




ABSTRACT

Title of dissertation: NETWORK ANALYTICS TOWARDS DRUG
REPOSITIONING: USING
PHOSPHORYLATED PROTEINS

Iyanuoluwa E Odebode, Doctor of Philosophy, 2019

Dissertation directed by: Dr. Aryya Gangopadhyay
Department of Information Systems

Drug Repositioning is an approach to discovering a new use of old drugs.

However, current successes in drug repositioning have primarily been a result of

serendipity or clinical observations, [1] such as the observed use of sildenafil citrate

(Viagra) mostly for the treatment of erectile dysfunction, but now repositioned

for the treatment of pulmonary arterial hypertension, [2],leprosy [3]., and erectile

dysfunction induced depression.

Besides, thalidomide used for inducing sedation is now known to be important

for the treatment of multiple myeloma [1]. To transform this process systematically,

many computational approaches have emerged with recent advances in computa-

tional technology, to automatically identify possible drug repositioning candidates

by accessing an overwhelmingly volume of biomedical data [1]. In this study, we

described an e↵ort made on computational drug repositioning by applying sequence

encoding, sequence analysis, and network analytics against the phosphorylated pro-

teins.



We propose a novel framework for computational drug repositioning with mul-

tiple components, 1) Sequence analysis and sequence prioritization 2) biological

interaction network construction by integrating heterogeneous interactions among

gene, disease, protein, SNP, etc.; 2) Phosphorylated Network creation 3) high-

influence node detection/prioritization by applying network analysis and perturba-

tion; 4) Multimodal Network creation and clustering 5) drug candidate identification

and evaluation by using sequence analysis and cheminformatics techniques. We used

the PIM Substrates and rhabdomyosarcoma as a case study.
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Chapter 1: Introduction

1.1 Challenges in Drug Repositioning

In recent times; there have been many challenges facing pharmaceutical com-

panies and industries as well as the general health sector concerning the process of

designing and manufacturing new drugs. The problem is principally center around

the high cost of designing, vetting and clinical trial of new drugs and the long dura-

tion of these processes. The clinical trials are performed to collect data that support

the safe use of a particular medication. The information tells us about the safety and

e�cacy of the new drug and device development. The drugs or devices go through

stages of approval in the clinical trials process before a drug or device is sold in the

consumer market. The clinical trial of any drug goes through five phases (Phases

0-4) of investigations that often takes months and even years to ensure safety and

e�cacy in target end-user-patients.

These processes cost a lot of money, and big pharmaceutical industries spend

a lot on legal fees and tests before the drugs are made available to the public. The

process of clinical trials also involves human personnel who must be paid for their

services [4]. For these reasons, researchers have concerned themselves with finding

cheaper ways of producing new drugs or repositioning old drugs for the treatment of
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new diseases or finding new indications of using old drugs via clinical observations.

The process of identifying such drugs and their new uses would expectedly be

serendipitous, time-consuming or may require expensive clinical trials, but with the

introduction of computational approach, the time involved could be reduced dras-

tically [3]. The development of computer technology for this purpose has resulted

in computational drug repositioning which has proved to be an e↵ective means of

finding new uses for existing drugs [1] or using known drugs and compounds for new

indications [5]. Many drugs fail especially the phase III trial during development [3]

sometimes due to the di�culty in predicting the clinical e�cacy at its targets [3] and

such failures automatically result into great losses for the manufacturing company

and high costs of pharmaceutical research and development. This position further

prompts a drive toward finding new uses for existing old drugs. Furthermore, drug

repositioning has the advantages over traditional drug development by bypassing [5]

several expensive toxicities and other tests (which were already done for the earlier

indication) since we know about its safety. Hence, there is a lower failure rate during

development. It is less expensive and has a shorter time to bring the drug to the

market. [5]

The increase in genomic and phenotypic data is beginning to encourage scien-

tist to develop more ideas in the field of drug repositioning because, with more data,

we have more information relevant to a disease, gene and so on. Historically, drug

repositioning has come from serendipitous discoveries in late-stage clinical trials or

post-approval. [5] During regular use for appropriate indications. A classic exam-

ple of a repositioned drug is Thalidomide which was first marketed as a sedative
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and used for treating nausea in pregnancy. After few years of its widespread use

in Europe, Australia, and Japan, about 10,000 children were born with phocomelia

(a congenital malformation of the limbs characterized by absent portions or whole

arms) and other congenital disabilities.

This lead to its ban in most countries in 1961. However, much later the US

Food and Drug Administration approved its use for the treatment of leprosy and,

subsequently, for multiple myeloma. [5] Another well-known example is Sildenafil

which was designed by the drug company Pfizer for something that would relax the

heart blood vessels and treat Angina pectoris. However, its trials in people were

disappointing; [5] as the volunteers reported lots of excessive penile erections as an

unusual side e↵ect. [6] The drug was then repurposed to treat erectile dysfunction

(ED) and had since helped millions of men with ED and later proved to be useful

for pulmonary hypertension [7]Similarly, Minoxidil was developed as an antihyper-

tensive drug and got FDA approval to treat high blood pressure. In a study of its

e�cacy, Chidsey et al. noticed unexpected hair growth on the faces and shoulders

of some women subjects. A male subject experienced hair growth on the bald part

of his head. The growth was so noticeable that his barber said: Boy, you better

find out what you are taking for your high blood pressure! [7] Research was later

conducted on the best ways to use Minoxidil for hair baldness, and in 1988 the FDA

finally approved it as an anti-baldness medication [7].

Drug repositioning or repurposing has opened a new source of revenue and

now holds much appeal with a high potential to accelerate the development of

old drugs for new disease(s). More and more companies are scanning the existing
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pharmacopeia for repositioning candidates, and the number of repositioning success

stories is increasing [8].

Other examples of such drugs that have been repositioned in the last few

decades are listed in [5].

For this study, we introduced a computational approach that utilizes sequence

encoding and sequence network analysis for drug repositioning. The analysis was

performed on a database that contains interactions between factors that relate to

a specific disease such as phenotype, biological process/course, as well as chemical

compounds or proteins involved. This approach is not limited to using some network

analysis techniques but also consists of the use of sequence encoding, sequence anal-

ysis, network analysis, and perturbation analytics to assist in repositioning drugs.

Expectedly, the methods will aid in increasing the lifeline of old medications, reduc-

ing the number of funds spent on approval, re-directing the use of drugs not for one

purpose but multiple purposes [4] thus engendering the use of old drugs for treating

new diseases.

1.2 Challenges in Cancer Research

With all the research, development and innovative drugs and therapeutic ap-

proaches that have helped to fight cancers, now people are surviving from this

disease. Cancer therapeutics has come as far as the usage of di↵erent drug combi-

nations, radiation therapy, surgery for localized cancer, etc. There is still a lot to

do with regards to the treatment of cancer. Studies have shown that clinical trials
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in cancer research have been known to have the lowest success rate [9]. One would

wonder why this is so.

In the past, research has focused specifically on critical factors that lead to

tumor growth [9]. In concentrating on tumor progression, researchers developed

therapeutic approaches meant to targets these factors. They observed that targeting

these factors that leads to tumor progression can introduce an inappropriate amount

of toxicity in the body because these factors also play a crucial part in homeostasis

in the body [9]. For this reason, the scientist had to go back to the drawing board to

figure out how to deal with the complex problem of solving cancer. Many discussions

among cancer researchers from di↵erent parts of the world from both the academic

and pharmaceutical community came to address the current challenges that are

hindering the progression of drug developments and various therapeutic approaches

that can help stop all forms of cancer.

Here we will address some of the challenges that are currently hindering the

development of e�cient and e↵ective treatment for di↵erent types of cancer. One of

the challenges, cancer researchers or scientist, need to enhance their understanding

of what a clinical trial is. Clinical trials are a process that a drug, treatment or

therapeutic approach has to go through for validation that the drug, treatment or

therapeutic approach is viable for a specific disease. Before clinical trials, other

extensive research work has been performed, through acquiring a holistic knowledge

on the disease in question, addressing the cause of the illness and which approaches

can address the condition. Experimentation was done using di↵erent models both

computational or biological also have been performed in the pre-clinical trial stages.
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With all these pre-clinical trial extensive knowledge and testing done before clinical

trials, one would expect that researchers have done all that is expected of them to

do prior thus having a vast knowledge of both pre-clinical and clinical trials. This

is because what was done in the models used, and the result that was attained is

expected to be the same result that is anticipated during clinical trials; however,

clinical trials do not always correlate with experimentation done on models such as

mice. Thus it is understandable for researchers to agree that more knowledge is

needed for clinical trials.

In reforming clinical trials through attaining a better understanding of what

clinical trials are, there has to be uniformity between researchers or scientist and

clinicians to understand the many problems that come with treating individuals.

The financial aspect of cancer treatment for patients, the challenges in recruiting

patients with cancer to be part of a clinical trial and lastly possible toxicity that

comes with a dosage of cancer medications are some of many challenges [9]. It was

suggested in this article that the connection between clinicians and researchers has

to develop as early as having a graduate school where graduate students are placed

in a clinic environment while clinicians are also placed in labs [9]. These di↵erent

group understanding each others perspective can promote an interaction that will

help in understanding what the di↵erent communities are experiencing; therefore,

working well together to develop better clinical trials for patients with diseases.

When a new drug is developed and sent to the clinic, it is vital for clinicians

to comprehend the pharmaceutical concepts such as the pharmacodynamics and

pharmacokinetics for the drug [9], the e↵ects on tumor shrinkage and side e↵ects.
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Clinicians should attain a better understanding of a balance between drug toxicity

to the patient and the e↵ectiveness of the diseases. They should understand the

highest amount of dose that can be given to the patient without the dosage causing

terrible side e↵ects. Thus researchers should work on identifying toxic side e↵ects

during the early stages of drug production and also how it influences the entire

body and not just the tumor [9]. Researcher assisting clinicians with a detailed

understanding of dosage needed for specific cancers. Clinicians also help play their

part in the research aspect by giving a detailed report concerning direct dosage

e↵ects on cancer patients with certain cancers. Thus researchers should work on

identifying toxic side e↵ects during early stages of drug production and also how

the influences the entire body and not just the tumor [9].

The second challenge towards cancer research is improving early detection in

cancer. The current initial detection of cancer is done using CT, PET and MRI

scans. These scans have been used to distinguish between an aggressive tumor and

a tumor that is not progressive in growth or developing slowly [10]. Also, some of

these images at times can give an increase in false-positive rate. If these images

are improved, it helps doctors to understand the tumor and see if it is localized

thus assisting the surgeons in removing cancer and any traces of it better. Though

imaging and the improvement of imaging will help with initial detection and the

eradication of disease, they also exposed individuals to radiation, which at times can

also lead to tumor progression. Early detection is di�cult because of another issue

which finances; insurance companies are assisting in payment for individuals attain

screening for certain types of cancer [9]. It has also been observed that for some
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cancers, not only is early detection due to financial challenges or di�culties but also

researchers have not developed a way to screen for some cancer early enough [9]. For

this reason, specific cancer would have elevated to an aggressive level before there

is detection making it di�cult for the individual’s survival.

Adequate access to resources for researchers is also another challenge that

cancer research is currently facing [9]. For cancer research to progress, there has to

increase in collaborative e↵orts to create better therapy, predictive and diagnostic

tools. Public data that is viable and has been appropriately performed and extracted

without any errors have to be available for other researcher and clinicians to learn

from to help in developing better treatment approaches [9]. Before a new study ini-

tiation for cancer, researchers should acquire all the data collected both on animals

and or cellular models and also acquire data from epidemiological data from individ-

uals with that have that specific cancer to have comprehensive knowledge regarding

the tumor complexity. The reason for this is because tumor development consists of

more than a mutation in the DNA. It also includes the biochemical pathway that is

connected. For instance, understanding oncogenes such as Ras and AKT [11] has ex-

posed an area in cancer biology that was unknown. Several therapeutic approaches

should be tested on several models via mice models, cellular models and also infor-

matics models. The reason for this is the genetic background may have played a

role in tumor growth. Curative and side e↵ects expected in therapeutic approaches

or drug development for a cancer patient should be observed in models such as mice

before initiating clinical trials. For example, if the side e↵ect is death in patients,

then this exact side e↵ect should also be observed in the mice models before the
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initiation of clinical trials [9]. Additionally, appropriate data interpretation has to

be acquired from models systems before next steps in drug development.

Another suggestion stated in this article was that more in-depth knowledge

and understanding of the environment where tumor growth is located has to be

acquired [9]. For instances, researchers need to understand what influence does the

surrounding tissues or cells have on tumor growth. There has to be a better estab-

lishment or development of human-like models that allow the researcher to observe

cancer pathways in a realistic biochemical or biological context or environment.

This more in-depth knowledge can help in understanding the molecular factors or

features that cause the origin of cancer or the type of cancer. For instance in pan-

creatic cancer there is an 83 percent K-Ras mutation; however, in colon cancer and

breast cancer, Ras mutations do not lead to cancer development [12]. Thus, the en-

vironment of a tumor/cancer e↵ects can help shed light on the development of the

di↵erent type of cancer and its behavior. This insight into the environmental impact

on cancer will help cancer researchers and clinicians. However, researchers know lit-

tle concerning the microenvironment influence on tumor development. Researchers

also lack vast knowledge of the reason why di↵erent types of tumors derived by

similar genetic factors respond to therapeutics di↵erently.

Lastly, the use of system biology and the study of the genome has been a great

asset to understanding cancer [9]. The study of the genome has lead researchers to

ask if cancer is truly a disease of the genes or a disease caused by chemical path-

ways, e.g., protein interactions. The application of computational biology, health

informatics, etc. has also helped to highlight factors that play roles in cancer de-
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velopment which has helped scientist to match certain drugs to genomic data [13].

Though system biology has helped in improving cancer research and drug develop-

ment, much improvement is still needed as some computational research still gives

some inaccurate results.

In summary, though cancer research has come a long way, there is still a long

way to go as there is still much knowledge that needs to acquired concerning this

disease if it is indeed a disease of the genome or signaling pathway, its characteristics

and behavior. There also needs to be better access to viable literature, data, and

data interpretation, and improved models for early detection for di↵erent types of

cancer. Extensive work in both pre-clinical and clinical trials to truly understand

and develop drug and other therapeutic approaches that can help destroy tumor

or cancers cells while removing exposure to high toxicity to patients. Moreover,

clinicians, researchers, and pharmaceutical companies have to develop secure com-

munication and interact habit with one another coming together to understand each

side to bring about the best treatments for cancer patients.

1.3 PIM Kinase in Cancer Research

Previously Ras and ATK were mentioned to be oncogenes that have helped

attain more understanding in areas of cancer biology that was not previously known.

In this section, another protein also currently being studied which is also exposing

another side of cancer biology and new drug development towards tumorigenesis is

PIM Kinase [14]. PIM kinase belongs to the serine/threonine kinase family; they
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have been conserved in the cellular organism through evolution [14]. Within this

family consist of three members: PIM 1, PIM 2 and PIM 3. These kinases when

compared to each other show high similarities; 71 percent similarities on the amino

acid level between PIM 1 and PIM 3 and 61 percent between PIM 1 and PIM 2 [15].

High amounts of PIM 1 has been observed in hematopoietic cells, whereas PIM 2 is

observed in lymphoid and brain cells. PIM 3, on the other hand, is found in cells lo-

calized in the kidney, breast and brain cells [16,17]. PIM kinase only requires protein

stability to be able to function; thus they do not require post-translational modifi-

cation. PIM consists of over 30 possible recognition sequences for various kinases.

Currently, researchers do not know the relevance of these recognition sites [18].

