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Abstract Geophysical data sets derived from satellite sensors, ground/airborne instrumentation, and
computational models are often compared against each other. A common example is the validation of
satellite aerosol optical depth (AOD) retrievals against measurements from Aerosol Robotic Network
(AERONET) Sun photometers. Spatiotemporal mismatch between data set samplingmeans that uncaptured
variation in the underlying geophysical field introduces apparent disagreement into such comparisons,
known as representation or collocation matchup uncertainty. This study uses variogram analysis of
AERONET data to estimate temporal mismatch uncertainties and decorrelation time scales for the global
AERONET record. As well as total AOD, the fine‐ and coarse‐mode AODs, Ångström Exponent (AE), and
fine‐mode fraction (FMF) of AOD are analyzed. Globally, a time difference of 30 min typically induces from
0.011–0.035 variation in AOD. For total, fine, and coarse AODs the typical time to decorrelation is around
2–10 days. For AE and FMF it is 3–33 days; that is, aerosol systems often persist significantly longer than
individual events in them. Biomass burning regions tend to show the largest and fastest subdaily AOD
variability and also longest times to decorrelation. Some sites show significant season‐to‐season variations in
behavior. These results can be used to inform site‐specific time collocation thresholds for aerosol validation
analyses and account for temporal variation when estimating data set uncertainty. They also have
implications for comparisons between different satellite products or models, data aggregation, and time
series analyses. Results are provided on a site‐by‐site basis to facilitate use by other researchers.

Plain Language Summary It is common to compare different data sets that are measuring the
same thing against each other, to check how consistent they are. Satellite data sets measuring aerosols—
small particles in the atmosphere such as dust, smoke, smog, or volcanic ash—are often compared with
ground‐based data sets, which are very accurate but sparse. When comparing data sets like this, often the
ground measurements are not made at exactly the same time as the satellite flies over. This time mismatch
leads to a source of uncertainty in such comparisons, because a difference in the data could be from both
measurement error and real variability. This study presents a method to quantify the typical level of
variability of aerosols for different time mismatches, to allow for a better understanding of differences in
such comparisons between different data sets.

1. Introduction

The Earth system is constantly changing, and our sampling of geophysical quantities, whether remotely
sensed or modeled, is incomplete. As articulated well by Davis et al. (1994) and Anderson et al. (2003), these
facts mean that studies of quantities such as aerosol optical properties implicitly or explicitly make decisions
about spatial and temporal sampling, aggregation, relevant scales, and methods for analysis. For example,
satellite aerosol data sets typically provide both so‐called Level 2 (L2) products—near‐instantaneous snap-
shots of a particular part of the world as seen along the platform's orbit—and Level 3 (L3) products repre-
senting spatiotemporal aggregates or averages of L2 data. L3 grids are often daily or monthly, with
monthly aggregates in particular being used widely for climatological, trend, and model intercomparison
studies (e.g., Hsu et al., 2012; Kinne et al., 2006; Sogacheva et al., 2020; Wei et al., 2019). Models and reana-
lyses typically provide output at regular (hourly to quarter‐daily) time steps althoughmonthly aggregates are
arguably themost commonly used in research (e.g., Kim et al., 2014; Sand et al., 2017). Ground‐based aerosol
remote sensing such as from the Aerosol Robotic Network (AERONET, Holben et al., 1998) often provides
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data on a regular instrument sampling cadence (order of several minutes), except where confounded by sam-
pling gaps due to clouds, night (for solar sensors), or system maintenance, as well as daily, monthly, or cli-
matological aggregates.

Validation and L2 intercomparison exercises impose collocation criteria on spatial and temporal location dif-
ference between data sets in order to determine whether or not a particular pair of points from data sets are
considered “matched up” and therefore comparable (e.g., Ichoku et al., 2002, for the methodology used
widely in satellite aerosol validation analyses). L3 and model intercomparisons typically aggregate data to
a chosen time step before doing the comparisons, such as the monthly analyses mentioned previously. If
daily rather than monthly comparisons are performed, even sensors on satellite platforms with similar nom-
inal local solar crossing times may on a given day view a location at quite different times if their orbits are not
the same (e.g., Sayer et al., 2017). Data assimilation systems typically ingest satellite and ground‐based aero-
sol data as 3‐ to 6‐hr composites (Benedetti et al., 2018; Xian et al., 2019), meaning (especially for
polar‐orbiting sensors) that the observations are assigned to model times that can be several hours separated
from the time they were taken. Often, these decisions were adopted as convention several decades ago, based
on computational and ease‐of‐use (rather than geophysical) considerations and have broadly become
accepted as standard practice. In most cases they are applied globally; that is, the same matchup (or other)
criteria are applied to all parts of the data set, regardless of the fact that the spatial and temporal scales of
geophysical variability may differ significantly from one location to the other.

In recent years, however, increasing attention has been given to aggregation and matchup‐related decisions
in aerosol optical depth (AOD) studies, with a goal of quantifying and decreasing representativity and
aggregation‐related sources of uncertainty. These are sometimes referred to as “representation error” or
“collocation mismatch uncertainty” (Schutgens et al., 2017; Virtanen et al., 2018). Note that spatial and tem-
poral variations are coupled—no location exists in isolation from all others—though the main focus of the
present study is the time domain.

Several of these studies have examined temporal aspects. Anderson et al. (2003) used assorted ground‐based,
airborne, and space‐based aerosol optical properties (AOD and aerosol scattering coefficient) and found tem-
poral scales of variation on the order of 2 hr to 2 days (and length scales of 40–400 km). Autocorrelation coef-
ficients on spatial (±25 km) and temporal (±0.5–1 hr) scales used for satellite analysis (e.g., Ichoku
et al., 2002; Kahn et al., 2010) in these data were generally in excess of 0.9. For the data sets examined, cor-
relations approached 0 after around a week (e‐folding times of ∼2–3 days) but then increased again after a
lag of around 1 year, due to the repeatability of aerosol annual cycles. Alexandrov et al. (2004) used a
ground‐based shadowband radiometer network in Oklahoma, USA (with fairly low AOD), and found that
structure functions of temporal variation could be described by power laws, with scale breaks around
∼1,000 and ∼10,000 s (corresponding to ∼15 min and ∼3 days, respectively). Kaku et al. (2018) found e‐
folding times for surface aerosol mass in the southern United States around 3 days, but of column AOD in
the same region under 1 day. A relevant (and application‐dependent) question not addressed directly on a
large scale by these studies, however, is on what scale does the magnitude of variation exceed some scienti-
fically relevant threshold?

