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Abstract:  Beginning as early as 400 B.C., mathematicians used the concept of 
limit, which is essential to the theory of the branch of mathematics that is today 
known as Calculus, to aid them in determining areas.  While Sir Isaac Newton 
and Gottfried Wilhelm Leibniz are credited as being the co-inventors of the 
subject, it is necessary to view the development of Calculus as the work of many 
mathematicians, including Joseph Louis Lagrange, Augustin-Louis Cauchy, 
Bernhard Riemann, and many others.  Newton and Leibniz were the first to 
axiomatically define the subject; others would improve upon their work in order 
to build the subject of Calculus to be that which it is today. 
 
 
 

 
The subject of Calculus is made up of four main concepts:  the limit, continuity, the 
derivative, and the integral.  Perhaps the two most sought after concepts in the history of 
the subject were the integral and the derivative, as they were a necessity in finding out 
information needed about the physical world.  For example, computation of the derivative 
could provide the instantaneous velocity of a moving particle; integration was useful in 
finding the area of curved regions.   
 
Before any such computations could be made, methods with which to compute tangents 
and areas had to be found.  Although Sir Isaac Newton and Gottfried Wilhelm Leibniz 
are credited with “inventing” Calculus and presenting, for the first time, ways to find 
tangent lines and areas regardless of the curve, the development of Calculus must be 
viewed as a long, tedious process that would last for centuries.  After Newton and 
Leibniz laid the foundation for defining what limit, continuity, derivative, and integral 
might mean, it would take another century for mathematicians such as Augustin-Louis 
Cauchy, Bernhard Riemann, and others to provide the world with rigorous, more exact 
definitions. 
 
One of the earliest examples of the use of limits was the “method of exhaustion.” It was 
once impossible to determine the area of a circle, but the mathematician Eudoxus (408-
355 B.C.) observed a pattern:  As the number of sides of a regular inscribed polygon 
became larger, the figures looked more and more circular.  Furthermore, the left over area 
between the polygon and the circle decreased as the number of sides increased.  “In 
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Eudoxean terms, the polygons are ‘exhausting’ the circle from within” [2, p. 29].  
Mathematically, let Pn be a regular polygon with n sides inscribed within a circle.  
Then, , where A(P)()(lim CAPA nn

=
∞→

n) is the area of the polygon with n sides, and A(C) is 

the area of the circle.  However, the Greeks avoided openly taking the limit, as well as 
trying to explain what a limit was [3, p. 16]. 
 
Another ancient example of the naïve determination of a limit comes from the Greek 
mathematician, Archimedes (around 400 B.C.).  He had stated as an axiom that taking 
any quantity and dividing it by two repeatedly, one could eventually reach a quantity less 
than any given number [1, p. 175].  Then, in modern terms, Archimedes would have said 
that, given any positive number x and a given quantityε , there exists a natural number N, 

such that N

x
2

< ε .   

 
Over a thousand years after Archimedes and Eudoxus experimented with their notion of 
limit, mathematicians began trying to find generalized ways of finding tangents to curves, 
as well as their included areas.  Pierre de Fermat was among the first people to approach 
the tangent line problem methodically.  Around the year 1630, he was able to provide a 
method for determining the tangent to any given polynomial [9, p.140].  For example,  
 

Consider the parabola y = x2 at the point (x, x2).  Let x + e be another point on the 
x-axis, (x + e, k) be a point on the tangent line to (x, x2), and let s be the 
subtangent to the curve at (x, x2).  Then, using the similarity of triangles from 

geometry, 
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Note that 
s

x 2

is the slope of the tangent to the parabola at the point (x, x2).  Then, 

Fermat concluded that one could simply discard the e, thus concluding that the 
tangent was 2x [9, pp.140-141]. 
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While Fermat had essentially used the modern notion of computing a derivative, he did 
not realize that the method he had used to find the tangent could be made universal.  In 
fact, he gave no name and no notation to what he was doing, although what he had 

essentially computed 
e

xfexf
e

)()(lim
0

−+
→

 is exactly the modern definition of the 

derivative [3, pp. 189-90]. 
 