PIM also responds to mitogenic stimuli which causes an upregulation in transcrip-

tion [19–21].

Furthermore, PIM Kinase activation is also caused by transcription factors

that activate downstream growth factor signaling pathway, an example being NF-

kB [14,22]. Besides, hypoxia found in the solid tumor has been known to cause the

expression of PIM. The upregulation of both PIM 1 and PIM 2 has been observed

due to NF-kB response towards FLT3/ITB oncogenic mutants. MLL-X, NuPP-x

and MLL-PTD are mutations observed in hematological malignances [22]. These

mutations seem to cause upregulation of PIM 1 via a transcription factor known as

Hox A9 [17].

Research has identified PIM Kinases in di↵erent types of cancer. It was seen

to change Mesenchymal cells that ended in lymphoma weakly and leukemia [23,24].

The increase of PIM 1 expression alone could not cause adenocarcinoma develop-

11



ment in the prostate; however; it was a contributing factor in the severity of prostatic

neoplasia [20]. This discovery supports data found where there was an overexpres-

sion of PIM 1 in the prostate cell line; this finding showed that PIM 1 was not able

to alter benign cells into malignant cell however it caused an increase in tumori-

genic abilities of tumor cells [14, 22]. This was seen in both in vitro and in vivo

models. Also, increased levels of PIM 1 Kinase was initially observed in lymphoma

tumor, human myeloid and lymphoid leukemia [19,25,26]. Moreover, a transcription

analysis performed using 50 percent samples from prostate cancer patients showed

high expression of PIM in malignant tumors, whereas the same analysis performed

again this time with benign lesion showed low to no expression of PIM 1 [22]. In

the prostates, intraepithelial neoplasia high levels of PIM was observed as well,

thus showing that PIM Kinase possibly plays a role in early prostate malignancy

development [27].

PIM kinase was noticed to express in various cancers; for this reason, there

is an interest to target this protein for new drug development. The interest in

targeting it for new drug development [14, 22] is also because of its involvement

in cancer-specific pathways, e.g., cell survival, cell migration and lastly cell cycle

progression. Additionally, it was shown that the reduction in tumorigenesis in pan-

creatic cancer cells in mouse models was due to the e↵ects of dominant-negative PIM

1 [28]. Though drug discovery studies are ongoing with PIM Kinase, researchers are

focusing on PIM 1 because of its association in tumorigenesis [22]. It was discovered

in vivo studies has also demonstrated that the absence of PIM 2 and PIM 3 responds

similarly as if all three PIM were absent; meaning that the lack of the two kinases
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lowers sarcoma growth that is induced by a treatment called 3-methylcholanthrene

carcinogenic as if all three Pim kinases were absent [29].

The identification of the vital role that PIM kinase plays in tumorigenesis in

humans has led to more interest in creating small molecule inhibitors that aim or

focuses on these kinases [14, 22]. Scientists have discovered many di↵erent types of

PIM inhibitors [30] however only a few were tested in animal models or cell-based

assays to show anti-cancer activity. Among these inhibitors, a few have worked

against the kinase family, and this is because most were targeted on PIM 1 [22,

31–33]. Models, where mice did not possess all three PIM, showed that mice did

not display side e↵ects with the PIM inhibitors, the same experience might be

expected for cancer patients. Additionally, over the past years, many publications

have been geared towards new PIM inhibitors. These publications address various

chemical structures in PIM inhibitors that are genuinely potent and with promising

selectivity profiles compared to other protein kinase [14,22]. Aside from publications,

many companies have developed various small molecules that focus on PIM kinase

family [14]. They are focused on developing inhibitors that are structurally di↵erent

and potent, and also combine it with other therapies. For instance, SMI 4a is a PIM

1 inhibitor developed in the University of South Carolina. It has been observed that

SMI 4a caused G1 arrest in the prostate (PC3, Du145, CWR22ru 1) [14]. DHCP-9

is another inhibitor developed by CNRS to inhibit all PIM Kinase family. DHCP-9

has been shown to weaken migration and conquest in the PC-3 prostate cancer cell

line [14].

FDA, on the other hand, has suggested to companies a few years ago to start
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their Phase 1 clinical trial to test the pharmacokinetics, tolerance of PIM inhibitor

SC1-1776 and safety in individuals with solid tumors and also those with refractory

non-Hodgkin lymphoma and prostate cancer [14]. The Phase 1 trial was canceled

after two years due to protracted cardiac toxicity occurrence during the trial. Fur-

thermore, some of these kinase inhibitors have been shown in other in vitro studies

to have acceptable activity and a lessen toxicity profile. There is still an ongoing

Phase 1 trial with e↵orts to attain a well-defined toxicity profile of these drugs in in-

dividuals and also find targets for tumor [14]. Currently, data recommend that PIM

inhibitor is more e↵ective when combined with treatments such as chemotherapy or

other types of targeting agents such as P13k inhibitor [14]. Though e↵orts are made

to developed inhibitors towards PIM kinase family, there is still a large amount of

research that needs to be performed to test the combination of PIM inhibitors and

other therapies [14].

1.4 Motivation

Existing drugs accounted for 20 percent of drug products released into the

market in 2013 [1], the FDA (Food and Drug Administration) has been creating

public datasets regarding drug repositioning that allows pharmaceutical industries

to make more informed decisions on drugs. [1]. Also, drug repositioning is playing a

vital role in precision medicine creating more opportunities for e↵ective treatment of

patients [1]. The traditional approaches to drug repositioning have mostly focused

on chemical structures and side e↵ects, while other methods have focused on screen-
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ing approaches or exploring direct relationships between a drug and disease. The

need for integrating information from various sources has become very important.

This information includes phenotype, genome, chemical and clinical data, and their

integration assists in discovering new uses for old drugs. The datasets are di�cult to

make sense out and very complex to understand the need to apply a multi-layered

approach to understand and analyze this problem becomes very important.

1.5 Summary of our Contributions

The contribution of this work is to create a novel approach or framework

for finding drug repositioning candidates. We developed a method for the extrac-

tion of relevant information using sequence level data and phosphorylated proteins.

We postulated a method for encoding the protein sequence in such a way that we

can cluster the protein sequences to find the most relevant protein sequences using

PhoSc and PhoSc-con. The relevant sequences were used to capture relevant bi-

ological association for various databases using PhoSc Extractor. We utilized the

extractor in creating a combination of disease-related elements for network analytics

(NetAnaPhoS) and multimodal clustering(DReiM).

We present an overview of the system architecture in figure 3.1.

1.6 Organization of the Dissertation

The remaining parts of the dissertation contain Chapter 2 that presents the

literature review with research that relates to this work, in Chapter 3 we have the
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Figure 1.1: Overview of the Architecture.

methodology section that shows the overall architecture of this work and Chapter 4

that contains some results and conclusions and future work in Chapter 5.
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Chapter 2: Literature Review

2.1 Drug Repositioning

This chapter discusses two approaches to drug repositioning [1] [2]. This chap-

ter breaks the approaches into two. Both approaches are explained in this chapter,

and the most recent literature in these areas discussed to build a foundation for my

thesis.

1. The traditional drug repositioning approach

2. The computational drug repositioning approach

Drug Repositioning is the process of developing a new use for old drugs. The

concept has been around for many decades [3, 34, 35]. Another way to explain

this concept is to define it has the use of newly identified drugs for the treatment of

diseases other than those they were intended to treat [35]. The most famous example

of drug repositioning is the use of sildenafil for the treatment in erectile dysfunction

[2,36]. Sildenafil was found to treat coronary artery disease by Pfizer in 1980s [3,36].

Another good example is thalidomide; the drug was initially developed as a sedative

drug especially for treating nausea in pregnant women, and the prescription was

eventually found to be e↵ective in treating erythema nodosum leprosum (leprosy)
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and much later for multiple myeloma [1, 2].

2.1.1 The traditional drug repositioning approach

The traditional drug repositioning approach to drug repositioning is usually

referred to as a discovery process [2]. It is generally referred to as a discovery process

due to trials and errors involved in the process. The traditional approach involves

de novo identification workflow and validation of new molecular entities (NME). It

is a time consuming and a very costly process. [4, 35] It takes six to nine years to

develop a drug if the drug is repositioned it can go directly to the preclinical testing

and clinical trial figure 2.1. It will help to reduce the risk and cost further.

The traditional approach is also called an experimental approach to drug repo-

sitioning since it involves experimenting and extensive laboratory work [35].

The foundational idea behind traditional drug repositioning has not changed

much since prehistoric times; the process is referred to as a discovery process since

it consists of a lot of trials and errors [4, 35]. The idea is to identify the disease of

interest; the disease is selected based on the population of people with this disease

and based on clinical needs. The next step will be to gather an array of chemicals

to run the test and see the e↵ects and find any relevant chemical of interest. The

process is costly, ine�cient and very costly. The method is called the screening

method. The screening method consists of two methods:
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2.1.1.1 Target-based screening

Target-based screens are described as a method used to identify molecules or

peptides that a↵ect the expression of a cell [1, 2, 35]. The drugs are screened for a

protein or any biomarker that the researcher is interested in or by the evaluation

of drug compounds such as the ligands from the collection. After these compounds

are identified, an e↵ort is made to identify the biological targets [1, 35]. If a target

is found, a biochemical assay screen for the target is conducted, and the result is

evaluated on models via a generally expensive process [1–3].

2.1.1.2 Phenotypic drug screening

Phenotypic drug screening is an approach that has been identified in drug

discovery research for recognizing molecules and peptides that can distort or alter

the phenotype of an organism in the desired way [4, 35]. This approach has a

strong history in the drug discovery paradigm. Scientists have screened a bunch of

compounds, particularly in a diseased animal to identify compounds that cause an

expected change in phenotype. When the mixture is found, the next goal will be to

find the biological target for such compounds.

A biological target is defined as a substance within the human organism to

which any drug can bind. The reverse could be the case where a biological target can

be said to alter disease, thus leading scientist to discover compounds that modulate

the activity of this target. The compounds can then be tested on animals to see the

outcome [8,35,37]. The approach is termed reverse pharmacology. These screening
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can be performed in two ways: in-vitro or in-vivo In vitro is the easier of the two

screening types and it unlike in vivo utilizes materials such as test tubes, petri dish,

etc. to study or test biological units outside the living organism to observe changes

in behavior or activities [4,35]. At times the testing or study is performed outside the

living organism and placed back inside the organism to observe phenotypic changes.

Expressions of several proteins are screened using this screening type.

On the other hand, in-vivo screening represents e↵ects on biological units

in living organism to see changes in behavior or activity. This method is usually

chosen over in-vitro tests because the experiment is conducted on and the outcome

is measured on living organisms. The phenotypic screening techniques do not make

any guess on the pathological mechanism and proteins involved. The cell line or

model organism of diseases would be used to read the results of the screening [1,2,5].

The target-based screening techniques improve the selection of the chemicals

on the ability to bind to a protein. The protein it attaches to is the target protein

useful for the pathological process. It binds like the key is to a lock. The better it

can lock the more fit the action of the chemical [1, 2, 5, 35].

2.1.1.3 Limitation of the Approaches

It is challenging to find a molecule that will interact with a single protein

only. Most proteins have the propensity to bind to multiple drugs thus producing a

negative e↵ect. Identifying such proteins can provide significant opportunity drug

repositioning [1, 2, 6, 38].
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Another limitation is that these drugs are also involved in several biological

processes and can achieve multiple functions. Previously, the assumption was that

a protein target would perform a single biological role [1,2]. The right protein found

to be involved in the disease was a way of recognizing the phenotypic outcomes.

The approach ignores the relevance of pathways and networks and this also further

produces opportunities for drug repositioning taking these factors into considera-

tion [8]. Considering the approach including these parameters help to create more

opportunities for drug repositioning. The better we can understand the involvement

of these pathways and networks in the process the more precise our drug reposition-

ing results will be.

Another limitation of the approaches above is that compounds can only be

tested based on main indications and it is impossible to check on all possible diseases

meaning it possible for a compound to be used for di↵erent purposes and yet not

identified. These present an opportunity in drug repositioning as well as [2].

To be able to solve this problem, we need available biomedical knowledge and

a good understanding of the molecular systems.

2.1.1.4 Other challenges faced include both legal and scientific battles

A biological system is a very complex system and impulsive, and we can see

these e↵ects in cancer and other diseases. A disease rarely never keeps their first

indications because advancement to the initial evidence is made every year [1, 2, 6,

35, 38]. The more information gets available to the public about the disease the
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better hints are created to target the disease. It makes it challenging to find new

relevant opportunities [35].

The financial challenges also play a significant role in drug repositioning [1,2,

6, 38]. Before a drug is commercialized, it required not just to show that it is valid

based on its features but also essential to make sure that the intellectual property

is not expired. If they are expired, there will be no incentive for pharmaceutical

companies to continue to pursue the research.

The process of repositioning may also cause a lot of issues since re-positioning

is not a part of the regulatory process. It may delay the use of a new indication.

During the process depending on the demographics or physiology or the patient, it

is tested on an adverse reaction to the drug may occur. The dosage should also be

watched for the possibility of an adverse drug reaction [1, 2, 6, 35, 38].

All these factors should be considered to reposition a new drug in the market

successfully.

2.1.1.5 Successful drug repositioning: Stories

Sildenafil was initially designed to take care of a condition called angina (chest

pain issues that occur due to a restriction to the blood supply to the heart). The

theory was that phosphodiesterase-5(PDE5) should increase the blood flow and

allow free flow of blood to the heart. The drug was discontinued during the clinical

trial stages and during the same time patients started to report a rare side e↵ect

which was prolonged erections. Pfizer investigates the drug for the new indication.
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Three thousand seven hundred men were studied for this new indication, and the new

indication was confirmed leading to the repositioning of this new drug for erectile

dysfunction [1, 2, 6, 35, 38].

The indication was identified by chance and not logically. The clinical trial was

essential to determine the real behavior of the medication, highlighting the challenge

from moving from cell-based assays to a real human body.

The more we know about the biological aspects of an organism would help to

better predict similar cases like sildenafil.

Thalidomide was removed from the market because of its hazardous nature,

but it was introduced later to the market. This story is a fascinating one as the drug

was used as a sedative drug or sleep-inducing medicine. It was primarily marketed

to treat morning sickness in pregnant women [2] [8]. The drug was assumed to be

safe because it was tested on rodents. It was not the case for humans as it caused

severe skeletal congenital disabilities in children born from women that took the

drug. Over 15,000 newborn su↵ered this bad e↵ect [2]. The drug was removed

from circulation and led to a lot of reforms in the pharmaceutical industry. The

story did not end there a practitioner was trying to treat his patient who had

erythema nodosum leprosum (inflammation of condition depicted by red nodules

under the skin), he decided to use thalidomide. The pain and sores disappeared the

next morning [2]. During the clinical trials, thalidomide proofed to treat erythema

nodosum leprosum. Thalidomide sales grossed millions of dollars derived from an

o↵-label use for multiple myeloma [2, 7]. The lesson from this is that a drug can

be harmful in a specific population but important in another. If we can identify an
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adverse e↵ect and a drug process, we can target drugs accordingly.

Understanding the protein and its process helps to understand better and

predict the opportunities here [2].

Figure 2.1: Traditional Drug Repositioning.

2.1.2 Computational Drug Repositioning

Computational drug repositioning is a more promising and useful tool for

finding a new use for old drugs [1, 2, 8]. This field becomes increasingly promising

as the data in this field begins to increase. The computational approach is relevant

to precision medicine. Advanced analytics techniques are applied to this data sets

on a day-to-day basis to find drug repositioning candidates [1, 2, 8].