Virtanen et al. (2018) quantified this variation using AERONET data from a dense field campaign deploy-
ment in the mid‐Atlantic United States. They validated satellite AOD using different spatial and temporal
matchup thresholds and examined how the statistics of the comparison varied. They found a weak response
(change around 0.02) of correlation coefficient to temporal thresholds between ±0.1 and ±2 hr and spatial
thresholds between ±0.1 and ±1°. Their Figure S2 showed, for the sites in this region, the typical standard
deviation of AERONET 550 nm AOD for a ±1‐hr time period centered on satellite overpasses ranged from
0.01–0.03, which is larger than the roughly 0.01 uncertainty on the AERONET AOD. As the AERONET
AOD uncertainty is largely driven by calibration it shows systematic behavior dependent on air mass and
is not noise, so this variation is likely real rather than an instrumental artifact (Eck et al., 1999; Holben
et al., 1998). This implies that the choice of a ±1‐hr window might introduce an additional uncertainty of
up to 0.01–0.03 (for this particular region, during this summer campaign period, and separate from other
components of representation uncertainty).

In a series of papers using a variety of high‐resolution model simulations and data sets Schutgens,
Gryspeerdt, et al. (2016), Schutgens, Partridge, et al. (2016), Schutgens et al. (2017), and Schutgens (2020)
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have investigated multiple aspects of representation uncertainty. These studies have numerous implications
for the way comparisons are done and representation uncertainty is assessed, particularly for L3‐type studies
such asmodel evaluation. From a temporal point of view, a general message is that matchups should be done
on as fine a time scale as possible. For a monthly or annual comparison between two data sets it is better to
collocate the data on a finer (e.g., daily) basis and then aggregate only the matched points to a month or year
than to compare the monthly or yearly products directly. Due to their main focus (model or satellite L3 eva-
luation) and the limitations of the data, however, these analyses have mostly considered hourly, daily, or
longer composites and not the subhourly to several‐hourly windows often used in satellite validation or
intercomparison analyses.

This study aims to complement and extend this growing body of work by providing (1) estimates of the char-
acteristic time scales of variation of aerosol optical properties at AERONET sites across the world and (2) the
typical magnitude of variation for a given time mismatch. These properties include total column AOD,
Ångström exponent (AE), fine‐mode fraction (FMF) of AOD, and fine‐ and coarse‐mode AODs. The data
sets generated in this work are freely available to download from Sayer (2020), to encourage their use by
the community. This will enable researchers to select location and seasonally appropriate time thresholds
for validation and intercomparison analyses, to provide a balance between data volume and representation
error.

Section 2 introduces the AERONET products and variogram analysis method used. Section 3 presents some
results from a large‐scale perspective, looking at the global picture of time scales of aerosol variation and also
provides an example of the effect of changing temporal matchup thresholds on validation of Moderate
Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging SpectroRadiometer (MISR), and
POLarization and Directionality of the Earth's Reflectances (POLDER) aerosol products at the Kanpur,
India, AERONET site. Section 4 provides a summary of the main findings and next steps. As mentioned pre-
viously, results for each AERONET site analyzed have been archived in the Zenodo repository at
Sayer (2020).

2. AERONET Data and Variogram Analysis
2.1. AERONET Data

The main data set used here is the AERONET Version 3, Level 2 (cloud‐screened, post‐deployment cali-
brated, and quality‐assured) direct Sun AOD data base (Giles et al., 2019). Data from all 1,527 sites (at the
time of writing) from the start of the network in 1993 to the end of 2019 are considered. AOD is analyzed
at a wavelength of 550 nm as this is a common reference wavelength in satellite retrievals and model simu-
lations. AERONET does not measure AOD at 550 nm so here it is obtained by a second‐order polynomial fit
of AOD to wavelength (both quantities in log space), following the recommendations of Eck et al. (1999) and
Schuster et al. (2006) and has an uncertainty around 0.01.

The standard AERONETAE product defined over the wavelength range 440 to 870 nm is also used; AE is the
negative of the slope of log AOD versus log wavelength. Hereafter, references to AOD and AE implicitly refer
to these wavelengths, unless stated otherwise. Uncertainty on AERONET AE is difficult to generalize
because it is a derivative measure, so sensitive to both the magnitude of the AOD as well as any spectral cor-
relations in the uncertainty of the AOD (Wagner & Silva, 2008) but is considerate most reliable in moderate
or high aerosol loading (AOD ∼0.2 or more).

The second data set is the AERONET spectral deconvolution algorithm (SDA) record. This provides
estimates of FMF, fine‐mode AOD, and coarse‐mode AOD based on observed spectral characteristics of
the (Version 3 Level 2) direct‐Sun AOD data (O'Neill et al., 2003, 2008). Coverage is lower than the
direct‐Sun data due to additional requirements (e.g., minimum number of channels) and quality checks
in the SDA algorithm. Uncertainty on FMF decreases with increasing AOD and depends on aerosol
type and is 0.1–0.2 for AOD around 0.1 (Kleidman et al., 2005; O'Neill et al., 2008). The SDA data are
provided at 500 nm but here converted to 550 nm (using total and fine‐mode AE provided within the SDA
data set) for consistency with the total column AOD analysis. This has a negligible effect on the results
shown here.

10.1029/2020EA001290Earth and Space Science

SAYER 3 of 19

 23335084, 2020, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020E

A
001290 by U

niversity O
f M

aryland, W
iley O

nline L
ibrary on [26/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2.2. Variogram Analysis
2.2.1. Definitions
Semivariograms provide a measure of the magnitude and scales of variation within a field. They have been
used in remote sensing for decades (Curran, 1988, for an early overview), most commonly in the case of data
fusion or gap filling by kriging (Chatterjee et al., 2010; Nguyen et al., 2012; Shi & Cressie, 2007; Yu et al., 2011,
for some aerosol examples). Other aerosol uses include Hewson et al. (2013) to examine relationships
between aerosol and rainfall, Snik et al. (2014) to estimate the uncertainty and best spatial resolution of
AOD measured using an attachment for cellphone cameras, Sullivan et al. (2015, 2017) to quantify scales
of aerosol variation over North America, and Alexandrov et al. (2016) who developed a representation of
daily MODIS over‐ocean AOD on regional scales in terms of spatial variograms.

Definitions and some properties are given in Chapter 4 of Cressie and Wikle (2011). In brief, a semivario-
gram γ is half the variance of the difference between values of a field Y at two locations x, x+ h separated
by distance h:

var YðxÞ−Yðx þ hÞð Þ ¼ 2γðhÞ: (1)

In the present case, the field Y corresponds to an aerosol optical property (e.g., AOD) at locations (times) x,
x+ h. If the field is intrinsically stationary (i.e., the variance of the difference is the same between any two
points of a given separation) and isotropic (i.e., variations back and forward in time are statistically equiva-
lent), then γ is dependent only on the distance h between points, often known as the lag. Note that x and h
are sometimes represented in bold type as vector (i.e., multidimensional) quantities; the present analysis is
concerned with one‐dimensional (time series) data so scalar italic notation is used.

