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ABSTRACT
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Department of Computer Science and
Electrical Engineering

Network anomaly detection has wide ranging applications, to include fraud prevention

and cybersecurity. This paper introduces several methods of network anomaly detection

derived from topological data analysis (TDA). At a high level, TDA captures the qualita-

tive geometric features of data. The primary tool of TDA is persistent homology, which

is used to analyze the ”holes” present in data. When applied to networks, the generated

features provide insight into global and local trends. Specifically, we employ persistence

landscapes generated directly from the weight ranked clique filtration (WRCF) of commu-

nication graphs. This obviates the need for graph embedding. The graph construction is

application dependent, with communications frequency being the natural choice for edge

weight in most cases. Applying persistent homology to this filtration yields a persistence

landscape, which is used as a graph invariant. This research aims to show that anomalous

behavior corresponds to detectable deviation from previous persistence landscapes. By cal-

culating the persistence landscapes of local neighborhoods around individual vertices over

time, suspicious behavior can be detected. The persistence landscapes of the entire network

over time are used to detect global changes in behavior corresponding to major events.
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Chapter 1

INTRODUCTION

For a wide variety of applications it is critical to detect network anomalies. Two do-

mains of particular interest are fraud prevention and cybersecurity. In both cases, network

anomalies are associated with negative outcomes. For this reason, it is important to detect

anomalies early and accurately. Additionally, any detection method must be robust, and

not susceptible to small changes causing false negative results.

Network data is often multimodal, meaning the choice of representation it not obvi-

ous. There are many ways to combine the different modalities of graph data given specific

application (Goyal & Ferrara 2018). While useful, these methods are often computationally

expensive, especially as the size of the dataset grows. Therefore, methods which do not re-

quire embedding or significant transformation of the underlying data are desirable. Directly

modeling network data as a weighted graph obviates the need for graph embedding. While

this method requires calculation of edge weights, this introduces minimal complexity and

there is often a natural choice for any given application.

Topological data analysis (TDA) is well suited to this type of problem. Originally

developed by Gunnar Carlson, this field is concerned with quantifying the topology of

data (Carlsson 2009). The primary tool of TDA is persistent homology. This approach

captures the qualitative characteristics of data at different scales, meaning it is robust to

1
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small changes in the data. Most often, it is applied to point cloud data lying in Rn. In order

to compute the persistent homology of such data, it must first be converted to a graph based

representation called a simplicial complex.

Given that network data already can easily be represented as a weighted graph, it

is a natural next step to directly apply persistent homology. From an anomaly detection

perspective, this eliminates the need to embed or significantly transform the network data.

On the TDA side of the detector, there is no point cloud data which must be converted to a

graph; the data is already in the correct form.

Regardless of the domain, network anomalies can be classified as local or global oc-

currences. Both of these anomaly types are of interest, with the interpretation of each

varying based on the application. For instance, in the context of fraud prevention, a lo-

cal anomaly detection should indicate which nodes are potentially committing fraud. In

cybersecurity related applications, a global anomaly might indicate a DDoS or similar

widespread attack. With minimal modifications, the same TDA based methods can be

used to detect both local and global anomalies, the main difference being the scale of the

data.

This paper develops a persistent homology based invariant computed directly from

the graph representation of the network. Computed over the neighborhoods surrounding

individual vertices, this invariant is used to detect local anomalies. Similarly, applied to the

entire network graph, it is used to detect global anomalies.



Chapter 2

BACKGROUND AND RELATED WORK

The techniques presented in this paper are derived from existing tools in TDA and

network anomaly detection. The first section of this chapter provides an overview of the

definitions and tools which make TDA possible. The second section provides an overview

of anomaly detection techniques similar to those developed in Chapter 3.