Various data sources have been identified to help in drug repositioning. We

discussed the drug repositioning data sources in details. Existing drug reposition-

ing computational strategies will also be discussed in this Chapter [1]. Then the

most significantly used computational techniques in literature would be elucidated

including the approaches used for the validation of the approach [1, 2, 8, 34].

From the traditional approach discussed, it easy to understand the de novo

drug discovery approach does not work well. The method is time-consuming and

very expensive to manage. The money spent on R and D has increased while the

number of new drug approvals has idled [1, 2].
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[1] group computational strategies for drug repositioning into Phenome, Genome,

and Drug chemical structures. Corset, 2014 grouped approaches into chemical

structure-based approaches, gene expression and functional genomics-based approaches,

protein structure and docking based approaches, phenotypic and side-e↵ect-based

approaches, genetic variation-based approaches, disease network-based approaches,

and the machi [20]ne learning and concept combination approaches [2]. A few of

these approaches will be discussed in this work include phenotypic and side e↵ect

based approaches, disease network-based approaches and the machine learning and

concept combination approaches [2].

Figure 2.2: Computational Drug Repositioning Strategies.
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2.1.2.1 Computational Strategies to Drug Repositioning

We have used [1] to best categorize the computational strategies for drug

repositioning.

2.1.2.2 Phenome

The phenome contains a collection of phenotypic information. The data

sources that contain this information have emerged to be good sources for drug

repositioning. PheWAS, for example, has emerged to be an excellent way to iden-

tify associations between genetics and diseases systematically [1, 8].

Denny et al. demonstrated using an application of PheWAS on electronic

medical records [39]. His work showed that PheWAS is an excellent tool for enhanc-

ing the analysis of genome and for finding associations between gene markers and

human diseases [2, 34].

The side e↵ects from clinical information help profile [40] drug-related personal

phenotypic information which can be used to develop drug repositioning candidates.

Ye et al. showed that similar side e↵ects profile might share similar therapeutic

properties [39].

Bisgin et al. also used the latent Dirichlet allocation model for drug repo-

sitioned that developed the phenome information from SIDER (Side E↵ect Re-

sources) [39,40]. The use of this application will require an understanding of molec-

ular aspects and pathological mechanisms. The phenome data can also be integrated

with other types of data for drug repositioning. The work of Hoedndorf et al. in-
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volves the integration of genotype-disease associations with drug-gene associations

to predict drug-disease associations [41]. A similarity score approach was developed

to measure genotype-disease associations. The path leads to the identifying of al-

ready existing drug-disease associations and a system like this can be used for drug

repositioning.

2.1.2.3 Genome

Genomic data paradigm is growing due to the creation of genomic and tran-

scriptomic data. The available public datasets include information on cell lines,

disease samples, normal tissues, and animal models [1]. The combination of the fol-

lowing datasets and other datasets that include phenotypic and clinical data present

a good opportunity for drug repositioning. The datasets will provide an understand-

ing of the disease mechanism and explain the mechanism of actions which can help

in drug repositioning.

CMap has been widely used to strengthen this e↵ort. The CMap data is an

extension of (LINCS), with many gene expression profiles for human cancer cell lines

treated with di↵erent drug compounds with di↵erent conditions [1, 8].

The purpose of CMap is to show a map that contains functional associations

between diseases, gene perturbations, and drug actions. The integration of these

datasets with NCBI Geodata has led to several studies on drug repositioning. An

approach that utilizes this data is called signature reversion. This approach involves

finding the inverse of a drug-disease relationship by finding the di↵erence between
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drug-gene expression profile and disease gene expression profile.

The approach was used by [42] to compare the gene expression signature of

inflammatory bowel syndrome to drug-gene expression signatures consisting of 164

drug compounds from CMap [42]. It has been recently found that miRNA regulate

some cell activities. This finding can help to develop drug targets for drug reposi-

tioning. An example of this strategy (Liu et al.) found that miRNAs and transcript

factors to be enriched in cystic fibrosis associated gene regulations from a public

dataset [1, 43]. The feed-forward loop was constructed for cystic fibrosis by build-

ing transcriptional factors and miRNA as regulatory elements. Forty-eight existing

drugs showed the propensity to a↵ect the expression of miRNA that is part of the

feed-forward loop. They were repositioned for drug treatment of cystic fibrosis [1].

2.1.2.4 Drug chemical structures/ Drug Combinations

Drug chemical structures:

The drug chemical can be found in many publicly available datasets, and

most of these datasets contain chemical structures and literature based biochemical

data [1]. The data can be used for drug repositioning. The concept of using these

types of data is that similar chemical structures perform the same chemical function.

The structural features may be used to compute their similarities and a topological

fingerprint may also be used to calculate their similarities [1, 2].

Swamidass et al. work focus on finding which targets modulate disease rele-

vant phenotype [40, 44]. The work uses chemical structures which target modulate
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disease-relevant phenotype [40,44].

In Wang et al. , drug chemical structure, molecular activity, and side ef-

fect were integrated. The three datasets were used to define a kernel function for

SVM classifier. The technique was paralleled with other methods and showed high-

e�ciency [1, 2, 35].

Drug Combinations:

Targeting just a single drug may not be enough to treat a specific disease.

The need for a combination of drugs to address a particular disease issue becomes

essential. Ceribelle et al. screened 466 drugs that have been approved for cancer

therapy [35,39]. The finding showed that ibrutinib, a kinase inhibitor that hinders B-

cells receptor signaling pathway to activate IKK, shows a significant joint e↵ect with

JQ1 in killing ABCDLBCL cells both in vitro and in vivo [35,39,40]. These indicate

that the combine JQ1 with ibrutinib may be a new e↵ective therapy [1,34,35]. For

information on the drug, combinations use Drug Combination Database.

2.1.3 Computational Approaches to Drug Repositioning

With the advent of computational approaches, we can renew the use of failed

drugs for other purposes and shrink down the timeline for identifying drug repo-

sitioning candidates by ten times. This process involves designing computer algo-

rithms that would simulate the traditional workflow and allow generation of the

potential drug candidate [35]. Below are some of the computation approaches to

drug repositioning:
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2.1.3.1 Sequence based methods

Sequence analysis is used in bioinformatics to find similarities between DNA

sequences, RNA sequences, and protein sequences. The similarity measures help

us understand functions, features, and structures [35, 45] and how similar they are

to each other. One of the methods used to calculate these similarities is sequence

alignment [46,47].

In literature, a majority of the sequence-based methods are not directly linked

to drug repositioning task or are not typically extended. We have identified a few

of those that may be used to connect the dots between sequence clustering and the

drug repositioning task [48].

As we mentioned earlier, phosphorylation is very important for regulation of

many cellular processes including cell cycle, growth, apoptosis, and signal transduc-

tion pathways [48].

Sequence clustering is a useful application in identifying this phosphorylation

site. Successful identification of these sites can lead to the discovery of new networks

that can lead to drug repositioning [48].

2.1.3.2 Previous work using Sequence-based method for identifica-

tion of Phosphorylation sites

[48] created a bioinformatics tool for prediction of individual kinase-specific

phosphorylation substrates and sites using heterogeneous feature selection method.
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PhosphoPredict combines the use of protein sequence and functional features to

find the kinase-specific substrates and their phosphorylation sites [48]. The sets

of elements that were most relevant to predict the specificity of the substrates for

the kinase families were identified [48]. The first step involved removing redundant

sequences from the initial datasets [48]. Twelve kinase families were trained using

Random Forest Model, and they were taught independently of each other. The tool

is e�cient for both the prediction of the substrate to kinase family relationship and

also to identify the sites of phosphorylation in the kinase families. Phosphopredict

involves four significant stages dataset curation, feature extraction, feature selection,

and model training and performance evaluation [48]. The feature extraction stage

involved sequence features predicted structural features and protein functional fea-

tures [48]. Then the hypergeometric test was performed to identify those functional

features that were under-represented or over-represented, and the mRMR algorithm

was applied to select the essential features [48]. The performance of RF-based pre-

dictors using 5-fold cross-validation. Though this approach improved the prediction

of phosphorylation sites for several kinases, it is limited because the inclusion of ad-

ditional features improved the prediction accuracy for some kinase/kinase families,

it decreased the performance for others [48].

[49–51] used multiple linear regressions to predict sequence values based on

their solvent accessibility. Yuan et al. also has done some work in this area using

support vector machine and Adamczak et al. using a neural network to predict the

real-values of accessible surface area [50,51]. The method identifies that previously

there werent defined accessibility surface area states and because which leads to
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random choices, poor comparison, and loss of information [50, 51]. This method

applies directly gives the real values of ASA instead of its arbitrarily defined states.

This method had a similar performance to when the neural networks and support

vector machines were applied to it. The model predicted the accessible surface

area with 16.2% means absolute error [50, 51]. The results show the importance of

sequence neighbors in the determination of solvent accessibility [50, 51].

[52] is implemented based on profile hidden Markov Model. The pHMM is

used to learn the kinase-substrate relationship. The decisive set and the negative

set of phosphorylation sites were first to select, and the MDD(Maximal dependence

decomposition) was applied to group protein phosphorylation sites into subgroups

[50, 52]. Then we applied a certain minimum cluster size on the correct settings

using the MDD. If the size of the subgroup is less than a certain size, the subgroup

is terminated to be divided until all fall below the minimum cluster size [52]. Based

on the profile is hidden Markov model, computational models are learned from the

kinase-specific groups of the phosphorylation sites. After evaluating the learned

models, the model with the highest accuracy was selected from each kinase-specific

group, for use in a web-based prediction tool for identifying protein phosphorylation

sites [52].

[52] emphasizes the need to be human-specific to classify protein phosphory-

lation sites appropriately. The article also points to the use of solvent accessibility

as a way to reduce the false positive results for the phosphorylation sites located in

the buried region [52].

[53] matched the sites by using a collection of consensus sequence motifs
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and their position-specific scoring matrix retrieved from Scansite [54] and the ap-

plications of artificial neural networks technique using NetPhosK. The consensus

sequence motif is used to identify a family containing closely related kinase [53,54].

The Kinase are found and designated to families by searching BLASTP for sequences

similarity of sequences that represent the set 82 kinases [53, 54]. The hits with at

least 50% sequence identity are considered. The probabilistic network of the func-

tional association was used to capture the biological context of the substrates, and

they were extracted from the STRING database [55].

They utilized the following biological context on STRING database: genomic

context, primary experimental evidence, manually curated pathways, and automatic

literature mining [56]. The proximity of the substrates is calculated using the sub-

strates closeness for all the kinases. The Floyd-Warshall algorithm was used to

find the most likely path connecting them. This context is used to filter out false-

positives. The algorithm was unable to recover the missing sequence motifs.

[57] utilize feature extractions, but the method utilizes a machine learning

technique that finds patterns from the raw sequences. The technique will find com-

plex representations of these patterns from the sequence.

The method utilizes a multi-layer convolution neural network. [57] utilizes 33

residues all centered around the potential phosphorylation site. The fragments of

the protein then encoded with one at the index of each amino-acid in the protein

sequence and 0 at all others. The multi-layer will encode the convolution neural

network protein sequence into a fixed two-dimensional hidden state and this done

using an attention-based decoder [57]. This allows the model to search for essen-
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tial positions to learn soft transformation between input and output. In summary,

RNN Encoder was replaced by the multi-layer CNN, and this resulted in a two-

dimensional attention mechanism on the sequence dimension and the feature-map

dimension that change the RNN decoder into a feedforward neural network to gen-

erate a single representation vector [57]. The attention mechanisms help estimate

the contributions of each element on both sequence and feature map dimensions and

also to arrive at a merged soft-weighted representation of the protein sequence [57].

The problems remain that though Musite worked in identifying phosphorylation,

the problem remains with its interpretability and biologically meaningful discover-

ies [57]. [58] does not only take into account the sequence information but also the

functional information regarding substrates which places.

The proposed method takes advantage of not only sequence information but

also functional information regarding substrates that are reported to contribute to

phosphorylation site prediction [58].

Kinase less than 25 favorable phosphorylation sites were removed, and only

17 kinases were left after. The local sequences of the sites were then extracted

seven up and seven downstream. The binary encoding was then applied to the

local sequences [58]. Then the protein-protein interaction information was used

to incorporated the functional information of the substrate using STRING. The

interactions were extracted giving a total of 16,708 proteins from 679 substrates.

The two are used to generate the final features [58].

The EasyMKL was used to maximize the distance between the convex hulls

of positive and negative samples in the training set. The SVM is used to build a
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predictive model and decision function given the combined kernel. The ksrMKL [58]

only used functional information; other biological information could be integrated

to improve the result.

In [59] this method explores the relationship between protein kinases and

disease-related phosphorylation substrates using PSEA [59]. The similarity scores

of each peptide against one another were calculated using a substitution matrix

from BLOSUM62 [59]. The similarities were then mixed with deriving high and

low. Then those were used to find the enrichment score. Then the results were

evaluated. [59] didnt need a positive and negative example balance, and we can use

this technique to calculate the sequence similarity between peptides directly. It also

handles the subset di↵erences hence allowing you to consider the subset di↵erence

in kinase subset [59]. The enrichment analysis was calculated using GO terms.

In [60] CMS(composition of monomer strategy) was used to encode the se-

quences. The monomer spectrum was also used to represent the composition of the

amino-acid and the frequency occurrence of each amino-acid window [60]. Then

support vector machine was applied to this encoding, and the RBF was used as the

kernel function [60].

[55] uses the pattern of sequences alongside the evolutionary information to

identify phosphorylation sites. A noise-reducing algorithm was applied to this infor-

mation to find the ideal phosphorylation sites [55] [56]. The method didnt require

sophisticated training algorithm. In this method, similarity scores were calculated

using BLOSUM62 and profile-profile alignment that contains the information on

evolution [55]. The closer an unknown site is to known location the more phos-
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Simple Consensus Pattern based Sequence similarity-based Machine Learning

ELM, PROSITE PostMod, PSEA Musite

phorylated they are. More features can be added to improve the accuracy of the

method [55].

Figure 2.3: Techniques for finding similarities in sequences using phosphorylated
proteins

2.1.3.3 Phenotypic and side e↵ect based approaches:

As defined the phenotype previously speaks to the behavior or trait of an

organism. It can be physiological, a morphological property [5]. They are traits

that constitute an individual or organisms behavior. They are observed by studying

that individual genome. When a patient is being observed in the hospital, they are

mostly found based on some phenotypic properties. This technique is used for drug

repositioning as well.

This approach is useful in drug discovery because it provides direct evidence
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over an underlying situation. The side e↵ects are also considered phenotype. It

does not matter how much a drug works in an animal model, and we know the real

impact after the clinical trial. If we can adequately capture the side e↵ects, we can

e↵ectively reposition the drug.

If two drugs have the same binding target, they would have the same side-

e↵ect [61]. We can gather a side e↵ect profile for di↵erent medications and use the

similarities to identify some potential drugs that are o↵-targets [62]. In Campillo’s

work, the side e↵ects were mined using some text mining packages and some sta-

tistical analysis these texts to find the probability of two drugs having the same

targets.

2.1.3.4 Network based Approach

The network-based approach takes into consideration drug-drug network, drug-

disease network, protein interaction network, drug-target network, biological path-

way network and how the following have been used to achieve drug-repositioning.

[63] established a bi-partite way of defining the network using drug-target con-

struct to achieve drug repositioning. Drug pair similarity used to find the similarity

between drug structures and common drug and their interactions. The research was

based on previous research [35, 63–66] that used a multilayered approach on gene,

disease and drug target to identify new use for old drugs.

