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I. INTRODUCTION 

Stars with varying brightness or luminosity with the time 

are identified as variable stars and they are considered to be 

very important stellar objects in astrophysics. They are used 

in determining both external and internal properties such as 

distances, age, internal structure as well as their behavior over 

the time. Classification and analysis of stellar objects have 

been a major challenge in astronomy over the past few 

decades since the volume of the available data is increasing, 

obligations to many successful missions conducted by 

pioneers in space observations. Machine Learning and 

statistical analysis techniques such as Kohonen self-

organizing maps, Bayesian mixture-model classifier, SVMs 

and Gaussian mixture models etc. have been using over the 

past decade in addressing this problem. This implementation 

was focused on developing a technique which is autonomous 

of the instrumentation specifications where it could be easily 

generalized for data sources which is extracted from different 

missions. Random Forest algorithm was more appropriate to 

use in time series analysis with minimum impact by 

instrumentation specificity towards the training.  

Random Forest classification is a powerful and resilient 

framework which is based on decision trees. It is an efficient 

and scalable classifier that captures complicated patterns in 

the feature set without over-fitting into the training dataset 

and outliers. It fits several numbers of decision trees on 

partitions of the training dataset and takes the average to 

optimize the accuracy. The final prediction is determined by 

the majority votes which pick the most favorable output 

generated by the constructed trees. Definition of the random 

forest classifier is given as follows in [1]. 

Trees in the random forest are built upon bootstrap samples 

of equal size to the original dataset. As the sampling is done 

with replacements, same instances can be repeated in the 

sample while some are left out. These mislaid data instances 

called Out-of-Bag (OOB) [2] are used to evaluate the 

prediction error. Classification proceeds by partitioning the 

drawn sample recursively into more trees or nodes based on 

a randomly selected attributes from the previously chosen 

attribute list. This will repeat until a terminal node is reached, 

which contains a single type of object. Each of these 

constructed trees provides a prediction for the type, and the 

final prediction is determined to be the type with the highest 

aggregation.  

Over the past decade, many studies have been undertaken 

to implement machine learning models using existing data 

repositories and investigate the idea and feasibility of 

introducing a generalized classifier that is independent of the 

data repository [3]-[11]. UPSILoN (Automated Classification 
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for periodic Variable Stars Using Machine Learning) [12] is 

one of the several software packages developed within the 

last few years. The UPSILoN is capable of classifying stars 

into different star classes, including variable and non-

variable, using light curve data as the input irrespective of its 

survey specific characteristics. OGLE and EROS-2 variable 

star data repositories were used to train this classifier while 

tested on MACHO, ASAS and Hipparcos datasets. Machine 

Learning Classification of Variable Stars with Sparse and 

Noisy Time-Series Data [13] describes another automated 

machine learning framework that uses features of the light 

curves extracted using statistical and mathematical methods 

to identify the type of variability of a star. This identification 

can be made into sub-classes of the types as well. Random 

forest classifier algorithm has been used in classifications and 

to understand the correlations and importance of the used 

parameters. 

 

II. TRAINING THE CLASSIFIER 

Dataset was extracted from Kepler mission [14] in .dat and 

.pow text file format. Full dataset consists of 583 light curve 

data files of 6 different types of stars as mentioned in 

Introduction. These files were recorded in many different 

metric systems and different parameters were recorded. 540 

out of 583 of data files were selected to carry out the project, 

which had all the necessary parameters (Time, Corrected 

Flux, and Corrected Flux error) recorded in acceptable metric 

systems.  

 
TABLE I: DATA COMPOSITION  

Star Classes Number of Light curves 

Beta Cephei (BC) 120 

Delt Scuti (DS) 64 

Gamma Doradus (GD) 127 

Red Giants (RG) 113 

RR Lyrea (RR) 90 

RV Tarui (RV) 26 

Total 540 

 

Data pre-processing session was carried out to clean and 

refine the data set. Data fields were checked for unbalanced 

data columns, number of data points and the data points with 

a magnitude that were beyond 3σ level reference to its 

statistical mean, were dropped to clean out the outliers. 

Finally, the time scale was converted to units of normal 

calendar days except for different astronomical unit systems 

to record time; such as Baycentric Julian dates. 

