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A B S T R A C T

Modeling synthetic gene circuits to implement dynamic flux balancing is crucial in teaching and exploring
metabolic engineering strategies to repartition metabolic precursors and construct efficient microbial cell fac-
tories. Microbial fitness and production rates are often complex phenotypes that are governed by highly non-
linear, multivariable functions which are intrinsically linked through carbon metabolism. The solution of such
dynamic system can be difficult for synthetic biologists to visualize or conceptualize. Recently, researchers
(Santala et al., Metab. Eng. Comm., 2018) have implemented an arabinose based genetic switch to dynamically
partition the central carbon flux between cell growth and product formation. The autonomous switch allowed
dynamic shift from arabinose-associated cell growth to acetate-associated product (wax ester) formation. This
system clearly demonstrates the effectiveness of using a genetic switch to decouple cell growth from product
formation in a one-pot bioreactor to minimize operational cost. Coupled with Michaelis-Menten kinetics, and
Luedeking-Piret equations, we were able to reconstruct and analyze this metabolic switch in silica and achieved
graphical solutions that qualitatively match with the experimental data. By assessing physiologically-accessible
parameter space, we observed a wide range of dynamic behavior and examined the different limiting cases.
Graphical solutions for this dynamic system can be viewed simultaneously and resolved in real time via buttons
on the graphical user interface (GUI). Metabolic bottlenecks in the system can be accurately predicted by varying
the respective rate constants. The GUI serves as a diagnosis toolkit to troubleshoot genetic circuits design
constraints and as an interactive workflow of using this arabinose based genetic switch to dynamically control
carbon flux, which may provide a valuable computational toolbox for metabolic engineers and synthetic biol-
ogists to simulate and understand complex genetic-metabolic system.

Introduction

Microbes use a wide range of substrates with different energetic and
redox states. These substrates may be assimilated to form biomass or
final products. Examples of such substrates for microbial production
include methane [1–3], acetate [4–6], or glycerol feedstocks [7,8]. Co-
substrate utilization may serve to bypass some catabolic, energetically-
costly steps, and facilitates more readily available anabolic precursors
(i.e. acetyl-CoA) to synthesize final product [9], since the co-utilized
substrate may form a metabolic bypass with less enzymatic steps, which
otherwise could not be attained by the breakdown of the initial carbon
source [10]. These feedstocks hold great promise in creating a sus-
tainable, energy efficient commodity chemical production platform
needed to supply a growing global population [11,12]. In an effort to
further increase product yield, optimizing metabolic flux has long been

accepted as a viable strategy by systems biologists when it comes to
increasing carbon conversion along a metabolic pathway [13–15]. This
type of flux balancing includes genetic knockouts to remove byproduct
formation or competing metabolic steps, and genetic overexpression to
increase rate-limiting metabolic steps [16]. Much of the effort concerns
with the static regulation of metabolic flux without considering the
hierarchically-organized regulatory architecture that is built into the
cell metabolism [17,18].

Many simple regulatory genetic switches have been reconstructed
and studied, for instance the genetic toggle switch [19], and the re-
pressilator [20], which both demonstrate predictable gene expression
pattern in a living system. Interdisciplinary knowledge of engineering
design and synthetic biologic systems has paved the way toward de-
velopment of plug-and-play genetic modules, whose behaviors exhibit a
wide range of intriguingly dynamic behavior, including many logic
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gates [21–23], negative autoregulation [24,25], incoherent feedfor-
ward loops [26,27] and looped dual-level ON-OFF genetic circuit
[28–30]. When coupled with quorum-sensing circuits, these genetic
circuits may regulate gene expression at community or multiple-species
level [31–34]. Such synchronized gene expression is critical to elim-
inate genetics-associated metabolic heterogeneity [18]. As the com-
plexity of modules increases, so does the difficulty due to a variety of
factors like leaky expression due to trans-activity of metabolites, or via
cross-talk of transcription factors as a result of non-orthogonality be-
tween two controlling modules [23,35,36].