2.1 Topological Data Analysis

For the purposes of this paper, TDA proceeds as follows. The first step is to construct

a filtered simplicial complex, or filtration, from the data. Each step of the filtration is a

simplicial complex constructed for some value of a scale parameter. Next, the persistent

homology of the filtration is computed. The resulting intervals summarize at which steps

in the filtration ”holes” in the data are created and closed. These intervals are most often

represented as a barcode graph. A persistence landscape can be derived from the barcode of

a filtration. By taking the distance between persistence landscapes, it is possible to compare

the persistent homology of different filtrations. The remainder of this section will define

the key terms above, and clarify critical steps.

3
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2.1.1 Simplicial Complexes

The simplicial complex is the fundamental building block of persistent homology.

This section is mainly distilled from Gunnar Carlson’s seminal paper on TDA (Carlsson

2009). The reader is encouraged to refer to that paper for a full treatment of mathematics

underlying simplicial homology.

Definition 2.1. A simplicial complex is a pair X = (V,Σ), where V is a finite set, and Σ is

a family of non-empty subsets of V such that σ ∈ Σ ∧ τ ⊆ σ =⇒ τ ∈ Σ.

Each σ ∈ Σ is a simplex. Interpreting the simplicial complex as a graph, a simplex

corresponds to a vertex, edge, triangle, or similar higher dimensional structure. If |σ| = k

then σ is a (k − 1)-simplex. For instance, σ = {1, 2, 3, 4} is a 3-simplex corresponding to

the tetrahedron formed by the clique of the included vertices.

Importantly, it is possible to compute the homology of a simplicial complex. Given

X = (V,Σ), Σk is the set of k-simplices. A k-chain is any formal linear combination

of elements of Σk. Ck(X) is the free abelian group over Σk, or the set of all k-chains

in X . The boundary operator, which yields the k − 1 cofaces of the simplices in Σk, is

∂k : Ck(X) → Ck−1(X), and defined as ∂k =
∑k

i=0(−1)idi, where di(σ) = σ − {si}

and si is the ith vertex in σ. The kth homology group of a simplicial complex is defined as

Hk(X,Z) ∼= Kernel(∂k)/Image(∂k+1).

Intuitively, Kernel(∂k) corresponds to k-chain boundaries in the complex, and

Image(∂k+1) corresponds to the k-chains which bound (k + 1)-simplices. Therefore, Hk

contains the k-chains of the simplicial complex which are boundaries, but do not bound

(k+1)-simplices. In other words,Hk is the group of holes bound by k-simplices. Note, this

means that in order to compute Hk, the simplicial complex must contain (k+ 1)-simplices.
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2.1.2 Filtration

This section outlines how to create a simplicial complex from data. A filtration of a

complex X results in a filtered simplicial complex, or filtered complex.

Definition 2.2. A filtration of a complex X is a nested subsequence of complexes ∅ = K0 ⊆

K1 ⊆ ... ⊆ KM = K. (Zomorodian & Carlsson 2004)

Again, the goal of persistent homology is to capture how the data behaves across

different scales by computing the homology of each step in the filtration. This means that

the construction of the filtration should capture the data at different scales in a meaningful

way. There are several techniques which have been developed to accomplish this, both for

point cloud and graph-based data.

While this paper does not make use of point cloud data, it is an active area of re-

search in TDA and is useful for exploring the basic idea. Given point cloud data in an

N-dimensional space, there are three main methods used. In order of increasing efficiency,

these are the Čech complex, Vietoris-Rips complex, and the Witness complex (Carlsson

2009). The later two are optimizations of the Čech complex, making it possible to process

large amounts of data.

