10’ responses.

From these results it can be said that the RAS technique confuses the modeling

algorithm but only for responses of dissimilar value.

106

Figure 7.11: Results for implementing the RAS Countermeasure.

DRILL+RAS Results

To expand on the results protections o↵ered through DRILL and RAS these

results look at how they can be perform when used in tandem. By using both the

goal is to utilize the benefit of the reduction in SNR from DRILL and the confusion

techniques provided by RAS to reduce the modeling accuracy.

The results of these investigations are shown in Figure 7.12. When there is no

averaging involved, the accuracy of the attack steadily decreases from an already

low accuracy of 63% without noise towards the ideal protection accuracy of 25%

with increasing noise. This result is very similar for the accuracies of the attack

with averaging starting with the no noise situation with only 64% accuracy. The

decline with increasing noise is more gradual however there is certainly diminished

accuracy in the attack.

The similarity between the results with and without the averaging technique

are exciting due to the fact that it means that there is a base level of protection

107

provided by the combined countermeasures. Furthermore, previous results showed

that by using RAS only certain responses were capable of being protected. However,

by combining RAS and DRILL, there is indeed di�culty in all of the responses being

predicted.

Figure 7.12: Results for implementing the combined DRILL and RAS countermea-
sures.

RRM Results

The RRM technique is setup to provide completely random masking of the

response bits, which acts to poison the modeling algorithm with responses that will

upset its predictions. Since this protection is an ideal situation for countermeasures,

ideal chance prediction results are expected. As shown in Figure 7.13 the results of

RRM are all the ideal chance guess accuracy of 25%. This result confirms that the

best the model can do is guess the response. This methodology is highly e↵ective

at mitigating the attack.

108

Figure 7.13: Results for implementing the RRM Countermeasure.

7.2.5 Discussions on Countermeasures for Multi-bit Parallel PUFs

The DRILL countermeasure proved to be successful at mitigating power-based

modeling attacks when the noise level was � >16e-4 when implemented on a two-bit

parallel PUF. The countermeasure also successfully achieved its purpose of reducing

the SNR of the Flip-Flop (as seen in Table 7.3) and was e↵ective for high noise

levels.

Table 7.3: The maximum SNR for the proposed DRILL Protected PUF with and
without averaging.

� = 2.5e-4 � = 9.5e-4 � = 16e-4 � = 32e-4 � = 64e-4

Unprotected Non-averaging 9.713419 0.658853 0.232567 0.062253 0.016153

Unprotected Averaging 94.948925 6.666043 2.344949 0.589082 0.146669

DRILL Non-averaging 0.034776 0.00476 0.002327 0.001941 0.001105

DRILL Averaging 0.185653 0.025787 0.011142 0.004322 0.001901

For RAS and RRM it does not make sense to observe the SNR due to the

fact that their basis as a countermeasure does not attempt manipulation of the

PUF’s SNR. In other words the SNR will be the same for these techniques. The

109

two methods of confusing the modeling algorithm are e↵ective within the bounds of

their technique. RAS will only e↵ectively protect the prediction of response vectors

of ‘01’ and ‘10’, and ‘00’ and ‘11’ will be revealed since swapping them provides

no protection as they are the same. For RAS, the maximum level of protection

of 75% was achieved. For RRM, all of the responses are protected and the results

achieve the ideal accuracy of a countermeasure for a two-bit parallel response PUF of

25%. These accuracies assume that the bit or bits from the pseudo random number

generator cannot be leaked.

Added to the options was the combined DRILL countermeasure with RAS.

This option served to both reduce the SNR as well as poison the modeling algorithm.

The combination of these two provided reasonable protection against power-based

modeling attacks. Moreover, since the accuracies were stable between the normal

modeling attack and the averaging modeling attack, the countermeasure provides

some resiliency to this more sophisticated attack unlike either of the countermeasures

alone.

The proposed countermeasures that reduce the SNR of the traces (DRL, RIL,

and DRILL) are self contained to the PUF itself and can be used as is. These

countermeasures are ideal for the instances where self containment is a requirement

for how the PUF will be used. The countermeasures that are meant to poison the

operation of modeling algorithm (RAS, RRM) all require some post processing o↵

the PUF to reverse the e↵ects of the countermeasure. These countermeasures are

ideal for PUFs that need to remain compact and where there is extra processing

power on the system using the PUF result. Moreover, all of our countermeasures

110

have a very low cost for implementation: the DRILL countermeasure adds only two

Flip-Flops, RAS adds just two multiplexers, and RRM’s overhead is an XOR gate

per instantiated PUF. The low amount of additional logical components are added

to the PUF thereby conserving the area and power overhead as much as possible.

7.3 Cross-PUF Attack Countermeasures

In this section the DRILL countermeasure is thoroughly investigated as a pro-

tection mechanism against Cross-PUF attacks. Before discussing the results recall

that the DRILL countermeasure provides protection through the combined DRL and

RIL methodologies which seek to reduce the SNR of the leakage within the power

consumption of the device. These results are focused on attacks to the response reg-

istration Flip-Flop, as the Flip-Flop is an easier target than the arbitration latch.

7.3.1 DRILL Results

The results of protecting against Cross-PUF attacks using DRILL are shown in

Figure 7.14. These results show that DRILL is successful at mitigating the attack

when the noise is greater than sigma =2.5e-4 after which the resulting accuracy

drops from around 90% to between 35% and 68%. Notably the accuracy does not

diminish at noise levels � >16e-4 meaning that ML algorithm is randomly selecting

the response of the PUF in these higher noise levels. Comparing these results

to those of the unprotected results in Figure 6.5 it can be seen that the DRILL

countermeasure certainly mitigates the Cross-PUF attack.

111

Figure 7.14: Cross-PUF attacks targeting the Flip-Flop in five PUFs equipped with
the DRILL countermeasure in the presence of di↵erent noise levels. 1,000 power-
traces of PUF-1 were used for training. 11,000 power traces were deployed for model
validation in each case. All PUFs operate at 80�C.

7.3.1.1 E↵ects of Temperature and Aging Misalignment on Cross-

PUF Attacks

Much like the previous results presented in Chapter 6, it is important to explore

the uncontrollable environmental e↵ects such as temperature and aging since the

adversary may not be able to control these variables. First the e↵ects of temperature

variability are shown in Figure 7.15. In these results PUF-1 operating at 60�C is used

to create the model and this model is used to attack all of the PUFs (including the

Self-PUF attack) operating at 80�C. These results are very similar to those presented

in Figure 7.14 showing that temperature has a trivial e↵ect on the accuracy of the

attack. Not only do these results show the lack of e↵ect for each of the Cross-PUF

112

attack results but also they confirm this for the Self-PUF attack since PUF-1 at

80�C is also attacked.

Figure 7.15: The modeling results for the Self-PUF and Cross-PUF attacks targeting
the Flip-Flop for the DRILL protected PUFs operating at 80�C. The model was built
based on PUF-1 operating at 60�C.

Second, Figure 7.16 shows the results of the Cross-PUF attack with aging

misalignment between the reference PUF and the target PUF. In these results a

model was made using the power consumption of an unaged PUF-1 and used to

attack PUF-2 over 2 years of age every two months. Throughout the results it

can be seen that the accuracy of attack at each age has little variation from one

another. The absence of variation shows that similar to the previous result of aging

misalignments aging has little e↵ect on the outcome of the attack. Moreover there

is little e↵ect on the accuracy of the attack when compared to Figure 7.14.

The final situation that could be seen by an attacker is a combined misalign-

ment in the temperature and age of the reference and target PUFs. It is very likely

113

Figure 7.16: The modeling accuracy for the Cross-PUF attacks targeting the Flip-
Flop of a DRILL protected PUF at 80�C in presence of aging misalignments. The
model was built based on the power traces of the un-aged PUF-1 and used to attack
PUF-2 operating at the same temperature.

that the attacker would see both of these when performing the attack. The results

of the combined misalignment temperature and aging are shown in Figure 7.17. The

accuracy of the attack is shown for an unaged PUF-1 reference PUF operating at

60�C and PUF-2 aged for two years (at two months increments) operating at 80�C.

These results show that the accuracy drops for added noise of sigma =2.5e-4 from

approximately 90%, for the results when the temperature is the same, to around

80% when there are di↵erences in age and temperature. The accuracy of the attack

at greater levels of noise is relatively unchanged, again this lack of change shows

that the algorithm is guessing the response bit in these attacks.

The contribution of these investigations show that, much like the ability to

perform the Cross-PUF attack (as seen in results seen in Chapter 6), a designer

can perform protection from the attack using DRILL with the knowledge that said

protections will be minimally e↵ected by environmental e↵ects. Moreover, if there is

114

Figure 7.17: The modeling accuracy for the Cross-PUF attacks targeting the Flip-
Flop of a DRILL protected PUF in presence of both temperature and aging mis-
alignments. The model was built based on the power traces of the un-aged PUF-1
in 60�C, and tested based on the traces extracted from the aged PUF-2 operating
at 80�C.

no control over the environmental conditions, the adversaries ability to attack may

actually be hampered further.

7.3.2 Cross-PUF Countermeasure Discussions

The results in this section show that DRILL is an e↵ective countermeasure to

Cross-PUF attacks. There are some interesting characterizations of the presented

results that should be discussed. First, note that in Figure 7.14 there is a large

variability in the accuracy of the attack across the multiple PUFs at noise levels

where � �16e-4. This variability is due to the bias on the response output (known

as uniformity) created by the technological dispersion of the PUF. Technological

dispersion is not something that, in this instance, should be compensated for since

it is due to this variability that the PUF generates its random values. The uniformity

115

of the PUFs are shown in Table 7.4.

Table 7.4: Uniformity of the PUF instances used in the assessment of the DRILL
countermeasure.