Fermat was not the only person to generate tangents for specific types of functions during 
the seventeenth century.  René François de Sluse (1622-1685) produced an algorithm for 
finding the curve f(x, y) = 0, where f is a polynomial.  It was published in 1673 in the 
Royal Transactions of the Royal Society [1, p. 374].  Consider the following example [8, 
pp. 474-475]: 
 
 Begin with the equation  02 2323245 =−+−+ byxyqbxx
 Remove the constant term:  02 323245 =+−+ yxyqbxx

Next, make sure all terms with x are on the left and all terms with y are on the 
right.  There will be some terms with both x and y on both sides: 

 32323245 2 yxyqyxbxx −=++
Multiply each x term on the left by its exponent: 

 32323245 2245 yxyqyxbxx −=++
Multiply each y term on the right by its exponent: 

 32323245 36245 yxyqyxbxx −=++
Reduce each power of x on the left by 1 and multiply by t: 

3232334 36245 yxyqtxytbxtx −=++  
Solve for the subtangent t: 
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Then, the tangent is given by: 2222
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In modern terms, we can see that 
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The derivative was not the only concept developed through case-by-case examples during 
the 1600’s.  For example, Fermat had found the formula for the area under the curve 
y = xa on the interval [0, B], where a > -1, around the year 1636.   
 

Choose θ <1 but close to one, and consider the rectangles formed by B, θB, θB2, 
θB3, … , θBn, each having height of Ba, θaBa, θ2aBa, θ3aBa, …, θnaBa. 
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Then, the area under the curve can be approximated as follows: 
Area = A(1st rectangle) + A(2nd rectangle) + A(3rd rectangle) + … + A(nth 

rectangle) 
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Since θ is assumed to be very close to 1, let θε −=1 be very small. 

Then, 
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 This sum approximates the area from below.  Approximating the area from above 
 will yield the same thing, and conclude that  

 Area = 
1

1

+

+

a
Ba

, if a > -1  [7, pp. 32-33] 

 
Another mathematician, Gilles Persone de Roberval, shared the discovery of this result 
with Fermat.  In fact, both men were able to extend this conclusion to determine that the 
area under any curve y = pxk, where k is a given constant greater than 1, on the interval 

[0, yo] was given by
1+

=
k

yx
A oo .  Fermat most likely did not prove either result, as he was 

the mathematician most famous for not giving justification for his theories [8, pp. 481-
482]. 
 
During this period of searching for tangents and areas corresponding to specific curves, 
Isaac Barrow, Newton’s immediate predecessor, is said to have known the inverse 
relationship between derivatives and integrals.  That is, he had knowledge of what is now 
known as the fundamental theorem of Calculus as early as 1669 when he published his 
most important work, Lectiones opticae et geometricae [4, pp. 301-302].  Consider the 
following diagram:  [8, p. 501]    
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  Begin with the curve ZGE, labeled for our purposes to be y = f(x) 
  Construct the curve AIF, labeled g(x), such that Rg(x) is equal to the area  
  by f(x) between some fixed point, a, and the variable x.   

  Modern notation will show that  ∫=
x

a

xfxRg )()(

  Next, Barrow proved that the length t(x) of the subtangent to g(x) is 
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  Given these statements, we see that ∫ =
x

a

xfdxxf
dx
d )()( [8, pp. 500-501]. 

 
Observe that, using purely geometric methods, Barrow was able to arrive at this 
conclusion.  He did not actually use the functional notation, nor did he realize the 
importance of the calculations that he was making.  Therefore, it is not proper to say that 
Barrow invented Calculus.  He merely stumbled upon the fundamental theorem by 
utilizing his knowledge of geometry [8, p. 503]. 
 
By the time Sir Isaac Newton and Gottfried Wilhelm Leibniz made their respective 
definitions of the Calculus concepts, “…practically all of the prominent mathematicians 
of Europe…could solve many of the problems in which elementary calculus is now used” 
[9, p. 139].  The subject could be traced as far back as 400 B.C., but nobody had ever 
clearly explored or developed the topic.  Newton and Leibniz would now do just that; 
they added to and elaborated upon the subject of Calculus during the last third of the 17th 
century [5, p. 608].  These two men essentially “invented the general concepts of 
derivative (‘fluxion’, ‘differential’) and integral ….recognized differentiation and 
integration as inverse operations…developed algorithms to make calculus the powerful 
computational instrument it is,” and most importantly, “While in the past the techniques 
of calculus were applied mainly to polynomials, often only of low degree, they were now 
applicable to ‘all’ functions, algebraic and transcendental” [9, p. 142]. 
 