Definition 2.3. Let Bp
ε be the ε-ball around vertex point p, all points within distance ε of

p. Then the Čech Complex of a simplicial complex, C(X, ε), where ε > 0, is the set S such

that σ ∈ S if the
⋂
p∈σ B

p
ε 6= ∅

Intuitively, this means that a set of points is added as a simplex in the complex if the

ε-ball for every point in the set overlaps with the ε-ball of every other point in the set. This

is illustrated in Figure 2.1. It is clear from the figure that as ε is increased, the resulting

sequence of simplicial complexes satisfies the definition of a filtration. The Vietoris-Rips

complex is similar to the Čech complex, but less expensive to compute. An edge is added
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FIG. 2.1. An illustration of how a Čech Complex is formed. Distributed under the CC BY
2.0 license (Foundation 2019).

between two points if the distance between the points is less than ε. The clique complex

of the resulting graph is computed in order to form a simplicial complex. Again, ε is

increased to create a filtration. The Witness complex is computed in a similar manner, but

using specially selected points to quickly approximate the Vietoris-Rips complex (Carlsson

2009). Note, both of these filtrations rely on finding the clique complex of a graph. Methods

for computing clique complexes are outlined in Section 2.1.5.

Definition 2.4. Given an undirected graph G with edges E and vertices V, the clique com-

plex of G is XG = (V,ΣG), where σ ∈ ΣG if the vertices of σ form a clique. The elements

of ΣG
k correspond to (k+1)-cliques.

It is also possible to construct a filtered complex directly from graph data instead of

point cloud data. There are several approaches to accomplish this, but the most promising

is the Weight Rank Clique Filtration (WRCF) over a weighted undirected graph (Petri et
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al. 2013). For this filtration, each step of the filtration corresponds to a unique edge weight

in the graph. Edges can either be added by increasing or decreasing weight, depending on

the application and distribution of edge weights.

2.1.3 Persistent Homology

Section 2.1.1 showed how to compute the homology of a simplicial complex. Given a

filtered simplicial complex, it is possible to compute persistent homology. At a high level,

persistent homology is a record of when ”holes” are created and destroyed in the filtered

complex. If a homology class α is born at step Ki of a filtration and dies at step Kj ,

the persistence of α is j − i (Edelsbrunner & Harer 2008). Alternatively, the persistence

interval of α is (i, j]. The persistence intervals for all homology classes of a dimension can

be represented as a barcode as shown in Figure 2.2. While barcodes are a natural way to

represent the persistent homology of a filtered complex, it is difficult to compare barcodes

across filtrations. This problem is addressed in Section 2.1.4.

Ultimately, computing persistent homology reduces to a series of row and column op-

erations on the boundary matrices of the filtration. The boundary matrices are constructed

using the boundary operators from Section 2.1.1. Specifically, the boundary matrix used to

compute the pth-persistent homology is defined as follows.

Definition 2.5. Dp[i, j] = 1 if the i-th p − 1-simplex is a face of the j-th p-simplex and 0

otherwise (Edelsbrunner & Harer 2008).

The pth-persistent homology of the filtration is computed by converting the Dp to

Smith normal form. This process takes O(m3), where m is the number of simplices in the

filtered complex (Zomorodian & Carlsson 2004).
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FIG. 2.2. An example of a barcode for 0, 1, and 2 dimensional persistent homology of the
filtered complex (Ghrist 2008)

2.1.4 Persistence Landscapes

The persistence landscape is a topological summary of the persistent homology of a

space. It is useful because it lies in a vector space, is equipped with an Lp norm, and has

a statistical interpretation (Bubenik 2015). This construction allows for easier comparison

of the topological characteristics of data. Figures 2.3 and 2.4 show a partial and complete

persistence landscape, respectively.

Definition 2.6. A persistence landscape is a piecewise linear function L : Z+ × R → R.

LP(k, z) = kmax
p∈P

tp(z), where kmax is the kth largest value in the set. Given a set

of intervals (b,d] denoting the birth and death of a ”hole”, each persistence point p =

(x, y) = ( b+d
2
, b−d

2
) is replaced with the following triangle function (Chazal et al. 2013):

tp(z) =


z − d z ∈ [d, b+d

2
]

b− z z ∈ [ b+d
2
, b]

0 otherwise
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FIG. 2.3. A partial persistence landscape corresponding to L(1, ·) over time (Chazal et al.

2013).

FIG. 2.4. An example of a barcode, its representation using tp, and the resulting

persistence landscape (Bubenik 2015).



