PREPRINT: Puneet Sharma, Anupam Joshi and Tim Finin, Detecting Data EXxfiltration by Integrating
Information Across Layers, IEEE 14th Int. Conf. on Information Reuse and Integration, San Francisco, Aug. 2013.

Detecting Data Exfiltration by Integrating Information Across Layers

Puneet Sharma, Anupam Joshi and Tim Finin
Computer Science and Electrical Engineering
University of Maryland, Baltimore County
{tc56339, joshi, finin}@umbc.edu

Abstract

Data exfiltration is the unauthorized leakage of confi-
dential data from a system. Unlike intrusions that seek
to overtly disable or damage a system, it is particularly
hard to detect because it uses a variety of low/slow vec-
tors and advanced persistent threats (APTs). It is of-
ten assisted (intentionally or not) by an insider who
might be an employee who downloads a trojan or uses
a hardware component that has been tampered with or
acquired from an unreliable source. Conventional scan
and test based detection approaches work poorly, espe-
cially for hardware with embedded trojans. We describe
a framework to detect potential exfiltration events that
actively monitors of a set of key parameters that cover
the entire stack, from hardware to the application layer.
An attack alert is generated only if several monitors
detect suspicious activity within a short temporal win-
dow. The cross-layer monitoring and integration helps
ensure accurate alerts with fewer false positives and
makes designing a successful attack more difficult.

1. Introduction

Data Exfiltration is a key target of many of the more
sophisticated attacks today. It is typically engaged
in by State actors and transnational crime syndicates
and uses a variety of advanced persistent threats and
low/slow vectors based on novel (zero day) exploits.
Such attacks are much harder to detect than those
seeking to bring down a system or deny access to it.
Concerns have increased that such attacks can use tro-
jans embedded in commodity hardware that is manu-
factured in a global supply chain with limited control.

Consider a scenario in which an employee uses an
infected USB flash drive on a machine connected to
his organization’s network. The USB carries malware
that automatically runs on insertion as a background
process that gains root privileges by exploiting vulner-

abilities in popular software installed on the computer.
The malicious process then hides behind a legitimate
one via code injection and evades detection. Once root
privileges are gained, the attack designer has several
options. One is to install the payload on the host
followed by opening a remote shell on the attacker’s
machine. Another is to reduce its footprint by not
installing any payload, but adding functionality that
enables it to scan the victim’s machine on its own to
discover the information sought and relay it back to
a remote machine before removing traces of the attack
ands deleting itself. Many incidents have been reported
(e.g. [20, 21]) in which data exfiltration took place in a
manner similar to this scenario. There is concern that
this is not limited to USB sticks, but can be done us-
ing compromised components and their firmware (e.g
network cards, disks, ...).

Our scenario and many reported incidents have sev-
eral common features: they are triggered by the use
of a new hardware device; most are designed to com-
municate with a remote system after the host has been
compromised; and a trusted insider is an unwitting con-
tributor to the infiltration by providing the attacker
with initial access to the host.

Ensuring tamper free hardware has become ex-
tremely difficult due to the increased use of interna-
tional supply chains by vendors of commodity hard-
ware components. Most have supply chains with com-
ponents coming from several countries, assembled in
others, and re-branded and marketed in dozens more.
While this has lowered costs, it has also made imple-
menting comprehensive security checks much more dif-
ficult. Since the security infrastructure has to be now
deployed over a much more wider scale and over mul-
tiple organizational jurisdictions, it has become rela-
tively easier for attackers to sabotage a small portion
of the supply chain and tamper the final product with
minimum chances of getting detected.

Since most of the current hardware testing tests only
for cases where the hardware is supposed to perform a

list of operations producing expected outputs, it fails to
take into consideration cases where the hardware may
be tampered so that it not only passes all the tests,
but has a malicious circuit which executes additional
sabotaging functionality on top of the expected activi-
ties [25]. Since most intrusion detection and prevention
software try to protect their users by actively monitor-
ing inbound data from the network or by looking for
known attack signatures, very few of them can detect
the aforementioned attack scenarios.