Percent of Response = 0 Percent of Response = 1

PUF-1 36.18% 63.82%

PUF-2 60.99% 39.01%

PUF-3 31.25% 68.75%

PUF-4 14.44% 85.56%

PUF-5 70.10% 29.90%

As the table shows, the uniformity of the PUFs are varied about the desired

50% mark. This fact is important because it shows that the design of the PUF is

not inherently flawed rather the instances of the PUF have biases, towards a 0 or

1, related to their process variations. These biases are reflected in the results of the

Cross-PUF attack of Figure 7.14 in the variability of the accuracy. In the results it

can be seen that where the bias is similar the accuracy is higher i.e., since PUF-1 is

bias towards response of 1 the attack accuracy of PUF-3 and PUF-4 are also higher

due to their bias towards a response of 1. There are three important facts that are

highlighted from this:

1. the bias is varied about 50% for all PUFs showing there is not a problem with

the PUF design/architecture but that this is due to process variations of the

PUF;

2. the accuracy of the attack is varied about 50%, since the biases of an unseen

PUF are unknown to an attacker therefore the bias provide little information

on whether the attack will be more or less successful for a new PUF instance;

3. since these results indicate that the attack is mitigated by the use of the

116

DRILL countermeasure, and there exist uniformity bias in the individual PUF

instances, DRILL is e↵ective even when these biases exist.

The results show that the DRILL countermeasure provides protection despite

variations in temperature and misalignments in age. Again it is important to note

that the environmental e↵ects are not a protection from an attack however this

characterization is important knowledge for a designer.

7.4 Contributions

In this section countermeasures for power-based modeling attacks were dis-

cussed. Each countermeasure was characterized by the goal it was trying to achieve:

either reducing the SNR to where the response could not be predicted from the

traces and/or attempting to confuse or poison the modeling algorithm. Combina-

tions of the countermeasure served to combine the advantages of the separate coun-

termeasures. Tradeo↵s between the countermeasures were also reviewed to provide

guidance in their usage. Additionally, by using DRILL, a PUF’s vulnerability to

Cross-PUF attacks can be mitigated even in the presence of temperature variations

and di↵ering ages of the reference and target devices.

117

Chapter 8: Physical Implementation Results

The results presented thus far have pertained to attacks which occurred on

simulated PUF instances. To add an element of realism to these results gaussian

noise was added to the collected power traces from the simulations. This noise

approximated the noise that is observed by the IC in which the PUF is implemented

including the components which make up the PUF itself. These results showed that

there exists a pervasive vulnerability in modeling the PUF behavior although it is

supposed to be unclonable. Although these results are compelling, their real silicon

implementation requires investigation. The transfer of these results to a physical

platform and subsequent successful attack provides conclusive evidence that these

attacks are feasible on real physical instances of PUF circuitry. To perform these

attacks, we implemented multiple arbiter-PUFs on an FPGA.

This chapter shows the results of attacking real silicon instances of the arbiter-

PUF within an FPGA for both Self-PUF and Cross-PUF attacks. Attacks on Multi-

bit Parallel PUFs implemented in an FPGA are also investigated herein. These

attacks are performed on unprotected and DRILL protected PUFs (see Chapter 7

Section 7.1.5 for an overview of DRILL). A revised methodology for performing these

attacks is required for success. The attack does not change very much, however due

118

to some of the eccentricities of data collection trace alignment is required for a

successful Cross-PUF attack. Note that this methodology is similar to the shifting

of traces required previously when attacking the latch.

8.1 Attack Methodology for FPGA Implemented PUFs

To attack the traces collected from the FPGA implemented PUFs the method-

ology is somewhat similar to that performed in simulation, however there are some

additional steps that are used to successfully execute the attacks. The traces are

collected during the PUF’s operation, that is the period of time in which the rising

edge propagates through the PUF, the response is arbitrated, and then the response

is registered in the Flip-Flop. The principle focus of the attacks, much like before, is

during the period of time in which the Flip-Flop is active, therefore the only portion

of the traces which are associated with the phenomenon are used. When performing

the Cross-PUF attacks, the traces are assessed if they need to be shifted to align

the principle leakages created by the PUF’s Flip-Flop. At this point the traces can

be attacked in the traditional manner in which they were attacked for the simulated

traces. The process just described is shown in the block diagram of Figure 8.1.

The attacker for this threat operates much in the same way as was mentioned

in Section 6.1. This threat model, as can be recalled, is that the attacker is capable

of collecting the power traces of a device with the PUF implemented within the

system. This attacker can create a model of the PUF within their possession and

then use that model to attack a previously unseen PUF for unobserved challenges.

119

Figure 8.1: Block diagram of the attack methodology for the PUF instances in
FPGAs.

When performing the aforementioned attack the inputs to training and the

inputs for testing and evaluation are randomized to ensure that there are not arti-

facts from the order in which the challenges were given to the PUFs. Likewise none

of the challenges used in training were used in performing the test and evaluation

(i.e., attacking) the PUF. While not necessarily a component of the methodology it

is important to note that the FPGA board used for the implementation has a built

in amplification circuit. This circuit performs some analog filtering of voltage while

also providing 20dB of gain to the recorded signal [4].

8.2 FPGA Implementation Overview

The utilized Sakura-G FGPA board contains a Xilinx Spartan-6 FPGA. This

device is composed of many slices of FPGA logic which is shown in Figure 8.2. The

structure of the slice consists of four identical Look-Up Table (LUT) structures which

120

implement the programmable logic for the device1. Each LUT structure shares a

common clock (CLK), clear (CE), and set-reset (SR) signal.

Figure 8.2: Structure of Xilinx Virtex-6 Slice. The LUT logic structures use shared
CLK, CE, and SR inputs [5].

The structure of the arbiter-PUF must be carefully placed into these structures

to ensure that all of the multiplexers (switches) and the interconnections within the

arbiter-PUF chain are identical. The placement for the switch within the slice is

shown in Fig. 8.3.

The implemented PUF was developed with consideration to balancing its uni-

formity [59] and its uniqueness from other PUF instances [58]. The arbiter-PUF

FPGA implementation is further documented in Appendix A.4. Also note that the

metrics of the implemented PUF are relayed in this appendix as well.

1
There are many other structures within an FPGA. The slice and LUT structures are shown

here as they are the primary means of implementing the PUF within the FPGA.

121

Figure 8.3: Placement of a switch structure within the LUT components of a slice.

8.3 Unprotected PUF

In this section the result of attacking the unprotected instances of the FPGA

implemented PUF are detailed. For these results five identical PUFs were imple-

mented within the FPGA albeit in di↵erent locations resulting in di↵erent physical

characteristics to produce five unique PUF instances. The first observations to be

made on the e�cacy of the attack is the indistinctive nature of the PUF output,

which can be seen in the traces presented in Figure 8.4. The traces presented here

are unlike those of the simulation in the fact that the output of the traces cannot be

discerned from mere observation the traces for a resulting 0 or 1. Nevertheless, by

following the attack process described in Section 8.1, the five FPGA implemented

PUFs were attacked. The results of these attacks are shown in Table 8.1.

It can be seen in the table that the success of the Self-PUF attack ranges from

92.62% to 94.72%, showing that the attack is successful when attacking a PUF with

a model created from traces collected from itself. Furthermore the attack accuracy

122

(a) Full length of the recorded power traces. (b) Power traces focused on the power con-

sumption of the Flip-Flop.

Figure 8.4: Traces for the unprotected PUF instance. There are 200 total traces
shown for PUF-1.

Table 8.1: Accuracy of the Self-PUF (bold) and Cross-PUF attacks for the unpro-
tected PUFs by using SVM with the shift-based alignment. Training was performed
with 1000 traces.

Modeled

PUF

Attacked PUF

PUF-0 PUF-1 PUF-2 PUF-3 PUF-4

PUF-0 0.9387 0.9326 0.9115 0.9260 0.9235

PUF-1 0.9180 0.9472 0.9048 0.9360 0.9250

PUF-2 0.9038 0.9257 0.9262 0.9158 0.8938

PUF-3 0.9048 0.9343 0.9121 0.9309 0.9059

PUF-4 0.9393 0.9325 0.9069 0.9247 0.9433

of the Cross-PUF attack ranges from 89.38% to 93.93%. These accuracies also show

that the Cross-PUF attack is just as successful as that of the Self-PUF attack,

undermining the uncloneabilty concept associated with the properties of a PUF as

one PUF should not reveal information about another.

123

8.3.1 Discussions on attacking Unprotected FPGA PUFs

First, as previously noted, the attack is successful on physically implemented

PUFs. This success is concerning as it undermines the security presented by the

PUF. The results previously seen in simulation are confirmed by those seen in the

real silicon implementation within the FPGA.

To properly compare to the previous results we observe and compare the SNR

of the traces from each of the five implemented PUF instances. Recall that the

SNR is the ratio of the signal over the noise present in the collected data and the

equation for its calculation is shown in Equation 4.3. The maximum SNR for each

of the PUFs is shown in Table 8.2.

Table 8.2: Maximum SNR of the five unprotected PUFs implemented within the
FPGA

PUF Inst. PUF-0 PUF-1 PUF-2 PUF-3 PUF-4 Avg. All

Max SNR 0.282 0.228 0.161 0.195 0.072 0.188

Recollect that the SNR experienced in the simulated traces with added noise

(from Table 6.2) ranged from 12.32 to 0.023 for a � =2.5e-4 to � =64e-4. More

specifically the average SNR appears to indicate that the appropriate added noise

figure is between � =16e-4 (SNR=0.309) and � =32e-4 (SNR=0.080). This SNR

range indicates that our simulations were in fact within the noise range of a real

device.

Again, these results indicate that the attack is successful for both the FPGA

implementation confirming what is seen in the simulation. Comparing the FPGA

implementation results seen in Table 8.1 with those of the simulation (seen in Fig-

124

ure 6.5), there is a slight decrease in expected accuracy for the SNR range indicated.