10

2.1.5 Computation of Clique Complexes

As previously mentioned, finding the clique complex of a graph is a critical step in

constructing many filtrations. There are three published algorithms to solve this problem

(Zomorodian 2010). All three algorithms find cliques in a graph up to size k, corresponding

to (k − 1)-simplices. Finding the cliques of a graph is ultimately a hard combinatorics

problem. There is currently no known upper bound on the run time of these algorithms.

Empirically, the iterative approach has been shown to be the fastest. This is the algorithm

used to construct simplicial complexes in Chapter 4.

2.2 Related Work

The field of anomaly detection is well researched and includes a wide range of tech-

niques. This paper primarily focuses on developing an anomaly score which can be applied

locally to detect anomalous nodes and globally to detect events. This section will review

related methods used to detect local and global anomalies in graph-based data.

2.2.1 Scan Statistics

Graph based scan statistics are an efficient and effective method of local anomaly de-

tection. The scan statistic around a given node is usually computed over network graphs

from a sliding window of time. Changes in the scan statistics can be used to detect anoma-

lous behavior.

Definition 2.7. The closed kth-order neighborhood of vertex v in a directed graph D is

Nk[v,D] = {w ∈ V (D)|d(v, w) ≤ k}, where V (D) is the vertex set of D (Priebe et al.

2005).

Definition 2.8. Let the scan region Ω(Nk[v,D]) be in the subgraph induced by the vertices
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of Nk[v,D]. A locality statistic is any graph invariant Ψk(v) over the scan region (Priebe

et al. 2005).

By computing how the locality statistic of a vertex changes over time, it is possible

to detect local anomalous behavior. This technique has successfully been applied to the

Enron email dataset (Priebe et al. 2005). The invariants developed in Chapter 3, while not

actual locality statistics, are closely related.

2.2.2 TDA and Networks

Other anomaly detectors have been developed using persistent homology as a graph

invariant (Bruillard, Nowak, & Purvine 2016). These detectors rely on first converting

the network data to point cloud data via a vectorization process. By directly comparing

barcodes of the 0th-persistent homology (corresponding to connected components), these

detectors are able to find anomalies under specific circumstances.

2.2.3 Other Detectors

Global event detection can be accomplished using a wide variety of tools. Neural

networks, Bayesian networks, and rule-based systems have all been applied with varying

levels of success (Chandola, Banerjee, & Kumar 2009). These techniques, while interest-

ing, are not closely related to the topological methods developed in this paper. Persistent

homology is designed to work well across different scales, so this means the techniques

developed for local detection also work well for global event detection.



Chapter 3

METHODS

This chapter outlines methods developed to apply persistent homology to network

data. These methods are applied to the Enron email dataset (Enron 2015), so this sec-

tion begins with a description of the data and how it was processed. There are two tasks

which must be accomplished in order to successfully apply persistent homology to net-

work data. First, a filtration must be generated from the given data. Second, the resulting

barcodes/landscapes must be processed and interpreted. The two methods differ mainly in

how the filtration is constructed. The second method, based on a WRCF, best captures the

network structure and forms the basis for anomaly detection.

3.1 The Enron Email Corpus

The Enron email dataset is the largest publicly available email dataset. The corpus

has been redacted significantly over time. In this context, persistent homology relies on the

formation of cliques. It is unlikely that communication with non-Enron email addresses

will result in interesting cliques. For this reason, all emails to or from non-Enron users

were excluded. The resulting induced sub-graph of Enron users contains 32,062 nodes and

194,306 edges, far more than the 124 users the data was collected from.

The ultimate goal of this research is to develop real-time anomaly detection via persis-

12
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tent homology. For such an application, it is useful to compare past and present behavior.