Both periodic and non-periodic features were used to do the 

classifications. Periodic features were determined based on 

the generalized Lomb-Scargle [15] which was built upon 

Fourier transformation and least square method. This 

analytical solution is applicable to time series data with 

uneven sample intervals [16],[17]. Main frequency or the 

period of the light curve is estimated as follows. For a time 

series with N number of observations of yi at time ti with error 

σi, the sinusoidal function fitted to the light curve is given by, 

 

𝑦(𝑡) = a cos(ωt) + b 𝑠𝑖𝑛(ωt) + c   (1) 

 

where, ω is the period of the time series which acquired by 

minimizing the residuals of the data points using least square 

fitting. The 𝜒2 minimization is given by, 

 

𝜒2 =  ∑
[𝑦𝑖−𝑦(𝑡𝑖)]2

𝜎𝑖
2

𝑁
𝑖=1 = 𝑊 ∑ 𝑤𝑖[𝑦𝑖 − 𝑦(𝑡𝑖)]2  (2) 

 

where 

 

𝑤𝑖 =  
1

𝑊𝜎𝑖
2 (𝑊 =  ∑

1

𝜎𝑖
2 ∑ 𝑤𝑖 = 1) 

 

Power spectrum for frequencies will be obtained as follows 

for sampled frequencies obtained by DFT (Discrete Fourier 

transform). 

 

p(ω) =  
χo

2−χ2(ω)

χo
2      (3) 

 

Periodic features are based on the period estimation of the 

time series dataset and its procedure. In order to do the period 

estimation with high accuracy, period was estimated in two 

ways; both periods were used in training and testing processes. 

Astropy Lomb-Scargle in-built module was used to estimate 

Period\textunderscore1 and Lomb-Scargle function coded 

from the scratch based on [15] was used for Period_2.  

Light curve data are sequence of brightness observations, 

therefore non-periodic features can be derived from statistical 

time series analysis. Non-periodic features which have been 

used in this project are selected from both [18] and [19]. 

Following are the non-periodic features which were extracted 

from the light curves. 

1. Mean: Average magnitude of the light curve. 

2. STD: Standard Deviation 

3. Median: Middle value of the sorted magnitudes. 

4. Skew. 

5. Kurtosis: measurement of the peak of the magnitude 

distribution. 

6. Mean Variance 

7. Stetson K: Robust kurtosis measure taken using 

magnitudes and errors [21],[22]. 

 

𝑆𝑡𝑒𝑡𝑠𝑜𝑛 𝐾 =
(

∑|𝛿𝑖|

𝑁
)

√
∑ 𝛿𝑖

2

𝑁

    (4) 

 

𝛿𝑖 =  √
𝑛

𝑛−1

𝑚𝑖−�̅�

𝑚𝑒𝑟𝑟
    (5) 

 

8. Slope: Maximum absolute slope between two 

consecutive observations. 

9. Amplitude: Half the difference between the median of 

the maximum 5% and minimum 5% magnitudes. 

10. Median absolute deviation. 

 

𝑚𝑒𝑑𝑖𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑒𝑑𝑖𝑎𝑛 (|𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 −

𝑚𝑒𝑑𝑖𝑎𝑛(𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒)|)    (6) 

 

11. Mp 10: 10% percentile of slope of the light curve. 

12. Mp 90: 90% percentile of slope of the light curve. 

13. Variability Index: This parameter is used to identify 
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trends in data points or their independence. Following is the 

variability index for uneven sampled data [19]. 

 

𝜂𝑒 =  �̅�(𝑡𝑁−1 − 𝑡1)2 ∑ 𝑤𝑖(𝑚𝑖+1−𝑚𝑖)2𝑁−1
1

𝜎2 ∑ 𝑤𝑖
𝑁
1

        (7) 

 

𝑤𝑖 =  
1

(𝑡𝑖+1 − 𝑡𝑖)
2
 

 

A. Classifier Model and Performance 

Random Forest classifier in sklearn python module was 

used to define the classifier and were trained by 70% of the 

dataset and tested upon rest of the 30%. Attributes of the 

Random Forest algorithm were selected as 700 and 10 

respectively for number of trees (t), no of features randomly 

selected at each node of trees (m).  

There are metrics to measure the performance of a classifier 

based on the testing output of the trained classifier. They can 

be defined as follows: 

 

1. Recall/ Sensitivity 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (8) 

 

2. Precision 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (9) 

 

3. Accuracy  

 

       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙𝑖𝑛𝑝𝑢𝑡𝑠
   (10) 

 

TP = True Positive, TN = True Negative, FP = False Positive, 

FN = False Negative. 

Recall and precision are calculated for each class in this 

case for all 6 classes which are considered. Accuracy is 

calculated for all classes depending on the outcomes for 

testing data. 