The simulation results are near 100% for these SNR levels whereas the FPGA re-

sults are in the low 90% range. This discrepancy is likely due to di↵erences between

the simulation being perfect such as consistent sampling of the devices at a highly

precise moments in time and the ability to sample the device at a higher frequency.

8.4 Protected PUF

Also implemented within an FPGA were protected instances of the PUF. The

primary means of protection implemented were through the DRILL protection mech-

anism. The focus on DRILL is due to its shown e↵ectiveness in simulation which is

desirous of confirmation of these results in real-silicon implementations, such as the

FPGA implementations here.

Similar to the unprotected results there were five FPGA implementations of

the Arbiter-PUF protected with the DRILL countermeasure studied. The DRILL

countermeasure is described in Section 7.1.5. This protection, as described before,

utilizes Dual-Rail Logic on the arbiter primary output and its inverse as well as

Random Initialization Logic on both of the implemented Flip-Flops to lower the SNR

of the PUF response output. The traces resulting from one of the implementations

are shown in Figure 8.5. As seen in the figure the response is not readily viewed

from observing the trace alone which was similar to the observation made about

the unprotected traces, therefore adding the protection did not incur any anomalies

that would reveal the result.

125

(a) Full length of the recorded power traces. (b) Power traces focused on the power con-

sumption of the Flip-Flop.

Figure 8.5: Traces for the DRILL protected PUF instance. There are 200 total
traces shown for PUF-1.

We followed the methodology discussed in Section 8.1 to launch Self-PUF

attacks (using their own power traces for modeling) and Cross-PUF attacks (using

the model of one PUF to attack another) on these PUFs. The results of these

attacks are shown in Table 8.3.

Table 8.3: Accuracy of the Self-PUF (bold) and Cross-PUF attacks for the PUFs
protected by DRILL. Training was performed with 1000 traces.

Modeled

PUF

Attacked PUF

PUF-0 PUF-1 PUF-2 PUF-3 PUF-4

PUF-0 0.6394 0.4868 0.5819 0.5199 0.5386

PUF-1 0.5015 0.6074 0.4803 0.4525 0.5238

PUF-2 0.5739 0.4761 0.7368 0.5002 0.5002

PUF-3 0.5001 0.4528 0.4751 0.5586 0.4743

PUF-4 0.5444 0.5397 0.4714 0.5038 0.6002

Ideally if DRILL provides protection to the PUF the results of attacking should

be no better than a best chance guess, that is 50% when choosing between a ‘1’ or

‘0’ for the response of the PUF. For the Self-PUF attacks the accuracy is slightly

higher than would be expected for a protected PUF with the average being 62.84%.

126

However, this attack percentage would not yield enough accuracy from the attacked

PUF to provide fruitful information to the attacker. Overall, the accuracy drops

30% from about 93% for attacking an unprotected PUF instance thus providing

considerable vulnerability mitigation to the circuitry. The countermeasure did much

better when launching Cross-PUF attacks where the average attack accuracy is

50.49% which is expected from a properly protected PUF.

8.4.1 Discussions on attacking Protected FPGA PUFs

The first takeaway of the results from DRILL protected PUFs is that DRILL

provides protection for both the Self-PUF and Cross-PUF attacks. These results

verify what is seen within the simulation results presented in Section 7.3, which is

the fact that DRILL provides protection to the PUF circuitry in realistic scenarios.

The maximum SNR of the protected PUF is shown in Table 8.4. It can be

seen that the DRILL countermeasure achieves its objective of lowering the SNR of

the PUF’s power traces. Furthermore it can be seen that the PUFs with a higher

attack accuracy have a higher SNR, i.e., PUF-2 has a Self-PUF accuracy of 73.68%

and an SNR of 0.055, both of which are considerably higher than the other PUFs.

There are two points that can be made from this observations; first the SNR is a

reasonable estimate of the attackability of the PUFs, and second that a high SNR

of a single PUF does not compromise other PUFs.

127

Table 8.4: Maximum SNR of the five DRILL Protected PUFs implemented within
the FPGA

PUF Inst. PUF-0 PUF-1 PUF-2 PUF-3 PUF-4 Avg. All

Max SNR 0.0377 0.0034 0.0549 0.0070 0.0149 0.02358

8.5 Multi-bit Parallel PUFs

In Chapter 5 attacks on Multi-bit Parallel PUFs were investigated and dis-

cussed from implementations based in SPICE simulations. Correspondingly the

countermeasures for power based modeling attacks on parallel PUFs were shared in

Chapter 7 Section 7.2. To complete the investigation of these sorts of PUFs they

were also implemented within the fabric of the FPGA. Two instances of unprotected

and two instances of DRILL protected Multi-bit Parallel PUFs were implemented

for investigation. Note that the implementation is the same as the single bit im-

plementation however two simultaneous PUFs are triggered at the same time and

produce their responses within the single clock cycle. Therefore, the power recorded

during this time corresponds to the operation of these two PUFs with the naturally

occurring systemic noise.

8.5.1 Results of attacking Multi-bit Parallel PUFs within FPGAs

Much like before it is important to observe the power traces of the investigated

PUF. The power traces for the unprotected PUF are shown in Figure 8.6(a). This

figure focuses on the period of time in which the response Flip-Flops are active and

the responses cannot be distinguished from pure observation of the power traces. In

128

Chapter 5 we also noted that depending on the level of noise the Hamming Weight

of the response may be readily observed in the traces. However it is not apparent

in the observed traces from the FPGA. The traces shown in Figure 8.6(b) are for

the DRILL protected PUF instance and display a similar phenomenon to those of

the unprotected parallel PUF. The greatest di↵erence is in the face that at around

750 samples there is a clear perturbation amongst all responses for the PUF. This

event does not reveal the response as all of the traces are the same. It is likely due

to the dual Flip-Flops operating simultaneously increasing the leakage during the

registration of response.

(a) Power traces of the unprotected PUF-0 instance (⇡100 traces).

(b) Power traces of the DRILL protected PUF-0 instance (⇡100 traces)

Figure 8.6: Power traces for the PUF-0 Multi-bit Parallel PUF instance zoomed to
highlight the Flip-Flop operation.

129

The results of Self-PUF attacks on Multi-bit Parallel PUFs are shown in Fig-

ure 8.7. In these attacks 5000 traces were used for modeling the PUF and the model

was validated on 7000 traces to get the accuracies displayed here. The first thing

that can be observed is the high rate of attack accuracy on the unprotected PUF

at 83.5% and 91.8% for PUF-0 and PUF-1 respectively. This result shows that the

Multi-bit Parallel PUF is indeed vulnerable to the same sorts of power based mod-

eling attacks as its unparallel counterpart. The second thing to note is that there

is a large decrease in accuracy for the PUFs protected with the DRILL circuitry.

Here the accuracy for attacks on the protected PUFs drops to 32.7% and 42.22%

for Protected PUF-0 and Protected PUF-1 respectively. This sharp decrease in the

accuracy of the attack shows that the DRILL countermeasure is e↵ective in pro-

tecting against power-based modeling attacks on parallel PUFs implemented within

FPGAs.

Figure 8.7: Results of attacking unprotected and DRILL protected Multi-bit Parallel
PUFs. 5000 traces were used for training.

130

The accuracy of the attack for each individual two-bit response is shown in

Table 8.5. The individual responses for the unprotected PUFs range from 62.58%

to 96.72% for PUF-0 and for PUF-1 they range from 88.25% to 94.64%. These

results show that it is easier to infer the responses of 00 and 11 than 01 and 10

which is somewhat expected, as these values will produce the highest and lowest

leakages. This observation is not true for the protected PUFs where the Dual Rail

Logic portion of DRILL levels out the leakages with the inverted value Flip-Flop.

From Table 8.5 it can be seen that the protection holds for the multi-bit PUF

instance as there is not any response representation that is predicted abnormally

more than another. The accuracy from each response ranges from 29% to 36.41%

for the DRILL Protected PUF-0 and from 37.91% to 48.26% for PUF-1.

Table 8.5: Multi-bit Parallel PUF predictions of individual responses from imple-
mented PUFs for when 5000 traces were used for training.

PUF Inst. Response
Percent Correct

Unprotected Protected

PUF-0

00 0.9439 0.3349

01 0.7039 0.3641

10 0.6258 0.3255

11 0.9672 0.29

PUF-1

00 0.9308 0.4826

01 0.8825 0.3791

10 0.9021 0.4201

11 0.9464 0.4097

The takeaway from these results is that the parallel PUF instances are attack-

able in real-silicon however DRILL is an e↵ective countermeasure for these sorts of

attacks.

131

8.5.2 Discussions on attacking Parallel PUFs

Power based modeling attacks on unprotected parallel PUFs were shown to

be e↵ective. This high rate of success occurs despite the fact that there was no

power trace averaging which was used in the simulated PUF results in Section 5.3.

This di↵erence shows that the real implementation of the PUF is more vulnerable

than expected and is likely due to the eccentricities of real circuitry. Here each of

the parallel PUFs implemented together will have variations which if not paired or

matched will reveal which bit is producing certain artifacts of the power consumption

observed by the device. The attacker can take advantage of these variations to

determine what the response bits of the parallel PUF are, and indeed does by

performing the attack.

Table 8.6 shows the SNR of the parallel PUFs. In this table it can be seen that

the average SNR of the unprotected PUF is 0.147 and the average of the DRILL

protected PUF is 0.026. For each bit of each PUF the SNR was lower than its

unprotected counterpart showing that the DRILL protection reduced the SNR as

was expected. In simulation the SNR of the traces for a parallel PUF were shown

in Table 7.3. From this table the unprotected PUF the SNR of the PUF was 0.233

when the noise was � =16e-4 and 0.062 when � =32e-4. Therefore, the level of

noise in the simulation was similar to that shown in the real implementation. Also

note that this similarity existed for the FPGA implementation of the single bit PUF

previously shared.