The quantity 2γ is known as the variogram; as mentioned by Davis et al. (1994), it is also referred to as the
second‐order structure function outside the geostatistics literature. Bachmaier and Backes (2011) note that
the terms semivariogram and variogram are often used interchangeably and that there is confusion about
the prefix “semi”. They show that while γ is half the variance of the difference between field values at lag
h (Equation 1), it is the full variance of field values at lag h, which is the quantity required for kriging appli-
cations. As the present analysis is concerned with uncertainty introduced in comparisons by temporal mis-
match between observations, however, the most relevant quantity here is the square root of the variogram
σ ¼ ffiffiffiffiffi

2γ
p

, that is, transferring from variance to standard deviation space. This root variogram σ can then
be used as a proxy for the representation uncertainty induced by temporal mismatch.
2.2.2. Empirical Estimates and Fitting
The true semivariogram is unknown so is generally estimated empirically and fit to a parametric model.
Under the above assumptions the empirical semivariogram γ̂ can be estimated as follows:

γ̂ðh ± δÞ ¼ 1
2Nðh ± δÞ ∑

Nðh ± δÞ

i; j
yi − yj

� �2
: (2)

Here, γ̂ is computed for 54 logarithmically spaced time bins between 0.1 hr (6 min) and ∼20,000 hr (∼833
days). The quantity δ represents a tolerance factor accounting for the fact that points may not be spaced
exactly according to the bin lag. Here, δ is taken as 5% of the bin central time, with a floor of 1.5 min and
a ceiling of 1 day. As δ tends toward 0, γ̂ becomes an unbiased estimator of γ (Cressie & Wikle, 2011). N is
the number of data pairs within each bin with lag h± δ, and yi, yj are the paired points within each bin.
Note that as data coverage is limited to daytime, lags near 12 hr correspond to pairs of points near dawn
and dusk, while lags of only a few hours or somewhat above 12 hr can be found throughout the day. It is clear
from Equation 2 that this represents half the mean squared difference between pairs of points separated by
time h (and that as such the quantity σ is the root‐mean‐square difference).

Empirical semivariograms are often fit to parametric models to provide a continuous function. Here, the
commonly used powered exponential covariance function (PECF) (Cressie & Wikle, 2011) is used:

γðhÞ ¼ a0 þ a1 1 − exp −
h
a2

� �a3� �� �
(3)
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for h > 0, where a0, a1, a2, and a3 are coefficients determined by least
squares fitting using the MPFIT software package (Markwardt, 2009).
The fit is done in logðγ̂ðhÞÞ space (base 10) as the data typically cover
several orders of magnitude, and the behavior is of interest at both
extremes. First guesses at parameters a0 to a3 are taken as 10−4, 0.1,
1 hr, and 1, respectively.

To increase robustness only bins with at least 50 data pairs are used in the
fit, and only empirical semivariograms with at least 27 of the bins (i.e.,
half, sampling a substantial portion of the lag space) sufficiently popu-
lated are considered. This leaves 1076 sites for direct‐Sun calculations
and 992 for SDA. The median coefficient of determination R2 between
observed logðγ̂ðhÞÞand fit logðγðhÞÞ is above 0.95 for all quantities, indicat-
ing that the PECF model captures the variation of the data well in most
cases (Figure 1). Note that due to the properties of logarithms, these R2

are also equivalent for derived σ. Unless otherwise stated analyses below
exclude those fits for which R2 < 0.6 (corresponding to <2% of the data),
as the PECF model is a poorer representation in those cases. The choice
of R2 threshold within reasonable variations does not significantly alter
the population of sites retained.
2.2.3. Nugget, Sill, Range, and Autocorrelation
Regardless of the form assumed for the semivariogram, several quantities

(the nugget, sill, and range) are commonly derived from it and interpreted. These are illustrated conceptually
in Figure 2. By definition for the true semivariogramγðh ¼ 0Þ ¼ 0, as the variance of the difference with zero
lagmust be 0. The resulting discontinuity at the origin for the empirical semivariogram (due tomeasurement
and/or model specification error) is known as the nugget n and for a model of the form in Equation 3, n¼ a0.

As h approaches infinity, γ tends toward the sill (the variance of the underlying distribution); here, s¼ a0 +
a1. In their analysis of MODIS over‐ocean AOD data, Alexandrov et al. (2016) found that some grid cells ana-
lyzed showed a partial saturation feature whereby the sill appeared to be reached but then, at a larger lag, the
variogram began increasing again. They interpreted this as due to local nonstationarity, that is, that in such
cases the AOD field is better represented by a combination of a 2‐D linear spatial gradient plus the stationary
field. This behavior was rarely seen in the data here, likely due in part due to the largest lag considered being
∼2 years, over which time trends in aerosol optical properties are likely to be small, especially in comparison
to s. Some sites did show oscillation of γ̂ near 1‐year lag; this was also seen in the temporal autocorrelation
analysis of Anderson et al. (2003) and arises as many aerosol sources show interannual‐repeating patterns.
However, cases of severe long‐term nonstationarity are likely to be caught by the R2 < 0.6 threshold on the
PECF fit discussed previously. Seasonal nonstationarity is examined later.

The range r is the time taken for γ to reach the sill. As Equation 3 is asymptotic the true range is undefined,
and the effective range is often taken to be the point where the semivariogram reaches 95% of the sill; given
e−3≈ 0.05, if the nugget is negligible, then

r
a2

� �a3

≈ 3; (4)

and so by rearrangement,

r ≈ a2ð31=a3Þ: (5)

Note that from Equation 3, a3 ¼ 1 corresponds to an exponential decay of γ with increasing lag. Figure 3
shows that a3≈ 1 for total and fine AOD (central 68% of points, i.e., one standard deviation, between
∼0.83 and 1.15 for both), albeit slightly skewed to lower values. There is a more pronounced shift to values
below 1 for the other quantities. This implies slightly slower than exponential decay, on average, and sup-
ports the use of the PECF over a pure exponential model.

Figure 1. Histograms of coefficients of determination of R2 between
logarithms of observed empirical semivariograms and piecewise
exponential covariance function fit values for all sites. Results for total
aerosol optical depth (AOD) are shown in black, fine‐mode AOD in red,
coarse‐mode AOD in blue, Ångström exponent (AE) in orange, and
fine‐mode fraction (FMF) of AOD in brown.
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These quantities can also be used to estimate the lag‐h autocorrelation of
the field ρ(h). Haslett (1997) discussed the application of empirical semi-
variograms to time series analyses and noted they have some advantages
in strictness of assumptions over other methods to estimate autocorrela-
tion. The relation between these two is as follows (cf. Equation 2 of
Bachmaier & Backes, 2011):

γðhÞ ¼ s 1 − ρðhÞð Þ: (6)

From Equations 3 and 6 it can be seen that, when the nugget is small com-
pared to the sill, the e‐folding time for ρ is approximately the fit coefficient
a2. Finally, by rearrangement of Equation 3, the lag for at which a given
value of γ is reached is

h ¼ a2 −ln 1 −
ðγ − a0Þ

a1

� �� �1=a3
(7)

Fit coefficients for Equation 3, R2, and empirical variogram values and data counts are freely available to
download from Sayer (2020) for each AERONET site and each optical property. For AOD, two other quan-
tities are also provided. First is the time where the fit root variogram σ ¼ 0:01 (i.e., the standard deviation of
the difference reaches the nominal AERONET direct‐Sun uncertainty), using Equation 7 and bearing in
mind σ ¼ ffiffiffiffiffi

2γ
p

. Second is σ for various lags of interest. All calculations involving time units are in hours.