Network clustering approaches have also been applied to find new uses for old

drugs. [66] used network clustering on heterogeneous data. The idea was to be able
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to identify closely connected drugs and diseases that could be used to then mine

drug and disease pairs for drug repositioning. The network consisted of two nodes

with drugs and disease connection, the genes they shared and other features like

the biological process. They were all connected, and the Jaccard score was used to

weight the connections.

2.1.3.5 Network based Approach: Disease

The research proposes [35,65] two-step approach to drug repositioning based on

the protein to protein interaction network of two diseases. Given that you have two

conditions; the protein-protein interaction network of the two diseases was found,

and the similarity between the drugs prescribed was used for drug repositioning.

The list of the disease that relates to a specific gene was found from meta-database

called generator. In the generator, if a disease shares genes with another disease,

they were selected. If a drug was found to have the same target in protein to

protein network, then the drug was deemed to be repositioned or deem to be a

repositioning candidate [35, 65]. The targets for many drugs are still yet to be

known so this implied repositioning. The experiment was applied to four di↵erent

types of diseases that included hypertension, diabetes mellitus, Crohn’s disease, and

autism. Repositioning candidates were found at both steps [35, 65] .
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2.1.3.6 Machine Learning Approach

The various data support drug repositioning can be used alongside machine

learning-based models to predict associations between drugs and diseases. The

machine learning approaches use biomedical concepts to help computers understand

how to predict drug repositioning candidates [35,65]. The biomedical concepts help

us to train machine-learning algorithms and then predictions from there. One of

the recent work in this space involved using SVM (Support Vector Machines). The

algorithm was used to predict therapeutic categories, and the misclassified data

points were interpreted as drug repositioning assumptions [35, 65].

Menden et al. developed a machine learning model that predicts the way

cancer cell lines respond to drug treatment [35, 62, 65]. Genomic level information

was collected; they contained cancer cell lines and chemical property information

was also obtained. The data collected was used to build a feed-forward perceptron

neural network model, and cross-validation and a blind test validated a random

forest regression model - the predicted values.

Other methods use machine learning algorithms that use collaborative filtering

techniques to predict unknown drug-disease associations.

Zhang et al. designed a unified framework for combining drug similarity and

disease similarity [35,65]. A combination of phenome, genome and drug information

where combined to arrive at this drug similarity matrix and disease similarity matrix.

The report helps to do a drug-disease network analysis further. It was turned into

an optimization problem that showed high e�ciency in exploring drug repositioning
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candidates.

2.1.3.7 Text-mining Approach: EHR Data for Analysis

Work on EHR as advanced over the years, and has grown across the world.

EHR contains patient records, but they could be used to help in drug discovery.

The EHR includes patients health records; it consists of a progress note, laboratory

information about results of individual patients based on the test that was performed

in the laboratory, information on the medication used by the patients, the vital

signs of individual patients, demographic data, etc. The EHR is rapidly growing in

countries like Canada, the US, and the UK. The adoption of EHR in the US has,

and extensive research is done in this area.

The introduction of the population into the process of finding relationships

between diseases and comorbidities can help understand the complex nature of

conditions and help identify treatments. The relationships that exist within this

disease network can help identify some pathophysiological mechanisms that can

provide some insight into disease etiology and help to identify some new drug tar-

gets [35, 65, 66]. If a compound was determined to treat a disease that belongs to

a cluster of other conditions, this might help identify a new indication of another

illness that belongs to that cluster.

Hidalgo et al., 2009, analyzed 30 million records and disease co-morbidity

network was built; where edges and nodes represented the strength of the disease

relationships and diseases labeled by ICD9. The results showed that patients de-
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velop disease close in proximity to the ones they already have. These edges for

this experiment were identified using Pearson correlation and relative risk. They

also found that diseases with closer proximities tend to have a worse prediction in

comparison to diseases with fewer proximity [61].

2.1.3.8 Text-mining Approach: Social Media Data

Paul and Dredze 2012 worked on exploring recreational drug discussions. They

used a multi-dimensional latent text model also known as factorial LDA to capture

the corpora using some orthogonal factors and to help researchers create structured

output to understand the content of that corpus [35,61,65] better. The structure of

factorial LDA was modified to incorporate some existing knowledge, which included

informative priors, and some background components. They could learn some fac-

tors that corresponded to drug type and delivery method and some aspects like

chemistry, culture, and e↵ects. They demonstrated that the improved model keeps

a better performance and a more interpretable result [61].

In conclusion, the validation of the computational results needs to be tested

experimentally. Usually, the computational approach can generate several results

[67]. Ideally, the Identification of 3 best results relevant clinically for the patients is

sent for experimental test.

The in vitro and in vivo model can be used to test the computational approach

further to ensure the results are useful for repositioning. Kang et al. used the

viability of a cell assay to validate the drug combination generated from a search
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algorithm. The drug combinations that kills cancer cells were confirmed [68].

2.1.3.9 Chemical based Approach

In chemistry, similar structure implies the same function. The literature con-

tains various approaches to calculate the structural similarity between two chemical

compounds such as fingerprinting and clustering algorithms. The algorithms can

be used to perform ligand-based similarity calculations where we find a set of al-

ready identified active ligands; the ligands are searched against a database to find

structurally related drugs that are bioactive as well [35, 69, 70]. The drugs were

represented as vectors and used as input to the clustering algorithm [35,62].

[71] presents a systemic method of discovering new indications for known

drugs by finding its relationship with two similar drugs. The study introduces a

bipartite approach to finding common drug targets and connections. The study also

introduces drug pairwise similarity [71] approach to calculate a score for the sim-

ilarity between two di↵erent drugs. The method in this approach achieved better

results than the state of the art approach. [72] The results showed that the com-

bination of both chemical structure and drug target information resulted in higher

performance.

The use of chemical approaches to achieve drug-repositioning is a great idea,

and they are based on fundamental similarity principles, but a change to a molecular

structure can lead a completely di↵erent biological outcome.
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Figure 2.4: Dissimilar chemical structure.

Figure 2.5: Similar chemical structure

2.1.3.10 Protein structure approach

Drugs or biomolecules work by interacting with proteins. This interaction is

checked using computational software that can study 3D structures of the target

and the drug. The process is known as protein docking. This technique finds the

most optimal binding site for both the drug and drug target(protein). These types

of studies help to improve the e�cacy of the drug. The current dogma is that most

drugs are known to interact with more than one protein [35].

[73] The goal for drug repositioning is to identify drugs that do not structurally

bind to their proteins and then if the identify drugs are relevant to a disease, then

a drug that correctly binds can be repositioned for that disease.

Concerning this idea, lots of research has been done in this area, including [73].
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The structural similarity is the closest to the physical reality of the interactions

[74]. [74] used 6000 binding site structures to find synapsin I, a protein used for the

regulation of neurotransmitter release as a new indication of the drug staurosporine

that binds PIM-1 kinase [74]. The finding was experimentally performed and verified

in vitro.

2.1.3.11 Computational Approaches: Success Stories

In breast cancer, the repositioning of irinotecan for the treatment of cancer

of the breast is one of the success stories. The data sources that were used include

Genome (expression, structure, activity) and clinical trials. It was a biomarker-guide

repositioning [1, 8].

In cancers, the repositioning of metformin for various types of cancers include

breast. Colorectal, endometrial, esophageal, etc. using the clinical trial for cancer

treatment with metformin [1, 8, 35]. In cancer for the repositioning of an existing

phenothiazine-like antipsychotic drug, called trifluoperazine, as a potential anti-CSC

agent using CMap [1].

The results from [72] showed after an evaluation that by finding the drug

to diseases pairs on the clinical trials and PubMed [72]. Fluoxetine predicated

six indications using a similar drug called Citalopram. 2 of the predicted uses are

known to leave for four as new predictions [72]. It was found that alcoholism use was

indicated in the clinical trial that was conducted to study fluoxetine in adolescents

with alcohol use disorder and significant depression [72] and the other three results
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have been investigated with results published.

2.1.3.12 Limitations of existing computational approaches.

1. The existing techniques are focused on drug-drug interactions, or disease-drug,

drug-disease interactions. The techniques above do not address multi-modal

network issues. Our technique will address multimodal issues using PIM Sub-

strate Network.

2. The data would be large, and a dimension reduction technique or approach

needs to be adapted to work with large datasets.

3. The technique utilized for the experiment needs to be generalizable due to the

relevance of the technique to rare diseases and orphan diseases. Our technique

generalizes the approach for any number of diseases.

4. Our approach will help to predict possible unique pathways that have not been

identified before by previous systems as utilize a unique way of filtering the

sequences first.

5. Previous studies utilize straightforward approaches to solving drug reposition-

ing problem. Our approach suggests that it’s important not to separate the se-

quence studies from the network studies. We present a multilayered approach

to analyzing the data becomes very important. Currently, this approach is

focused on a few types of bi-directional relationships. We want to expand on

this.
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6. The chemical concept of similarity computation is a great concept; however

changes to a molecular structure can greatly impact biological outcomes. The

focus on the chemical similarity will not deal with the situation because of this

reason. Our approach introduces other ways of further evaluating the results

in other to get a more authentic drug candidate [35].

7. Some of the techniques above required the drug and disease expression pro-

file must be available to identify the drug candidates. However, the current

CMAP database does not currently give us a large set of the drug and disease

expression profiles so need to investigate other techniques or using CMAP as

a layered approach to arrive at drug candidates become important [35].

8. The limitation for protein structural approach is that the structural data must

be available such as PDB contains the records for protein structures. PDB has

not covered all spectrum of the proteome. It is challenging to find the binding

site based on the protein crystallized structure. The change in one amino acid

can cause a dramatic change in the binding site structure. Our approach uses

sequence data which are most readily available [35].
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Chapter 3: Methodology

3.1 Research Contributions

The contribution of this work is to create a novel approach or framework for

finding drug repositioning candidates. The significant contributions of these work

are as follows.

1. We postulated the use of phosphorylated encoding (PhoSc) in extracting rel-

evant information using sequence level data. This step is important because

it leads us to the analysis of the information using sequence encoding, this

encoding scheme helps us to analyze the sequence level data and to connect

the data with relevant disease-related elements in other to find the appro-

priate drugs for repositioning using the phosphorylated proteins. We utilized

our encoding scheme to detect the most pertinent phosphorylated proteins. It

was implemented on the PIM substrates to find the most relevant PIM sub-

strates. In the case of the rhabdomyosarcoma, the phosphorylated proteins

were collected from phosphosite. We create a method to find the most relevant

phosphorylated element using these encoding schemes.

2. We also proposed phosphorylated protein database extractor (PhoScExtrac-

47



tor) that captures the biological networks and other biologically related databases,

applying a paradigm that uses a bi-directional path to determine drug repo-

sitioning candidates. An example of the bi-directional approach includes

disease-gene and gene-disease relationship. In our approach, rather than fo-

cusing on disease-gene, gene-drug, gene-gene, or SNP-gene only, we have con-

sidered all the elements together putting them into one bucket; thus under-

standing their complex nature.We create a database that contained an inte-

grated network that captures this complex data. Our approach utilizes the

phosphorylated database constructed by us and takes into consideration the

relationships between protein, drug, disease, environment, bioprocess, gene,

chemical compound, and miRNA and utilize the datasets for analyzing and

visualizing using network analytics techniques. Thirdly, studies have shown

that proteins share functional connections. This implies that any protein in

the ribosome and also in the basal transcriptional in the complex. The inter-

actions between these proteins are typically not by chance, but they connect

to establish a process. The PPI(protein-protein interaction) implies an inter-

action between two proteins that dont necessarily have to perpetual or fixed.

The current database has shallow coverage of the PPIs (protein-protein inter-

actions). Our research studies the PPIs(protein-protein interaction) in both

rhabdomyosarcoma and PIM substrates using singular value decomposition.

3. We have also utilized the database or network to find the highly significant

nodes using network analytic techniques for phosphorylated (NetAnaPhoS).
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The network that characterizes the significant nodes was used for analysis and

towards finding drug repositioning candidates. We identified vital proteins and

biological pathways in rhabdomyosarcoma and PIM substrates. Pathways are

great leads to finding drug candidates.We utilized influence nodes measures to

identify some of these pathways relevant to finding potential drug candidates.

4. We have developed a novel multilayered approach or multirelational approach

to handling a combination of all the networks that were integrated using mul-

tiple databases. We applied a novel multimodal network clustering approach

to handling numerous bi-mode relationships for rhabdomyosarcoma and PIM

substrates (phosphorylated proteins) called DReiM. Our method helps to pre-

dict unknown relationships by analyzing the integrated networks. The ap-

proach also reveals several patterns in the datasets that contain a complex

multimodal system.

3.1.1 Introduction to our approach

The internet has a vast amount of health-related information or data set; the

need to make this data comprehensible becomes essential. The data can also play

a crucial role in finding significant disease-related elements that could lead to drug

repositioning. These data sets are significantly large and even sophisticated. Due

to the complex nature of those networks, it is crucial to analyze these data sets in

a multidimensional manner.

In this chapter, our novel framework that consists of clustering sequences based
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on their function, integration of biological datasets, and applying network approach

and multimode approach to analyzing complex biological data towards finding drug

candidates was presented.

Previously the identification of drug candidates or other relevant elements that

lead to drug repositioning is typically narrow focused. Our contribution integrates

both sequence level, gene expression level and network level information towards

identifying drug repositioning candidate.

In previous methods, sequences are grouped based on similarities of the alpha-

bets in the sequences. Our approach introduces a sequence encoding technique used

to encode protein sequences based on their function. The sequence encoding tech-

nique then further helped to group these proteins based on their relevant features.

We introduce methods of clustering these sequence.

The method above help to identify relevant protein sequences for data inte-

gration and then to further apply network analytics and multimode approaches.

In between these techniques, we developed a gene expression level framework

as well alongside to add more drug candidates to our results.

3.1.2 Overall system architecture

The overall architecture of the system shows our approach in a step by step

process. The process starts with sequence analysis using encoding schemes and

separating the cha↵ from the wheat. The steps below illustrate the process flow for

our technique.
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Figure 3.1: Overview of the Architecture.

3.2 Datasets

The datasets for the sequence analytics portion of our experiment were col-

lected from Bieberich Lab. The datasets contain a list of pim kinase or substrates.

We also utilized the phosphosite plus website to gather sequence-related informa-

tion for rhabdomyosarcoma. For the purpose, multimode clustering towards drug

repositioning. We have used a wide range of databases such as UniProt, DIS-

GeNet, CIDER, and so forth to create the Phosphorylated Network Database. Our

databases contain sets of datasets for rhabdomyosarcoma, diabetes and pim sub-

strates.

3.2.1 Rhabdomyosarcoma Datasets

We constructed the Rhabdomyosarcoma Datasets using the Phosphosite plus

website to pull the sequence information and then further pull the information for
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clustering using multiple sets of databases that will be discussed in the coming

section. We created the datasets we used for multimode clustering (RhabPhos).

3.2.2 Diabetes Datasets

We constructed our Diabetes Datasets Phosphorylated Proteins using the

CIDER datasets. The CiDER datasets contain groups of subject to object rela-

tionships. We drilled downed the datasets to find interactions that take place only

when phosphorylation takes place(DiabPhos).

3.2.3 PIM Datasets

We collected the datasets from the Bieberich Lab. The PIM Datasets had

three critical columns. The sequence or substrate column, the variable modifications

column which is a portion that helps us identify the position of phosphorylation and

the protein accession number which represents the protein the sequence belongs. The

substrate is just a piece of the large set of sequences [75].

3.2.4 Experimental Setup

For this work, we conducted our experiment using four cores, 32GB RAM, 3401

MHz, and Hard Disk is one terabyte. The experiments were running on a Microsoft

Windows Professional version 6.1.7601. The algorithm for developing our database

management system was implemented using SQL database. Our algorithms were

implemented using python and MATLAB.
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We utilized aws sagemaker for implementing the piece of our work that involved

large datasets and r studio for chemical similarity computation using our algorithm.