To facilitate this comparison, the data was windowed by week. Significant email traffic

first starts to appear in November of 1998 and tapers off in June of 2002. With this in mind,

the data was partitioned into one week graphs, starting Sunday 11/1/98, encompassing 189

weeks in total. This is the same division used in similar research (Priebe et al. 2005). The

edges of these graphs are weighted by total communication between two nodes during a

given week. As is shown in Figure 3.2 the distribution of edge weights has a long tail likely

given by a power law, with most of the edges having weight one.

3.2 kth-order Neighborhood Filtration

This filtration is derived from the concept of a kth-order neighborhood from Definition

2.7. There are two variations of this filtration. The first is defined as the forward scan

filtration, Fk. Each step in this filtration is an induced neighborhood Ni[v,D] around a

given node for 1 ≤ i ≤ k. Step 0 of the filtration for vertex v corresponds to the induced

1st-order neighborhood around v. An example filtration can be seen in Figure 3.1. While an

obvious first attempt, this method does not yield any useful persistent homology intervals

for the typical neighborhoods around nodes in the Enron data. For k = 4, most nodes

during the majority of time steps had no dimension 1 persistence intervals which closed.

Because the intervals do not close, this method essentially amounts to counting the 3-

cliques in the k-neighborhood around v.

As a second attempt, a reverse scan filtration is used. This is similar to the forward

filtration, but working inward. For example, for the graph in Figure 3.1, the yellow, or-

ange, and red subgraphs would be added in that order, with the green vertex added last.

This method yields more persistence intervals, indicating that it captures more structural

information about the neighborhood surrounding a vertex. This is because initial steps are
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poorly connected while the final steps are highly connected, making it more likely that

holes will form early and be closed out by the end of the filtration. Even with this modified

filtration, it is rare to see dimension 1 or higher persistent homology on network graphs.

The reason these two methods fail to provide interesting intervals is that the resulting

filtrations are not granular enough. It is only feasible to apply this type of filtration for

relatively small k (≤ 5 was tested). The graphs tested have relatively small diameters

(≤13), so the local neighborhood graphs start to include most of the global network if k

is taken too large. Any interesting structure useful for detecting anomalous activity from

a vertex should be present in the neighborhood relatively local to that vertex. Finding the

kth-order neighborhood around a vertex is the same as finding the shortest path from the

vertex to all other vertices, with a cutoff of k. On an unweighted graph, this is done with

a breadth-first search, which has a run-time of O(E + V ). While tractable for small k, the

expanding/contracting neighborhood approach did not meaningfully capture the structure

of the local neighborhood surrounding a given vertex. In order to capture the interesting

structure of the local neighborhood, longer, more granular filtrations are needed. This issue

is addressed by the Weight Rank Clique Filtration.

3.3 Frequency-Based WRCF

For some applications, the edge ordering is important, but for the networks tested in

this paper the resulting persistence landscapes behave similarly. Initially, edge weights

were added by increasing order. The issue is that for each step in the filtration, the clique

complex must be computed, which has already been shown to be a hard problem.

As shown in Section 3.1, the edge weights follow a distribution with a long tail.

Adding low weight edges first means that for every step of the filtration, the clique complex

must be computed over almost every edge. If instead, the high weight edges are added first,
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FIG. 3.1. The 1st,2nd, and 3rd-order neighborhoods of the green vertex, shown in red,
orange, and yellow respectively.

most of the steps of the filtration correspond to relatively small portions of the graph, with

only the last few steps including more edges. Changing the order of the WRCF to add high

weight edges first provided approximately a 6000% speedup.

When computing persistent homology, the filtration length does not matter, only the

number of simplices. However, longer filtrations require more time because more clique

complexes must be found. Given a graph with total weight N , the maximum length of

the filtration appears to be related to the inverse of the function for the integer sequence of

triangle numbers. Specifically, it appears to follow trinv(N)−1 = b(1+
√

1 + 8N)/2c−1

(Sloane 2009). This means that even for low weight graphs with many edges, the length

of the filtration should remain relatively small, so the problem will remain tractable. In

order to exploit the WRCF for anomaly detection, it is applied to the weighted kth-order

neighborhoods around each vertex. The resulting landscapes are used to detect anomalies.
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FIG. 3.2. The distribution of edge weight. Note the the y-axis is a log scale.