3. The Global Picture From AERONET
3.1. Time Scales and Magnitudes of Variation
3.1.1. Kanpur as an Example
An example set of root variograms (recall σ ¼ ffiffiffiffiffi

2γ
p

) is shown for the AERONET site Kanpur, India, in
Figure 4. This site was chosen as an example as it lies in the Indo‐Gangetic Plain (IGP), a densely populated
area with a complex aerosol burden, hence of high interest for air quality and climate studies (Dey & Di
Girolamo, 2011; Giles et al., 2011; Ramanathan et al., 2007; van Donkelaar et al., 2016). Aerosol properties
at Kanpur exhibit distinct seasonality: peak AOD (and lowest AE/FMF) fromApril–June when the dust con-
tribution to AOD is highest, monsoon from June–September leading to increased aerosol washout (and
potential for hygroscopic growth of remaining aerosols), and an increased relative contribution of
fine‐mode aerosol from biomass burning and urban/industrial activities in other months with a secondary

peak (higher AOD and FMF/AE) from November–January (Eck
et al., 2010; Giles et al., 2011, 2012; Singh et al., 2004). Complexity in aero-
sol and surface reflectance characteristics also mean it can be a challen-
ging site for satellite aerosol optical property retrievals (Jethva
et al., 2007, 2010).

Figure 4 shows that σ for total AOD is dominated by variations in
fine‐mode AOD, with that of coarse‐mode AOD around a factor of 3 smal-
ler. At a 30‐min lag, σ for total AOD is around 0.055, significantly larger
than the (mostly systematic) AERONET AOD uncertainty of ∼0.01 (Eck
et al., 1999). Note that this does not imply that a validation exercise using
a ±30‐min AERONET averaging window incurs a temporal mismatch
uncertainty of 0.055; rather, this is an upper bound on likely mismatch
uncertainty for validation exercises using such a window. In many cases
there will be multiple AERONET observations within a given window,
in which case averaging (which is standard practice) or picking the closest
AERONETobservation in timewouldmitigate this somewhat. Either way,
consistent with results from Virtanen et al. (2018) for North America, this
implies that time mismatch may be a more significant contribution than
AERONET measurement uncertainty to the total uncertainty in the
comparison.

Figure 2. Example semivariogram (red) generated using the powered
exponential covariance function model (Equation 3) with a0 ¼ 0:01, a1
¼ 1, a2 ¼ 1, and a3 ¼ 1. The nugget, sill, and range are indicated by the
diamond, horizontal, and vertical dashed lines, respectively.

Figure 3. Histograms of fit coefficients a3 (Equation 3) for all sites. Results
for total aerosol optical depth (AOD) are shown in black, fine‐mode AOD in
red, coarse‐mode AOD in blue, Ångström exponent (AE) in orange, and
fine‐mode fraction (FMF) of AOD in brown.
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Time profiles of σ for AE and FMF show a very similar shape to each other, suggesting that these quan-
tities capture similar underlying variations, with the former being roughly a factor of 2 larger. This mag-
nitude difference is not unexpected given that FMF varies from 0 to 1 by definition (O'Neill et al., 2003),
and AE varies roughly in the range 0 to 2 going from coarse‐dominated to fine‐dominated aerosol col-
umns (Eck et al., 1999). Range r (time to decorrelation of the field) is lower for AOD (∼7 days) than
AE or FMF (∼49 and 122 days, respectively), which is consistent with seasonal‐scale aerosol source
and transport mechanisms being significantly longer than individual aerosol events within them. The
potential partial saturation feature from around 1 week (i.e., approximately the time of the AOD range)
to 1 month in AE and FMF may reflect the time scale of individual aerosol events within a season.
The difference between AE and FMF range may indicate differences in the information captured in these
quantities, as well as uncertainties of model parametrisation. Note σ for all quantities shows a brief
decrease around 1‐year lag; as mentioned previously, this reflects the year‐to‐year broad‐scale consistency
in aerosol features.

For all optical properties in Figure 4, there is a departure from the fit around 10‐hr lag. As AERONET data
are only collected during sunlit hours, these points generally correspond to a midmorning observation
paired with an early evening one. This could be indicative of diurnal cycles with shapes such that AOD tends
to be more closely related between these times than would be expected (as the total and fine AOD points lie
below the fit line), that is, some nonstationarity. Several studies have examined diurnal cycles of aerosol opti-
cal properties at Kanpur. Smirnov et al. (2002) looked at AOD on an annual basis and Singh et al. (2004) at
AOD and AE on a seasonal basis. While Smirnov et al. (2002) found (their Figure 2a) a fairly flat average
AOD throughout the day, declining during the evening, Singh et al. (2004) found (their Figure 7) that in
all seasons except premonsoon the AOD at midmorning and early evening were more similar to each other
than to AOD through the afternoon. This is consistent with the dip around 10 hr in Figure 4. The pattern is
less clear for AE. It is also worth noting that the present study benefits from a significantly longer data record
than Smirnov et al. (2002) or Singh et al. (2004).

Figure 4. Root variograms σ ¼ ffiffiffiffiffi
2γ

p
of aerosol optical properties for Kanpur, India. Panel (a) shows results for total

aerosol optical depth (AOD) in black, together with fine AOD in red and coarse AOD in blue. Panel (b) shows results
for Ångström exponent (AE) in black and fine‐mode fraction (FMF) of AOD in red. Diamonds show points, and lines
show fits (Equation 3); the fit coefficient of determination in log space R2 is also provided in the legend. The horizontal
dashed line in (a) shows σ ¼ 0:01. Vertical lines indicate various time lags of interest.
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Bigger picture, this acts as a reminder that diurnal cycles can influence the empirical semivariograms. In a
practical sense, this is not expected to be too important for the present application (provided the magnitudes
and time scales of short‐term variation do not show too strong a diurnal cycle) as it is most relevant on time
scales of several hours, while most validation/intercomparison analyses use shorter (i.e., subhour) coloca-
tion criteria. One option could be to construct semivariograms using only starting points from a given local
time range (similar to the seasonal analyses performed later), although in that case there would be a trade‐off
between level of detail and available data volume.
3.1.2. Global Variations
Showing results aggregated for all sites, Figure 5 indicates how potential mismatch uncertainties change as a
function of lag, for lags between 0.25 and 6 hr. The former is a shorter time than that typically used (0.5 or
1 hr) for validation of satellite aerosol products (Ichoku et al., 2002) so represents an attempt to decrease
mismatch uncertainties while not decreasing total data volume too much. For validation studies given
the AERONET sampling cadence is typically 5–15min in most cases the actual time lag (and so mismatch
uncertainty) would therefore be closer to the 0.25‐hr results, even if a longer averaging window is permitted.
This is examined later in section 3.2.2 using various satellite products.