We describe a novel detection system that monitors
a set of system and network level features of a host
system and flags alerts based on temporally-related
anomalous behavior detected in multiple monitored
modules. It is well known that by building a behavioral
model of the system under normal usage and detecting
deviations from this model when under an attack can
provide us with strong hints of an attack[3, 7, 26]. The
individual alerts produced by each module are then
expressed as resource description framework RDF as-
sertions. These assertions when processed by semantic
rules produce highly effective intrusion alerts that have
a low false positive rate.

2. Related work

Fisk et al. [2] propose a global vault to prevent unau-
thorized data breaches by separating the employee ma-
chines from the ones that contain sensitive information.
They implement this strict isolation between the user
machines and the servers by placing limits such as a
whitelist of allowed inter machine processes and a max-
imum allowed bandwidth. This is an impractical ap-
proach when applied for large organizations as it puts
stringent conditions on what a user can or cannot do.

Liu et al. [9] describe a framework to actively mon-
itor and react in cases of intrusions and their possible
detection. Their proposed intrusion detection engine
is placed at the network edge, scans outbound traffic,
and decides if it should forward the data to the outside
node or not. The main drawback in the system is the
live monitoring and intrusion prevention approach that
must mine a large amount of data and decide whether
or not to forward it without affecting outbound band-
width speeds. For even a medium sized corporation, a
single module deployed at the lone egress point of a cor-
porate network would require tremendous processing
powers to monitor and analyze each outgoing packet
at runtime.

Ramachandran et al. [23] claim that their behavior-
based model can catch most network data exfiltration
scenarios. They first learn the normal behavior of a
system by using kernel density estimation methods on

system features like memory consumption, CPU uti-
lization and disk usage. The base values are used to
derive correlation coefficients on test data which came
from real attacks. This approach analyzes overall sys-
tem features like the total memory and total CPU con-
sumption level. A drawback of this detection technique
is that it can be easily evaded by trojans with an ex-
tremely small memory and CPU footprint that can re-
sult in a significant deviation in the overall numbers
for the host machine when observed as a whole. The
false positive rate of their system is not documented.

There has also been some work building on the phi-
losophy of using multiple sensing modules to detect
attacks. However, these multiple sensors are typically
all at the same level of the stack — just the host, or
just the network. Such a narrow feature set can re-
duce the accuracy of alerts produced by increasing the
false positive rates of the intrusion detection system.
Kerschbaum et al. [5] discuss the use of multiple sen-
sors embedded into the operating systems, but only
describe in details sensors that specifically pertain to
network based attacks.

Process profiling is proposed by Okazaki et al. [1§],
who derive a normal usage pattern based on system call
sequences and compare this to the profile of a system
under an attack. A similar approach based on a sys-
tem calls profile is proposed by Eskin et al. [1]. Various
machine learning approaches have been applied to se-
lected system feature sets to classify attacks with good
results, starting from the seminal work of Forrest et
al. [3] and Lee et al. [7]. Undercoffer [26] created
a model of a running system under normal usage, and
then used that model to detect attacks in the future us-
ing machine learning algorithms. Mathews et al. [10]
also took a machine learning approach in identifying a
network-based feature set which was able to produce
good classification results in identifying malicious net-
work data.

3. System Design

We describe a prototype intrusion detection system
(IDS) that is highly modular and has in place multiple
sensing modules across multiple layers of the system.
Each alert from the individual monitoring sensor is rep-
resented as a set of RDF assertions. Producing RDF
assertions allows our system to fit into a larger semantic
integration and reasoning framework being developed
in our laboratory [10, 4] that uses traditional and non
traditional sensors to form a collaborative approach to
cybersecurity. The assertions from our system can be
integrated with other information and the results aug-
mented using various reasoners, including description-

@ i r
@ @
Co{IRCeq
R D F R D F

Assertions

RDF
generator
//7ﬂ I w\(\\

Network
monitor

Hardware
menitor

Registry keys
monitor

System calls
monitor

T t
A) (e)

X

] { Process memuryJ [} [DLL
Profile builder

Normal usage pattern
Figure 1. Our prototype system detects
anomalous behavior at different layers, en-
code the events as RDF assertions which are
integrated and reasoned over to recognize
potential exfiltration events.

logic theorem provers and rule-based systems.