From the results on the Parallel PUF it can be seen that it is more di�cult

132

Table 8.6: Maximum SNR of Multi-bit Parallel PUFs implemented within the FPGA

PUF Inst. Unprotected DRILL Protected

PUF-0
Resp. Bit 0 0.175 0.021

Resp. Bit 1 0.136 0.011

PUF-1
Resp. Bit 0 0.138 0.069

Resp. Bit 1 0.138 0.003

Average 0.147 0.026

to attack however it is still vulnerable to power-based modeling attacks in its un-

protected state. Therefore, to thwart an attacker some countermeasure for these

attacks should be considered by the designer. As shown here, DRILL certainly

provides some mitigation to the overall attack.

8.6 Contributions

The primary contribution of the FPGA implemented PUF results is the con-

firmation that the simulation correctly identified a critical vulnerability in PUF

circuitry. The FPGA implementation results confirm that PUFs can be attacked

though both Self-PUF attacks as well as by Cross-PUF attacks utilizing the power

consumption of the device. The FPGA implementation of the Multi-bit Parallel

PUF was also confirmed to be vulnerable in its real-silicon implementation. The

SNR is confirmed as an indicator that the a device may be vulnerable to power con-

sumption attacks. Finally, it was confirmed that the DRILL countermeasure lowers

the SNR of the PUF’s power consumption and ultimately protects the device from

Self-PUF and Cross-PUF attacks as well as attacks on Multi-bit Parallel PUFs.

133

Chapter 9: Summary and Conclusions

This chapter is a review of the previous chapters, reminder of the contributions

of this work, and a summation of the conclusions of the presented investigations.

9.1 Recapitulation

This research investigated the susceptibility of PUFs to power based side-

channel attacks and determine the extents of its vulnerability. Initial investigations

were performed on Arbiter PUFs to compare with traditional attacks based on CRP

modeling. These results showed that power based side-channel modeling was more

e↵ective and required less information to perform the modeling. These investigations

were expanded to supposed model resistant PUFs (a challenge obfuscated PUF and

the VTC PUF) showing that although they protect against CRPs they do not

prevent power based modeling attacks.

The work presented here focuses on the registration of the response bit in a

Flip-Flop, a critical component required for using the PUF’s response. Perform-

ing the investigations on a PUF’s power consumption exposed a new vulnerability

wherein the attacker can attack one PUF with the information of another by mod-

eling the power consumption related to the operation of the Flip-Flop responsible

134

for registering the PUF’s response. This threat model is an innovative way to ex-

ploit PUFs, which extends the list of threats regarding “physical unclonability”

described in Clause 5.5.7 of ISO/IEC 20897-1:2020 [42]. The simulation results

were very compelling showing a high level of accuracy in all modes of the attacks

performed. These attacks were furthermore investigated by varying in age as well as

temperature variation and the results showed that there is still a high level of success

despite this misalignments. This finding is a crucial point in understanding as an

attacker does not need to worry about such factors to perform a successful attack.

Also investigated in simulation were Multi-bit Parallel PUFs. The characteristics of

their responses were analyzed and discussed along with showing that these types of

PUFs are also vulnerable to these power based modeling attacks as well.

Refocusing the e↵ort from attacking to defending, several countermeasures

were investigated and discussed showing varying degrees of protection. These coun-

termeasures were based either on reducing the SNR seen in the power traces or

confusing/poisoning the model with erroneous values. A proposed countermeasure

was more heavily investigated, which combined the Dual Rail Logic and Random

Initialization Logic, coined DRILL, to significantly reduce the SNR and mitigate the

attack on the PUF. The lightweight countermeasure DRILL can be added to all of

the PUF instances investigated including the Multi-bit parallel PUFs. In simulation

DRILL su�ciently accomplishes the aforementioned goal of reducing the SNR and

mitigating the attack in realistic scenarios i.e., situations in which there is systemic

noise in the system like those seen in real devices. Furthermore DRILL performs this

goal despite the temperature and age variation of the devices. In the evaluation of

135

Multi-bit Parallel PUF the e↵ectiveness of Random Arbiter Swapping and Random

Response Masking were also useful in protecting the PUF from attack. Utilization

of the DRILL and RAS countermeasures together were particularly e↵ective in pro-

tecting the PUFs. This combination showed that the combination of poisoning the

modeling algorithm and SNR reduction was e↵ective.

To support the simulation results and provide verification of their e�cacy the

arbiter-PUF was implemented in hardware via an FPGA. Multiple PUF instances

were implemented on a Sakura board and the power consumption of the device was

recorded during the PUF’s operation. The results confirm that these power based

modeling attacks do in fact occur on real devices. The results show that SNR is also

an indicator of how successful an attack of this nature will be. Investigation of the

DRILL countermeasure was also performed in the FPGA. These results confirmed

that the countermeasure decreased the SNR of the device and in doing so thwarted

the attack on the implemented PUF.

9.2 Review of major Contributions

These are the contributions of this work, reiterated from the introduction to

this work.

• Show the vulnerability of PUFs (in particular the arbiter-PUF and its family)

to power side-channel based modeling attacks;

• Compare the e↵ectiveness of the power side-channel based modeling attacks

and the CRP-based modeling attacks;

136

• Show the e↵ect of environmental conditions (e.g., temperature) as well as aging

on the power side-channel based modeling attacks;

• Show the ine↵ectiveness of countermeasures tailored against CRP-based mod-

eling in preventing power-based modeling attacks and develop appropriate

countermeasures against such attacks;

• Develop Cross-PUF attacks for the first time and show their e�ciency in

modeling the PUFs behavior;

• Investigate the e↵ect of temperature and aging misalignments in the e�ciency

of the Cross-PUF attacks for both unprotected and protected variants;

• Launch successful power side-channel based modeling attacks on multi-bit par-

allel PUFs;

• Launch power-based attacks on the unprotected variants of single-PUFs, Cross-

PUFs, and parallel PUFs realized in FPGA as well as their protected coun-

terparts equipped with the proposed DRILL countermeasure and show the

e↵ectiveness of the proposed countermeasure.

9.3 Directions of Future Work

Protecting and securing hardware is an unending challenge much as it is for

the investigation shared here. There are some suggested expansions of the research

presented in this work. The next exploration which would be investigations of the

Arbiter-PUF presented here within ASICs. An ASIC implementation would be ideal

137

as the PUF would be implemented with the actual transistors that are expected to be

used for each component instead of the lookup tables that are used within FPGAs.

Realistically this investigation would provide a comprehensive look at these sorts of

attack as designers really only have these two avenues, FPGAs and ASICs, in which

to implement the PUF.

In this work only power based modeling attacks were investigated however

Electromagnetic (EM) attacks could also be of interest. These EM attacks could

be used to show if the response storage Flip-Flop can be compromised in a similar

fashion and determine if this component poses an even greater vulnerability. More-

over it would be interesting to determine if Cross-PUF attacks can be perpetrated

with using the EM signatures of the device.

Tangentially related to this research an in depth comparison between realis-

tic power measurements and those performed in the SPICE simulations would help

future research. An in depth comparison will provide more confidence in the sim-

ulation results and in particular a comparison of the SNR levels of the device with

systemic added noise. If a characterization can be made then simulation results can

be used more readily for research.

9.4 Conclusion

This work provided investigations on the resiliency of PUFs to power based

modeling attacks. CRP focused countermeasures require further mitigations to pre-

vent these sorts of attacks. Furthermore these sorts of power based modeling attacks

138

expose a vulnerability previously thought impossible, that is the ability to attack one

PUF with information collected from another. This sort of vulnerability should be

cognizant to designers and end-users of PUFs. Lightweight countermeasures launch

as those proposed in this work should be used to prevent attackers from success-

fully launching these attacks, especially when investigations suggest that varying

temperature and di↵ering device age have little e↵ect on these attacks.

139

Appendix A: Simulation Environment and Data Collection

The following describes the simulation environment, data processing, and anal-

ysis techniques.

A.1 Simulation Environment

The various circuit designs for this work are implemented at the transistor

level utilizing an open-source NANGATE library for 45 nm technology [2]. The

software used to perform the simulations is Synopsys HSPICE.

Within the simulations it was necessary to create variations in the transistor

instantiations that would replicate the manufacturing process variations that would

occur in a 45 nm process in commercial use. These variations were performed via

Monte-Carlo simulations with gaussian distributions for the following: transistor

gate length L : 3� = 10%, threshold voltage VTH : 3� = 30%, and gate-oxide

thickness tOX : 3� = 3%. Unless otherwise noted all simulations took place with

the operating temperature of the device at 80�C.

To perform the simulation, HSPICE requires the development of a Circuit

Netlist, the actual circuit design for which the simulation is desired. Also required

is the target Technology Library as well as the Input and Environmental Parameters

140

(operating temperature, simulation time, input signals, etc.). These three items feed

the HSPICE simulation which runs the circuit for the desired time and provides the

requested circuit signal outputs. Running this type of simulation is equivalent to

simulating the operation of a fresh device (no-aging). This process is presented in

the flowchart shown in Figure A.1 [45].

A.1.1 Aging Simulations

Synopsis HSpice has a built in capability known as MOSFET reliability analy-

sis (MOSRA) which is used to induce the e↵ects of HCI and BTI, the primary aging

e↵ects of concern, within the simulation tool. Specifically the MOSRA Level 3 is

used to capture aging e↵ects. This type of simulation is an empirical model of the

devices and captures the e↵ects of HCI and BTI on the threshold voltage VTH and

drain-source current Ids [80].