The final two lags considered (3 and 6 hr) correspond to typical model assimilation time steps (i.e., data
aggregated sequentially in chunks of these lengths and then assimilated on these time steps, Benedetti
et al., 2018; Xian et al., 2019). In this sense it is representative of a typical upper bound of mismatch uncer-
tainty for a perfect polar‐orbiting satellite retrieval, which just misses the cutoff for inclusion in one assim-
ilation cycle and so is assimilated just under 3 or 6 hr late. The actual mismatch uncertainty would again
depend on the actual lag between observation and assimilation time.

For all quantities and times, distributions of σ are positively skewed, with a long tail and mean values larger
than median values. This indicates that a subset of sites have much larger temporal variability than the
others. The main implication of this is that, for satellite validation analyses, it may be beneficial to consider
different temporal matchup windows for different sites; where this is shorter than normal this represents an
effort to control mismatch uncertainty, and where longer than normal an effort to increase sampling without
introducing significant additional uncertainty. For AOD (the most commonly validated quantity) the med-
ian (and central 68% of values) for σ is 0.019 (0.011–0.035) for a 30‐min lag; at 15min, this decreases to 0.014
(0.009–0.025), and for 1 hr this increases to 0.025 (0.014–0.049), that is, roughly a 25% decrease or increase by
halving or doubling the window, respectively. Note this indicates that mismatch uncertainties may exceed
notional AERONET radiometric uncertainty even for this shortest time lag tested. These results also suggest
that the 5‐min revisit time of the new generation of geostationary imagers (e.g., Schmit et al., 2017) should be

Figure 5. Box‐whisker plots showing σ ¼ ffiffiffiffiffi
2γ

p
at time lags between 0.25 and 6 hr for aerosol optical properties across all

sites. Panels show (a) total aerosol optical depth (AOD), (b) fine‐mode AOD, (c) coarse‐mode AOD, (d) Ångström
exponent (AE), and (e) fine‐mode fraction (FMF) of AOD. The legend is given in the bottom right.
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sufficient to resolve aerosol temporal variations of scientific interest (assuming retrieval algorithms are
sufficiently capable).

Figure 6 shows the relationship between semivariogram range r for different optical properties. The reader is
reminded that “range” refers to time to decorrelation of the field, rather than the variation in magnitude of
the optical property at a given site: a measure of length rather than magnitude. The ranges for all quantities
are most commonly between roughly 3 and 10 days. There is a modest relationship between ranges for dif-
ferent quantities; that is, sites with a longer AOD range also have a longer AE range. This is likely related to
variations of persistence of aerosol sources and aerosol lifetimes. Ranges for AE and FMF are very strongly
correlated (as expected, because they carry similar information), while those between fine‐ and coarse‐mode
AODs less so. This is also consistent with different source and sink characteristics for different particle sizes.
As at Kanpur (Figure 4), ranges tend to be slightly longer for AE and FMF than AOD, indicating aerosol sea-
sonality is longer than individual aerosol features. Coarse‐mode range also tends to be slightly higher than
fine‐mode range.

Specifically, the median (and central 68% of values) for range are 3.9 (1.9–8.2) days for AOD, 3.8 (1.8–9.3)
days for fine AOD, 4.5 (1.7–13) days for coarse AOD, 8.5 (2.7–33) days for AE, and 10.3 (3.0–33) days for
FMF. This implies that monthly composites of satellite data or model simulations typically sample 3–10 dis-
tinct aerosol events from one larger‐scale aerosol system. It also implies that satellite instrument with revisit
times on these scales or longer, such as the Along‐Track Scanning Radiometer (ATSR) series, MISR, and
Cloud‐Aerosol LIdar with Orthogonal Polarization (CALIOP), can often be considered independent obser-
vations when aggregating from daily to monthly or longer time scales. The ATSRs andMISR have revisit fre-
quencies of order 5 and 9 days at the equator, respectively, while CALIOP's curtain sampling means only the
subsatellite track is sampled and that with a 16‐day revisit period (for each of daytime and nighttime).
Practically, revisit time is further decreased by cloud cover. In contrast, broader‐swath sensors on
polar‐orbiting platforms (e.g., MODIS and several others) sample (suitable conditions permitting) roughly
once a day and geostationary potentially several times an hour, meaning these data are highly autocorre-
lated. While uncertainties in satellite L3 aerosol products have not yet been broadly developed, these auto-
correlation structures should be accounted for. The same implies to temporal composites of AERONET data
as well. Ranges of order weeks (for AOD) to a month (for AE or FMF) do not necessarily mean that there is
no autocorrelation between successive monthly composites, as aerosol systems do not start and end in per-
fect synchronicity with calendar months. Indeed, monthly aerosol trend analyses often estimate and account
for 1‐month lag autocorrelation when calculating trend uncertainty estimates (Hsu et al., 2012; Zhang &
Reid, 2010).

A small number (approximately 4%) of sites have unusually short (<0.1 day) or long >300 days) range for AE
or FMF. Manual inspection reveals (not shown) that these are typically short‐term sites operated for up to
several months. As such (for the cases of short range) the results may be sensitive to the weather system dur-
ing the period of operation, and (for very long range) values near the sill were not reached and so the relevant
fit parameters were not well constrained by the data.

Figure 6. Scatter density plots of semivariogram range compared between various aerosol optical properties. Panel (a)
shows total aerosol optical depth (AOD) and Ångström exponent (AE), (b) shows AE and fine‐mode fraction (FMF) of
AOD, and (c) shows fine and coarse AODs.
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As AERONET sites are distributed unevenly across the world, it is instructive to examine maps of the data as
well as aggregated distributions. Some results for AOD are shown in Figure 7. In Figure 7a, higher σ at
30‐min lag is most commonly seen in regions associated with high aerosol loading, especially biomass
burning aerosols. The most striking feature stretches across the IGP, southeastern Asia, and eastern Asia,
but clusters of σ> 0.03 are also seen across parts of Africa, South America, and boreal regions associated
with summertime biomass burning. This is somewhat unfortunate in that such places also tend to be
comparatively challenging for satellite aerosol retrievals and model simulations. Additionally, in these areas
σ may approach or exceed the Global Climate Observing System (GCOS) goal for error on an AOD climate
data record of the greater of 0.03 or 10% (GCOS, 2011). Thus, the temporal mismatch uncertainty may be
nonnegligible compared to the goal error to be assessed, clouding judgments of how successful a given
data set is.