In this paper, we focus on a simple reasoning ap-
proach in which a collection of alerts denoting the quick
succession of anomalous events across multiple layers
indicates that an attack may have allowed data to be
exfiltrated from a victim’s machine. These multiple
modules sensing different system parameters in tan-
dem are crucial in reducing false positives, as a large
number of system parameters behaving in a anoma-
lous manner is most likely to be a strong indicator of
an attack.

To build a normal profile of the system we ran the
profiling module for a substantial amount of time log-
ging the measured parameters such as memory pat-
terns, DLLs called, and network usage. Once this pro-
file is built, the data is stored and serves as a model of
what our IDS defines as “normal behavior”. Each sen-
sor module is then run independently to monitor spe-
cific system level parameters. The monitoring module
for that sensor continuously compares live data with
the normal-behavior profile. In case that the module
catches a deviation from the norm, it produces an alert
that denotes a abnormalities for that particular system
parameter. Next, an RDF generator module runs on
top of all the sensing modules and takes as input the
alerts produced by the earlier sensors and creates a
graph of RDF assertions. These RDF assertions de-
scribe the situation using ontologies developed by our
research group [27, 28, 4]. Figure 1 shows an overview

of our system.

In the remainder of this section we describe some of
the modules we have implemented and that are used
in the example exfiltration scenario.

3.1 New hardware detection

This module produces an alert each time a new hard-
ware device is inserted in the system. We maintain a
host-based data resource of identifiers of devices that
have been seen with the host to detect ones that are
inserted for the first time. A sample rule that may
take advantage of such classification could be for a case
where a stronger alert is shown on instances when a
completely new USB flash drive is inserted into the
system rather than one which is frequently seen. We
use the hardware device’s UUID values as unique iden-
tifiers representing the device.

3.2 Memory usage by a process

As soon as an attacker is able to gain access to a vic-
tim’s system the immediate next task in most attacks
is to hide the malicious process from the user. A com-
monly used method to do this is via a code injection
into an existing running process. In doing so, the mem-
ory usage of the process will likely change [26]. Based
on this intuition we monitor the heap, stack and pri-
vate data sections of a list of profiled processes and
log alerts if the memory footprint of each memory type
deviates significantly from the mean observed value.

3.3 Network data

Monitoring network data also can produce patterns
that provide indicators of exfiltration attacks. A sud-
den burst of outgoing data or communication with a
never-before seen IP address, especially one that is in
the DHCP range of an ISP, can be a good hint of data
being exfiltrated. While monitoring IP addresses to de-
tect communication with a new IP address is straight-
forward, detecting “bursts” of outgoing data is more
complex.

The primary difficulty arises in defining a “burst of
data” compared to normal variability in traffic. Sec-
ondly, we must keep a track of all deviations and their
occurrence patterns in order to avoid extremes results
which could result in an unacceptable number of false
positives (false alarms) and/or false negatives (missed
attacks). Our model of an abnormal “burst of data”
is derived from an analysis of data collected from mul-
tiple TCP sessions of every outbound communication
from the host over a significant period. Our decision to

analyze TCP sessions is based on earlier work done in
our group [10] that had shown good results in detecting
malicious network traffic by analyzing TCP sessions on
inbound data.

We use two features to model the outbound network
flow characteristics: the mean inter-departure packet
times and the number of packets in a single TCP ses-
sion. The first feature denotes the rate of packets flying
out and the second feature denotes the pure quantity
of outbound data. These two features, when taken to-
gether, give a good picture of sufficient data going out
of a system in a short span of time. Both characteris-
tics are expected to be high when an attacker infiltrates
a victim and tries to maximize his information theft by
exfiltrating the data as quickly as possible.