3.3 Identification of Relevant Protein Sequence(PhoSc)

We have formulated a novel process for the identification of relevant pim and

rhabdomyosarcoma protein sequences using encoding schemes called PhoSc.

Figure 3.2: Overview of PhoSc process

We utilized the phosphorylated alphabets in encoding schemes section to en-

code our sequences. We applied this encoding to both pim substrates and rhab-

domyosarcoma and clustered our sequences. The first steps are sequence data pro-

53



cessing and slicing.

3.3.0.1 Sequence Data Preprocessing and Sequence slicing.

This step involves the slicing of the essential component of the sequence from

the UniProt database. The PIM Substrates UniProt identification number was used

to extract the sequences of each substrate from the UniProt site. The substrates are

subsequences from the primary sequence. The substrates are the relevant portions

of the sequence because they are the portion of the sequence that phosphorylates.

The substrates were extracted alongside their protein accession number, protein

description, protein sequence, variable modifications, and variable modification sites.

The variable modification site is used to find the position where phosphoryla-

tion took place. The area where the phosphorylation takes place is identified by the

number 3. The number 3 position on the sequence is letter S or T.

For example, if 0.0030 is the decimal number. Position 3 as number 3 and

therefore represents the location where phosphorylation takes place. 10,20,30,40

and 50 sequences up and down this position is cut for analysis.

The phosphorylation site of the first PIM substrate sequence is below on Table

3.1. S is on position 3, and it is on the third position after the decimal. The next

step is to find ten sequences up and ten sequences down of t. We would need to

extract the whole sequence 1433B HUMAN from NCBI and search for the substrate

across the entire sequence. The position of the S in the substrate was queried in

the 1433B HUMAN sequence on UniProt. The position S was used to identify ten
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sequences up and ten sequences down. (Refer to figure 3.3)

Figure 3.3: Sequence Extraction

From the position with variable modification site, we extracted 10,20,30,40,50

sequence up and down to perform sequence analysis.

Protein Accession ID Protein Sequence Variable Modification Sites

1433B HUMAN VISSIEQK 0.00300000.0

Table 3.1: PIM Substrates Sample

The sample of results after the processing of the sequence was done is below:

Protein Accession ID Protein Sequence

1433B HUMAN GARRSSWRVISSIEQKTERN

Table 3.2: Processed PIM Substrates

55



3.3.0.2 Background in Bioinformatics

We will like to explain the three main elements involved in the central dogma

of molecular biology. Understanding these terms will help better understand the

encoding schemes.

Deoxyribonucleic acid known as DNA, it contains all the genetic information.

DNA carries genes that encode the attributes of all living things [76]. It has is

name deoxyribonucleic acid because its building blocks which are the nucleotides,

Adenine (A), Thymine (T), Guanine (G), and Cytosine (C), the nucleotide contains

a nitrogen base, a sugar base known as deoxyribose and a phosphate group [76].

The nucleotides are complementary, A pairs with T, while C pairs with G. They

are bound by hydrogen bonds [76]. DNA are two complementary strands that come

together to form a helix usually referred to them as a double helix. DNA can fold in

various structures. DNA in its condensed form is called chromosomes [76]. When the

DNA does not need to replicate or transcribed, it is packed tightly, a shorter form

known as the chromosome. However, whenever there is replication or transcription,

the DNA is stretched out into a long strand for transcription or replication to take

place. DNA can use one of its strands and duplicate another strand using an enzyme

known as DNA polymerase [76]. DNA not only replicate itself; however, it can also

be transcribed into RNA and then later translated to protein [76].

Ribose nucleic acid is known as RNA. RNA is the transcribed form of the

DNA, where one of the DNA strands serves as a template [76]. Transcription of

RNA takes place at the nucleus level of the cell where the DNA lives. RNA, unlike
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DNA, is one strand [76]. RNA nucleotides consist of Adenine, Uracil, Guanine,

and Cytosine. Where Uracil replaces thymine which pairs with A. Once transcribed

RNA has coding region exon and non-coding region introns which are spliced out

of the strand, this is called post-transcriptional modification [76]. Once introns are

spliced out, the RNA is in a messenger RNA form (mRNA) which leaves the nucleus

and travels to the ribosome an organelle that translates the mRNA into protein [76].

In the ribosome is rRNA that joins amino acid that is provided by tRNA to form

polypeptide chains (protein) [76].

Once the translation has taken place where there is the polypeptide, the

post-translation modification takes place [77]. These changes are known as post-

translation modifications are chemical modifications to a protein. are called These

changes help the protein functions well, as it helps the structure of the protein [77].

The structure of a protein makes the protein function adequately if the protein

does not have its proper structure; it will not functions well. Protein folding is

one fundamental reason why a protein might not function properly; if the protein

does not fold into the right structure [78]. The common post-translational modi-

fication includes the cleaving o↵ of precursor proteins, disulfide or covalent bonds

formation, acetylation, methylation, phosphorylation, glycosylation, etc. [78]. The

typical modification is phosphorylation, acetylation, and methylation. The phos-

phorylation event adds a phosphate group to the protein. This gives the protein

the energy needed to bind to other proteins [78]. Methylation on another hand is

the addition of a methyl group. Acetylation, on the other hand, adds an acetyl

functional group to the protein [78]. In sum post-translational modification make
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the protein to function in its best form.

3.3.0.3 Encoding Scheme:

The encoding scheme was used to encode sequences(PIM Substrates). The

encoding schemes help to conserve both biology and chemical properties we used

the encoding scheme in our experiment to conserve the phosphorylated alphabets,

and we further performed singular value decomposition to reduce the size of the

datasets and to filter the best sets of PIM substrates in our dataset. Though the

singular value decomposition method didn’t give the best results, we came up with

a novel way of using a combination of phosphorylated alphabets and a positional

way of clustering the sequences.

We utilized other techniques to convert sequences to binary vectors to analyze

to identify active substrates relevant for the identification of drug candidates. The

standard encoding is the primary encoding scheme. The standard encoding scheme

utilizes the 20 amino acid characters (protein related characters). They include A,

R, E, N, C, D, Q, L, H, I, G, K, M, F, S, P, Y, W, T, and V. Each of the amino

acid character is coded into a n-dimensional vector space, where n represents the

number of symbols.

Given a DNA sequence have four letters, DNA sequence = [A,G,C,T] The A rep-

resents 0 0 0 1 , G represents 0 0 1 0, C represents 0 1 0 0, and T represents 1

0 0 0. Given a sequence D = AGTCCA (sequence length = 6). The result of D

sequence = [0001, 0010, 1000, 0100, 0100, 0001]. The sequence length of D is 24.
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The vector dimension will be 24. The encoding generates a sparse matrix. Using

the phosphorylated alphabets below the third column shows the encoding of the dif-

ferent categories of the alphabets. Several alphabet choices where the alphabet size

is greater than or equal to 4 results in fairly low error rates based on research. The

various encoding schemes below were used to encode sequence 10, 20, 30, 40, and

50. The encoding scheme characterizes all the sequences based on their sequence

lengths, and the encoded sequences are then used to cluster the proteins. Each of

the sequences was represented with their numerical representation. The charged

alphabets has three di↵erent categories which include the acidic alphabets D and E,

the basic alphabets which include R,H, and K, and neutral alphabets represented by

A,N,C,Q,G,I,L,M,F,P,S,T,W,Y,V. The numerical representation for the 3 di↵erent

categories will be [0 0 1], [1 0 0], [0 1 0]. [0 0 1] would be classified as the acidic

alphabet’s numeric representation, [1 0 0] would be classified as the basic alphabet’s

numeric representation, and [0 1 0] would be classified as the neutral alphabets nu-

meric representation. The final goal will be to use the protein sequences to cluster

the sequences to find the clusters of proteins that are relevant in the phosphorylation

process. In the next section, we discuss approaches that could lead to the cluster-

ing of these protein sequences [37] [79]. This approach includes consensus sequence

and PSSM score [79]. We applied our novel approach using phosphorylated alpha-

bets(PhoSc) and phosphorylated alphabets -scaled which takes into consideration

the hydropathy index PhoSc-con.
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Phosphorylated Categories Phosphorylated Alphabets Phosphorylated Encoding

NPR G,A,V,L,I,M,P 00001

AR F,W,Y 00010

PUR S,T,C,N,Q 00100

PR K,R,H 01000

NR D,E 10000

Table 3.3: Phosphorylated Alphabets with Encoding

Structural Categories Structural Alphabets

ambstructure A,C,G,P,S,T,W,Y

extstructure R,N,D,Q,E,H,K

intstructure ’I’,L,M,F,V

Table 3.4: Structural Alphabets

Charge Categories Charge Alphabets

acidic D,E

basic R,H,K

neutral A,N,C,Q,G,I,L,M,F,P,S,T,W,Y,V

Table 3.5: Charged Alphabets

Functional Categories Functional Alphabets

acidic D,E

basic R,H,K

hydrophobic A,’I’,L,M,F,P,W’,V

polar N,C,Q,G,S,T,Y

Table 3.6: Functional Alphabets

3.3.0.4 Relevance of Sequences using Consensus Sequence

Using the sequences we can instantly find the consensus sequence. The consen-

sus sequence is a sequence that explains or characterizes a set of sequences. The goal
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Volume Categories Volume Alphabets

small A,G,S

med P,C,D,N,T

medlarge I,L,M,V,E,H,K,Q,R

large Y,F,W

Table 3.7: Volume Alphabets

Phosphorylated Categories Phosphorylated Alphabets

NPR G,A,V,L,I,M,P

AR F,W,Y

PUR S,T,C,N,Q

PR K,R,H

NR D,E

Table 3.8: Phosphorylated Alphabets

in this project is to be able to find the most probable sequence that characterizes

the PIM substrates. It selects the amino acid with the highest chances of occurring.

The Table 3.9 below gives us an example. The consensus sequence further helps to

determine our close new sequences are to the center of the current sequences. The re-

sult section shows the consensus sequence for sequences of length 10,20,30,40 and 50.

Position 1 Position 2 Position 3 Position 4 Position 5

Sequence 1 F V V Y E

Sequence 2 G G E Y F

Sequence 3 T G G E E

Sequence 4 T G G Y E

Sequence 5 Y V G Y V

Consensus T G G Y E

Table 3.9: Demonstrate Consensus Sequence
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3.3.0.5 Relevance of Sequences using Position Scoring Matrix

The consensus sequence is not enough to judge the performance of multiple

alignments because it does not take into consideration the situation where you have

more than two symbols in a given position. The position scoring matrix will help

us derive the frequency of occurrence of the amino acid at each position. See Table

3.10 and 3.11. The result section shows the PSSM score for sequences of length

10,20,30,40 and 50.

Sequence 1 A A G C A A C

Sequence 2 A A G G C A G

Sequence 3 A G G C G A G

Sequence 4 G G C A G C G

Table 3.10: Sequence Analysis for PSSM

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Position 7

A 3/4 1/2 0 1/4 1/4 3/4 0

G 0 1/2 3/4 1/2 1/2 0 3/4

C 0 0 0 1/2 1/4 1/4 1/4

T 1/4 0 1/4 1/4 0 0 0

PSSM A G G T G A G

Table 3.11: Position Scoring Matrix - Frequency Table

3.3.0.6 Term-Document Matrix and Adjacency Matrix

Each row of the matrix contains PIM substrate sequence . Each row was en-

coded using an encoding scheme. Each sequence represent a document. Each amino
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acid sequence represent a Term. The representation of Term-Document Matrix and

Adjacency Matrix are on Table 3.12 and Table 3.14

The column of the matrix defines the frequency of occurrence of each of the

terms that exist in a given document.

Document 1 Document 2 Document 3 Document 4 Document 5

Term 1 0 1 1 0 0

Term 2 1 0 0 0 1

Term 3 1 0 1 0 1

Term 4 0 1 1 1 0

Table 3.12: Term-Document Matrix

For example, DNA Sequence consists of 4 letters = A,G,C,T. Each of the

letters will have their numeric encoding A =0001, G =0010, C=0100, and T=1000.

The dimension is 2 x 20.

Sequence 1 = AGTAA Sequence 2 =ATACC

The binary encoding for the sequence above is used to encode each of the

sequences. The sequence represents documents and letters (DNA sequences) serve

the terms.

Position 1 Position 2 Position 3 Position 4 Position 5

Sequence 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1

Sequence 2 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0

Table 3.13: Sequence Encoding for two sequences

An adjacency matrix can be represented as a square matrix used to represent a

graph. 0 represents no occurrence of a relationship while 1 represents an occurrence

of a relationship. The adjacency matrix was used to create the multimodal network.
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This will be discussed in subsequent sections.

Term 1 Term 2 Term 3 Term 4

Term 1 0 1 1 0

Term 2 1 0 0 0

Term 3 1 0 1 0

Term 4 0 1 1 1

Table 3.14: Adjacency Matrix

3.3.0.7 Sequence Distance Calculation

Various distance measures exist to find the distances between sequences. For

our experiment, we utilized hamming distance. The hamming distance works best

for our method because it takes into consideration both the position and the al-

phabets. Protein sequences are groups of alphabets that have a specific order. The

protein sequence distance can be calculated using hamming distances which is the

distance between two binary protein numbers. The distance can be got by counting

the number of positions where the values are di↵erent. It is the number of a group

of bits in the XOR of two binary numbers. The Hamming distance is also great for

strings, numbers or binary of equal length all of which are a property of the protein

sequence we are studying.

For example, Input: string1[] = 1011101, string2[] = 1000001 Output: 3

In the case of PIM Substrate, the PIM Substrate have sequences of equal

length, and the Hamming distance is a way of finding the di↵erence between a

sequence and another.
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C1 C2 C3 C4 C5

Sequence1 A C C T G

Sequence2 C C T T G

Table 3.15: Sequences for Hamming Distance Calculations

Given string 1 and string 2,

string1[] = ABCDFG

string2[] = ABY Y FG

Output: 2 This is because we have the third position and fourth position in string1

di↵erent from the third position and fourth position in string2. 2 is the distance

of the two sequences. The distance between all PIM Substrate sequence was found

for our experiment. The hamming distance was a good tool to find the di↵erence

between two sequences. We will further illustrate how the sequence was set up

for analysis using the hamming distance. The next section explains another useful

application of the hamming distance.

3.3.0.8 Sequence Distance Calculations using Categorical values or

Encoding Schemes

For example, suppose that there are five categorical variables, C1 to C5, each

with three categories, which we denote by a/g/c/t and that there are two sequences

with the following characteristics:

Then the number of matches is 3, and the number of mismatches is 2; hence the

distance between the two samples is two divided by 5, the number of variables, that

is 0.4. This is called the simple matching coe�cient. Sometimes this coe�cient is
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expressed in terms of similarity, not dissimilarity, in which case it would be equal to

0.6. In this case, we stick to distances, in other words, dissimilarities or mismatches.

The coe�cient is directly proportional to the squared Euclidean distance calculated

between these data in dummy variable form, where each category defines a zero-one

variable:

C1a C1g C1c C1t C2a C2g C2c C2t C3a C3g C3c C3t C4a C4g C4c C4t C5a C5g C5c C5t

Sequence1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0

Sequence2 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0

Table 3.16: Sequences for Hamming Distance Categorical Tables

The squared Euclidean distance sums the squared di↵erences between these

two vectors: if there is an agreement (there are two matches in this example) there

is zero-sum of squared deviations, but if otherwise, we have two possibilities, +1 or

1, each giving 1 when squared. So the sum of squared di↵erences here is 6, and if

this is expressed relative to the maximum discrepancy that can be achieved, namely

10 when there are no matches in the five variables, then this gives the same value

0.6 as before. There are several ways of matching coe�cient, and one of them is the

chi-square distance for multivariate categorical data, which introduces a weighting

of each category inverse to its mean value, as for profile data based on counts.