In an elegant display of a metabolic switch being applied in a living
system (Acinetobacter baylyi) grown on a simple carbon source (acetate),
a team at Tampere University of Technology, Finland, was able to de-
monstrate dynamic control of a critical catabolic enzyme, such that the
cells would automatically switch from cell growth to product forma-
tion, when the inducer arabinose was depleted [6]. The tight tran-
scriptional control of the arabinose-responsive promoter could be easily
tuned to increase carbon yield up to 3–4 fold. Specifically, this arabi-
nose switch allows them to control the expression of critical enzymatic
steps that are associated with cell growth and product formation. The
arabinose inducible pBAD promoter was used to regulate the expression
of isocitrate lyase, aceA, a key enzyme for the glyoxylate shunt pathway
that replenishes precursors to the Krebs cycle that determine the fitness
of cell growth. The input signal is arabinose, the sensor and transducer
are a transcriptional repressor araC, the actuator is the E. coli native
RNA polymerase, and the output signal is the expression of aceA. In the
depletion of arabinose, araC tightly represses transcriptional activity of
the pBAD promoter, thus shutting down glyoxylate activity and cell
growth (Fig. 1). This metabolic switch effectively separates the cell
growth phase from the product (wax ester) formation phase. Such
growth-decoupled product formation in a one-pot bioreactor minimizes
the use of expensive inducers (such as IPTG) or eliminates the use of a
two-stage reactor, which may simplify the fermentation workflow and
reduce the operational cost. In this work, we formulated an ODE system
consisting of 12 equations to uncover the design constraints of such
system. This computational framework may facilitate us to understand
the dynamic control of gene expression and design precise behavior in a

metabolic switch which further increases the cost-competitiveness of
industrial fermentation.

Computational method and formulation of system equations

The metabolic switch can be described mathematically on the basis
of mass action, enzyme kinetics and transcriptional regulation models,
specifically in Table 1. The cell growth followed Monod growth kinetics
[37,38] based on succinate as a substrate only. Wax ester generation is
dictated by a specific product formation rate which is comprised of a
growth and non-growth associated component, governed by Luedeking-
Piret model [39,40], but modeled with inhibitory effects due to sub-
strate limitations. Since this was also modeled in batch configuration,
the linear component of the specific product formation rate would
cause the succinate to go to negative without considering the substrate
inhibitory effect. The proteins responsible for the metabolism of acetyl-
coA to isocitrate, were considered first order, elementary reactions that
are constitutively coupled with cell biomass, and the enzyme con-
sumption kinetics are only governed by a function of reactant con-
centration. Any other relevant reaction followed a traditional pseudo-
steady state assumption to derive a Michaelis-Menton relationship be-
tween the enzyme and substrate.

The first 12 equations listed are mass balances which were input to
MATLAB and solved via ODE23s. The last two equations, for specific
growth rate and specific product formation rate, are there only listed for
clarity. There are 12 independent equations, requiring 12 initial con-
ditions, and 48 model parameters for a total of 60 variables. All nu-
merical coefficient values can be found in the accompanying supple-
mentary information file which contains the code. A graphical user
interface was created to streamline the manipulation of this model, to
compare the solution space under multiple variables at once, and to
facilitate ease of demonstration and learning with this model. A de-
tailed explanation of the biophysical parameters could be found in the
symbol appendix section. Parameter values for these biophysical con-
stants were estimated based on typical values of similar parameters
found in literature [41].

Computational methods

Matlab R2018b was used as the computational package on a
Windows 10 professional operation system. The CPU processor is Intel
Core i5-4300 with 1.90 GHz. The installed memory (RAM) is 4.0 GHz.
Matlab symbolic language package coupled with LaTex was used to
compile the equations (Table 1). ODE23s solver was used to simulate
and predict the system behavior. Matlab plot function was used to
output the solutions and graphs. Matlab codes will be shared upon re-
quest. Due to variations in native screen resolutions and default zoom,
the GUI may not load into the correct position without adjustment.