3.4 Dynamic link libraries

We profile the list of dynamic link library (DLL) calls a
process makes during its normal execution. It is a fair
assumption that for an extensively profiled process, one
can gather a finite list of all DLL files that the process
typically opens for its regular use. A process making a
DLL call that is not among its normal set may indicate
that it has been compromised and an alert is generated.

3.5 Registry keys

Similar to the list of DLLs, we maintain a list of all
registry keys a Windows process usually accesses. Any
new registry key being accessed is another indicator on
our list that gets flagged as a possible process execut-
ing maliciously. A trojaned process can have multiple
reasons to access to registry keys it has never accessed
before. A simple process like notepad, for example,
should not have to access a network configuration reg-
istry entry. If it does, there is high probability that a
malicious process pretending to be notepad is access-
ing network information in order to connect to a remote
server.

3.6 System calls

There is sufficient past work [18, 1, 8] that proves that
system call monitoring can produce good indicators of
an attack. One of the process characteristics that we
monitor to detect any deviations from the norm is the
system calls being made by that process. We assume
that a trojan hiding underneath an existing process
is likely to call a distinct set of system calls which if
monitored, can be used to raise an alert. We use a
fairly simple approach, essentially only looking the the
number of system calls made, not their pattern.

4. Profile building and live monitoring

Most of our development and testing was on systems
running the Windows operating system due to the
high number of publicly available attacks specifically
targeted towards these. Our profiling and process
monitoring module is currently limited to Windows-
based processes, though similar routines can be easily
written (and in some cases already exist) for Linux.
We successfully profiled and monitored a list of nine
common Windows processes: calc.exe, conhost.exe,
explorer.exe, firefor.exe, msinfo32.exe, mspaint.exe,
notepad.exe, powershell.exe and wmplayer.exe.

The decision to select these nine was based on three
factors. First, we wanted a list of processes that are
either pre-installed in a standard configurations or are
part of very popular software packages. Second, we
wanted a wide range of processes in terms of their mem-
ory consumption pattern to avoid biasing our results.
The final selection criterion was the amount of user
interaction each of the monitored processes witness in
their lifetime. We wanted a broad variety of processes
which would include background processes such as ex-
plorer.exe or conhost.exe that do not involve user in-
teraction to processes like firefozr.exe and wmplayer.eze
that do.

We ran the profiling module for three to four days
with intermittent use of each process to produce av-
erage values of memory consumed by the heap, stack
and private data sections. We also calculated the stan-
dard deviation of these three respective mean values
for each process. Once the profile was built, we moni-
tored these process live and raised alerts if the memory
consumption for any of the three memory types went
over three standard deviations of the averaged value.
We implemented a simplistic non-statistical approach
to profile the list of DLLs, windows registry keys and
system calls that the processes called under normal us-
age. During the profiling phase of these processes, a
whitelist of all DLLs, system calls and registry keys
was prepared which was essentially a list of all calls
the processes made under normal use. If any new DLL,
system call or registry key is called outside the earlier
built whitelist, an alert is raised.

For our networking module we used the libpcap [15]
libraries to implement packet sniffing for all outbound
traffic. The splitcap [14] tool was used to extract TCP
session based information from the network packets be-
ing monitored. The system was run for a few days
and all IP addresses that the host communicated with
logged. This list of IP addresses served as a whitelist
of all destinations that were deemed safe to be com-
municating with. A network packet sent to any IP

address outside this list would throw an alert. Packet
sniffing sessions were initiated on five machines in our
lab used by multiple users who had volunteered. The
data collected from these volunteers was aggregated
to produce overall network flow characteristics. These
characteristics collected and aggregated produced an
average value of the inter packet departure time per
TCP session and the average number of packets sent
in a single TCP session.