Isaac Newton was born prematurely on Christmas Day of 1642.  After surviving his 
initially dangerous situation, the death of his father, and being abandoned by his mother 
[2, p.160], Newton grew up to become one of the greatest mathematicians of the 
seventeenth century and perhaps of all time.  In the words of his contemporary, Leibniz, 
“Taking mathematics from the beginning of the world to the time of Newton, what he has 
done is much the better half” [1, p. 391].  In fact, Newton was so well-respected and 
admired that Isaac Barrow, his only predecessor as the esteemed Lucasian chair at 
Cambridge, actually resigned the position in 1669 in his favor [4, p. 301].  Among 
Newton’s accomplishments were the generalized binomial theorem, discovered early in 
1665, a theory of colors, and of course, his development of Calculus in 1666 [2, p. 164]. 
 
Newton’s development of Calculus was based on the fluent, or any quantity that 
constantly changed, which could be either geometric or physical [1, p. 395].  His theory 
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was centered around the fluxion—a rate of change, principal fluxion—the constant rate 
of increase of any given fluent, and the moment of a fluent—the infinitely small amount 
that the fluent of x changes in a small time o, denoted  [4, pp. 305-306].  He described 
a limit as an “ultimate ratio,” which he viewed as the amount of a vanishing number, o, 
just before it ceased to exist [5, p. 612].  As his theories progressed, Newton was able to 
make a more clear definition, which if translated into algebraic terms, would have been 
very close to the modern definition of a limit [8, p. 520].  The definition, in Newton’s 
own words, can be stated as follows:  “Quantities, and the ratios of quantities, which in 
any finite time converge continually to equality, and before the end of that time approach 
nearer to each other than by any given distance, become ultimately equal” [1, p. 398].  
Here, the statement “nearer to each other than any given distance” is very close to the 
modern day 

ox&

∂−ε  definition of a limit, as Newton was positing that a quantity must come 
within ε  of its limit, no matter what ε  was, without ever algebraically making this 
connection. 
 
Newton wrote three accounts dealing with his development of Calculus, none of which 
was published until several years after its creation.  These separate issues were written 
perhaps as a means of constantly improving upon the subject, or Newton may have 
thought of each edition as written for different reasons—“to derive results effectively, to 
supply useful algorithms, or to give convincing proofs” [9, p. 143].  The first account, De 
analysi per aequationes numero terminorum infinitas (On Analysis by Equations with 
Infinitely Many Terms), was written in 1669 but not published until 1711.  In this early 
work, Newton was already capable of determining the area under the curve n

m
axy = for 

any m and n to be 
( )

( ) 1

1
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+

n
m
ax n

m

by using the results of his binomial theorem [1, pp. 395-396].   

 
In Newton’s second text, De Methodis Serierum et Fluxionum (A Treatise on the Methods 
of Series and Fluxions) (1671), he was able to determine that a maximum or minimum 
for a curve existed only when its fluxion, or derivative, was equal to zero.  As quoted by 
Edwards [3, p. 209], Newton had the following to say on the subject: 
   
  ‘When a quantity is greatest or least, at that moment its flow neither  
  increases nor decreases:  for if it increases, that proves that it was less and  
  will at once be greater than it now is, and conversely so if it decreases.   
  Therefore seek its fluxion [by previously described methods] and set it  
  equal to nothing.’ 
 
Newton was logically describing the first derivative test as it became known in modern 
times:  A function reaches its maximum and/or minimum value whenever its derivative is 
equal to zero. 
 
In Newton’s third account of Calculus, De quadratura curvarum (On the Quadrature of 
Curves), he attempted to avoid the infinite by using prime numbers and prime ratios [1, p. 
397].  This text was either written in 1676 [1, p. 397] or between 1691 and 1693 and was 
much more technical than either of his two previous attempts at creating Calculus [3, p. 
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226].  Newton stated the following formula for the area under the curve  
[3, p. 227]: 

ληθ )( fxexy +=
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It is important to note that this particular formula is capable of computing something as 

simple as or as complicated as ∫ dxxn ∫ +− 4221 xx
x dx. 