Parameters and initial conditions

Necessary parameters used to get the results in Figs. 2 and 3 are
below. The results directly supplemented in the supplementary Matlab
code generate the results on the GUI screen. An addition was added to
the supplementary files code so that it outputs the subplots of Fig. 2 as
well as the GUI. Most of the parameters are taken form the Website
BioNumbers (https://bionumbers.hms.harvard.edu/search.aspx) and
the commonly-used biochemical engineering textbooks, written by
Shuler and Kargi, Bioprocess Engineering [42].

A_o = 1, GDH_o = 0, AraC_o = 0, Acs_o = 1, AceA_o = 0,
Ac_o = 50, aCoA_o = 0, WE_o = 0, C_o = 0, Iso_o = 0, S_o = 0,
X_o = 1, k_1 = 0.1, K_1 = 40, n = 1, k_2 = 0.5, K_2 = 10, m = 2,
alpha_g = 0.5, d_g = 0.001, alpha_A_r_a_C = 1,K_RA = 0.2, p = 2,
d_AraC = 0.1, alpha_ACS = 1.7, d_ACS = 0.1, alpha_AceA = 1.5,
K_RAraC = 0.1, q = 1, d_AceA = 0.1, k_Ac = 0.33,K_Ac = 10, r = 1,
k_aCoA = 0.2, k_c = 0.1, k_Iso = 0.5, K_Iso = 20, s = 1,

Fig. 1. The above graphic depicts how arabinose is used as the signaling mo-
lecule to control the genetic switch from cell growth to product formation.
Control scheme was redrawn by the work reported by Santala et al. [6]. Ara-
binose is the signal/induction molecule, and araC is the sensor/transducer,
tightly regulating expression of aceA under the control of pBAD promoter.
Exhaustion of arabinose limits the expression of the crucial enzyme, aceA,
therefore shutting down cell growth, so carbon flow is diverted to wax ester
production instead. This autonomous partition of carbon flux has been ex-
perimentally validated by the reported work.
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mu_max = 10, K_m = 200, w = 1, Yxs = 0.4, d_x = 0.001, al-
pha_p = 0.0000008, beta_p = 0.008, K_PaCoA = 5, v = 1, Yps = 0.1
… alpha_A_r_a_C = [.5:.2:1.5] …

Results

System dynamics by varying initial conditions of arabinose

One of the important feature of this metabolic switch is to use
arabinose as the signaling molecule to tune the cell growth rate, so that
the substrate (acetate) consumption is diverted to product formation
that leads to significant improvement in the pathway yield. By altering
the initial concentration of arabinose (Fig. 1), the authors were able to
achieve this tunability and effectively control the point at which carbon
utilization would shift from cell growth to product formation. Our
model recapitulates this tunability and clearly indicates there is de-
coupling of cell growth from product formation (Fig. 4).

In modeling this batch-process, we have set up a degradation con-
stant d for each of the appropriate cellular components. In the case for
cell growth, this term should be explained as ‘death rate’, while proteins
have their own degradation rate, and the metabolites do not degrade or
have a dilution term. Since the expression of GDH (glucose dehy-
drogenase) is coupled with biomass, we observed a similar pattern of
GDH expression as compared to cell biomass (Fig. 1). Arabinose an-
tagonizes the activity of AraC, that's why AraC in the system exhibits an
opposite trajectory as compared to the arabinose in the system (Fig. 1).
Similar negative correlations were found between the amount of AraC
and aceA (Fig. 1), which is encoded by Eqn. 5 (Table 1). When the level
of arabinose is depleted, our model predicts that increased acetate
consumption leads to increased wax ester formation (Fig. 1). Interest-
ingly, the amount of aceA (encoding isocitrate lyase), which dictates
cell growth rate, initially increased quickly, but declined proportionally
to the amount of arabinose left in the system. Therefore, the cell growth
fitness, is positively correlated with the level of arabinose. As the cell
grows, the accumulation of GDH increases the consumption rate for

arabinose, therefore the critical enzyme aceA, and biomass, displays a
decreasing pattern as the signaling molecule (arabinose) continues
decreasing. These results indicate that our in silico models can precisely
predict the switch from cell growth to product formation, depending
solely on the level of arabinose in the system. These qualitatively dy-
namic behaviors were also experimentally validated by the authors.