The hardware monitoring module had a simple im-
plementation. All connected hardware devices were
profiled using their manufacturer UUID as their iden-
tification number and alerts were raised for any new
hardware introduced in the system. In case of USB
flash drives, an additional information informing us
whether the USB device was seen in the past or not
was added in the produced alerts. This allows the pos-
sibility of highly flexible rules running on our RDF as-
sertions such a sample rule which called for no alerts
to be raised if the USB drive inserted in the system
had been frequently used in the past. This approach
can be extended to other devices — for instance logging
the MAC address of a network card or a disk serial
number.

5. Testing our system

We used the Metasploit [17] open source penetration-
testing framework to create and apply attacks in order
to test our intrusion detection system. Within Metas-
ploit, we extensively used the social engineering toolkit
(SET) [22]. Social engineering based attacks are among
the most common forms used today for data exfiltra-
tion. SET is popular, with over two million downloads,
for two reasons: (1) it offers a large number of easy to
run attacks that do not require much experience or
background knowledge, and (2) it is tightly integrated
with Metasploit, allowing pen-testers and white hat
hackers to develop custom exploits by combining SET
based attack options with custom payloads. The list of
past attacks that used social engineering to infiltrate
their victims includes highly sophisticated APTs like
Stuxnet [6], which was spread using USB drives, and
the Aurora attack on Google [19], which is believed
to have been initiated by sending malicious URLs to
Google employees. The social engineering toolkit under
Metasploit allows us to test our system against similar
attacks that can be launched by using malicious hard-
ware to directly transfer the Trojan payloads on to a
known system.

We ran the following five attacks available in Metas-
ploit’s SET:

1. PowerShell attack using shellcode injection

2. Metasploit executable
Applet based attack

4. Remote Administration using HTTP tunneling
(RATTE)

5. Tab nabbing attack

w

Once the victim’s machine was successfully compro-
mised and complete access gained, we tried to mimic
a real attack resulting in data exfiltration. The first
step was to hide our malicious process behind an ex-
isting one using code injection. We then downloaded
files from the victim’s machine, took screen shots of
the victim’s screen, and captured key strokes. We also
executed remote processes and extracted network con-
figuration information from the victim.

We ran the same set of attacks against six differ-
ent commercially available security software systems.
These covered traditional anti-virus systems, firewalls
and pure intrusion detection systems. The list in-
cluded Microsoft forefront endpoint, Spyware termina-
tor, Windows defender, Snort, AVG and Comodo fire-
wall.

6. Results

Every time a new USB flash drive was inserted, our
hardware monitoring module was able to produce an
alert with the additional information of whether the
flash drive had been seen before or not. Results from
the memory monitoring module 1 show that all three
memory types can potentially be good features to be
monitored to detect an attack. For the nine sample
processes however, heap and stack turned out to be
less accurate indicators when compared to private data
memory type.

We observed that for most of the profiled processes,
the private data memory type witnessed a significant
jump whenever we tried to hide our malware behind a
particular process using code injection. The three pro-
cesses for which the jump was less than one standard
deviation (jlo) were Microsoft paint (mspaint.exe),
Windows media player (wmplayer.exe), and Firefox
(firefox.exe). This was largely due to these processes
having a highly variable memory consumption pattern
dependent on their usage which leads to a high stan-
dard deviation value. Firefox, for example, can start
as a small process with a memory footprint of a few
hundred kilobytes, but can reach a value more than ten
times that due to heavy graphic content of the websites
being viewed or simply by the number of concurrent
tabs opened by the user. In case of Windows media
player, we found surges in the memory usage when the
player was used to stream high definition videos when

Process Priv data | Stack | Heap
calc.exe 5540 11.140 | 3.720
conhost.exe 19640 320 4280
esplorer.exe 30.80 0.960 | 2.320
firefox.exe 0470 2.10 15.60
msinfo.exe 3lo 0.0470 | 0.89 ¢
mspaint.exe 1.08¢0 0.38¢ | 0.240
notepad.exe 42.580 0.01c 20

powershell.exe 19720 210 15.90
wmplayer.exe 0.650 0.90 0.820

Table 1. Memory deviations for attacked pro-
cesses

compared to simple music playing or image viewing
operations.