With sequences of length of 60, with 20 possible categorical values its 60x20 =

1200 . The total occurrences of each category are denoted by (n1, ....., nj

) with total

(n = sum

n

j

). Since the totals for each variable equal the sample size, n will be the

sample size times the number of variables). Then define c

j

as follows: c

j

= n

j

/n

and use 1/c
j

as weights in a weighted Euclidean distance between the samples coded

in dummy variable form. The idea here is, as before, that the rarity of a category
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should count more than in the distance than a normal category. Just like the chi-

square distance function is at the heart of correspondence analysis of abundance

data, so this form of the chi-square for multivariate categorical data is at the heart

of multiple correspondence analysis.

With this illustration, we can take an encoding scheme and find similarity

between two sequences using the same method as stated above. The result section

contained some of the encoding schemes figures.

3.4 Clustering our Encoding schemes

We applied the clustering algorithm to the analysis of the PIM substrates [80]

[81] [82]. We first performed sequence encoding, and then applied singular value

decomposition to reduce the size of the sparse matrix and to find a small subset

of the matrix that characterizes the entire data set [80] [81] [82]. The instances of

the PIM substrates have not been pre-classified in any way or form before and did

not belong to any class [81] [82] [80]. The PIM substrates are grouped based on

similarities. The PIM Substrates are grouped into clusters. The clusters contain

proteins that are similar to one another.

We applied intra-connectivity and inter-connectivity to the PIM substrates.

The Intra-connectivity measures the density of connections between the PIM sub-

strate instances of a single cluster. If a cluster is highly intra-connected, the PIM

substrate instances will be grouped within the same cluster and are highly dependent

on each instance. Interconnectivity measures show how distinct individual clusters
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are to each other. The results from the SVD calculations were utilized to find the

cluster of sequences.

3.4.0.1 Apply k-means clustering on PIM Substrates

The k-means cluster helps to partition the PIM substrates in k number of

partitions, each of the points or PIM substrates belonging to a specific cluster. The

specific clusters were further studied to find a relationship that exists between two

substrates. The closer a substrate is to another the more related they are with each

other. We tested kMeans Clustering on the substrates.

3.4.0.2 Apply Hierarchical clustering on PIM Substrate

The hierarchical method of clustering is a method of clustering objects into

groups by finding their distances [83] [46]. The first step is finding the distances

between the objects. For example in the case of sequences, the distances between

all protein sequences where found. Each of these distance was treated at first inde-

pendently of one another. In other words, each represents a cluster [83] [46]. The

algorithm will then find the two clusters that are close to one another and merge

two most similar clusters. This will go on until all the clusters are combined.

The distance was calculated by using distance metrics like Euclidean distance.

Many other distance metrics can be used. The Euclidean distance is defined as the

length of the path between two points [84] [83].

The goal is to use the Euclidean distance to determine hierarchical clusters
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between the PIM sequences by first finding the hamming distance between the

sequences [46]. It is also vital to have distance metrics have been selected to have

a linkage criterion [85]. The linkage criteria help to determine where the distance

is being created. The distance is either cluster based on two very similar parts of

the cluster which are also known as single-linkage or two least similar which is also

referred to as complete linkage or the center of the cluster which is also known as

the average-linkage. We have selected the single-linkage in other to group by closely

similar clusters. Similar clusters are then typically combined sequentially.

The theory behind utilizing the hierarchical clusters is the proteins within the

same cluster are denser than the proteins in di↵erent clusters. The clusters also

contain network motifs which imply the proteins within that cluster perform the

same function [86] [87] [88].

3.4.0.3 Application of Singular Value Decomposition on the Sequences

Since the sequence as a possibility of producing a sparse matrix. The Singular

Value Decomposition (SVD) was utilized to reduce the data sizes, the process of

singular value decomposition can be considered as a process that removes noisy

data and preserves relevant features of the data [89] [90] [91]. When SVD was

applied on PIM substrates, it gives a set of singular values [92]. The singular value

represents amino acid alphabets contained in an amino acid sequence [93]. It would

make searching for the amino acid sequence easier to find [94]. The formula below

is used the calculate the singular value decomposition [95] [96].
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PIMSV D

n⇥m

= U

n⇥n

⌃
n⇥m

V

T

m⇥m

(3.1)

U is an n⇥ n orthogonal matrix, ⌃ is an m⇥ n orthogonal matrix and V is

an m⇥m diagonal matrix of singular values [92].

3.4.0.4 Applications of n-grams for sequence clustering

Stuarts et al. started the work of finding the occurring frequency of amino-acid

by applying the k-grams method [95] [45]. In k-gram, In the columns of k-grams

are possible k-gram sequences and the frequency of their occurrence within each of

phosphorylated sequences was computed [79]. Given protein sequences for example,

if k = 2, at their will exist 200 possible 2-grams [95]. Given 400 sequences, the

k-gram matrix will be 400 x 200. The columns will contain a sliding window of k

frequency occurrence for k-gram; this will form the data matrix [95]. The result

section contains the result for k-gram analytics.

3.4.0.5 Applications of LSTM for sequence clustering

The LSTM is a type of Recurrent Neural Network (RNN) known as Long

Short Term Memory. In the RNN are networks, the internal memory allows for

information to persist [97]. This means they can remember essential things about

the input they received, which enables them to be very precise in predicting whats

coming next [97].

The RNN carry the ability to utilize information in the previous timesteps,
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giving the past and the present which makes the neural network best suited for

sequences or time series data [97].

In our experiment, an LSTM implements an autoencoder using sequence data

and since we were working protein sequences. We used the LSTM method to cluster

our protein sequences. The LSTM is constructed as an encoder and decoder. The

steps involved in the LSTM process is to read an input sequence (ASSSNMT), it

encodes this sequence, and then it decodes the sequences and recreates it. The

models performance is measured by its ability to create again the sequence that

was input. The moment the performance required is accomplished the decoder is

completely ignored, and the encoder is left to encode input sequences to a specific

length [97].

[98] describes how to use lstm to not only reconstruct the sequences but also

so predict sequences as well. In this case, [98] used video frames to demonstrate

this. This particular help for the unsupervised learning architecture. The input to

the model will be sequences of vectors which are encoded and have gone through all

the sequences, decodes and outputs the prediction for a sequence we chose to target.

3.4.1 Sum Squared Errror

The Sum of Squared Error(SSE) represents the distance to the nearest PIM

Substrate cluster [99].

SSE =
KX

i=1

X

x✏Ci

(m
i

, x) (3.2)
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The x represents the PIM substrates data point in cluster C

i

and m

i

is the

point that was identified by C

i

. The m

i

represents the mean of the cluster. The

lower the SSE, the more similar PIM substrates that belong to that cluster.

3.5 Data Extraction - PhoScExtractor

In the previous, steps we found the most relevant cluster of proteins involved

in the process. The PhoScExtractor was used to pull data from the di↵erent sources.

We then searched the sequence name using various database below to extract related

elements(gene, drug, SNP, disease and so forth).The following databases were used

to extract PIM substrates disease related element information. They include CIDER

database [66], SIDER database [100], DisGenet database [101], CTD Database [102],

mirdSNP database (a condition associated with SNPs) [103], PGXnet database,

DGIdb (Drug Gene Interaction Database) [104], canSAR Databases [105], phar-

maGKB, UniProt [106], BIOGRID [107], and Drugbank [108]. For our research on

rhabdomyosarcoma, we already identified the relevant phosphorylated element. We

use the databases to extract relevant disease-related element for rhabdomyosarcoma.

3.5.0.1 SIDER

The SIDER datasets contain small molecules or drugs and their recorded ad-

verse reactions [109]. The datasets were extracted from public information which

contains the frequency of the side e↵ects, a drug with side e↵ects, and information

on the drug-target relationship [109]. We obtained drug side e↵ect information from

72



SIDER to find possible drug combinations. [109].

3.5.0.2 DisGeNet

The DisGeNet Database contains several genes and the associated human dis-

ease. DisGeNet integrated for a database of expert-curated databases which include

scientific literature, animal models and GWAS catalogs [101].The DisGeNet contains

561,119 gene-disease associations (GDAs) between 17,074 genes and 20,370 diseases,

traits or abnormal phenotypes, and 135,588 variant-disease associations (VDAs) be-

tween 83,002 SNPs and 9,169 diseases and phenotypes [101]. We extracted disease

that related to genes that were associated with a protein on the substrate list [101].

3.5.0.3 CTD Database

The CTD Database also is known as the Comparative Toxicogenomics Database

[110]. The database contains manually curated information about the chemical

to gene to protein interactions, chemical to disease and gene to disease relation-

ships [110]. They also contain pathway information, and they are currently working

on a chemical to phenotype relationships for bio-marker identification [110].

3.5.0.4 dSNP

The Database contains manually curated dSNPs using the 3UTRs of human

genes from PubMed [111]. The database contains 786 dSNP-disease associations for

603 unique dSNPs and 204 disease types. We utilize the datasets to extract relevant
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dSNP to prostate cancer [111].

3.5.0.5 PheGenl

The database can be used as a phenotype to genotype integrator [111]. The

genomic-wide association study contains information from Gene, dbGaP, OMIM,

and dbSNP [111]. The database allows us to search for phenotypes that relate

to certain genes or SNP [111]. We used the database during our project for this

purpose.

3.5.0.6 UNIPROT

The UniProt database contains useful protein sequence resources and the

functions of those protein resources [106]. We utilized this resource to find asso-

ciations between already identified substrates from the Lab [106]. The database

contains 555,100 information from SWISS-Prot and 88,032,926 information from

TrEMBL [106].

3.5.0.7 DrugBank

The database contains biological and chemical information alongside drug in-

formation data and drug target information [108]. The database contains 9591 drug

entries with 2037 FDA-approved small molecule drugs. 241 FDA approved biotech

(protein/peptide) drugs and 6000 experimental drugs [108]. We extract drug to

drug and drug to drug target relationships from this database [108].
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3.5.0.8 PharmGKB

The protein to drug datasets was extracted from the pharmaGKB website

[112]. The PharmaGKB site contains drug information which includes clinical infor-

mation about the doses and the labels of the drug [112]. It also contains information

about gene-drug associations and genotype-phenotype relationships as well as [112].

The database was also manually curated to find the response of drugs on human

genes [112].

3.5.0.9 BIOGRID

The database consists of protein-protein interactions which were utilized dur-

ing our experiment to find direct interactions between protein extracted from UniProt

and other proteins that relate to it [107]. The BIOGRID Database contains 1,493,749

proteins and their genetic interactions, and also some of the chemical associations

can be found on the website [107].

3.5.0.10 canSAR

The database contains the gene, disease, and drug data specifically available

for canSAR research [105]. The datasets were used to extract relevant gene, drug,

disease association with PIM substrates obtained for the Lab [105].
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3.5.0.11 PGXnet

The database contains cancer-based drug, gene, and SNP associations [113].

It was extracted from the PharmGKB, GWAS catalog, and PGx Resources. The

following interactions were extracted from the dataset [113]. The disease to a gene,

drug to disease, SNP to a gene, SNP to a drug, and disease to gene [113].

3.5.0.12 DgIDB

The database contains drug gene interactions [114]. We utilized the database

to get drug and gene associations after finding genes from proteins that were ex-

tracted from the pim substrates [114].

3.5.0.13 LODD-Linked Open Drug Data

The LODD database consortium took a survey of all available data on drugs

on the world wide web [63]. The LODD paper discovered the best ways of orga-

nizing and integrating this datasets [63]. The Clinical Trial datasets used for our

experiment were pulled from the LODD datasets and used for the evaluation of our

results.

3.5.1 Data Integration Approach for Phosphorylated Elements(DIApe)

The datasets were extracted from various data sources. The data extraction

section contains a list of data sources that we used to obtain the datasets we used

for our experiments. The first step was to acquire the protein sequences and use
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their protein accession number to annotate them. The next step is in the selection

of databases to use, the databases that contained disease related elements in a bi-

directional way was selected. The examples of such interactions are disease-drug,

drug-gene, gene-disease and so forth. The next step will be to combine all this

bi-directional relationship to form our complex multimodal network for analysis.

Figure 3.4: Our Data Integration Approach to creating Phosphorylated Network

3.6 Phosphorylated Network Databases-Data Processing for Network

Analysis and Multimode Clustering

We acquired the database used for our analyses from various databases. UniProt

was selected to find a majority of our datasets [106]. The Universal Protein Resource

(UniProt) database is referred to as a tremendous resource for protein sequence and

annotated data. Other databases used include ctdbase [102]; this database exposes
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us to a full-bodied that helps understand the role our environment plays on our

health. DisGeNET [115] incorporates gene and disease relationship curated by ex-

perts, [102] also known as Comparative Toxicogenomics Database and drug bank

containing the relationship between drug and drug targets. The link we extracted

from UniProt, disgenet, and ctdbase include gene-dbSNP, gene-pathway, go-drug

bank, protein-protein, protein-gene, pathway-drug. The integrated networks in-

clude SNPs, genes, disease, drug bank, go protein and pathway. We combined all

the components above into what we called an integrated network for network anal-

ysis.

Figure 3.5: Data Extraction for PIM Kinase

In the context of a biological network, we have a direct application of more

than one-mode due to the multi-layer nature of the biological network. An example

of tri-mode is below:
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Figure 3.6: Tri-mode for Multimode Clustering

3.6.0.1 Example: Creating PIM Database Network

The following databases were used to extract high influence PIM substrates

protein information and to create a database. They include CIDER database,

SIDER database, DisGenet database, CTD Database, mirdSNP database (a dis-

ease associated with SNPs), PGXnet database, DGIdb (Drug Gene Interaction

Database), canSAR Databases, pharmaGKB, UniProt, BIOGRID, and Drugbank.

3.6.0.2 PIM Database : Querying

The SQL (Structured Query language) stores the data after cleaning was per-

formed. For each PIM Substrate related interaction; we extracted subjects and

objects along with their semantic types. The total number of the semantic types

was 9, and this list included drug, gene/protein, SNP, drug. The database could be

accessed through the SQL Workbench. Below are a couple of the queries executed

on the PIM Database. The figure 3.8 show the entire database network. The figure
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Figure 3.7: PIM substrates schema

3.9 shows the drugs with side-e↵ects that relate to pain.The figure 3.10 show the

relationship between specific genes and other disease-related elements that relate to

it.
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Figure 3.8: PIM Network SQL Database

3.7 Network Analytics Approach to Drug Repositioning -NetAnaPhoS

Network analytics techniques have been applied to a wide range of social media

application problems such as Twitter, Facebook and health data in general. For a

better understanding of the concepts and contents of this work, some terminologies

used to need to be enumerated and explained. Some of these techniques were utilized

to identify high influence disease related elements.

The input into our network analytics algorithm is the subject and object from

the SQL database.
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Figure 3.9: Query Pain using PIM Network Database

Figure 3.10: Specific Gene Relationships in the PIM Network Database
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3.7.0.1 Topological Structures

Our understanding of network topological principles helps to understand the

characteristics of the network [116] [117]. In biological science, studying this network

model is very important because it gives an idea of the structure of this network.

Some of these models include:

3.7.0.2 Erdos Renyi Model - Random Network

In the Erdos-Renyi model, each node pair is connected with a probability Pr;

it is considered a form of random network and starts with a set of nodes. The pair

of nodes create above makes up the graph [116] [117]. Each of these pairs of nodes

makes up PrN(N-1)/2 random links. The path length is proportional to the network

Log size. The degree of distribution follows the Poisson distribution. A majority of

biological networks have giant connect components, and their average paths lengths

are very close to that of Erdos Renyi network [116] [117].