Effect of AraC expression rate on system dynamics

Since arabinose is antagonizing araC, the amount of active araC is
negatively associated with arabinose (Eqn 3). We next investigated the
system dynamics by varying expression levels of key proteins araC. The
araC transcriptional regulator represses the expression of aceA under
the control of pBAD, and the metabolic product of aceA (succinate)
controls the glyoxylate shunt flux that determines cell growth rate.
Experimentally, this kind of genetic manipulation could be achieved by
changing gene copy number, promoter strength or via tuning the de-
gradation rate constant d.

As expected, the level of GDH is strongly associated with the amount
of biomass due to its constitutive expression (Fig. 3). AraC expression
follows a Hill-type saturation kinetics as we increased the basal ex-
pression rate AraC. The amount of aceA displays a ‘spike’ (single peak)
pattern due to the strong repression of araC on the pBAD promoter
which drives aceA expression (Fig. 3), indicating the system first favors
cell growth but discourages cell growth after the spike. This single-peak
pattern is also observed in the isocitrate, albeit the timing of the
switching is significantly delayed. The final product, wax ester inverses
the pattern of araC as we increase the expression rate of araC, in-
dicating that low araC expression rates favors wax ester accumulation
(Fig. 3). The correlation between biomass and product formation was
investigated by a “phase-plane”, as described in Fig. 4. The phase-plane
demonstrates a positive correlation between biomass and product when
the biomass is low, but a negative correlation between biomass and
product when the biomass is high. This phase-plane clearly indicates
the metabolic shift from biomass accumulation to wax ester buildup.

Table 1
Equations used to define the arabinose based genetic switch for biomass and product decoupling.

Equation No. Equations used in this work

1 = + +
d A

dt
kA GDH A n

KA
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KA

m A m
[ ] 1[ ] [ ]

1 [ ]
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[ ]
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A
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A GUI model to explore the parameter space

To explore the parameter space of the model, a GUI was developed
so that this model could be analyzed more systematically. This made it
significantly easier to tune the various parameters and determine whole
system dynamic behavior. We discovered that some variables are order
of magnitudes more sensitive than others, indicating that variables
ranging relevantly from 0.01 to 1 may lead to similar dynamics as those
parameters ranging from 1 to 100. Considering the fact that manual
curation of the parameter space is very difficult and time consuming,
this GUI may easily help us to find a biologically relevant window of
initial parameters for all variables. With the scope for each variable
included and a slider bar to change that variable in the GUI interface,
we may explore the rich dynamic patterns of this dynamic system. The
GUI makes the demonstration and interpretation of this model more
intuitive, and explanatory than a traditional static graphical view.

The GUI is built using three separate instances of a new figure, with
a listener and a callback function. The GUI figure on top represent so-
lutions (Fig. 5), the bottom right represents a phase plane analysis, and
the bottom left is the controller to change system variables and initial
conditions (Fig. 5). The listener function monitors for controller buttons
to be changed, and when the user interacts with one of the buttons, it
triggers a function, which in this case is the callback function. The
callback function rewrites the system variables to memory, using the
new associated value from the controller, resolves the system of

equations, and updates the plots with the associated solution. Every
single variable of the system is accounted for and has a button, and as
such, all must have their own listener. All listeners, however, point to
the same callback function, which has to contain all variables in order
to solve the system again. It is not to just replot the data or one would
have many lines on the screen and have issues with visibility of scale.
Instead, by making the callback function to change the line data, the
plots appear to update in front of you in real time.