The aging simulation di↵ers from the normal simulation process in that it

requires two steps where in the first step (so-called pre-stress) the aging-induced

change of the electrical characteristics (e.g., threshold voltage) of the transistors

are extracted and in the second step (i.e., post-stress) these degradation of device

characteristics are translated to performance degradation at the circuit level. Aging

simulation also requires a few more input parameters (the simulation time-steps, the

longevity of the simulation, etc.). In the pre-stress simulation MOSRA assesses and

calculates the electrical stress placed on the simulated transistors at each of the re-

quested time intervals. In the post-stress simulation the device is simulated running

141

at the previously calculated stress level providing information on operation changed

due to said stress [45]. Note that the simulation times for aging are discussed when

those results are presented.

Figure A.1: Simulation Process Block Diagram for performing both normal (no-age)
and aging simulations [45].

A.1.2 Simulation Processes

In the simulation of each PUF, the input parameters are carefully controlled

to allow the proper operation of the PUF implementation. Each simulation is set

up to systematically query the PUF with challenges one after another until the

desired number of challenge queries have been simulated. This querying is executed

in the form of a loop where the circuit is first provided the challenge, then, after the

circuit reaches a stable state, the PUF is fed with a transition (a rising edge in our

case) to propagate to the arbiter. The simulation continues until a stable response

has reached the end of the circuit and been registered in the output Flip-Flop (if

present).

142

A.2 Data Extraction

The current and voltage of the simulated circuit is provided by Synopsis

HSPICE as a continuous set of values, one challenge query after another. It is

from these results that the data has to be extracted for each challenge query of the

PUF. Figure A.2 shows the sampling window for the data extraction. The samples

for each query are extracted starting when the rising edge is given to the PUF. Sam-

pling of the current continues through the entirety of edge’s propagation through the

PUF and, if present, continues as the response is registered in the output Flip-Flop.

When it is clear that the response is valid its voltage value is recorded and converted

to its digital equivalent (‘0’ or ‘1’) in tandem with the sampled power trace. This

produces a tuple of data for each query of the PUF:

{Challenge, PowerTrace, Response}

These tuples make up the data sets. The challenge consists of the string

of bits that were provided as to the PUF for each query and the response is the

eventual output. The power trace consists of the operating current of PUF during

its operation and consists of an array of floating point values. The number of

collected samples of the power trace varies based on the size of the PUF due to the

longer delay path.

The first challenge query is unused to avoid any anomalies associated with

simulation/device start up. When performing the attacks and developing the models

only the power trace and the associated response are used.

143

Figure A.2: Power trace and response sampling window.

A.3 Simulated Noise

To provide realism to the simulations and account for the e↵ect that occur

in real silicon noise was added to the extracted power traces post simulation. To

obtain noisy power traces Y , varying levels of gaussian noise N were added to to

the original power trace X

Y = X +N where N ⇠ N (0, �2) (A.1)

The standard deviations (�) for the gaussian noise levels are discussed with

the results.

A.4 Support Vector Machine Algorithmic Implementation

The SVMs were implemented in Python using the library scikit-learn. The

Radial Basis Function (RBF) kernel is used to manipulate the data. This method

is used because it is e↵ective in modeling data that has gaussian properties such

as those present in the random variations in manufacturing processes, the exact

properties being exploited by PUFs.

144

If the intention is to perform CRP-based modeling then the � for each challenge

is calculated from Equation 3.2. In machine learning there are parameters that need

to be controlled to develop the model. These parameters control the learning rate

and regularization of the model fitting. For the used RBF kernel the parameters

are � and C. The � parameter controls the weight that an individual sample holds

on the model fitting, if � is high then the training samples will have a large impact

on the fitting of the model. C serves as a regularization parameter; this parameter

is used to control the margin in the decision boundary. If C is large then the model

is trained to fit the training data more tightly (there is smaller margin around

the data points) and if C is lower then there is more margin. Balancing these

two parameters aids in ensuring that the model is not over-fitting (only correctly

classifies the training data while failing to other data points) or under-fitting (in

properly classifying data due to a poor decision boundary) [3].

Figure A.3 and Figure A.4 show examples of the parameter testing graph for

the SVM classification of CRPs and power traces respectfully. The testing consisted

of running model accuracy tests for varying ranges of � and C, with the model

accuracy being plotted as a function of the two. The chart shows that manipulation

of the parameters has a large e↵ect on the model’s performance.

145

Figure A.3: Parameter testing for the SVM model of CRPs.

Figure A.4: Parameter testing for the SVM model of Power Traces.

146

Appendix B: FPGA Implementation of Arbiter-PUF

This appendix details the implementation of the Arbiter-PUF on the Sakura

FPGA Board. This is used in producing the results within Chapter 8. The phys-

ical investigations for this work are performed within a Field Programmable Gate

Array (FPGA). These reconfigurable devices allow for a hardware implementation

of a digital circuit without the costly price of creating an Application Specific IC

(ASIC). FPGAs include various e�cient hardware components such as multiplexers,

registers, latches, Lookup Tables (LUTs) amongst others [25].

B.1 Sakura FPGA Board

To implement the PUF the Sakura-G FGPA board was used (shown in Fig-

ure B.1) [4]. The Sakura-G FPGA board is programmed using the Xilinx ISE

tool [1]1.

This board contains circuitry in conjunction with a Xilinx Spartan 6 FPGA

(specifically the Spartan 6 XC6SLX75-2CSG484C) to make collection of its power

consumption during operation convenient. The main FPGA on the board is sup-

plied with power from a source which contains measurement points of the operating

1
Implemented in Xilinx ISE Version 14.7 on Windows 10

147

Figure B.1: The Sakura-G FGPA board with pertinent measurement components
highlighted.

current through a 1⌦ resistor as shown in Figure B.2. As shown in the figure, there

is also a built in amplification circuit which allows for the voltage variations to be

observed with 20dB of gain [6].

Figure B.2: Measurement setup of the Sakura-G FPGA board.

Note that the power consumption of the device is proportional the voltage due

to the fact that the power (P) is defined as:

P = V ⇤ I (B.1)

148

where I is current and V is voltage. Therefore the change in voltage seen over the

resistor on the power supply line is proportional to the power consumption of the

device.

B.2 FPGA Implementation

This section details the FPGA implementation of the arbiter-PUF. The im-

plementation consists of a UART module running at 115200 Baud for the challenge

input and response reporting to an external computer. The data transfers from the

UART are collected by a state-machine which provides the transferred challenge to

the PUF instance. After the challenge is supplied to the PUF the state-machine

provides the input edge to query the PUF. The PUF executes in a single clock cycle

and provides its response to the state-machine which then sends said response to

the external computer. To allow the PUF to execute in a single clock cycle a PLL is

used to produce a 3.1875MHz clock from the 48MHz clock available to the FPGA.

All of the systems run o↵ of this 3.1875MHz clock. The system diagram for the

described implementation is shown in Figure B.3.

Figure B.3: System diagram for the arbiter-PUF implementation.

149

B.2.1 Arbiter-PUF FPGA Structure

The standard implementation of the arbiter-PUF is shown in Figure 4.5. This

implementation has to be adjusted for successful operation within an FPGA. The

adjusted arbiter-PUF is shown in Figure B.4.

Figure B.4: Arbiter-PUF implementation for operation within an FPGA.

There are two main adjustments made to the implementation for successful

operation within the FPGA. First there are added delay elements between each

stage. These delay elements do not swap the top and bottom paths rather they add

an inline delay to the path for more variability from one PUF instance to another,

i.e., these delays aid in preserving the uniqueness of the PUF [58]. The second

adjustment is the addition of delays at the end of each chain. These delays are

static and do not change with the inputs to the PUF. The purpose of these delays

is to balance the amount of ‘0’s and ‘1’s produced by the PUF instance thereby

providing the correct uniformity for the PUF’s responses [59]. Other than these

adjustments the PUF operates the same as before with a rising input edge which

propagates through the chain of switches (and the added delays in this instance)

150

follow by adjudication by the arbiter and finally registration of the response in the

Flip-Flop.

B.2.2 Arbiter-PUF FPGA Layout

In this section the details of the arbiter-PUF layout for the FPGA are dis-

cussed. Due to the complexity of producing randomized response from the PUF

instance the components of the PUF are required to be manually layed out within

the FPGA and the components place in what is known as a hard macro. These

hard macros can be relocated on the FPGA in relation to a reference component as

long as the relative structure of the hard macro can be placed (the components in

the new location are the same as those in the original hard macro location).

There are four components that make up the arbiter-PUF FPGA instance:

the switch, the variable stage delay component, the static delay component, and

the arbitration latch. These components should be aligned sequentially within the

slices of the FPGA as shown in Figure B.5 [5]. This sequential alignment allows for

the routing of the connections between each of the components to be consistent as

possible. The components are placed via a X-Y coordinate system. For a successful

PUF implementation the X coordinate of the slice should remain the same while

the Y coordinate is incremented.

Figure B.6 shows the layout of the switch and the variable delay components.

For e�ciency purposes these are implemented within the same slice for each stage.

The switching component is implemented within one LUT which selects which input

151

Figure B.5: Physical internal layout of the Spartan-6 FPGA each dot is a di↵erent
component integrated on the chip. The directional layout for a successful PUF is
shown by the red arrow.

should pass through on the path before the signal is routed out of the slice and back

to the input of the variable delay LUT. The output of the variable delay is then

passed to the next component (either another stage or the final static delay chain).

There are two switch components for each stage of the arbiter-PUF one for the top

path and one for the bottom path.

The static delay component is very similar to the variable delay however its

input is set to a ‘0’ or ‘1’ during the build of the FPGA such that the input value

does not change during operation. Figure B.7 shows the input to the component

is passed through either the short delay or the long delay through the LUT before

being passed on to either another static delay component or the arbitration latch.

The final component is the arbitration latch. This component is responsible

for determining the response bit based on the di↵erence in delays to its inputs. The

arbitration latch is an S-R Latch consisting of two NAND gate implementations.

The two NAND gates are implemented within separate LUTs within the same slice.