3.7.0.3 Small World Network

A majority of nodes in a small world network are not connected to one an-

other but if you take a look at the node individually, the neighbors of each node on

the granular level are likely to be neighbors of one another. We can summarize a

small-world network by saying that nodes that have few neighbors and a majority

of the nodes can be reached from one another few steps [116] [117]. The connected

components can be used for example to control the flow of information, mass or en-
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ergy and also implications of a biological network. In biological networks (metabolic

networks) they are reachable in a range(3-4) links to one another. It means that if

we perturbed the network, it a↵ects the network rapidly [116] [117].

3.7.0.4 Scale Free Network

Scale-free networks are those that have a power law degree distribution. The

links originate from a node that displays the power law distribution. In scale-free

networks nodes have a wide range of degrees; thus the network is free of any standard

scale [116] [117]. The likelihood of linking to a given node i is proportional to the

number of existing connections k
i

that node has.

P ⇠ k

iP
j

k

j

(3.3)

3.7.0.5 Brief Overview of Network Properties

It is a group of two or more nodes linked together. The nodes in this respect

would imply the PIM substrate(gene) and the pathways that are connected to these

PIM substrates. The network can be directed, undirected or mixed.

As explained earlier, in this work, nodes can represent the relationship between

gene and drug, gene and gene, disease and drug, drug and phenotype, phenotype and

gene, etc. A network can be very complex, and thus particular ways to analyze the

complex patterns existing within the network is essential. The challenge in studying

complex systems is to develop simplified measures that capture some elements of
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the complex structure understandably.

The PIM substrates were used to generate a complex network as described

above with various types of relationships between disease-related elements.

The PIM Substrate is attached to specific genes and protein, the genes that

attached to high influence substrate are selected. The genes selected will be referred

to as high profile genes. A high profile gene is sometimes a significant number. The

high profile gene is used to extract pathway information using the PIM Substrate

Network Database.

Each gene is connected to its corresponding pathway. This forms a gene-

pathway network or connection. We can define a network as either directed or

undirected. The directed network has a collection of nodes connected by edges and

having a direction associated with the connection. The undirected network also is a

network that contains nodes that are connected without specific direction, and they

are also known as bidirectional.

3.7.0.6 Degree Centrality

The centrality of a network describes the most central nodes in a network. This

definition thus varies based on the context in which they are used. It depends on

the degree, and also how related they are to the other networks based on closeness,

betweenness, and eigenvector.
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3.7.0.7 Betweeness Centrality

The betweenness was utilized to find the number of the shortest path from

all nodes to all the other nodes that pass through that node. A node with high

betweenness centrality has a tremendous influence on the transfer through the net-

work; they follow the shortest paths. We find the shortest way for all nodes in

the network to obtain the most influential node for betweenness centrality on the

network. The nodes with high betweenness centrality were used to identify the drug

repositioning candidates.

3.7.0.8 Closeness Centrality

We also applied closeness centrality to find the length of the average shortest

path between a node and all nodes in the graph. We used this to find high influence

nodes based on the length of the average shortest path between nodes.

3.7.0.9 Indegree and Outdegree

We calculated nodes that are directly linked to nodes or the number of edges

pointing to a particular node. In this experiment, we also calculated the out-degree

which indicates the number of nodes that an identified node connects to from itself.

The measure was needed in this study to be able to understand how much impact

a node has on the other nodes in its network.
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3.7.0.10 Modularity

The calculation of the modularity scores contributes to measuring the power of

a division of the PIM substrate network and rhabdomyosarcoma into communities.

The networks that have high modularity scores have dense connections between the

nodes within the community, but rare connections between nodes in di↵erent mod-

ules. It is used in the detection of community structure. The modularity technique

was applied to find PIM Substrate network and rhabdomyosarcoma with high mod-

ularity that may imply that a specific cluster is more important to study than the

others. We checked the results from the betweenness centrality to find out if high

influence nodes also exist in the same community.

3.7.0.11 PageRank

The PageRank score was used to find the number of votes by all phospho-

rylated network (PIM substrate and rhabdomyosarcoma) disease-related element.

The importance score for each of the nodes was generated. The phosphorylated

elements are merged in a network form with disease-related elements to form the

phosphorylated databases. We used the quality of links connected to a node to

determine the score of the nodes itself.

3.7.0.12 Hub/Authority Scores

The high authority nodes or phosphorylated elements are the elements that

are pointed to by many hub nodes. The hub nodes, on the other hand, have high

87



authority nodes that they point to but they are not authority nodes. The phospho-

rylated elements in the result will be classified a hub if it is one that leads to many

high authorities; an authority phosphorylated related element will be classified as

an authority if it is one that is pointed to by many high hub pages.

3.7.0.13 Connected Components

We also utilized the connected components to find how significant the nodes

are. The connected component of an undirected graph is the maximum set of nodes

such that a path connects each pair of nodes. Related components form a partition

of the set of graph vertices, meaning that connected components are non-empty,

they are pairwise disjoints, and the union of connected components forms the set of

all vertices.

3.8 Node Impact Analysis using Single and Sequential Perturbation

Our results from using network analytical techniques were used to perform

single and sequential perturbation. We want to know how important a node is

compared to the others in this network.

3.8.0.1 Single Perturbation Analysis

The removal of one node in a computational experiment may indicate the

alteration of a particular protein, the deletion of a relationship especially looking at

expressions that are related between two sets of genes. Our computation allows the
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removal of a phosphorylated node and shows how that node a↵ects the entire nodes

in the network [118]. In our experiment, we illustrated how important our nodes

were by checking how disorganized they become when they are removed.

3.8.0.2 Sequential Perturbation Analysis

It a series of removal nodes one after the other without replacement, and this

allows the visualization of the e↵ects of that removal over the network [118]. As

they are removed one by one, the network quickly disintegrates [118]. We want to

understand how important the nodes were so we used this technique to check.

3.8.0.3 Summary of this Approach

We have used the datasets we retrieved from our database and applied the

various centrality measures to our datasets. This experiment aimed to find out

the critical nodes and those of them that had a significant impact on the network.

We utilized some of the ranks in investigating some of the nodes that our novel

multimodal clustering algorithm used to find potential candidates.

3.9 Multimodal Clustering Approach (DReiM)

We introduce a novel approach to clustering phosphorylated network also

known as DReiM(Drug Repositioning in Multimodal Networks). We utilized N-

cliques, N-clans and N-plexes to decide the multimodal arrangement. We will discuss

more what the multimodal arrangement involves in the next sections.
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Figure 3.11: Network Analytics toward Drug Repositioning(NetAnaPhoS)

3.9.0.1 N-cliques, N-clans and N-plexes

In our experiment, we used the N-cliques, N-clans and N-plexes to select the

best possible groups of disease related elements to determine our multimode setup.

3.9.0.2 N-cliques

It assumes that every member of a subgraph has a connection to one another.

The use of the clique is considered a strict definition of the connectedness of vertices

but some definitions have help relax this assumption to make the use of cliques
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more relevant in general. An object is that called a member of a clique if they are

also connected to other objects at a distance greater than 1 or the use of the path

distances is applied. e.g., your friends friend.

3.9.0.3 N-clans

The n-clans helps us to add another layer of confirmation of the path distance

to how we select our group objects. The n-clan is an extension of the N-cliques.

3.9.0.4 N-plexes

N-plexes help relax the assumption of a maximal complete class. It allows an

object that does not have direct ties with the cliques to get added. For example,

if the gene has ties with drug and SNP, but not disease; while both drug and SNP

have ties with the disease, all four essential disease-related elements will be grouped

under that clique using the N-Plex approach. The framework assumes that a vertex

belongs to a clique of size t if they have direct connections with t-k members of that

clique.

3.9.0.5 Extraction of Datasets for the purpose of Multimodal Clus-

tering

Each mode was extracted in bi-modes. The bi-modes are all diseases related

elements with a specific property called or known as phosphorylation. This prop-

erty serves as a filter that helps to focus on relevant aspects of the disease-related
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elements.

3.9.0.6 Bi-mode and Multimode Network

In our approach, we considered our network a phosphorylated network. The

phosphorylated network contains genes, diseases, pathways, go ontologies that are

connected to a protein that phosphorylates. This phosphorylated network as a

resemblance with social networks that include an actor and the relationships that

exist between this actor such as the persons they relate with, the companies they

work with, and the types of relationships [119]. In the social network, analysis

attention is paid more to analysis in single mode [119], whereas this approach makes

it di�cult to find relationships between two entities. For example, an individual

and an event and another example is a user and tag network. This can be easily

modeled using bi-mode. Bi-mode creates an opportunity to combine two types of

entities together. For example, in the phosphorylated network, the types of entities

will be the pathway and drugs.

Figure 3.12: An example of bi-mode using pathway and drug

In the example above, the pathway is considered the source and the drug is

regarded as the target. An example of the source to target relationship is an ac-

tor and friends relationship. With various other elements that play a role in the

bodies function, new entities can be represented, and this will create a multimode

phosphorylated network [119]. The multimode network can have 3-modes, 4-modes,
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5-modes, and 6-modes. In all the modes we have the primary entities, and the other

entities are called the secondary entities. Using this method helps to find relation-

ships that are not typically accomplished by a conventional clustering algorithm.

Given the link between a pathway and a drug, a pathway may not be found to

relate to a drug in a bi-mode relationship, but they may be found to connect to a

drug in a tri-mode relationship. This illustrates that a combination of bi-mode can

reveal hidden structural similarity.

Figure 3.13: An example of tri-mode using gene, pathway and drug

Figure 3.14: An example of quad-mode using snp, gene, pathway and drug
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Figure 3.15: An example of 5 and 6 modes

3.9.0.7 Creating the bi-mode

The bi-mode involves two entities. The graph of a 2-mode is regarded as a

partite network. All edges will be between pathways and drugs. The figure 3.16

shows an example of the bimode (pathway vs drug) . There are no edges between

pathways and drugs.

Figure 3.16: Bi-mode pathway and drug example

The adjacency matrix of the bi-mode: The adjacency matrix can be rep-

resented in a graph format. The graph G = [N,E], which are a set of nodes
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N = 1, 2, 3, |N | and edges Ei, j = 1, 2, 3, |E| that connect the nodes. We utilize

this graph to generate our adjacency matrix. The adjacency matrix represents the

occurrence of an interaction between two nodes. Each node is an entity. The two

entities maybe for example pathway and drugs and there are no links between the

entities of di↵erent types.

A =

8
>><

>>:

1, if (i, j) 2 E

0, otherwise

3.9.0.8 Creating the 3-mode

The multi-mode involves more than two entities. The multimode networks

exist with entities in that are in the same or di↵erent modes [119]. For the multi-

mode, we use the multiple modes to uncover a relationship that exists or associations

that exist between the various entities involved. We have used the modes below to

demonstrate these types of relationship. To illustrate the layout for 3-mode, we

have an example below. We use a ring structure to illustrate this approach.

Figure 3.17: Three modes using letters v,u,t
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A1 =

2

66666666664

u1t1 u1t2 · · · u1t7

u2t1
. . . · · · u2t71

...
...

. . .
...

u9t1 u9t2 · · · u9t7

3

77777777775

A2 =

2

6666664

t1v1 t1v2 t1v3

...
. . .

...

t7v1 t7v2 t7v3

3

7777775

A3 =

2

6666664

u1v1 u1v2 u1v3

...
. . .

...

u9v1 u9v2 u9v3

3

7777775

L =

2

6666664

D

(9⇥9)
1 A

(9⇥7)
1 A

(9⇥3)
3

A

T(7⇥9)
1 D

(7⇥7)
2 A

(7⇥3)
2

A

T(3⇥9)
3 A

T(3⇥7)
2 D

(3⇥3)
3

3

7777775

3.9.0.9 Creating the 4-mode

The form of the Laplacian Matrix L representation for 4-Modes is shown be-

low. The (u,u) represents the first Diagonal of U which represent D1. The (t,t)

represents the second diagonal of the matrix represent D2. The A1 represents the

(u,t) interactions with u x t type of matrix. The transpose will be the opposite of

u x t matrix. This is continued until the complete L matrix is formed.
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L =

0

BBBBBBBBBB@

u t v d

u D1 A1 X

uv

A4

t A

T

1 D2 A2 X
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v X

T

uv
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T

2 D3 A3

d A

T

4 X
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td

A

T

3 D4

1

CCCCCCCCCCA

3.9.0.10 Creating the 5-mode

The form of the Laplacian Matrix L representation for 5-Modes is shown be-

low.The (u,u) represents the first Diagonal of U which represent D1. The (t,t)

represents the second diagonal of the matrix represent D2. The A1 represents the

(u,t) interactions with u x t type of matrix. The transpose will be the opposite of

u x t matrix. This is continued until the complete L matrix is formed.

L =

0

BBBBBBBBBBBBBB@

u t v d z
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T

2 D3 A3 X
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d X

T

ud

X

T

td

A

T

3 D4 A4

z A

T

5 X

T
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X

T

vz
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T

4 D5

1

CCCCCCCCCCCCCCA
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3.9.0.11 Our approach using eigenvalue decomposition((DReiM +

eigenvalue decomposition)

Given the Laplacian matrix, the eigenvalue decomposition of this matrix pro-

duces eigenvalues and eigenvectors. We select the eigenvector with the second small-

est eigenvalue also known as the Fiedler vector. The smallest eigenvalue is always 0

with the corresponding eigenvector having all the one entries.

3.9.0.12 Our approach using Spectral Clustering Approach(DReiM

+ Spectral Clustering)

The spectral clustering approach explores using Laplacian matrix [120] [119].

The Laplacian matrix requires finding the degree of the matrix D. The D will be on

the diagonal. The diagonal is formed using

d

i

=
P

n

j=1 wij

. The Laplacian matrix L = D � A.

The A is representing the adjacency matrix and D representing the degree

matrix.

L

i,j

8
>>>>>><

>>>>>>:

d

i,

i = j

�w

ij

, (i, j) 2 E

0, otherwise

The properties of Laplacian matrix are [120] [119]:

1. They are symmetric positive semi-definite matrix.

2. It has a set of full real and orthogonal eigen vectors.
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3. The eigenvalues of the Laplacian matrix are both real and non-negative.

4. 0 is an eigenvalue of L and e = [1, . . . , 1]T is its eigenvector.

5. The vector x contains the following properties: xt

Lx =
P

n

i=1

P
n

j=1 wij

(x
i

� x

j

)2

The formula above is used in graph partitioning to assign nodes to clusters

refer to [120] [119]for more.

We applied the kmeans algorithm to find clusters using the multimodal for-

mation. We can repeat the same for 4 Modes, 5 Modes, 6 Modes till 15 Modes.

Figure 3.18: Multimode Clustering Architecture
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3.9.0.13 Time Complexity of the system

The time complexity of performing multiple k-means clustering to find the

ideal-k is shown in Equation 3.5 where, n is the size of the matrix L, t is the number

of iterations performed in k-means clustering, i is the number of data points of

U(:, 1 : r) (i.e. instances), r is the rank of matrix L and c is the maximum number

of clusters.

O(n2 + 2n3 + tirc!) (3.4)

Figure 3.19: Time Complexity for 4 Modes
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Figure 3.20: Time Complexity for 4 Modes

3.10 Validation of our experiment

In this dissertation, we validate our approach using the current clinical trial

datasets and PubMed datasets. We compare the results we found in our experiments

to the results in the clinical trial datasets.