 
Newton was able to discover the fundamental theorem of Calculus using his methods of 
fluxions and inverse fluxions in 1666.  His computation of area through anti-
differentiation was the first appearance of the fundamental theorem of Calculus in its 
precise form [3, p. 196].  Newton had often thought of curves as generated by the motion 
of the variables x and y.  Therefore, he found it to be completely obvious that , or xyA && =

y
x
A
=

&

&
, where A is the area under the curve generated by x and y [8, p. 514]. 

 
These were not the only accomplishments made by Newton in his invention of Calculus, 
nor were they the only attempts to derive Calculus concepts during Newton’s lifetime.  
Gottfried Wilhelm Leibniz was born in 1646 at Leipzig, and by the time he was fifteen, 
he was ready to enter the University of Leipzig.  Leibniz studied a number of subjects, 
including theology, law, and mathematics. By the time he was twenty, he was ready for 
his doctorate in law.  Sadly, Leibniz was refused this honor due to his young age, but he 
would continue to excel throughout his academic career and hold many prestigious 
positions in both the government and in the academic world [1, p. 400], [2, pp. 184-185]. 
 
By the end of 1676, Leibniz had discovered the solutions to many of the problems that 
Newton worked on.  That is, Leibniz was able to put his genius to work to create his own 
development of Calculus [2, p. 187].  Unlike Newton, Leibniz did not define Calculus 
concepts in terms of fluents and fluxions.  Instead, his main focus was the differential.  
Leibniz thought of a curve as being a polygon with an infinite number of sides of 
infinitely small magnitude, rather than as determined by motion the way that Newton had 
[9, p. 146].  Leibniz realized in 1673 that the tangent to any given curve was dependent 
on the difference between y-coordinates in a ratio with the difference between x-
coordinates as such differences became infinitely small [1, p. 402].  Leibniz called these 
respective differences the differential of x, denoted by dx, and the differential of y, 

denoted by dy.  That is dx = , dy = 1−− ii xx 1−− ii yy , and their ratio, 
1
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which Leibniz called the differential quotient, was the necessary quantity needed to find 
the tangent line [9, p. 146]. 
 
In the 1684 text, Nova methodus pro maximus et minimus, itemque tangetibus, qua nec 
irrationals quantitates moratur (A New Method for Maxima and Minima, and also for 
Tangents, which is not Obstructed by Irrational Quantities), Leibniz was able to easily 
derive the product, power, and quotient rules for derivatives, as they are known today [1, 
p. 404].  The rule for finding the nth derivative of a product is, in fact, still known as 
Leibniz’s rule to this day [4, p. 310]. As an example of Leibniz’s proofs of various 

differentiation rules, consider the quotient rule, namely 2x
ydxxdy

x
yd −
= . Leibniz wrote 

the following as his proof of the result [3, p. 256]: 
   

  

xdxx
ydxxdy

xdxx
ydxxyxdyxy

dxxx
dxxydyyx

x
y

dxx
dyy

x
yd

+
−

=

+
−−+

=

+
+−+

=

−
+
+

=

2

2

)(
)()(

 

  Since xdx is assumed to be very small, the quantity is equal to   

  2x
ydxxdy − . 

 
Note that Leibniz’s formulation was completely independent of the nature of y and x, 
whereas much of Newton’s information was given in terms of examples that could be 
easily generalized.  Furthermore, Leibniz’s notation, which was a major focus for him, 
was often that which led his theories to be so easily proven.  This was radically different 
from Newton’s approach, as Newton was not as interested in notation as was Leibniz [3, 
p. 265-266]. 
 
For Leibniz, the integral was “an infinite sum of infinitesimal rectangles with base dx and 
height y,” and the leftover triangular area was actually his link to differentiation, as it 
involved both a base of dx and a height of dy [9, p. 147].  Much like his use of the 
modern dx and dy with differentiation, Leibniz also introduced the modern-day symbol 
for integration, the elongated S, ∫ , to denote his summation of rectangles for integrals 
[1, p. 403].  This symbol was first printed in Leibniz’s Acta Eruditorum of 1686 [3, p. 
260]. 
 