152

Figure B.6: Layout of the switching component and the variable stage delay within
the FPGA. Note that the LUT implemented delay uses the first level to select
between 0 and 1 of the selected path (dark blue component). The short delay
through the LUT is shown by the green path whereas the long delay path is denoted
by the orange path.

The outputs of the NAND gates (Q and Q̄) exit the slice and return to the input

completing the connections for the S-R Latch. The layout of the arbiter is shown

in Figure B.8. This layout is important because the delays of the outputs (Q and

Q̄) must be matched otherwise there are an unreasonable amount of metastable

outputs (outputs which oscillate between ‘0’ and ‘1’). Another complication is that

the delay is such that the output remains at the steady state of the arbiter, which is

an output of 0. This phenomenon creates a disproportionate amount of ‘0’s in the

response output.

Recall that the overall layout of the arbiter-PUF instance is shown in Fig-

153

Figure B.7: Layout of the static delay component within the FPGA. Note that the
LUT implemented delay uses the first level to select between 0 and 1 of the input
path (dark blue component). The short delay through the LUT is shown by the
green path whereas the long delay path is denoted by the orange path.

Figure B.8: Layout of the arbitration latch component within the FPGA.

ure B.4. This shows how the components are interconnected to produce the PUF

within the FPGA. The Flip-Flop component, for the response output, within this

figure is manually placed and its implementation is straightforward.

154

B.3 Required Metrics for Each PUF Instance

The metrics for a PUF implementation are discussed in Chapter 2 Section 2.1.2.

The FPGA implementation was assessed for these metrics to ensure that it is a rea-

sonable implementation.

Randomness

The indication that the response bits are random is defined by NIST stan-

dards [14]. The goal of these tests are to determine if there is any pattern to the

output of the value generated by the PUF. The randomness values for a single PUF

instance for 100,000 responses are shown in Table B.1. Notably the Random Excur-

sion and Random Excursion Variants tests optimally require over one million input

values [14].

Table B.1: NIST Randomness Test Results
Test Passed Percent P-value

Frequency 97% 0.416
Frequency Block 100% 0.494

Runs 99% 0.474
The Longest Run 97% 0.479

Binary Matrix Rank 100% 0.450
FFT 100% 0.511

Non-overlap. Template 97% 0.522
Overlapping Template 100% 0.999

Universal 100% 0.968
Linear Complexity Test 87.5% 0.325

Serial 100% 0.497
Approx. Entropy 100% 0.482
Cumulative Sums 96% 0.435
Random exc. 75% 0.532

Random exc. var. 87.5% 0.465

155

Uniqueness

The uniqueness metric ensures that there is significant variation across PUF

designs to distinguish one PUF from another. Ideally there should be a 50% dif-

ference between the responses of di↵erent PUFs. The results for five implemented

PUFs are shown in Table B.2. Here the average percentage of similar responses

between PUF instances is 51.19%.

Table B.2: Uniqueness of the five PUF FPGA instances.
PUF-5 PUF-4 PUF-3 PUF-2

PUF-1 37.13% 39.98% 64.09% 56.86%

PUF-2 46.93% 58.43% 54.25% —–

PUF-3 47.88% 47.46% —– —–

PUF-4 58.87% —– —– —–

Uniformity

The uniformity of a PUF is concerned with the balance of ‘1’s and ‘0’s on the

output. Ideally there should be an equal balance of ‘0’s and ‘1’s in the response set.

The uniformity of five PUF instances are shown in Table B.3. The average percent

of ‘1’s for all five PUF instances is 53.10%.

Table B.3: Uniformity of five PUF FPGA instances.
Percent of Response = 0 Percent of Response = 1

PUF-1 50.90% 49.10%

PUF-2 35.86% 64.14%

PUF-3 51.48% 48.52%

PUF-4 45.00% 55.00%

PUF-5 51.25% 48.75%

Reliability/Stability

To assess the reliability, the PUF implementation is run multiple times and

the percentage of di↵erences for 12,000 responses are shown in Table B.4. The low

156

percentage di↵erence between the runs shows that the PUFs can reliably produce

the same response.

Table B.4: Reliability of five PUF FPGA instances replayed twice for 12,000 re-
sponses. Percentage shown is the di↵erence between the two runs.

Percent Di↵erence

PUF-1 0.98%

PUF-2 0.88%

PUF-3 1.58%

PUF-4 0.52%

PUF-5 0.99%

B.4 Measuring Power Consumption

Power from the Sakura board was collected via a Teledyne Lecroy Waverun-

ner 8254M Oscilloscope at 40GS/s via the amplified measurement port shown in

Figure B.1. The voltage is amplified by 20dB through the integrated amplification

circuit. The traces were collected from the rising input edge to the PUF through

the output of the response Flip-Flop. This creates a power trace comprised of 16000

samples per collect for 400ns. The traces are shown in Figure 8.4 and Figure 8.5 of

Chapter 8. Note that the PUF was designed to operate within a single clock cycle

at a rate of 3.1875MHz. The physical collection from the board are shown in the

photo of Figure B.9. Physically connected to the board is the JTAG programmer, a

USB UART module, power to the board, the oscilloscope connection to the power

amplification circuit, and a synchronization trigger output also connected to the

oscilloscope.

157

Figure B.9: Connected Sakura FPGA Board

158

Appendix C: Investigation Nuances

This appendix is used to catalog nuance investigations on the Cross-PUF at-

tack presented within this work. There are two concerns:

1. What about arbiter-PUFs of larger size?

2. Does this really apply to derivatives of the arbiter-PUF?

Therefore this section is added to directly address these comments.

C.1 Investigations on PUF Size

When presenting the Cross-PUF attacks (Chapter 6) the size of the PUFs

being investigated are 16-bits (meaning they have a 16-bit challenge and corre-

spondingly 16 switch stages). Therefore to address these comments a 64-bit PUF

implementation is investigated for its vulnerability to the Cross-PUF attack. The

power traces for various sized PUFs are presented in Figure 4.16 as the figure shows

the power consumption presents the same phenomenon regardless of the size of the

PUF. Since the Cross-PUF attack focuses on attacking the response Flip-Flop which

is present at the end of arbitration chain regardless of the size of the PUF it stands

that the attack would be successful in this instance. Nonetheless, Cross-PUF at-

159

tacks for the 64-bit instances of the arbiter-PUF were performed and the results

are shown in Figure C.1. These results indicate that the 64-bit PUF is similarly

vulnerable to the the Cross-PUF attack displaying result with similar accuracies to

the 16-bit PUF attacks.

(a) 64-bit PUF-0 used for training. (b) 64-bit PUF-1 used for training.

Figure C.1: Results of Cross-PUF attacks on 64-bit PUFs

C.2 Investigations on Arbiter-PUF Derivatives

A similar argument to the PUF size can be made for the Cross-PUF attack’s

potential success in attacking the derivatives of the arbiter-PUF. Namely the princi-

ple point of attack is the response Flip-Flop which is present at the output of every

PUF instance. To investigate the e�cacy of the Cross-PUF attack on arbiter-PUF

derivatives investigations were performed on 3-XOR PUFs. The first observation to

be made is that the traces of the 3-XOR PUFs have the same characteristics created

by the response Flip-Flop as those of the original arbiter PUF shown in the traces

displayed in Figure C.2. The results of performing the Cross-PUF attacks on the

3-XOR PUFs are shown in Figure C.3. These results indicate that the XOR PUF

has the same vulnerability as its parent architecture, the arbiter-PUF.

160

(a) Traces from 3-XOR PUF-0. (b) Traces from 3-XOR PUF-1.

Figure C.2: Power traces (= 200) of 3-XOR PUFs.

(a) 3-XOR PUF0 used for training. (b) 3-XOR PUF1 used for training.

Figure C.3: Results of Cross-PUF attacks on 3-XOR PUFs.

161

Bibliography

[1] Ise Design Suite. URL https://www.xilinx.com/products/design-tools/
ise-design-suite.html

[2] Nangate 45nm open cell library. “http://www.nangate.com”

[3] RBF SVM parameters. “https://scikit-learn.org/
stable/auto_examples/svm/plot_rbf_parameters.html#
sphx-glr-auto-examples-svm-plot-rbf-parameters-py”

[4] SAKURA-G. URL https://satoh.cs.uec.ac.jp/SAKURA/hardware/
SAKURA-G.html

[5] Spartan-6 fpga family. URL https://www.xilinx.com/products/
silicon-devices/fpga/spartan-6.html

[6] SAKURA-G: Side-channel AttacK User Reference Architecture - Specification.
SAKURA Hardware Security Project (2013). URL https://satoh.cs.uec.
ac.jp/SAKURA/hardware/SAKURA-G_Spec_Ver1.0_English.pdf

[7] Aghaie, A., Moradi, A.: Ti-puf: Toward side-channel resistant physical unclon-
able functions. IEEE Transactions on Information Forensics and Security 15,
3470–3481 (2020). DOI 10.1109/TIFS.2020.2986887

[8] Jiang et al., Q.: Two-Factor Authentication Protocol Using Physical Unclon-
able Function for IoV. In: IEEE/CIC ICCC, pp. 195–200 (2019)

[9] Elnaggar et al., R.: Machine learning for hardware security: Opportunities
and risks. Journal of Electronic Testing 34(2), 183–201 (2018). DOI 10.1007/
s10836-018-5726-9

[10] Alkabani, Y., Koushanfar, F.: Active hardware metering for intellectual prop-
erty protection and security 291-306, 20 (2007)

162

[11] Alkatheiri, M.S., Zhuang, Y.: Towards fast and accurate machine learning
attacks of feed-forward arbiter pufs. In: IEEE Conference on Dependable and
Secure Computing, pp. 181–187 (2017). DOI 10.1109/DESEC.2017.8073845

[12] Association, A.I.: Counterfeit parts: Increasing awareness and developing
countermeasures (2011). URL https://www.aia-aerospace.org/report/
counterfeit-parts-increasing-awareness-and-developing-countermeasures/