 

4. F1 Score: 

 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙
   (11) 

 

The value of F1 is in the range of 0–1 and calculated for 

each class separately. This is used to measure the performance 

of the classifier. 

 

III. EXTRACTED FEATURE ANALYSIS 

Following observation were illustrated from the full dataset 

before splitting into test and train datasets. These results are 

based on light curve extracted feature values. Period is 

considered to be the most important of all features and it is 

determined using two ways based on Lomb-Scargle period 

estimation. Astropy [20] Lomb-Scargle in-built python 

module was more successful in estimating the period 

compared to the other method mentioned. This difference in 

estimation is caused from the selection of period range and the 

step size for the Lomb-Scargle. But still there were instances 

in all types, where estimated value for period was not 

acceptable. 

Fig. 1 visualizes the distribution of periods estimated from 

the astropy Lomb-Scargle function for the full dataset in a 

general scale. It shows a clear variation of range of the period 

depending on the type of the star as well as over estimations. 

According to the Fig. 1 and Fig. 2 DS, GD and RR tend to 

have period values distributed in a very narrow range while 

RV, RG and BC has a larger distribution in contrast.  

 

 
Fig. 1. Period 1 distribution of all the types of the stars. 

 

 
Fig. 2. Period 1 distribution for DS, GD, RR Stars. 

 
TABLE II: PERIOD 1 (DAYS) STATISTICS 

Statistic BC DC GD RG RR RV 

Mean 4.96 1.99 3.13 7.08 0.54 20.61 
STD 7.05 7.50 12.39 8.36 0.07 26.18 

Minimum 0.12 0.05 0.22 0.19 0.47 0.51 

Maximum 37.30 37.84 100.00 37.16 0.68 100.00 
IQR 5.74 0.09 1.42 10.84 0.07 24.57 

 

Table II gives a brief statistical description of the estimated 

period values versus star type. Inter-quartile range (IQR) 

shows the dispersion of estimated periods for each type of the 

star. RR and DS tend to have the smallest IQR, which 

indicates that the 50% of period data are concentric around its 

mean value, while RV has the highest IQR which means that 

data are distributed towards in a large range.  

Second most important feature of the list is verified as the 

mean variance. Fig. 3, Fig. 4, and Table III describes the 

parameter values for each type of the star both visually and 

tabular form. Clear discrepancy in the distribution of the 

value can be observed in the boxplot of mean variance, 

between the types of RV, RR from the rest of types. RR and 

RV star types tend to have a higher mean variance value 

compared to the rest of the types in the Fig. 4. 
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Fig. 3. Mean Variance distribution of all the types of the stars. 

 

 
Fig. 4. Mean Variance distribution for BC, DS, GD, and RG Stars. 

 

For further clarifications among the types, Table III can be 

used. It clearly shows the ranges of the mean variance 

distribution based on the class. Ranges are [0.000383, 

0.004431], [0.000214, 0.005860], [0.000149, 0.010612], 

[0.000405, 0.004043], [0.121603, 0.416183], [0.001751, 

0.546282] corresponding to BC, DS, GD, RG, RR, RV types. 

RG type has the lowest distribution range while RV has the 

widest spread. According to mean value of this parameter, 

star types can be ordered in increasing mean variances as BC, 

RG, GD, DS, RR and RV.The distributions of skew, kurtosis 

and Stetson K parameters have the same distribution pattern 

as in Mean Variance; there is a clear difference in ranges of 

the distribution of RV and RR type among other types. They 

have to have larger ranges or wider spread compared to other 

4 types of the star classes. 
 

TABLE III: MEAN VARIANCE STATISTICS 

Statistic BC DC GD RG RR RV 

Mean 0.00071 0.00220 0.0012 0.00085 0.22 0.256 

STD 0.00052 0.00170 0.0017 0.00045 0.06 0.127 

Mini 0.00038 0.00020 0.0002 0.00041 0.12 0.002 

Max 0.00443 0.00590 0.0106 0.00404 0.42 0.546 

IQR 0.00230 0.00270 0.0005 0.00019 0.06 0.159 

 

IV. CLASSIFIER RESULTS AND ANALYSIS  

Feature importance was evaluated from the training 

process based on the training dataset. This does necessarily 

indicate the contribution from each feature to the 

classification process. Fig. 5 displays the feature importance 

bar chart with a numerical value for importance of the 

corresponding feature. According to this evaluation, which is 

based on the Random Forest classifier, the most significant 

feature is Period with a significance value of 0.18 followed 

by other parameters in decreasing significance Mean 

Variance 0.16, Skew 0.10, Eeta 0.06, Amplitude 0.06 etc. 