Using the product rule for derivatives, Leibniz was able to arrive at the formula for 
integration by parts using only differentials, much in the way that modern Calculus 
students learn the formula.  The formulation is as follows [9. p. 148]: 
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  Given the product rule, d(xy) = xdy + ydx, it follows that 
 

   ∫ ∫∫ ∫ +=+= ydxxdyydxxdyxyd )(

  Then, given the inverse relationship between integrals and derivatives, 
  ∫∫∫∫ −=⇒+= ydxxyxdyydxxdyxy  
 
This formulation relied on knowledge that the derivative and the integral were inverses, 
which Leibniz had come to accept, as he had noticed that integrals depended on sums, 
while derivatives depended on differences.  Leibniz deduced that there must be the same 
inverse relationship between derivatives and integrals as there was between sums and 
differences [1, p. 402]. 
 
The fundamental theorem of Calculus first appeared in Leibniz’s Acta Eruditorum of 
1686 in the following form [3, p. 257-258]: 
 
  Given a curve with ordinate z, whose area is sought, suppose it is possible  
  to find a curve with ordinate y such that 

  
c
z

dx
dy

= , where a is a constant 

  Then, , so the area is given by cdyzdx =

  (assuming the curves pass through the origin) ∫ ∫∫ === cydyccdyzdx
  Let c=1.  Then, subtract the area over [0, a] to that over [0, b] to obtain 

   )()( aybyzdx
b

a

−=∫
 
When Leibniz published his results, Newton’s supporters cried “foul!” and accused him 
of plagiarism.  Leibniz had seen some of Newton’s documents in a 1673 visit to London, 
and there had also been several letters sent between Newton and Leibniz on the subject.  
Newton’s work was published so late that, while he had actually begun to develop his 
method of fluxions long before Leibniz began working with differentials, many of 
Leibniz’s supporters actually accused Newton of plagiarism, as well  [2, pp. 187-188].  
At the time that Leibniz may have seen Newton’s early work on De analysi, however, it 
is unlikely that Leibniz would have been able to understand the document very well.  At 
that point in his mathematical career, Leibniz was not very well-trained in Newton’s area 
of analysis [1, p. 400].   
 
In the early 1670’s, Newton had sent a letter to Leibniz discussing integration using the 
binomial theorem.  However, only a few months after the first letter was sent, when 
Leibniz was intrigued and wanted to learn more, Newton sent a completely encrypted 
letter back to his rival that was supposed to have been about fluxions.  This poses the 
question as to why Newton would have offered to share the information in the first place 
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if he was merely going to hide his results [5, p. 512].  When the first edition of Newton’s 
1687 Principia was published, Newton admitted to collaboration, stating that Leibniz had 
come to similar results as himself.  By the time the third edition was printed in 1726, the 
reference was completely removed [1, p. 399].   
 
In 1712, the Royal Society of London, of which Newton was president at the time, found 
Leibniz to be guilty of plagiarism [3, p. 267].  The main evidence used against Leibniz 
was that it was possible for him to have seen Newton’s papers on his short visits to 
England during 1673 and 1676, which as stated, probably would not have been 
understandable at the time anyway [5, p. 515].  Leibniz was given virtually no chance to 
plead his case or to submit his work to show the glaring differences between his 
formulation of Calculus and Newton’s own.  As a result of the controversy and bitterness 
on both sides, Newton’s followers were virtually shut off from the next century of 
mathematical progress [3, p. 267].  Furthermore, by the time Leibniz died in 1716, his 
status was almost completely diminished.  While Newton’s death had been given a great 
reception in England, accounts have dictated that Leibniz’s burial was so ignored that 
only one faithful servant was in attendance [2, p. 190]. 
 
After both men were affected so harshly, and the history of English mathematics was 
perhaps significantly altered, most modern historians would argue that Calculus was 
developed simultaneously but separately by both Newton and Leibniz [2, p. 188].  Any 
comparison of their writings shows that the two men found their motivations in 
completely different areas.  Their methods and notation were also radically different.  
Furthermore, Newton’s original admission in the Principia that Leibniz had come to 
similar conclusions implies that there were no original evil intentions on either part.  
Nevertheless, by the end of the 1670’s, a strong foundation for Calculus had been built. 
 