[13] Ayodele, T.O.: Machine learning overview. New Advances in Machine Learning
pp. 9–19 (2010)

[14] Bassham, L., Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Leigh, S., Lev-
enson, M., Vangel, M., Heckert, N., Banks, D.: A Statistical Test Suite for
Random and Pseudorandom Number Generators for Cryptographic Applica-
tions (2010). URL https://tsapps.nist.gov/publication/get_pdf.cfm?
pub_id=906762

[15] Becker, G.T., Kumar, R.: Active and passive side-channel attacks on delay
based puf designs. IACR Cryptology ePrint Archive 2014, 287 (2014). URL
https://eprint.iacr.org/2014/287

[16] Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage
model. In: M. Joye, J.J. Quisquater (eds.) Cryptographic Hardware and Em-
bedded Systems - CHES 2004, pp. 16–29. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004)

[17] Bruneau, N., Danger, J.L., Facon, A., Guilley, S., Hamaguchi, S., Hori, Y.,
Kang, Y., Schaub, A.: Development of the unified security requirements of pufs
during the standardization process (2018). URL https://link.springer.
com/chapter/10.1007/978-3-030-12942-2_24

[18] Chatterjee, D., Mukhopadhyay, D., Hazra, A.: Interpose PUF can be PAC
Learned. IACR Cryptol. ePrint Arch. p. 471 (2020)

[19] Chatterjee, U., Govindan, V., Sadhukhan, R., Mukhopadhyay, D.,
Chakraborty, R.S., Mahata, D., Prabhu, M.M.: Building puf based authen-
tication and key exchange protocol for iot without explicit crps in verifier
database. IEEE Transactions on Dependable and Secure Computing 16(3),
424–437 (2019). DOI 10.1109/TDSC.2018.2832201

[20] Cherif, Z., Danger, J.L., Guilley, S., Bossuet, L.: An easy-to-design puf based
on a single oscillator: The loop puf (2012). DOI 10.1109/DSD.2012.22

[21] Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3),
273–297 (1995)

[22] Cui, X., Zhang, J., Wu, K., Garg, S., Karri, R.: Split manufacturing-based
register transfer-level obfuscation. ACM Journal on Emerging Technologies in
Computing Systems 15(1) (2019). DOI 10.1145/3289156

163

[23] Delvaux, J., Verbauwhede, I.: Side channel modeling attacks on 65nm arbiter
PUFs exploiting CMOS device noise. In: IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pp. 137–142 (2013). DOI
10.1109/HST.2013.6581579

[24] Devadas, S., Suh, E., Paral, S., Sowell, R., Ziola, T., Khandelwal, V.: Design
and implementation of puf-based” unclonable” rfid ics for anti-counterfeiting
and security applications. In: 2008 IEEE international conference on RFID,
pp. 58–64. IEEE (2008)

[25] Eastland, N.: Structure of an fpga (2021). URL https://digilent.com/blog/
structure-of-an-fpga/

[26] Ebrahimabadi, M., Lalouani, W., Younis, M., Karimi, N.: Countering puf
modeling attacks through adversarial machine learning. In: IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pp. 356–361 (2021)

[27] Ebrahimabadi, M., Younis, M., Karimi, N.: Hardware assisted smart grid au-
thentication. In: ICC 2021 - IEEE International Conference on Communica-
tions, pp. 1–6 (2021)

[28] Esbach, T., Fumy, W., Kulikovska, O., Merli, D., Schuster, D., Stumpf, F.: A
new security architecture for smartcards utilizing pufs (2012). URL https:
//link.springer.com/chapter/10.1007/978-3-658-00333-3_18

[29] Fukushima, K., Souissi, Y., Hidano, S., Nguyen, R., Danger, J., Guilley, S.,
Nakano, Y., Kiyomoto, S., Sauvage, L.: Delay puf assessment method based
on side-channel and modeling analyzes: The final piece of all-in-one assessment
methodology. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 201–207 (2016).
DOI 10.1109/TrustCom.2016.0064

[30] Ganji, F., Tajik, S.: Physically unclonable functions and ai: Two decades of
marriage. ArXiv abs/2008.11355 (2020)

[31] Gao, Y., Li, G., Ma, H., Al-Sarawi, S.F., Kavehei, O., Abbott, D., Ranas-
inghe, D.C.: Obfuscated challenge-response: A secure lightweight authentica-
tion mechanism for puf-based pervasive devices. In: 2016 IEEE International
Conference on Pervasive Computing and Communication Workshops (PerCom
Workshops), pp. 1–6 (2016). DOI 10.1109/PERCOMW.2016.7457162

[32] Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random
functions. In: Proceedings of the 9th ACM Conference on Computer and
Communications Security, CCS ’02, p. 148–160. Association for Computing
Machinery, New York, NY, USA (2002). DOI 10.1145/586110.586132. URL
https://doi.org/10.1145/586110.586132

164

[33] Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Delay-based circuit au-
thentication and applications. In: Proceedings of the 2003 ACM Sympo-
sium on Applied Computing, SAC ’03, p. 294–301. Association for Computing
Machinery, New York, NY, USA (2003). DOI 10.1145/952532.952593. URL
https://doi.org/10.1145/952532.952593

[34] Genkin, D., Shamir, A., Tromer, E.: Rsa key extraction via low-bandwidth
acoustic cryptanalysis. In: Annual Cryptology Conference, pp. 444–461.
Springer (2014)

[35] Gu, C., Chang, C.H., Liu, W., Yu, S., Ma, Q., O’neill, M.: A modeling attack
resistant deception technique for securing puf based authentication. In: 2019
Asian Hardware Oriented Security and Trust Symposium (AsianHOST), pp.
1–6 (2019). DOI 10.1109/AsianHOST47458.2019.9006710

[36] Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Fpga intrinsic pufs and
their use for ip protection. In: P. Paillier, I. Verbauwhede (eds.) Cryptographic
Hardware and Embedded Systems - CHES 2007, pp. 63–80. Springer Berlin
Heidelberg, Berlin, Heidelberg (2007)

[37] Guerin, C., Huard, V., Bravaix, A.: The energy-driven hot-carrier degradation
modes of nmosfets. IEEE Transactions on Device and Materials Reliability
7(2), 225–235 (2007). DOI 10.1109/TDMR.2007.901180

[38] Guin, U.: Establishment of trust and integrity in modern supply chain from
design to resign. Ph.D. thesis (2016). URL https://opencommons.uconn.
edu/dissertations/1063/

[39] Guin, U., Huang, K., DiMase, D., Carulli, J.M., Tehranipoor, M., Makris, Y.:
Counterfeit integrated circuits: A rising threat in the global semiconductor
supply chain. Proceedings of the IEEE 102(8), 1207–1228 (2014). DOI 10.
1109/JPROC.2014.2332291

[40] Haber, H.: The expected value and variance of an average of iid random vari-
ables (2012). URL http://scipp.ucsc.edu/~haber/ph116C/iid.pdf

[41] Herder et al., C.: Physical unclonable functions and applications: A tutorial.
Proc. of the IEEE 102(8), 1126–1141 (2014)

[42] ISO/IEC 20897-1:2020: Information security, cybersecurity and privacy pro-
tection — Physically unclonable functions — Part 1: Security requirements.
Standard, International Organization for Standardization (2020)

[43] Joshi, S., Mohanty, S., Kougianos, E.: Everything you wanted to know about
pufs. IEEE Potentials 36, 38–46 (2017). DOI 10.1109/MPOT.2015.2490261

[44] Karimi, N., Danger, J., Guilley, S.: Impact of aging on the reliability of delay
pufs. J. Electron. Test. 34(5), 571–586 (2018). DOI 10.1007/s10836-018-5745-6.
URL https://doi.org/10.1007/s10836-018-5745-6

165

[45] Karimi, N., Huang, K.: Prognosis of NBTI aging using a machine learning
scheme. In: 2016 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems, DFT 2016, Storrs, CT, USA, September
19-20, 2016, pp. 7–10. IEEE Computer Society (2016). DOI 10.1109/DFT.2016.
7684060. URL https://doi.org/10.1109/DFT.2016.7684060

[46] Khan, S., Haron, N.Z., Hamdioui, S., Catthoor, F.: Nbti monitoring and design
for reliability in nanoscale circuits. In: 2011 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems, pp. 68–76
(2011). DOI 10.1109/DFT.2011.49

[47] Koushanfar, F.: Hardware metering: A survey (2010). DOI 10.1007/
978-1-4419-8080-9 5

[48] Koushanfar, F.: Integrated circuits metering for piracy protection and digital
rights management: An overview. pp. 449–454 (2011). DOI 10.1145/1973009.
1973110

[49] Kroeger, T., Cheng, W., Guilley, S., Danger, J.L., Karimi, N.: Cross-puf at-
tacks on arbiter-pufs through their power side-channel. In: IEEE International
Test Conference (ITC), pp. 1–5 (2020). DOI 10.1109/ITC44778.2020.9325241

[50] Kroeger, T., Cheng, W., Guilley, S., Danger, J.L., Karimi, N.: E↵ect of aging
on puf modeling attacks based on power side-channel observations. In: De-
sign, Automation Test in Europe Conference Exhibition (DATE), pp. 454–459
(2020). DOI 10.23919/DATE48585.2020.9116428

[51] Kroeger, T., Cheng, W., Guilley, S., Danger, J.L., Karimi, N.: Making ob-
fuscated pufs secure against power side-channel based modeling attacks. In:
Design, Automation Test in Europe Conference Exhibition (DATE) (2021)

[52] Kumar, R., Jovanovic, P., Polian, I.: Precise fault-injections using voltage and
temperature manipulation for di↵erential cryptanalysis. In: 2014 IEEE 20th
International On-Line Testing Symposium (IOLTS), pp. 43–48. IEEE (2014)