Figure 7b shows that achieving σ≤ 0.01 across most of the world requires a time mismatch smaller than 15
min. In this respect it is fortunate that the sampling cadence at most AERONET sites is between 2 and 15
min, with 5min being common, meaning that in many cases the actual lag in validation exercises should

Figure 7. Global maps of aerosol optical depth (AOD) mismatch uncertainty results. Panel (a) shows σ ¼ ffiffiffiffiffi
2γ

p
evaluated

at a 30‐min lag. Panel (b) shows the time at which σ reaches 0.01; values in blue here indicate σ> 0.01 for zero lag. Panel
(c) indicates the e‐folding time (coefficient a2 in Equation 3) for AOD.
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be shorter than this. In some cases σ≥ 0.01 at zero lag; as mentioned ear-
lier this reflects measurement uncertainty or the PECF model breaking
down at small lag but does imply that mismatch uncertainties are likely
to be nonnegligible for small lags. Most of the world lies below the
30‐min lag typically adopted for satellite validation exercises. This indi-
cates than even with this window nonnegligible mismatch error can be
introduced if there are a few missing AERONET observations around
the time of the satellite overpass. It also implies that comparing satellite
instruments on different orbits may often require strict collocation
(although algorithm errors may still swamp mismatch uncertainties in
some cases). Some mountainous or elevated areas (e.g., the Rocky
Mountains in North America, Andes in South America, and central pla-
teau of southern Africa), as well as much of Australia and some ocean
sites, indicate that longer time windows may be tolerable (increasing data
volume for comparison) without introducing significant additional
uncertainty.

Finally, Figure 7c shows the e‐folding time for autocorrelation (one third
of the range when a3 ≈ 1; Equation 5). Longer time periods tend again to
be most strongly associated with areas influenced by biomass burning
aerosol transport. This is not quite a mirror of Figure 7a, though, as areas
of heavy dust or urban/industrial loading do not stand out as prominently.
Combined, these two panels show that biomass burning regions show
both the largest short‐term temporal variability in AOD and the longest
time to decorrelation, that is, the longest aerosol “events”.
3.1.3. Seasonal Variogram Variations
The site‐to‐site variations discussed in section 3.1.2 imply that temporal

variation is strongly dependent on the geophysical processes driving the aerosol system. To that end, it is
plausible that the semivariograms are not truly stationary, that is, that semivariograms constructed from
observations beginning in different seasons may exhibit different behavior. Some differences would also
arise as subsamples by definition have a smaller data volume and are noisier, although for a well‐sampled
site it is expected that they would remain sufficiently robust.

This is briefly investigated here by repeating the construction of γ̂ and fitting of γ for subsets of data. These
subsets correspond to the data pairs where the earlier observation fell in a given season, for each of the cano-
nical four seasons, that is, December–February (DJF), March–May (MAM), June–August (JJA), and
September–November (SON). The seasonal variation Δσ for a given lag can then be defined as

ΔσðhÞ ¼ max σðhÞseas
	 


−min σðhÞseas
	 


; (8)

where σseas denotes the seasonal root variograms. The relative seasonal variation is then Δσ(h)/σ(h). For
example, suppose for the all‐data case σ ¼ 0:02 at some lag, and the individual seasons' results provided
σseas ¼ f0:015; 0:018; 0:022; 0:025g. Then Δσ ¼ 0:01 and the relative seasonal variation is 0:01=0:02 ¼ 0:5.
Note that these canonical four seasons may not be the most appropriate representation of aerosol season-
ality at all sites. However, they represent a balance between providing some seasonal specificity to the
results while maintaining sufficient data volume at a high proportion of sites for analysis.

An example is shown for AOD and AE for Kanpur in Figure 8. The fit R2 is similar for the full data set and the
subsets. The data for the four seasons show very similar behavior but different magnitudes; overall, for AOD
σ is largest in SON when fine‐mode aerosol dominates and smallest in MAM as the dust contribution
increases (Eck et al., 2010; Giles et al., 2012). For AE σ is highest in JJA (as the dust peak ends and monsoon
begins), and the lowest in SON. At 30 min, for AOD, Δσ ¼ 0.029 and the relative seasonal variation 0:029=0
:055 ¼ 0:53. This indicates nonstationarity at a seasonal level at this site, implying that temporal mismatch
uncertainties may be better modeled at a seasonal level. Note that the departure around 10‐hr lag shown in
Figure 4 is also present here, consistent with the discussion above and seasonality of diurnal cycles seen by
Singh et al. (2004).

Figure 8. Seasonal root variogramsσ ¼ ffiffiffiffiffi
2γ

p
for Kanpur, India (cf. Figure 4).

Panel (a) shows results for total aerosol optical depth (AOD), and panel (b)
shows results for Ångström exponent (AE). In both, fits using all points are
in black, those using data from December–February (DJF) in navy, those
fromMarch–May (MAM) in orange, from June–August (JJA) inmaroon, and
from September–November (SON) in green. Diamonds show points, and
lines show fits (Equation 3); the fit coefficient of determination in log space
R2 is also provided in the legend. The horizontal dashed line in (a)
shows σ ¼ 0:01. Vertical lines indicate various time lags of interest.
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Extending this, Figure 9 shows the relative seasonality in σ for AOD at a 30‐min lag for all (851) AERONET
sites providing sufficient data and fit quality for at least two seasons. Overall, the median (and central 68% of
values) for σ for these sites are 0.019 (0.011–0.035); for Δσ this is 0.008 (0.003–0.024), and for the relative sea-
sonal variation 0.42 (0.19–0.80). This means for the median site the relative seasonal variation in σ is 42%, or
around 0.008, whichmight not be important for some purposes. However, larger values are found inmany of
the aforementioned regions showing significant seasonality in fine‐mode aerosol loading. This may be
because in many biomass burning regions the smoke‐free season is fairly pristine compared to the smoky
season (e.g., Martin et al., 2010; Queface et al., 2011).

3.2. Influence on Validation Analysis at Kanpur, India
3.2.1. Satellite Data and Matchup Method
Here the influence of time thresholds on validation of satellite AOD retrievals at Kanpur is examined. This
site is on the upper end of the typical range for AOD σ in Figure 5. Three different satellite AOD products are
used:

(1) The Collection 6.1 MODIS Aqua data set (mid‐2002 to present), corresponding to retrievals from the
combination of Deep Blue (DB) and Dark Target (DT) algorithms (Gupta et al., 2016; Hsu et al., 2019)
at 10‐km nominal horizontal pixel size. MODIS is a broad‐swath (2,330 km) single‐view passive imager.
This merged data set is described in Sayer et al. (2014) and is intended to represent a ‘best of’ data set
with improved coverage and at least as high quality as the individual algorithms (on global average).
Over land, the merging process includes a map of climatological surface category (arid, vegetated, or
transitional) for each calendar month (and most pixels around Kanpur fall into the latter two categories
in most months). Dependent on this and retrieval quality assurance flags, either one algorithm's results
are used or the two are averaged. As a result DT retrievals are used in DJF and SON; in MAM DT
accounts for about two thirds of retrievals, while the others are DB or average; and in JJA almost 90%
of retrievals are from DB.

(2) The Version 23 MISR data set (2000 to present), described by Garay et al. (2020). MISR is a
narrow‐swath (380 km)multiangle passive imager. Themain updates affecting retrievals over land com-
pared to earlier MISR retrievals are calibration updates and a finer L2 spatial resolution (4.4‐km hori-
zontal pixel size compared to 17.6 km in previous versions). MISR AOD is provided at 558 nm and
converted to 550 nm using the AE provided in the data (increasing AOD by up to 3%).