Once Calculus was “invented,” it was now possible for mathematicians to spread and 
expand upon the ideas that Newton and Leibniz had presented.  Johann Bernoulli, one of 
Leibniz’s most famous supporters, aided the French Marquis de L’Hospital in his goal to 
learn the new and exciting Calculus [2, p. 191].  By signing a pact in 1692, Bernoulli had 
agreed to send any pertinent discoveries in the subject to L’Hospital, as well as keep the 
information secret from everyone else.  Bernoulli was offered “a large monthly” salary 
for his contributions.  In 1696, L’Hospital published a collection of these works in the 
first Calculus textbook, Analyse des infiniment petits pour l’intelligence des lignes 
courbes (Anlaysis of infinitely small quantities for the understanding of curves) [8, p. 
532].  One of the most well-known results included in the book, known as L’Hospital’s 
rule, was actually Bernoulli’s [1, p. 420].  The rule states: 0)()( == agaf and both f and 

g are differentiable 
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)('lim
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)(lim

xg
xf
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xf
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=⇒ .  The rule can also be used for the 

indeterminate form of 
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Observe:  
4 3

3 243

)(

)()(2
)(

aaa

aaaaaa
af

−

−−
= =

0
0)( 222

4 4

3 34

=
−
−

=
−
−

=
−

−
aa
aa

aa
aaa

aa
aaa  

 
Then, applying “L’Hospital’s Rule,”  

( ) ( ) ( )( )
( ) ( )

( ) ( )
( )

( )
9

16

4
3

3
4

4
3

3

4
3

3
1)2(

2
1

1
4
3

1
3
12

2
1

1
4
3

1
3
142

2
1

2
1

3

422
lim

2lim)(lim

3
2

3
3

2
33

4

3
4 4

3

2
3 3

333

44

24
33

4
1

23
22

3
1332

143
2
1

4 3

3 243

a
aaaaa

a

a
a

a
aa

a

a
a

a
aaa

aa

axax

axaaxaxax

axa
xaaxxaxf

ax

axax

=
−

−

=
−

−−
=

−

−−
=

−

−−
=

−

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
=

−−−
=

−

−−
=

−

−−

→

→→

 

   
 
Although Newton and Leibniz had developed a strong enough topic to include advances 
like the rule that L’Hospital was credited with, many mathematicians were uneasy with 
the fluxions and differentials due to the bizarre concept of infinitesimals that were zero 
but not zero at the same time.  In particular, Joseph Louis Lagrange suggested in 1784 
that the Berlin Academy offer a prize to anyone who could successfully address the 
question of the infinite.  At this point, Lagrange had realized that “..the foundations of the 
calculus were unsatisfactory..” as a result of a lack of clear understanding of the 
infinitesimals used in both Newton’s method of fluxions and Leibniz’s work with 
differentials.  When the competition yielded no satisfactory results, Lagrange took it upon 
himself to attempt to find a more rigorous foundation for Calculus [6, pp. 40-42].   
 
In his 1797 Thèorie des functions analytiques, Lagrange attempted to remove the 
concepts of limits and infinitesimals from Calculus by defining the derivative in terms of 
“derived functions.”  Lagrange’s main goal in making this attempt was to make Calculus 
more logical [1, p. 489].  His derived functions came from the following process [3, pp. 
296-297]: 
 
  Begin with the power series expansion of f(x).  Then, “by the theory of  
  series,” 
   ...)()( 32 ++++=+ riqipixfixf
  Lagrange claimed that )(')( xfxp =  
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  To find the coefficients, write oii += , and observe 
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  Next, replace x by x + o to obtain the following 
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  Comparing coefficients in both representations yields 
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  and so on. 

  Therefore, ...
!3

)('''
!2

)('')(')()( 32 ++++=+ ixfixfixfxfixf , that is,  

  Taylor’s series. 
   
Then, Lagrange posited that the derived functions f’, f’’ and so on coincided with the 
function’s derivatives, and very little knowledge of Calculus was needed to come to this 
result.  Hence, Lagrange had defined the derivative of a function in terms of the 
coefficients in the power-series of f, translated appropriately [9, p. 158].    
 