This implies that period is the main factor when determining 

the type of the star. Also, the equal importance value 

represents that those features have equal contribution in 

determining the star type. This do not necessarily indicate that 

they are correlated features. The main advantage of 

evaluating this feature importance is to reduce the size of the 

dataset fed to the classifier by eliminating the least significant 

features. There are methods of doing this elimination process. 

 

 
Fig. 5. Ranked list of features by decreasing importance measured using 

Random Forest. 

 

540 light curves belonging to 6 types of stars are used in 

this project and out of that 377 light curves were used in the 

training process while the remaining 163 were used in the 

testing process. Testing phase is carried out to evaluate the 

performances of the trained classifier. The confusion matrix 

is represented in Fig. 6 and Table IV. This illustrates the 

number of correctly predicted classes and misclassifications. 

Diagonal elements of the grid give the number of correctly 

classified instances while off diagonals gives the 

misclassifications. 8 instances of BC stars were misclassified 

as 3 GD and 5 RG, 4 instances of GD were misclassified as 1 

BC, 2 RG, 1 RR, 5 instances of RG were misclassified as BC, 

2 instances of RR were misclassified as RV and 3 instances 

of RV were misclassified into RR. (see Table IV) These 

observations convey that there’s a tendency to misclassify RR 

and RV into each other’s classes or there are many 

similarities in RR and RV star classes. 

 

 
Fig. 6. Confusion matrix obtained for test dataset. 
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TABLE IV: CONFUSION MATRIX IN TABULAR FORM  

Predicted 
BC DC GD RG RR RV 

True 

BC 26 0 3 5 0 0 

DC 0 20 0 0 0 0 
GD 1 0 37 2 1 0 

RG 5 0 0 28 0 0 

RR 0 0 0 0 27 2 
RV 0 0 0 0 3 3 

 

Precision, Recall, F1-Score; for each class as well as 

overall average values and accuracy achieved by the classifier 

is represented in Table IV. DS star class has achieved the 

100% of highest precision, recall and F1 score among all the 

classes for this classifier which means that all the instances 

belong to this class were correctly classified. Lowest 

performance metrics were obtained by the RV class, and they 

are 0.60, 0.50, and 0.55, respectively. All the other classes 

have achieved precision ≥80%, recall ≥76%, F1-Score ≥79%. 

In general, all average performance metrics are above 85%. 

Overall Accuracy of the classifier is 86.5%. 

Estimating the period of the star corresponding to the light 

curve data was the major issue which was faced in 

undertaking this project. Since the expected range of the 

periods of the time series data of many classes were different 

most in-built python modules and inappropriate for this 

project because there was no way to define a general range 

for all the types of classes. Still there were unexpected results 

for the period estimations and the classifier was trained 

including those results which directly impacts the accuracy of 

it. Period estimation should be enhanced further to extend the 

limits of the classifier to identify more star classes. Also, 

some instances had long gaps or data were missing for a 

considerable amount of time gap which may have caused 

shifts in the feature estimation. 

There were some issues with gathering data and pre-

processing stage since the available data were in different 

metric systems, various file types, missing data which 

reduced the dataset. Generally, more data means high 

accuracy and therefore using larger dataset improves the 

performance of the classifier. 

In order to improve this machine learning method and 

expand this to next level, period estimation method has to be 

improved and a high time resolution dataset is needed. With 

these modifications and enhancements, the tool can be 

consistently use for the variable star classification of big 

datasets. 

 
TABLE V: THE ARRANGEMENT OF CHANNELS 

 Precision Recall F1 Support 

BC 0.81 0.76 0.79 34 
DS 1.00 1.00 1.00 20 

GD 0.93 0.90 0.91 41 

RG 0.80 0.85 0.82 33 
RR 0.87 0.93 0.90 29 

RV 0.60 0.50 0.55 6 

AVg/Total 0.86 0.87 0.86 163 

Accuracy =86.5% 

V. CONCLUSIONS  

The machine learning technique developed can be used to 

identify star types such as BC, DS, GD, RG, RR and RV 

observed by the Keplar mission with an accuracy of 86.5%. 

Machine learning models which achieve accuracy beyond 

80% were considered to be successful models. Program 

developed here achieved an average precision level of 0.86, 

average recall value of 0.87 and a F1-Score of 0.86 for the 

testing dataset of 163 stellar light curves obtained from the 

Kepler mission. This study could be extended into identifying 

more star classes by training it on extended dataset and 

further it can be improved as a web tool or an App. 
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