(3) The Version 2.1 “models” processing of the Generalized Retrieval of Atmospheric and Surface
Properties (GRASP) algorithm for POLDER (2005–2013). POLDERwas a broad‐swath (1,600 km)multi-
angle passive polarimeter. GRASP is described by Dubovik et al. (2011, 2014); a main conceptual differ-
ence from the MODIS and MISR algorithms used here is that it takes advantage of polarimetry and
temporal compositing of data for a retrieval with fewer assumptions about aerosol and surface proper-
ties. Data are provided on a 10‐km sinusoidal grid; the AOD is provided at 565 nm, and converted to 550
nm using the AE provided in the data (increasing AOD by up to 8%).

Figure 9. Relative seasonal‐to‐annual variation (see text) in root variograms σ ¼ ffiffiffiffiffi
2γ

p
for aerosol optical depth (AOD)

evaluated at a lag of 30 min.
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The AERONETAOD at 550 nm is calculated as described in section 2.1. A variety of time thresholds are used
to consider whether the satellite retrieval and AERONET observation are matched up; in each case, only the
nearest AERONET point in time (rather than the average within the windows) is used. This is because if all
AERONETmeasurements within a window lie only before or only after the satellite time (rather than being

Figure 10. Selected statistics for validation of (left) Moderate Resolution Imaging Spectroradiometer (MODIS), (middle)
Multiangle Imaging Spectoradiometer (MISR), and (right) POLarization and Directionality of Earth's Reflectances
(POLDER) aerosol optical depth (AOD) against Aerosol Robotic Network (AERONET) at Kanpur, India. Panels (a)–(c)
show the number of matchups, (d–f) the mean σ estimated for the matchups, (g–i) Spearman's rank correlation coeffi-
cient, and (j–l) the root‐mean‐square error (RMSE). Panels (m)–(o) and (p)–(r) show the fraction of retrievals agreeing
with AERONET within the Global Climate Observing System (GCOS) goal AOD uncertainty of Max(0.03,10%),
without and with adjustment for matchup uncertainty, respectively. In all panels, matchups from December–February
(DJF) are in navy, those from March–May (MAM) in orange, from June–August (JJA) in maroon, and from
September–November (SON) in green. Vertical bars indicate uncertainties on the metrics, as described in the text.
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spread around it), it is likely that the nearest point in time may be more representative of the aerosol field at
overpass time than the average. This differs from prior validation analyses and is suggested that it is explored
for future similar work, because of the high temporal autocorrelation on short scales found here and in pre-
vious studies (e.g., Alexandrov et al., 2004; Anderson et al., 2003).

Spatially, the median of all satellite retrievals within ±25 km of the AERONET is taken to represent the satel-
lite AOD (and note the merged MODIS product is as provided is already filtered to remove poor‐quality
retrievals). The use of median instead of mean was suggested and applied in Sayer et al. (2018, 2019) to
increase the robustness of the analysis to outliers in the satellite data, such as single‐pixel retrieval artifacts
or true heterogeneity within the averaging area which can skew the mean. Thresholds around ±25 km are
used widely in validation analyses. This spatial threshold is kept constant here to isolate the contribution
from changing time thresholds, although future work beyond the scope of this study could develop more
locally specific spatial aggregation protocols accounting for the unique characteristics of individual
AERONET sites.

Note that these spatial and temporal thresholds were chosen initially by Ichoku et al. (2002) based on visual
inspection of the movement of aerosol features across the Atlantic Ocean in satellite images in summer 1988.
They observed motion about 50 km over 1 hr (∼6,000 km over 5–6 days) and picked this over shorter win-
dows such that such a box should yield sufficient (up to 25) samples for the nominal 10‐kmMODIS retrieval
to be statistically representative. These thresholds have since been adopted widely for regional and global
validation studies from many satellite data sets (and intuitively seem reasonable), although to this author's
knowledge there has been no systematic global investigation of aerosol motion scales for validation purposes
(aside from the AERONET‐centric perspective within this work).

Several metrics are presented with uncertainty estimates: These are the standard deviation in the metric cal-
culated using the bootstrap technique (sampling the matchups with replacement 100 times; Efron, 1979).
These are important because uncertainties in summary metrics are seldom reported in aerosol validation
exercises, yet obtaining precise metrics often takes a much larger sample size than intuitively expected
(Schonbrödt & Perugini, 2013). Note however that (particularly for smaller sample sizes) the bootstrap
method tends to underestimate the uncertainty of a metric as only the sample (rather than population) var-
iance is sampled.
3.2.2. Validation Results
Figure 10 shows various validation metrics as a function of the time window considered when collocating
the data. Results are presented on a seasonal basis as there is clear seasonal variation in the validation
results; this is expected given the variation in aerosol and surface characteristics throughout the year (Eck
et al., 2010; Jethva et al., 2007, 2010). Further, it implies that at sites with such seasonal variation that pre-
senting only annual summary statistics may be insufficient, particularly if these statistics are to be compared
against those of different algorithms, which may have different seasonality in data coverage or error
characteristics.

Overall, a plurality of matchups are obtained in MAM (Figures 10a–10c), at which time the aerosol column
tends to be dominated by dust (Eck et al., 2010). Fewest are obtained during SON (from the late monsoon
through to increasing presence of fine‐mode aerosols). This pattern is consistent between sensors, although
magnitudes differ due to the narrower swath of MISR versus MODIS and shorter mission length of POLDER
compared to the others. As expected, increasing time window increases the number of matchups obtained.
This response begins to plateau from 30min onward, whichmakes sense because if it is sufficiently cloudy to
preclude AERONET observation within these time windows, it is likely that there will be few or no satellite
retrievals within the ±25 km spatial window.

Figures 10d–10f show the mean value of σ for matchups obtained within the given time window. Note that
this is different from σ at themean time lag, due to the nonlinearity of Equation 3. This is highest in SON and
lowest in MAM (cf. Figures 8) and exceeds 0.01 in all seasons even for a 15‐min matchup window.
Figures 10g–10i show Spearman's rank correlation between AERONET and satellite AOD. Rank correlation
is preferable to the (more commonly used) Pearson's linear correlation because the latter is more sensitive to
outliers in the data (such as from the skewed distributions common for AOD, e.g., O'Neill et al., 2000; Sayer
& Knobelspiesse, 2019) or in the relationship (due, e.g., to cloud‐contaminated retrievals) and assumes lin-
earity (rather than just monotonicity) in the relationship. Formost seasons and sensors, there is a decrease in
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correlation around 0.05 with increasing temporal window. This is consistent with σ in Figures 10d–10f intro-
ducing additional variation in the comparison, although as the decline is modest suggests that in this case it
is a fairly small component of the total variation. This is a larger sensitivity than found by Virtanen
et al. (2018) for the eastern United States, consistent with the spatial patterns shown in Figure 7.