Discussions

The phase plane analysis demonstrates two separate regimes of wax
ester production pattern, for example, the initial linear regime carries
the growth associated production term, but the verticality of these
configurations represents the non-growth associated production of wax
ester which is independent of cell growth. This simulation mathema-
tically and qualitatively matches the results of the work reported by the
researchers in Finland who found a four times increase in specific wax
ester productivity by controlling carbon flux [6]. The key concept in the
in vivo work is the tight regulation of critical catabolism through iso-
citrate lyase via the pBAD promoter, and linking that to the orthogonal
arabinose inducer molecule arabinose. This tight regulation dictates the
level of cell growth permitted and also governs when these cells stop
growing and start producing the final product (wax ester). This elegant
system was designed successfully to decouple cell growth and product

Fig. 2. Investigating system dynamic behavior by varying initial concentration of arabinose. One can observe that with little arabinose, araC shoots up fast, aceA
stays low, and very few cells grow. Increasing the initial arabinose causes a spike in cell biomass formed, a depression in araC, and an increase in aceA during the
early time points. This allows more cells to grow in the beginning, draining the signaling molecule arabinose before wax ester could be synthesized. With arabinose
~0.4–0.6, one can observe a plateu of cells continuing to create wax esters. This represents high producing cells, creating high wax ester titers with lower cells,
indicating a higher conversion yield of substrate to product with less wasted substrate or dead cells.
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formation, both of which are associated with carbon utilization. We
reconstructed this genetic system in silica and demonstrate the effec-
tiveness of this system to dynamically redistribute carbon flux. By
working in Acinetobacter baylyi, there are two distinct advantages. They
chose a host organism which natively relies on a shortened citric acid
cycle, the glyoxylate shunt pathway, instead of the full TCA cycle. They
also chose an organism whose native glucose dehydrogenase could not
glycolytically degrade arabinose but would instead oxidize it into other
inductively inactive pentoses. By intuitively choosing a host, and a
feedstock, they effectively minimized the cloning work needed to be
done to demonstrate success. They chose a product which very likely
follows growth and non-growth associated production patterns. They
chose a tight genetic switch, as well as a key enzyme required for
growth as an output signal. In creating such a unique system, they have
created an ideal case, which demonstrates a genetic toggle switch being
implemented to control central carbon metabolism, effectively also
controlling the carbon flux between growth and wax ester formation.
Although this user interface might be helpful for explaining individual
variables contributions toward system behavior, it is not perfect and is
limited by initial conditions and the range of the variables set forth in
the code. Each slider bar is a manually set range, and if someone de-
cides to go outside of that range, this would require code manipulation.
Another flaw is that in many of these complex nonlinear systems,
imaginary numbers may give rise to unrealistic solutions which will not
update in the graph correctly when the callback function is prompted to
update the real number counterparts. This is because it would have to
change the plot type, not just line values, in order to display complex
answers. Some solutions also take a while to converge and cause the
interface to lag before updating. The easiest way to troubleshoot what
happened is to monitor the MATLAB command window, which will
display an error if an imaginary number causes a bug or will loop in the

solver indefinitely if it is not converging on a solution given that vari-
able set. In both cases, re-running the code from the beginning will
reestablish the GUI on the screen, in working order. This highlights
another problem, that GUI is locked onto a local solution rather than
the optimal solutions. One can move around within this solution set,
but some variable region may lead to a highly stiff region or an ima-
ginary solution set. Under this scenario, the GUI will not continue to
function, and one could not probe variable values beyond that, unless
they manually updated the code to change the GUI starting conditions
and the range of the slider bars. The advantages of this extended type of
graphical analysis include interactivity and a decreased level of in-
volvement for manual input for small changes. Instead of changing one
number in the code and replotting the graph, it is very easy to change,
observe, and learn from the system by manipulating a slider bar on the
user-interface. The disadvantage is primarily that the slider bars are
range bound and stiff and unrealistic solutions cause the system to lag
and need restarting.