Although the memory monitoring module was in-
effective for a small set of our profiled processes, it
worked extremely well for processes that have a low
memory footprint and run in the background without
much user interaction. These background processes are
generally the first choice for most attackers. The Ex-
plorer process, for example, is one of the most pop-
ular choices for hiding malware and is recommended
in many hacking tutorials on the Web [12, 11, 16, 13].
Processes like Firefox and Wmplayer are poor choices
because they have short lifetimes since they are often
killed by users after their use.

Table 2 shows that during an attack, effected pro-
cess accessed a number of new DLLs and registry keys
that they had never accessed during normal operation.
Our alert sensitivity for this sub-module was such that
a single new DLL or registry key access produced an
alert. While monitoring system calls, however, we ob-
served that six out of nine processes did not show any
new system call being accessed during an attack. We
believe that this is largely due to the simplistic model
of system call access that we used, as prior work has
shown that detecting complex usage patterns of system
calls will detect subverted processes|3].

For the networking module, the network data be-
fore and after an attack was not varied by a scale of
tens or hundreds, as was the case with the memory
monitoring module. Therefore, we needed to come up
with an allowed standard deviation number to use as
a benchmark when differentiating between normal net-
work data flow and data exfiltration due to an attack.
After running our module over test data and analyzing
the results, we selected +40 as the maximum allowed
deviation for the number of packets sent in a TCP ses-
sion. The mean inter-departure time of packets is more
varied in terms of its sample set with a large standard

Process DLL | Registry | System call
calc.exe 17 31 4
conhost.exe 27 233 3
esplorer.exe 22 34 3
firefox.exe 5 40 0
msinfo.exe 21 45 0
mspaint.exe 14 280 0
notepad.exe 16 31 0
powershell.exe 34 310 0
wmplayer.exe 84 2175 9

Table 2. The number of new DLLs calls, reg-
istry keys accessed and system calls are in-
dicators of compromised processes.

deviation. After more analysis of the sample test data,
we chose 0.01x7, where « is the mean inter departure
time per packet per TCP session, as the minimum al-
lowable value for a TCP session to not be suspected of
belonging to an attack.

‘We monitored over 1154 TCP sessions out of which
twelve were part of the illegitimate intrusions leading
to data exfiltration. Since multiple TCP sessions are
often created for a short, one-time communication be-
tween two nodes in a network, the number of actual
attacks run was much less than twelve. Out of these
twelve malicious sessions, only three were sessions that
involved the attacker exfiltrating small files (<1 Mb)
from the victim’s machine. The inter departure packet
time sub-module detected 114 TCP sessions, which was
a high number of false positive alerts. The packet count
sub-module was relatively better but still generated a
substantial number of false positives. However, requir-
ing a conjunction of both significantly increased the
alert accuracy with the overall network module detect-
ing all three exfiltration sessions apart from one other
false positive (Table 3).

When the six commercial security software men-
tioned earlier were run over our sample attacks, none
performed well. The majority could not detect most
of our attacks, although each one of them found some
success for a few attacks. Table 4 compares the perfor-
mance of our intrusion detection system and the others
for each of the five attacks tested. For all, our mod-
ules were able to trigger alerts warning us of anomalous
behavior.

For all of the attacks studied except tab nabbing, all
of our modules succeeded in flagging anomalous system
behavior, thus providing enough information to pro-
duce an alert with reasonably high confidence. Since
the tab nabbing attack involved neither remote code
execution, process migration, nor substantial network

Total TCP sessions monitored | 1154

Malicious sessions 12
MIDPT module alerts 114
Packet count alerts 34

Combined alerts
True positives
False positives

KRS

Table 3. Combined detection rate for attacks

traffic, some of our modules were unable to detect any
anomalous behavior and raise alerts.

Our IDS was able to detect and log a sequence of
two major events as they happened over the course of
tab nabbing attacks: the insertion of a foreign device
followed by a connection to a never seen before IP ad-
dress. Even though the individual alerts raised was
low in confidence, our system was still able to produce
some alert for an attack that was missed by all of the
commercial software systems we tested.