Although Lagrange had made a successful attempt at formulating the derivative for a 
special type of functions, his proof contained errors that prevented him from completely 
removing infinitesimals from Calculus.  A series expansion was always possible, and his 
work begged the question of whether the series did, in fact, converge [1, p. 489].  Despite 
Lagrange’s blunder in this particular endeavor, he was successful with many other 
contributions to the theory of Calculus, including to the field of differential equations [4, 
p. 335].  Among these accomplishments was the “Lagrange property of the derivative,” 
which can be stated as follows: 
   
  iVxifxfixf ++=+ )(')()( , where V goes to zero with I, which means 
  given any D, i can be chosen sufficiently small so that V is between –D  
  and D, or 
  ))('()()(])('[ DxfixfixfDxfi +<−+<−  
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This property was used “to derive many of the known results about functions and their 
derivatives, including the properties of maxima and minima, tangents, areas, arc lengths, 
and orders of contact between curves” and relied heavily on Lagrange’s Taylor series 
expansion of the function f(x +i) [6, p. 116].  Also, he can be credited with realizing, 
perhaps for the first time, that the derivative of a function was also a function [9, p. 159]. 
 
One of the next important breakthroughs to come in the development of Calculus 
concepts came from the secluded Bohemian priest, Bernard Bolzano.  In his pamphlet, 
Purely analytical proof of the theorem, that between each two roots which guanrantee an 
opposing result, at least one real root of the equation lies, Bolzano gave one of the first 
good definitions of continuity.  Quoted by Edwards [3, p. 308], Bolzano stated that 
continuity could not be explained without understanding the following: 
   
  ‘A function f(x) varies according to the law of continuity for all values of  
  x which lie inside or outside of certain limits, is nothing other than this:  If 
  x is any such value, the difference )()( xfxf −+ω   can be made smaller  
  than any given quantity, if one makes ω as small as one wishes.’ 
 
Hence, for f to be continuous on an interval, I, )()()(lim

0
xfxfxf =−+

→
ω

ω
, . Ix∈∀

 
While Bolzano’s results were not very widely circulated, Augustin-Louis Cauchy stated a 
very similar result in his 1821 Cours d’analyse.  His definition of continuity reads as 
follows: 
   
  ‘The function f(x) will be a continuous function of the variable x between  
  two assigned limits [“limit here means “bound”] if, for each value of x  
  between those limits, the numerical [absolute] value of the difference  
  decreases indefinitely with a.  In other words, the function 
  f(x) is continuous with respect to x between the given limits if, between  
  these limits, an infinitely small increment in the variable always produces  
  an infinitely small increment in the function itself’ [6, p. 87]. 

)()( xfaxf −+

 
After clearly defining what it meant for a function to be continuous, the next obvious 
question to ask was what conditions guaranteed a discontinuity at a point.  Clearly, 
contradicting the above definition was means enough, but Cauchy was able to clearly 
define the idea in functional notation as early as 1814 in the following way: 
 
 Let be a given function, Z denote the point in question, and let )(zΦ ξ be some 
 tiny amount.  Then, there is a jump discontinuity at Z if   
 0)()(lim

0
≠−−+

→
ξξ

ξ
ZfZf  [6, p. 94] 

 
While he did not explicitly state this result in limit notation, it was obvious that Cauchy 
had the idea in mind when he described jumps in terms of the functional values 
unexpectedly going from one point to another. 
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One of Cauchy’s most notable contributions was the clarification of concept of limit and 
its establishment as the basis for the other main ideas of Calculus [9, p. 160].  In addition 
to Cours d’analyse, Cauchy wrote two more major texts.  These were his Resume des 
leçons sur le calcului infinitesimal of 1822 and Leçons sur le calcul differential of 1829.  
All three of Cauchy’s texts were some of the first to set rigor as a goal [3, p. 304].  He is 
believed to have been the first rigorous definitions of Calculus terms using the modern 
epsilon-delta notation, but his definitions actually sound more intuitive than algebraic [6, 
pp. 6-7].  Despite this seeming discrepancy, Cauchy did indeed use epsilons and deltas in 
many of his proofs [9, p. 162]. 
 
Another famous contribution was the 1821 idea of showing that the terms of a sequence 
get closer to one another was enough to show convergence.  This result, now known as 
the “Cauchy criterion,” states that, “a sequence { }ns of real numbers converges if and 
only if it is a Cauchy sequence.”  Cauchy himself was unable to prove a one-sided 
implication, that Cauchy sequences must be convergent, because he did not have enough 
knowledge about real and irrational numbers [7, pp. 175-76].  In modern day notation,  
 
  A sequence { is called a Cauchy sequence whenever }nx Ν∈∃>∀ N,0ε  
  (depending, in general, upon ε  such that for each and   
  

Nm ≥
ε<−≥ mn xxNn ,  [10, p. 67]. 