Future work for this strain, or some congruent genetic configura-
tions, could prove to be quite valuable. One might consider another
model where arabinose is glycolytically consumable to the cell, a dual
substrate model, where arabinose can be fed to the cell, and induce cell
growth on acetate. Once arabinose was gone, along with all the gly-
colytic catabolites from supporting growth, one would hypothesize the
phenomena observed in this paper would take over. Another interesting
case could be growing this strain in CSTR conditions. One might think
of alternatively pulse-feeding substrate and arabinose for highest yields.
This is only one application in one host organism, whereas this is hy-
pothetically possible in any microbial workhorse genetically tractable
enough to knockout the greater TCA cycle in favor of the glyoxylate
shunt. Researchers may have the flexibility to use a different inducer/
actuator module with strain specific orthogonality, and other synthetic

Fig. 3. Effect of expression rate of araC on system dynamics. Low levels of araC expression effectively don't stop cells from growing and we see high levels of substrate
consumed for cell growth. Since araC represses the expression of aceA that controls cell growth, high level of araC will lead to low level of succinate which limits cell
growth from the control scheme described in Fig. 1.
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biology-based logic gates, genetically-encoded biosensors [43,44] and
genetic switches may also be integrated to improve the system ro-
bustness and predictability.

Conclusions

By simulating this arabinose-based genetic switch, we demonstrate
our model could effectively recapitulate the dynamics of the metabolic
shift from cell growth to product formation, solely dependent on the
exogenously added inexpensive carbons (arabinose). We also demon-
strate that a graphical representation of this model can be immensely
helpful in analyzing and understanding the dynamic behavior of gene
circuits. This model system in A. baylyi represents a potentially valuable
discovery in terms of maximizing carbon conversion and product yield
from substrates, and minimizing bioburden from gene overexpression
or host cell protein associated with certain hosts. The tight regulation of
isocitrate lyase by the arabinose inducible pBAD promoter offers an
ideal control scheme to tightly improve cell productivity though central
carbon metabolism. The simplicity of the proposed models is sufficient
to describe genetic circuits dynamics, yet extendable to understand the

dynamic carbon flux balancing in various organisms. This system may
hold incredible promise to facilitate learning and engaging students
with these complex, often abstract, and intertwined ideas of microbial
growth, genetic circuits, enzyme kinetics, and coupled differential
equations.
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Fig. 4. Phase plane analysis of both aforementioned scenarios, varying initial arabinose and varying expression strength of araC. We observed a positive correlation
between biomass and product when the biomass is low, but a negative correlation between biomass and product when the biomass is high, which indicate the
metabolic shift from biomass accumulation to wax ester buildup.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.synbio.2020.07.003.

Appendix. Symbols and variables used in this work

[A] Arabinose Concentration
[GDH] Glucose Dehydrogenase Concentration
[AraC] Arabinose Operon Regulatory Protein
[ACS] Acetyl-CoA Synthase Concentration
[AceA] Isocitrate Lyase Concentration
[Ac] Acetate Concentration
[aCoA] Acetyl-CoA Concentration
[WE] Wax Ester Concentration
[C] Citrate Concentration
[Iso] Isocitrate Concentration
[S] Succinate Concentration
[X] Cell Concentration
YX/S Biomass per Substrate Yield Coefficient
YP/S Product per Substrate Yield Coefficient
αi Expression rate of protein i
βi Non-Growth Associated Product Formation Rate
n,m,p,q,r,s,v,w Hill Coefficients
ki,j Rate Constants for reactant I, reaction j. If there's no j, that's

indicative of one reaction
Ki,j Equilibrium Constants for reactant I, reaction j
KR,i Repression Equilibrium Constant Due to Repression from i
KP,I Equilibrium Constant for Products and Reactant i

di Degradation of species i
βX Cell death/loss rate
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