3.4 Anomaly Scoring

Given the persistence landscapes of network data over time, this section outlines how

to generate an anomaly score which reliably detects suspicious local and global events.

There are several approaches which may yield similar results. The following three scoring

methods are the most promising.

Taking the L2 distance from the landscape of a given week to the empty landscape

provides an approximate measure of absolute activity in the local neighborhood, or an

absolute anomaly score (AAS). While a natural first choice, this method tends to result in

noisy scores which indicate interesting events with low accuracy.

AAS is a poor choice because it does not take into account past behavior. In order

to account for relative changes of persistence landscapes over time, the lagged anomaly

score (LAS) at time t is defined to be the distance between the persistence landscapes at

t and t − 1. This method is less noisy and takes past behavior into account. However,

the LAS is sensitive to sudden drop offs in communication, which are easily detected by



17

simpler methods and not generally of interest. This issue can be compensated for via a

combination of AAS and LAS.

Given the empty landscape and the landscapes at t−1 and t, the scaled lagged anomaly

score (sLAS) is based on the distance between all three landscapes. More specfically,

sLASt = st × LASt, where

st =

 AASt/AASt−1 AASt ≤ AASt−1

AASt−1/AASt AASt > AASt−1

Note st ≤ 1. This scales the LAS relative to the change in the AAS. Little to no

change in the AAS leads to a larger sLAS. This makes the sLAS robust to changes in the

amount of activity.

It is possible to compute the sLAS for the entire network. The global sLAS can be

used for general event detection for the organization modeled by the network. Subtracting

the global sLAS from the local sLAS results in an attributed LAS (aLAS), which further

localizes and attributes anomalous behavior to specific vertices.

3.5 Software Used

Graph processing and filtration construction are done using custom scripts written in

Python 3.6. This includes parsing the raw emails to graph format, and an implementa-

tion of the iterative clique complex algorithm from Section 2.1.5. Persistent homology

calculations are carried out using JavaPlex (Tausz, Vejdemo-Johansson, & Adams 2014).

Persistence landscape generation and distance measurement are done using an open-source

persistence landscape toolbox (Bubenik & Dlotko 2015)(Dlotko 2015).



Chapter 4

EXPERIMENTS AND RESULTS

This section focuses on the application ofAAS, LAS, and sLAS to the Enron dataset.

The publicly available records are mostly related to company wide events. For this reason,

there are stronger and more verifiable results for the global anomaly detector. However,

there are also interesting local anomalies surrounding key figures in the fall of Enron, coin-

ciding with events in which they were involved. Taken together, these results demonstrate

the viability of using persistent homology over graph data for anomaly detection.

4.1 Setup and Parameter Choice

All calculations are carried out on an Intel i7-3770 at 3.40 GHz with 16 GB of RAM

running Ubuntu 16.04.

For all graphs, the persistence landscapes of the 1st-persistent homology is used. The

1st-persistent homology is the lowest degree which captures the idea of ”holes” in the data,

with the 0th-persistent homology corresponding to connected components, for which there

are much more efficient algorithms. Accordingly, clique complexes are only constructed

up to and including 2-simplices (3-cliques). For the local construction around each ver-

tex, the 3rd-order neighborhood is used. These parameters are chosen to be small so that

the problem remains tractable given limited resources. By parallelizing the construction of

18
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the clique complexes and the reduction of the boundary matrices to Smith normal form,

it should be possible to compute higher degree persistent homology over larger neighbor-

hoods.

4.2 Global Event Detection

We begin by constructing the clique complexes for the weekly global graphs. The

distribution of 1-simplices and 2-simplices is shown in Figure 4.1. The 1-simplices are

edges in the graph, and approximate the total activity for a given week. The AAS and

LAS for the global network are shown in Figures 4.2 and 4.3. To a limited extent, the

spikes in both graphs indicate major events in the companies history. However, there are

several high-scoring weeks which do not coincide with major events.