[53] La Rosa, G., Guarin, F., Rauch, S., Acovic, A., Lukaitis, J., Crabbe, E.: Nbti-
channel hot carrier e↵ects in pmosfets in advanced cmos technologies. In: 1997
IEEE International Reliability Physics Symposium Proceedings. 35th Annual,
pp. 282–286 (1997). DOI 10.1109/RELPHY.1997.584274

[54] Lalouani, W., Ebrahimabadi, M., Younis, M., Karimi, N.: Countering Modeling
Attacks in PUF-based IoT Security Solutions. In: ACM Journal on Emerging
Technologies in Computing Systems (JETC) (2021)

[55] Lalouani, W., Younis, M., Ebrahimabadi, M., Karimi, N.: Robust and e�cient
data security solution for pervasive data sharing in iot (2022)

166

[56] Lopez, T.: Dod adopts ’zero trust’ approach to buying microelectronics.
“https://www.defense.gov/Explore/News/Article/Article/2192120/
dod-adopts-zero-trust-approach-to-buying-microelectronics/”
(2020)

[57] Mahmoud, A., Rührmair, U., Majzoobi, M., Koushanfar, F.: Combined Mod-
eling and Side Channel Attacks on Strong PUFs. IACR Cryptology ePrint
Archive 2013, 632 (2013)

[58] Maiti, A., Gunreddy, V., Schaumont, P.: A Systematic Method to Evaluate
and Compare the Performance of Physical Unclonable Functions, pp. 245–267.
Springer New York, New York, NY (2013). DOI 10.1007/978-1-4614-1362-2 11

[59] Majzoobi, M., Koushanfar, F., Devadas, S.: Fpga puf using programmable
delay lines. In: 2010 IEEE International Workshop on Information Forensics
and Security, pp. 1–6 (2010). DOI 10.1109/WIFS.2010.5711471

[60] Majzoobi, M., Koushanfar, F., Potkonjak, M.: Lightweight secure pufs. In:
2008 IEEE/ACM International Conference on Computer-Aided Design, pp.
670–673 (2008). DOI 10.1109/ICCAD.2008.4681648

[61] Mak, M.A.: Assessing DODs assured access to microelectronics in support
of U.S. national security requirements: hearing before the Subcommittee on
Oversight and Investigations of the Committee on Armed Services, House of
Representatives, One Hundred Fourteenth Congress, first session, hearing held
October 28, 2015 (2015)

[62] Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer (2006)

[63] Mansouri, S.S., Dubrova, E.: Ring oscillator physical unclonable function with
multi level supply voltages. In: 2012 IEEE 30th International Conference
on Computer Design (ICCD), pp. 520–521 (2012). DOI 10.1109/ICCD.2012.
6378703

[64] Mars, A., Adi, W.: New Concept for Physically-Secured E-Coins Circulations.
In: Adaptive Hardware and Systems, pp. 333–338 (2018)

[65] Menhorn, N.: External secure storage using the puf. Applica-
tion Note: Zynq UltraScale Devices, XAPP1333 (2018). URL
https://www.xilinx.com/support/documentation/application_notes/
xapp1333-external-storage-puf.pdf

[66] Mohan, K.M.: Outsourcing trends in semiconductor industry. Ph.D. thesis,
Massachusetts Institute of Technology (2010)

[67] Nguyen et al., P.H.: The Interpose PUF: Secure PUF Design against State-
of-the-art Machine Learning Attacks. IACR Transactions on Cryptographic

167

Hardware and Embedded Systems (CHES) 2019(4), 243–290 (2019). DOI
10.13154/tches.v2019.i4.243-290

[68] Nozaki, Y., Yoshikawa, M.: Em based machine learning attack for xor arbiter
puf. In: Proceedings of the 2nd International Conference on Machine Learn-
ing and Soft Computing, ICMLSC ’18, p. 19–23. Association for Computing
Machinery, New York, NY, USA (2018). DOI 10.1145/3184066.3184100. URL
https://doi.org/10.1145/3184066.3184100

[69] Oboril, F., Tahoori, M.B.: Extratime: Modeling and analysis of wearout due
to transistor aging at microarchitecture-level. In: IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2012), pp. 1–12 (2012).
DOI 10.1109/DSN.2012.6263957

[70] Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297(5589), 2026–2030 (2002). DOI 10.1126/science.1074376

[71] Pouyan, P.: Reliability-aware memory design using advanced reconfiguration
mechanisms. Ph.D. thesis (2015)

[72] Ravi, S.: Semiconductor industry association - 2020 factbook. “https://www.
semiconductors.org/resources/factbook/” (2020)

[73] Rohatgi, P.: Electromagnetic attacks and countermeasures. In: Cryptographic
Engineering, pp. 407–430. Springer (2009)

[74] Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber,
J.: Modeling attacks on physical unclonable functions. In: CCS, pp. 237–249
(2010). DOI 10.1145/1866307.1866335

[75] Rührmair, U., Sölter, J.: PUF modeling attacks: An introduction and overview.
In: DATE, pp. 1–6 (2014). DOI 10.7873/DATE.2014.361

[76] Samonas, S., Coss, D.: The cia strikes back: Redefining confidentiality, integrity
and availability in security. Journal of Information System Security 10(3),
21–45 (2014)

[77] Scholz, A., Zimmermann, L., Sikora, A., Tahoori, M.B., Aghassi-Hagmann, J.:
Embedded analog physical unclonable function system to extract reliable and
unique security keys (2020). URL https://www.mdpi.com/2076-3417/10/3/
759/htm

[78] Sehwag, V., Saha, T.: Tv-puf: A fast lightweight analog physical unclonable
function. In: 2016 IEEE International Symposium on Nanoelectronic and In-
formation Systems (iNIS), pp. 182–186 (2016). DOI 10.1109/iNIS.2016.049

[79] Speers, T.: Polarfire non-volatile fpga family deliv-
ers ground breaking value: Best-in-class security (2018).
URL https://www.microsemi.com/blog/2018/04/10/
polarfire-non-volatile-fpga-family-delivers-ground-breaking-value-best-in-class-security/

168

[80] Synopsys: HSPICE User Guide: Basic Simulation and Analysis (2016)

[81] Tehranipoor, F.: Design and architecture of hardware-based random function
security primitives. Ph.D. thesis (2017). URL https://opencommons.uconn.
edu/dissertations/1512

[82] Vatajelu, E.I., Natale, G.D., Mispan, M.S., Halak, B.: On the encryption of the
challenge in physically unclonable functions. In: 2019 IEEE 25th International
Symposium on On-Line Testing and Robust System Design (IOLTS), pp. 115–
120 (2019). DOI 10.1109/IOLTS.2019.8854387

[83] Verbauwhede, I.: Secure Integrated Circuits and Systems (2010). DOI 10.1007/
978-0-387-71829-3

[84] Vijayakumar, A., Kundu, S.: A novel modeling attack resistant puf design
based on non-linear voltage transfer characteristics. In: 2015 Design, Automa-
tion Test in Europe Conference Exhibition (DATE), pp. 653–658 (2015). DOI
10.7873/DATE.2015.0522

[85] Wang, Q., Gao, M., Qu, G.: A machine learning attack resistant dual-mode
puf. pp. 177–182 (2018). DOI 10.1145/3194554.3194590

[86] Wang, S., Chen, Y., Li, K.S.: Adversarial attack against modeling attack on
pufs. In: 2019 56th ACM/IEEE Design Automation Conference (DAC), pp.
1–6 (2019)

[87] Wisiol et al., N.: Splitting the Interpose PUF: A Novel Modeling Attack Strat-
egy. IACR Transactions on Cryptographic Hardware and Embedded Systems
2020(3), 97–120 (2020). DOI 10.13154/tches.v2020.i3.97-120

[88] Xu, T., Wendt, J.B., Potkonjak, M.: Security of iot systems: Design chal-
lenges and opportunities. In: 2014 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 417–423 (2014). DOI 10.1109/ICCAD.
2014.7001385

[89] Yu, M., Sowell, R., Singh, A., M’Räıhi, D., Devadas, S.: Performance metrics
and empirical results of a puf cryptographic key generation asic. In: 2012
IEEE International Symposium on Hardware-Oriented Security and Trust, pp.
108–115 (2012). DOI 10.1109/HST.2012.6224329

[90] Yue, S., Li, P., Hao, P.: Svm classification: Its contents and challenges. Applied
Mathematics-A Journal of Chinese Universities 18(3), 332–342 (2003)

[91] Zalivaka, S.S., Ivaniuk, A.A., Chang, C.: Reliable and modeling attack resistant
authentication of arbiter puf in fpga implementation with trinary quadruple
response. IEEE Transactions on Information Forensics and Security 14(4),
1109–1123 (2019). DOI 10.1109/TIFS.2018.2870835

169

[92] Zhou, C., Jenkins, K.A., Chuang, P.I., Vezyrtzis, C.: E↵ect of hci degradation
on the variability of mosfets. In: 2018 IEEE International Reliability Physics
Symposium (IRPS), pp. P–RT.1–1–P–RT.1–4 (2018). DOI 10.1109/IRPS.2018.
8353684

[93] Zhou, C., Parhi, K.K., Kim, C.H.: Secure and reliable xor arbiter puf design:
An experimental study based on 1 trillion challenge response pair measure-
ments. In: Proceedings of the 54th Annual Design Automation Conference
2017, DAC ’17. Association for Computing Machinery, New York, NY, USA
(2017). DOI 10.1145/3061639.3062315. URL https://doi.org/10.1145/
3061639.3062315

[94] Öztürk, E., Hammouri, G., Sunar, B.: Towards robust low cost authentication
for pervasive devices. In: 2008 Sixth Annual IEEE International Conference
on Pervasive Computing and Communications (PerCom), pp. 170–178 (2008).
DOI 10.1109/PERCOM.2008.54

170