 
In addition to Cauchy’s advances with limits and continuity, he was also arguably the 
first person to see the integral as a limit of sums, rather than simply as an inverse of the 

derivative [4, p. 364].  He wrote that .  As a result of 

this improved definition, the fundamental theorem of Calculus could now be proven 
without forcing the mathematician to view the integral as an area [9, p. 163].   

))((lim)( 1
1

10 −
=

−→∂
−=∫ ∑ ii

b

a

n

i
i xxxfdxxf

 
Bernhard Riemann, whose name is attached to the modern-day integral, drew off of 
Cauchy’s work when creating his definitions.  There are two glaring differences between 
the conceptions of these two men when considering the subject of integration:  1) When 
Cauchy defined his integral in terms of sums, he used only the endpoints of intervals, 
while Riemann showed it was possible to use any arbitrary point, and 2) Cauchy assumed 
that functions must be continuous in order to be integrable, whereas Riemann was able to 
prove otherwise [6, p. 162].   
 
In Riemann’s 1854 paper, “Habilitationschrift,” devoted to representing functions in 
terms of trigonometric series, section 4 began with the question of what it meant for a 
function to be integrable.  Riemann then gave the following immediate answer [3, pp. 
323-4]: 
 
  ‘In order to establish this, we take of sequence of values   
  lying between a and b and ordered by size, and for brevity, denote   

121 ,...,, −nxxx
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  by ,  by ax −1 1∂ 12 xx − 2∂ , …, 1−− nxb by n∂ , and proper positive  
  fractions by iε .  Then the value of the sum 
      
 )(...)()()( 133232212111 nnnn xfxfxfafS ∂+  +∂ ∂ + ∂ + ∂ + + ∂+∂+∂= −ε ε ε ε
  will depend on the choice of the intervals i∂ and the quantities iε .  If it has 
  the property that, however the i∂ and the iε  may be chosen, it tends to a  
  fixed limit A as soon as all the i∂ become infinitely small, then this value  

  is called ∫ .  If it does not have this property, then is  

  meaningless.’ 

b

a

dxxf )( ∫
b

a

dxxf )(

 

  Thus, Riemann chooses an arbitrary point  in the iiiii xx ∂+= − ε1

__
th  

  subinterval [  of his partition i =1, …, n, and defines the integral  

  by , where δ denotes the maximum of  

  the lengths of the subintervals of the partition of [a,b] [3, p. 323]. 
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After providing a clear concept of what an integral was, Riemann decided to investigate 
its strength.  While mathematicians had assumed that the integral was only defined for a 
continuous function, Riemann was able to use the following counterexample to show that 
the assumption was actually false in 1854: 
 

  Let ∑
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=
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=x nevertheless, the series converges  

  uniformly and the functions are integrable so that f(x) is integrable,  
  as well [7, p. 230].   

)(xfn

 
Furthermore, Riemann was able to use his new theory on integration in order to prove 
various results about Fourier series, which represents functions in terms of trigonometric 
series, which was Riemann’s original goal [8, p. 726]. 
 
Clearly, Riemann’s development of the integral and his results on integrability differ in 
extreme measures from Newton’s inverse fluxions, as well as from Leibniz’s early 
integration results.  However, without their initial developments, works like Riemann’s 
and Cauchy’s would have to have been derived from absolutely nothing and may never 
have been produced.  It is in this way that the development of Calculus can be viewed as 
the collaborative efforts of mathematicians over the span of hundreds of years—
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thousands of years if one wishes to include the works of Eudoxus and Archimedes within 
the scope of Calculus.   
 
In conclusion, while Sir Isaac Newton and Gottfried Wilhelm Leibniz are credited as 
being the co-inventors of Calculus, it is necessary to view the development of Calculus as 
the work of many mathematicians.  Newton and Leibniz were the first to axiomatically 
define the subject; others would systematically improve upon their works in order to 
make the concepts of Calculus more clearly defined.  After centuries of writing and re-
writing the definitions of limit, continuity, derivative, and integral, Calculus became a 
rich, rigorous subject of high importance in mathematics.  Without Newton, Leibniz, 
Lagrange, Cauchy, Riemann, and many, many other mathematicians many useful 
problems would still be solvable through only case-by-case examples, like those of Sluse 
and Fermat.  Perhaps, some would even be completely unsolvable. 
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