Figure 4.4 shows the sLAS of the entire network over time. There are many weeks

without any activity at the beginning of the dataset, which is why the score is zero. The

graph shows successful anomaly detection, with high scores that coincide with major events

leading to the failure of Enron. The records of these events are publicly available (Times

2006) (Marks 2008). The top detections for the sLAS of the network are shown in Table

4.1, listed in order of decreasing score.

As expected, the high global anomaly score indicates major events. All of these events

caused substantial and observable changes in communication across the company’s email

network. This demonstrates that the global sLAS can be used to detect network wide

events.
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Table 4.1. Highest Scoring sLAS Events
Week # Date Event

157 11/4/2001 The week following SEC upgrade of
inquiry to formal investigation.

155 10/21/2001 The week following SEC starting an
informal probe.

158 11/11/01 The week after admitting $596
million in losses to SEC. Start of
bankruptcy.

128 4/15/2001 The week of a highly publicized
controversial analyst call with CEO
Jeffery Skilling.

FIG. 4.1. The global weekly distribution of simplices. Recall that calculating persistent

homology is O(m3), where m is the number of simplices.
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FIG. 4.2. The global AAS over time. Distance from the empty persistence landscape also

approximates total activity.
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FIG. 4.3. The global LAS over time. Most spikes correspond to major events, but there is

still influence from changes in overall amount of activity.

4.3 Local Suspicious Behavior Detection

While interesting and useful for certain applications, global event detection cannot

be used to identify suspicious nodes in a network. In order to accomplish this, kth-order

neighborhoods are utilized as outlined in Section 3.2.

Several individuals have been convicted of criminal charges in connection with the

fall of Enron, one of which is CEO Kenneth Lay. The three scores for Mr. Lay’s 3rd-order

neighborhood are shown in Figures 4.5 and 4.6. While the local sLAS is less noisy, it tends

to move with the global sLAS, making it difficult to attribute an anomalous behavior to the

vertex.
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FIG. 4.4. The global sLAS over time. Major spikes correspond to significant events in the
Enron timeline.

FIG. 4.5. The AAS and LAS for the 3rd-order neighborhood around Kenneth Lay. While

the high scores coincide with some events, there are false positives.
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FIG. 4.6. This score alone is not enough to attribute anomalies. There is too much
influence from trends in the global network.

The aLAS, which is shown in Figure 4.7, helps to address this attribution issue. An

aLAS > 0 indicates that an individual vertex exhibits anomalous behaviour relative to

global trends. Scores < 0 do not have a meaningful interpretation.

There is limited ground truth information about when specific individuals at Enron

committed crimes. However, there is a record of Kenneth Lay organizing a secret meet-

ing with Arnold Schwarzenegger and Michael Milken on 5/17/2001. The highest score on

week 131 indicates anomalous behavior starting 5/6/2001, the week preceding the secret

meeting. The other major spikes appear to only coincide loosely with events involving

Kenneth Lay. Examining the local graphs of Kenneth Lay, as shown in Figure 4.9, ver-

ifies that his behavior changes significantly from week 130 to week 131. The aLAS for

CEO Jeffery Skilling is shown in Figure 4.8. Again, only the largest spike is of interest,

coinciding with Mr. Skilling’s sale of a large portion of his Enron shares under suspicious
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FIG. 4.7. Anomalous behaviour specifically attributed to Kenneth Lay.

circumstances.

The above examples show that the aLAS calculated over local subgraphs can detect

and attribute anomalies to a limited extent. With better ground truth data, it should be

possible to verify and refine the scoring method.
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FIG. 4.8. Anomalous behaviour specifically attributed to Jeffery Skilling.

FIG. 4.9. The 1st-order graph of Kenneth Lay (orange vertex) at week 130. Any connec-
tions made in week 131 which were also made in week 130 are colored red. Note there is
only one red edge.