We also tested our system to see how prevalent false
positives were. It was run under normal usage for
about six hours without executing any attacks on it
in order to observe the number of false alarms our in-
dividual modules produced. One of the original goals
of our work was to reduce the false positive rate while
detecting attacks. We aimed to achieve this by inte-
grating information from multiple detection modules
and integrating them as events that are temporarily
close. We vary the number of individual modules that
need to declare an intrusion before the system as a
whole would. Figure 2 shows the results. They con-
firm that our approach performs well since there were
no false positives when three or more of our monitor-
ing modules raised alerts concurrently. Also, the high
number of false positives where a single module raised
an alert were primarily due to the networking module
that flagged an alert every time we communicated to
a new IP address. We believe that with a longer pro-
filing duration than ours, this number can go down in
the future.

7. Conclusion

We implemented and evaluated a prototype system
that is effective in detecting attacks leading to data
exfiltration from a compromised computer running the
Windows operating system. In our evaluation six pop-
ular commercial software products performed poorly
on this task. Our approach is based on integrating in-
formation from a collection of monitoring systems that
operate at different conceptual layers of a computing

False positive alars

Numbaer ol alers produced
2

o
T
L

0 . .
1 2 3 4

Mumber aof monitors detacling anomalous bahavior

Figure 2. False positive rate

environment, from hardware up to applications. The
information is encoded as RDF assertions supported
by several ontologies designed to support representing
and reasoning over information about security-related
entities, relations, events and concepts. Our cross-layer
and temporally-aware approach was able to minimize
the number of false positive alerts which plagues most
of the current security solutions. We plan to build
on our prototype by adding additional modules, in-
corporating additional background knowledge, using
more sophisticated techniques to model and discrim-
inate normal and malicious behavior, incorporate ma-
chine learning algorithms where appropriate and con-
duct a more comprehensive and larger-scale evaluation.

Acknowledgment

This research was partially supported by AFOSR
award FA9550-08-1-0265 and a gift from Northrop
Grumman. Joshi’s work was supported by funds from
the Oros Professorship endowment.

References

[1] E. Eskin, W. Lee, and S. J. Stolfo. Modeling sys-
tem calls for intrusion detection with dynamic win-
dow sizes. In DARPA Information Survivability Conf.
& Ezxpo. II, volume 1, pages 165—175, 2001.

[2] M. Fisk, S. Miller, and A. Kent. Global virtual vault:
Preventing unauthorized physical disclosure by the in-
sider. In Military Communications Conf., pages 1-T7.
IEEE, 2008.

[3] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff.
A sense of self for unix processes. In Symposium on
Security ad Privacy. IEEE, 1996.

PowerShell | Metasploit | Applet | tunneling | Tab nabbing
Microsoft forefront endpoint Missed Caught Caught Missed Missed
Spyware terminator Missed Missed Missed Missed Missed
Windows defender Missed Missed Missed Missed Missed
Snort Caught Caught Missed Missed Missed
AVG Missed Caught Missed Caught Missed
Comodo firewall Missed Caught Missed Caught Missed
Our system Caught Caught Caught Caught Caught

Table 4. Our system performed well compared to others on experiments with several common types
of attacks.

(4]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

A. Joshi, R. Lal, T. Finin, and A. Joshi. Extracting
cybersecurity related linked data from text. In Seventh
IEEE International Conference on Semantic Comput-
ing. IEEE Computer Society, September 2013.

F. Kerschbaum, E. Spafford, and D. Zamboni. Us-
ing embedded sensors for detecting network attacks.
In ACM Workshop on Intrusion Detection Systems,
2000.

R. Langner. Stuxnet: Dissecting a cyberwarfare
weapon. Security & Privacy, 9(3):49-51, 2011.

W. Lee and S. J. Stolfo. A framework for construct-
ing features and models for intrusion detection sys-
tems. ACM Transactions Infformation Systems Secu-
rity, 3(4):227-261, Nov. 2000.