This is further supported by Figures 10g–10i, which shows the root‐mean‐square error (RMSE) of the retrie-
val. This is estimating by subtracting in quadrature the AERONET direct‐Sun AOD uncertainty (about 0.01,
Eck et al., 1999) and mean σ (Figures 10d–10f) from the observed root‐mean‐square difference. Subtracting
these components provides a better estimate of the actual retrieval error, as recommended by Virtanen
et al. (2018) and Sayer et al. (2020). This shows roughly a factor of 3 seasonal variation but is fairly insensitive
to time window (within uncertainties); in part this is because σ is accounted for in the calculation, and in
part this is because retrieval errors for this site are fairly large (especially in DJF for MODIS/MISR and
JJA for all sensors). JJA coincides with the Indian monsoon so it is plausible that cloud masking difficulties
and/or 3‐D radiative transfer effects (unaccounted for in retrieval algorithms) lead to increased retrieval
error.

Figures 10m–10r show the percentage of matchups achieving the GCOS goal AOD error of the greater of 0.03
or 10% (GCOS, 2011). The former panels (m–o) are for this requirement directly, while the latter (p–r)
account for AERONET and temporal representation uncertainty as in the RMSE panels. While Figures
10m–10o shows a 5–10% decline with increasing time window, there is fairly large uncertainty at the shortest
windows due to the small sample sizes, especially for MISR and POLDER). In Figures 10p–10r this is some-
what more stable with time, as expected when comparison uncertainty is accounted for.

From this perspective, the commonly used 30‐min window seems reasonable for the MODIS algorithm at
this site. It strikes a balance between data volume (being around the knee of the matchups‐vs.‐time curves
in Figures 10a–10c) and temporal mismatch uncertainty. If retrieval errors were significantly smaller or tem-
poral variation somewhat larger, then a shorter threshold might be needed to avoid apparent degradation in
retrieval performance at the cost of lower data volume. The choice is more difficult for sensors for which the
number of matchups is more limited (e.g., MISR and POLDER, especially at shorter windows). Longer win-
dows make estimation of quantities such as RMSE and GCOS success rate more precise, but at the cost of
degrading the apparent correlation against AERONET.

4. Conclusions

It is difficult to robustly assess the uncertainty in a data set through a comparison exercise without a thor-
ough understanding of the uncertainty introduced by the comparison technique itself. This analysis builds
on earlier work by Ichoku et al. (2002), Schutgens et al. (2017), Virtanen et al. (2018), Sayer et al. (2020),
and others in developing and refining methods to evaluate satellite data by providing a first attempt to quan-
tify the temporal component of such uncertainties, for the global AERONET network, on time scales rele-
vant for validation and similar analyses. It cannot provide the unknown true temporal mismatch for every
given case. Rather, it provides a typical value that can be used in a statistical sense to estimate mismatch
uncertainties, and to guide decisions made when using or comparing these data sets (whether satellite vs.
ground‐based validation exercises, aggregation for data assimilation, or comparisons between satellite
and/or model data fields).

These results are provided for each AERONET site freely downloadable from Sayer (2020) to encourage their
dissemination and use. One can (and should) account for this mismatch in validation exercises. This can be
done, for example, when estimating RMSE of a data set from observed route mean squared deviation (which
is rarely done) or when assessing compliance of a data set with either its own uncertainty estimates (Sayer
et al., 2020) or GCOS goal uncertainties (GCOS, 2011). The importance of this is dependent on the charac-
teristics of the AERONET site (with largest and most rapid mismatch uncertainties in high‐AOD conditions,
and especially during biomass burning periods) as well as the error characteristics of the satellite retrieval (or
model simulation) at the relevant locations and times. For the median site and a 30‐min time mismatch, this
is larger than the nominal AERONET AOD uncertainty of around 0.01. For mismatches around 15min
more commonly encountered in validation exercises (due to the AERONET sampling cadence), typical
values range from 0.009 to 0.025 across the bulk of sites.
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There is an inherent tension between increasing spatial/temporal windows to increase data volume (provid-
ing more precise estimates of validation metrics), at the cost of increased representation uncertainty (which
at the same time degrades the quality of some of those estimates). The example here concerned a long‐term
AERONET site and mature missions (roughly 20‐year records from MODIS and MISR and 9 years from
POLDER)—in some senses a best case for validation data volumes at a given site. Even at these lengths
the uncertainty on some validation metrics was significant, especially for MISR. This implies that this
trade‐off may be more difficult to balance for a shorter‐term AERONET site, or for a new satellite mission
(where it is often more critical to assess instrument and algorithm performance).

While the focus is on total AOD, results are also provided for AE, FMF, and fine‐ and coarse‐mode AODs. It
is worth mentioning that uncertainty estimates for these quantities in general are less widely available, so
the present analysis presents a general quantification of the contribution from noise and temporal mismatch
uncertainty.

The results also have implications for longer‐term (e.g., monthly) composites of aerosol properties, which
are commonly used for climate applications. The time to decorrelation for AOD is typically 2–8 days, while
for AE and FMF is longer and more variable (3–33 days). This means that data sets with daily or near‐daily
repeat coverage (such as MODIS) are expected to be highly autocorrelated from day to day, while those from
narrower‐swath (e.g., the ATSRs, MISR) or curtain sampling (e.g., CALIOP) instruments may be considered
independent observations for monthly aggregates. This makes a contribution toward the development of
uncertainty estimates for L3 satellite data products.

Several avenues for future research follow from this work. One might be to extend work such as Schutgens,
Gryspeerdt, et al. (2016) and build a model to assess the spatial component of mismatch uncertainty in vali-
dation exercises and provide a similar quantification. Another would be to attempt to extend it (spatially and
temporally, and potentially also as a function of time of day) to full global coverage, which would enable bet-
ter quantification of mismatch uncertainties for purposes such as data aggregation to time steps for model
data assimilation or daily L3 satellite product comparison. This might be accomplished with a
high‐fidelity high‐resolution Earth system model simulation, such as the Goddard Earth Observing
System Model 5 Nature Run (G5NR, Putman et al., 2014). The G5NR has already been used to provide rea-
listic aerosol fields for purposes such as observing system simulation experiments (Castellanos et al., 2018),
assessing the shapes of AOD distributions for data aggregation (Sayer & Knobelspiesse, 2019), and assessing
representation errors on larger scales (Schutgens, 2020). Finally, although the present study is focused on
aerosol optical properties, the technique can in principle be applied to other data sets with available valida-
tion time series such as remote sensing reflectance (Zibordi et al., 2009).

Data Availability Statement

AERONET data are freely available from https://aeronet.gsfc.nasa.gov (Version 3, Level 2.0 direct Sun and
SDA products), and MISR and MODIS satellite data are freely available following registration from https://
earthdata.nasa.gov (MIL2ASAEv003 and MYD04_L2 Collection 6.1, respectively). POLDER data are also
freely available following registration from https:/www.grasp-open.com (Version 2.1 “models” L2 proces-
sing). In each case the available data records from the start of data sets to end of 2019 were obtained. The
semivariogram fits and derived parameters generated in this work are freely available to download from
Sayer (2020).
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