Chapter 5

FUTURE WORK AND CONCLUSION

This section begins by addressing two tangential problems which have arisen while

developing the methods outlined above. The first is concerned with the space complexity of

computing a WRCF; the second with the time complexity of constructing a clique complex.

The primary goal of this paper is to show that persistent homology can be applied

directly to network data with minimal overhead. For this reason, when presented with

a design choice, the simplest option is preferred. However, there are several alternative

methods which may provide better results. These methods are outlined in Section 5.2.

5.1 Open Problems

5.1.1 WRCF Size

Section 3.3 mentions that the length of a WRCF appears to be trinv(N) − 1, where

N is the total weight of the graph. Each step in the filtration corresponds to a unique

edge weight in the graph. Clearly, the filtration will be longest if every edge has a unique

weight. More formally, we are looking for the number of terms in the partition of N

with the greatest number of distinct terms. This sequence is thought to be given by OEIS

A003056 = trinv(N) − 1, though no proof is available (Sloane 2019). A formal proof

would help place bounds on the complexity of computing a WRCF for a given graph.

27
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5.1.2 Clique Construction Bounds

There are currently no known bounds on the algorithms used to compute clique com-

plexes. This is a difficult problem mainly due to the sparsity of cliques in most graphs

(Zomorodian 2010). However, this computation is a critical step in the construction of

most filtrations. While it may be difficult to provide bounds for arbitrary graphs, it may

be possible given prior knowledge about the graph structure. Most graphs of interest cor-

respond to scale-free networks. Therefore, finding the bounds of clique construction over

scale-free graphs is of particular interest.

5.2 Additional Methods

This section covers additional methods and techniques which appear promising, but

were not pursued due to time constraints. These techniques may provide improved anomaly

detection in general and for certain applications.

5.2.1 Filtrations

The WRCF used in Section 4 groups edges by unique weight. As shown in Figure 3.2,

edge weight follows a very long tail distribution. This means that edges are added unevenly

to the filtration. In order to create more consistent filtrations, it may be beneficial to bin the

edge weights non-linearly when constructing the filtration.

In the experiments run, edge weight is the total communication between a pair of ver-

tices. While informative, this method may ignore important information about the network.

Instead, using the net frequency of communication between nodes should provide a more

complete picture. This could be done with minimal overhead by assigning an arbitrary

direction to each edge. Messages which follow the edge direction would increment the

weight, while messages going in the opposite direction would decrement it. This is a more
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application-dependent approach and may provide improved detection.

It may be possible to create a true locality statistic using a variation of the WRCF.

Given a subgraph S ⊆ G which is the kth-order neighborhood around a vertex v, add

edges and vertices to the filtration in order of increasing distance from v, where d(v, u) is

the shortest path from v to u. The persistence landscapes generated will likely satisfy the

conditions of a locality statistic, which means well-developed scan statistic techniques can

be applied.

5.2.2 Supervised Methods

The methods in this paper are unsupervised, so no training examples are needed.

Given an application where supervised learning is possible, persistence landscapes can be

used as features. Clustering methods have shown particular promise in other applications

(Bubenik & Dlotko 2015). Supervised methods are likely a good fit for security applica-

tions, where there are training examples of known attacks. Given enough information, it

may be possible to train a classifier on a sample network and apply a modified version to a

target network.

5.3 Conclusion

This paper has developed a graph invariant based on persistent homology derived

directly from network data. Applied globally, this invariant can be used to detect network

wide events. It can also be applied locally to detect nodes which are behaving suspiciously.

With further refinement and additional data, this invariant can be used to develop a

real-time anomaly detection system. Specifically, there are two areas which would benefit

from further research. Parallelizing clique complex and homology calculations will help

the approach scale. Adjusting the methods of filtration should improve local performance.
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Topological data analysis is a relatively young field with many applications still be-

ing developed. This research provides a proof of concept, and a starting point for future

investigation.
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