W. Lee, S. J. Stolfo, and P. K. Chan. Learning pat-
terns from unix process execution traces for intrusion
detection. In AAAI Workshop on AI Approaches to
Fraud Detection and Risk Management, 1997.

Y. Liu, C. Corbett, K. Chiang, R. Archibald,
B. Mukherjee, and D. Ghosal. Sidd: A framework
for detecting sensitive data exfiltration by an insider
attack. In 42nd Hawaii Int. Conf. on System Sciences,
pages 1-10. IEEE, 2009.

M. L. Mathews, P. Halvorsen, A. Joshi, and T. Finin.
A collaborative approach to situational awareness for
cybersecurity. In 8th Int. Conf. on Collaborative Com-
puting: Networking, Applications and Worksharing,
pages 216-222. IEEE, 2012.

Metasploit Commands. http://hacking-tutorial.com-
/tips-and-trick/7-metasploit-meterpreter-core-
commands-you-should-know/. (accessed 2013-05-29).
Metasploit Tutorial. http://offensive-security.com-
/metasploit-unleashed /Meterpreter_Basics. (accessed
2013-05-29).

MeterpreterClient. http://wikibooks.org/wiki/Meta-
sploit/MeterpreterClient. (accessed 2013-05-29).
SplitCap. http://netresec.com/?page=SplitCap. (ac-
cessed 2013-05-29).

TcpDump and LibPcap. http://tcpdump.org/. (ac-
cessed 2013-05-29).

Using Metasploit Meterpreter Keylogger.
http://hacking-tutorial.com /hacking-tutorial /5-step-
using-metasploit-meterpreter-keylogger-keylogging/.
(accessed 2013-05-29).

(17]

18]

(19]

20]

21]

22]

(23]

24]

[25]

[26]

27]

(28]

J. O’Gorman, D. Kearns, and M. Aharoni. Metasploit:
The Penetration Tester’s Guide. No Starch Press,
2011.

Y. Okazaki, I. Sato, and S. Goto. A new intrusion
detection method based on process profiling. In Sym-
posium on Applications and the Internet, pages 82-90.
IEEE, 2002.

Operation aurora. http://wikipedia.org/wiki/Opera-
tion_Aurora. (accessed 2013-05-29).

IBM distributes infected USB drives at conference.
http://scmagazine.com/ibm-distributed-infected-

usb-drives-at-conference/article/170862/. (accessed
2013-05-29).
Netbook comes with factory-sealed malware.

http://scmagazine.com/netbook-comes-with-factory-
sealed-malware/article/137147/. (accessed 2013-05-
29).

N. Pavkovic and L. Perkov. Social Engineering
Toolkita systematic approach to social engineering. In
MIPRO 2011, 34th International Convention, pages
1485-1489. IEEE, 2011.

R. Ramachandran, S. Neelakantan, and A. Bidyarthy.
Behavior model for detecting data exfiltration in net-
work environment. In Conf. on Internet Multimedia
Systems Architecture and Application. IEEE, 2011.

P. Sharma. A multilayer framework to catch data exfil-
tration. Master’s thesis, University of Maryland, Bal-
timore County, August 2013.

M. Tehranipoor and F. Koushanfar. A survey of hard-
ware trojan taxonomy and detection. Design & Test
of Computers, IEEE, 27(1):10-25, 2010.

J. Undercoffer. Intrusion Detection: Modeling Sys-
tem State to Detect and Classify Aberrant Behav-
ior. PhD thesis, University of Maryland, Baltimore
County, Feb. 2004.

J. Undercoffer, A. Joshi, T. Finin, and J. Pinkston.
Using DAML4OIL to classify intrusive behaviours.
Knowledge Engineering Review, 18(3):221-241, 2003.
J. Undercoffer, A. Joshi, and J. Pinkston. Modeling
computer attacks: An ontology for intrusion detection.
In 6th Int. Symp. on Recent Advances in Intrusion
Detection, pages 113—-135. Springer, 2003.