3.10.0.1 Pubmed

The database contains over 28 million citations of biomedical literature from

journals and books. They also include contents from PubMed central and other

publishers. We found drug and disease relationship.
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3.10.0.2 Clinical Trials

The clinical trials datasets contain research that has been used on people

with the goal of measuring a medical or behavioral intervention. The datasets help

researchers locate other new treatments like drugs for the safety of the patients.

The clinical trial itself is in four phases. The first phase is the first safety trial of

the drugs. It is in this stage that the dose range is established and usually tested on

critically ill patients. The second phase checks how e↵ective the medication is across

a selected population of patients with the disease being treated. The third phase is

an extension or continuation of the second phase with further investigation of safety

with a relatively large population. The fourth phase is a post-marketing surveillance

phase what happens after the product is marketed. We used this dataset to evaluate

our results. We considered drugs in Phase I, Phase II and Phase III.

We considered drugs currently in clinical trials phase I, II, III a candidate since

they have been selected by top pharmaceutical to go on the trial. We used clinical

trial data sets to determine the validity of our results.

The real positives (TP) are cases in which we predicted yes (these drugs have

been found to treat the disease using the clinical trials database), and these drugs

treat cancer(prostate cancer or rhabdomyosarcoma) or are on clinical trials to treat

prostate cancer or rhabdomyosarcoma. The real negatives (TN): We predicted no,

and they don’t or can’t be used to treat both cancers. The false positives (FP) are

drugs that we predicted yes, but can’t be used to treat prostate cancer. The false

negatives (FN) are drugs that we predicted no (they can’t be used to treat any of
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the tumors), but they can be used for prostate cancer or rhabdomyosarcoma.

3.10.0.3 Precision

The precision is widely used in classification. The precision measures the

exactness of our results. It checks how often the method predicts the correct answer.

precision =
tp

tp+ fp

(3.5)

3.10.0.4 Recall

The recall checks for the completeness of the results. The number of posi-

tive results was labeled positive. The recall represents the rate of true positive or

sensitivity score.

recall =
tp

tp+ fn

(3.6)

3.10.0.5 Accuracy

The accuracy shows how well our results classified correctly in the identification

and otherwise.

accuracy =
tp+ tn

tp+ tn+ fp+ fn

(3.7)

The F-measure is used to combine both precision and recall.
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accuracy =
2 ⇤ precision ⇤ recall
precision+ recall

(3.8)

3.11 Future Work: Gene expression data analysis

We introduce the method to some of the work we intend to do in the future.

We intend to use gene expression level datasets to find possible drug candidates and

drug combination candidates.

3.11.0.1 Gene expression level analysis on k562 cells(GEiM)

3.11.0.2 Introduction

The cell lines used to find out the PIM Substrates is known as K562 cell lines.

Lozzio and Lozzio established the K562 cell lines from the pleural e↵usion of a

53-year-old female who had chronic myelogenous leukemia.

We extracted cancer cell line from cancer cell line encyclopedia (CCLE) and

gene expression data from GEO omnibus. The CCLE provides public access analysis

and visualization of DNA copy number, mRNA expression, mutation data and more,

for 1000 cancer cell lines. K562 cell lines were retrieved from the CCLE to find gene

expressions levels and mutations from the K562 cell lines. Xena Python was used

to extract gene expression information from cancer cell line encyclopedia from K562

cell lines. Other information contained within the cancer cell encyclopedia includes

copy number, gene level, probe level, and phenotype.

Furthermore, CREB regulates a bunch of cellular functions and this includes
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cell proliferation, survival and apoptosis [121]. CREB is also identified as a proto-

oncogene involving in transformation by promoting abnormal proliferation and sur-

vival of myeloid cells [121]. CREB is activated through phosphorylation at serine

133 in response to a variety of cellular and mitogen stress signals. These include

peptide hormones, neurotransmitters, calcium influx, and growth factors. CREB is

a novel target for prostate cancer [122].

The purpose of this study is to understand the mechanism of CREB in CML

to find possible drug candidates. CREB is relevant for regulating cellular function

which includes cell survival, cell apoptosis, metabolism and so forth. When they

are altered can become an oncogene. This study aims at identifying the mechanism

of CREB in chronic myeloid leukemia. CREB is a member of the family of activa-

tion transcription factor 1 that binds to cAMP which is an octanucleotide cAMP

response element consensus sequence in promoters of target genes. We then use our

understanding of the mechanism of CREB in CML to arrive at drug candidates that

treat a disease like prostate cancer.

Our framework to arrive drug candidate is below:

Figure 3.21: Gene expression Framework for PIM Substrate Analysis
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3.11.0.3 Extraction of GSE12056

The CEL files were extracted from NCBI and parsed into the gene pattern tool

to create the .gct files. The .gct files where further utilized and alongside with cls file

(contains the class files for the data in .gct files). The result was used to perform the

GSEA Analysis. The method checks apriori defined set of genes shows statistically

significant, consistent di↵erences between two biological states (e.g., phenotypes).

3.11.0.4 GSEA Analysis

The di�culty of finding out changes in related gene expression is what as

lead to GSEA Analysis. Gene expressions are complicated because we have a large

amount of them, high erraticism with the samples, and a sometimes inadequate

amount of samples. GSEA Analysis helps accomplish the task. GSEA also helps us

to find these changes using gene sets related to one another. The process involved

calculating and enrichment score. The genes are initially ranked based on the dif-

ference in expression levels. The sum is calculated across the ranked genes. This

score sum is also referred to as the cumulative sum. The sum grows when the gene

is contained in the set and decreases. The degree to which it increases will depend

on our related the genes are with the phenotype. The most substantial deviation

from zero gives the enrichment score [123] [124].

The phenotype labels where permuted 1000 times and the enrichment score

calculated for each of the permutations [123] [124]. The enrichment scores from the

actual were compared to those of the permuted data (See [123]). The final step is
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that adjustments are made to accommodate multiple hypothesis testing [123].

GSEA helps to find out if the gene sets are distributed randomly or found

on the top or bottom of L. Those that are related to the phenotype show top or

bottom.

The .cel files containing the gene expression data was uploaded into GSEA,

and the class file containing the control and the non-control version was uploaded.

The gene set database (MSigDB reference) was selected, and we utilized the tran-

scription factor gene sets so that we can identify the transcription factors that play

a significant role and further use this transcription factors for pathway analysis. We

permuted 1000 times to get a more accurate p-value. The chip platform utilized

was A↵ymetrix. [123] shed more light on how the gene expression is used to find

the up-regulated and down-regulated genes, which will be used to do a pathway

analysis.

3.11.0.5 Pathway Analysis

The results from the gene sets were further extracted to find specific genes that

belong to this genesets. The genes were then used to perform pathway analysis.

The Reactome package in R was used to perform a pathway analysis using the

Reactome pathway database. This implements the gene set enrichment analysis,

hypergeometic test and enrichment analysis. Our results from the pathway analysis

were used to extract drugs that target these pathways. The enrichment analysis
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3.11.0.6 Identification of Drug Candidate

The results from Pathway analysis will further help us to find a drug that

targets these pathways. We utilized the results from the pathway analysis to find

drugs that are relevant to the paths that were significant. See more in the result

section. We identified pathways greater than 0.05 p-values and used our bi-mode

method to find relevant drug clusters and pathway clusters. We also applied SVD

in finding latent structure in a single mode and bi-mode.
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Chapter 4: Results

In this chapter, we present the experimental results. The section demonstrates

the e↵ectiveness of our approach on the phosphorylated network or proteins (pim

substrate and rhabdomyosarcoma). The datasets sources were presented in this

section alongside the result using our method section was performed.

Figure 4.1: Important aspects of our work

The figure 4.1 describes the steps implemented in our framework. This section

will start illustrating results starting with sequence analysis, network analytics ap-

proach, multimode approach and address future work like GEiM analysis approach.
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4.1 Experimental Data - Sequences

We have specifically highlighted how our datasets are pulled in the Methodol-

ogy section. We explain in this section the datasets used for clustering sequences.

4.1.1 Experimental Data for PIM Substrates

The data sets contained 1269 PIM substrates that have been collected based

on the experiment that was performed in the Lab. We utilized the PIM substrates

in our research to identify relevant phosphorylated proteins.

Figure 4.2: PIM Substrate Sequence Analysis.

The distributions help us to analyze the sequence for each PIM Substrate

better (see figure 4.2). The length of the sequence is on the Y and number of the
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sequences is on the X-axis. 100 sequence contained the length of 10. The database

consists of sequences between the range of 6-40 sequences. The sequences were

cleaned to remove duplicate sequences and to reduce redundancy. The sequence

was processed for analysis. A majority of the sequences fall between 6 and 15. A

higher sequence length the lower or, the less number of sequences exist. We used all

of the sequences, but they had to undergo a slicing process. The next step explains

the sequence processing step results.

4.1.2 Experimental Data for Rhabdomyosarcoma

We directly extrapolated the sequences we used to perform analysis on rhab-

domyosarcoma from the phosphositeplus database. The database contained the

protein accession number, the diseases this specific accession number was connected

to and the raw sequences with the phosphorylation site. We extracted the entire

sequence of each of the protein using the protein accession number. We used this

sequence to find the ten up and downstream sequence for rhabdomyosarcoma.

111



4.2 Sequence Processing

The variable modification site indicates the site or location in the sequence

where the phosphorylation takes place. At this site (phosphorylation site), we count

ten sequences up and ten sequences down. The total length of sequences extracted

at the end of the processing is 21. The 1269 sequences have 21 sequences preserved.

We removed every sequence with less than 21 sequences and removed every du-

plicate sequences. The table 4.1 shows the view of the sequences after removing

the duplicates and cleaning out the sequences. We followed the same process for

sequence length = 15, 20, 30, and 40.

1433BHUMAN ARRSSWRVISSIEQKTERNE

1433BHUMAN MKGDYFRYLSEVASGDNKQT

1433EHUMAN ARRASWRIISSIEQKEENKG

1433FHUMAN ARRSSWRVISSIEQKTMADG

1433GHUMAN ARRSSWRVISSIEQKTSADG

Table 4.1: PIM Substrate Sequence with length 20

4.2.1 Sequence Extraction

The table below shows the numbers of protein substrates left after the extrac-

tion process was applied to each of the sequences. The observation is the number

of substrates reduce as the processing takes because the sequence was cut and the

irrelevant proteins were removed. The sequence of length 10 with the largest amount

of substrates.
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Sequence length Sequence number

10seq 791

15seq 741

20seq 710

30seq 655

40seq 599

50seq 559

Table 4.2: Sequence Length vs Number of Sequences

4.3 Identification of the Consensus Sequence of PIM Substrates

The consensus sequence results produce the most frequently occurring amino

acids based on all the PIM substrate sequences. The figure below shows the consen-

sus sequence for 10, 20, 30, 40, 50 sequences up and downstream [45]. The results

in Table 4.3 and figure 4.5 shows that amino sequence character R occurs also very

often in the PIM datasets. The S and T represent the phosphorylation site or phos-

phorylated position in the sequence. The ten up and downstream sequence contains

eight counts of R, nine counts of S, two counts of G, and one count of E.

4.3.1 Consensus Sequence Analysis of PIM Substrates

The table below shows the sequences for 10, 15, 20, 30, 40, consensus PIM sub-

strates after trimming was performed on the data. S is the most frequent alphabet

because that was the position we selected to perform the trimming exercise.

The figures 4.7 , 4.8, 4.9, and 4.10 below show the graphical representation of

the sequences in the 10, 20, 30, 40, 50 up and downstream sequences. The figure 4.7
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Figure 4.3: 5 Consensus Sequence for the PIM Substrate.

10 up and downstream RRRRRSRSSSGSESRSRSGS

15 up and downstream KSKKSKRRKRSRKRSGSESGSKSGKKARKR

20 up and downstream
GSKKAKSKKGKRRKRSRKRSGSESGSKSG
KKARKREKKSS

30 up and downstream
AASSKRGSKKGKKKKKSKKGKRRRRSRKR
SGSESSSKSGKKASKRKGSSSKRSSKRKSSK

40 up and downstream
EKSKSAAAKASRSSSRKGKSSRSKSSSKSS
KRRRRSRSSSGSSSSSSSGSKASKRELSKKS
RSSSRSSSKSKKKSRESSE

Table 4.3: The consensus sequence: 10,20,30,40,50

contains the result for 10 up and downstream showing 9 S sequences 8 R sequences.

The most frequent motif in the sequences was SGSES.

The figure 4.8 shows the result for 20 up and downstream showing 10 S se-

114



Figure 4.4: 10 Consensus Sequence for the PIM Substrate.

quences, 7 R sequences, A 2 sequences, 2 E sequences, 5 G sequences, and 14 K

sequences.

The figure 4.9 shows the result for 30 up and downstream showing 39 S se-

quences, 13 R sequences, A 5 sequences, 5 E sequences, 3 G sequences, 16 K se-

quences, and 1 L sequence.
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Figure 4.5: 15 Consensus Sequence for the PIM Substrate.

4.4 Sequence Encoding to identify Relevant Proteins

We encoded each of the amino acid sequence using the pim substrate using

the derived encoding scheme 3.3. The phosphorylated alphabets were split by the

alphabets that characterized the particular category they belonged. The result of

encoding these sequence was a sparse matrix. We applied hierarchical clustering to

the encoded sequence of 10, 15, 20, 30, 40 PIM Substrates.
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Figure 4.6: 25 Consensus Sequence for the PIM Substrate.

4.5 Hamming Distance Calculations without applying encoding schemes

using standard alphabets

The Hamming Distance was used to calculate the distances between the se-

quences in a square matrix form. The distances were used to find hierarchical

clusters. We utilized intercluster and intracluster di↵erences. The results from

sequences of length 10,15,20 are presented in this section.
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Figure 4.7: Histogram for 10 consensus sequence up and downstream.

4.5.1 Using the Hamming Distance to cluster sequences of length 10

We first of all cluster without using any encoding scheme. The distance be-

tween the sequences was calculated to find hierarchical clustering using the hamming

distance. The hamming distance help finds a similarity between two sequences by

taking the position and length into consideration. The complete linkage method was

utilized to detect the clusters. We have applied hamming distance to sequences of

length 10,20,30,40, and 50. For the sequence of length 10, k= 3 clusters and cluster

3 contains 601 protein sequences, and cluster 2 contains 128 protein sequences, and

cluster 1 contains 62 protein sequences. The Intra-cluster distance for Cluster 1

is 14.91363163371488, Intra-cluster distance for Cluster 2 is 18.373291015625, and
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Figure 4.8: Histogram for 20 consensus sequence up and downstream.

Intra-cluster distance for Cluster 3 is 18.6053859208584.

Intercluster/Intracluster similarities 0 1 2

0 14.9136316 16.6434613 16.7595088

1 16.6434613 18.373291 18.4893385

2 16.7595088 18.4893385 18.6053859

Table 4.4: Inter-clusters similarity using sequence of length 10

4.5.1.1 Using the Hamming Distance to cluster sequences of length

15

Using k =3, the solution below shows cluster 3 as 459 protein sequences, cluster

2 as 194 protein sequences and cluster 1 as 88 protein sequences. The intra-cluster
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Figure 4.9: Histogram for 30 consensus sequence up and downstream.

distance for Cluster 1 is 24.669, and Cluster 2 is 27.724 and Cluster 3 is 27.749. The

inter-cluster distances are on Table 4.5. The intra-cluster distances implied that the

sequences in the each of the clusters remained n very closely

Intercluster similarities 0 1 2

0 24.6686467 26.1965829 26.2091341

1 26.1965829 27.7245191 27.7370703

2 26.2091341 27.7370703 27.7496215

Table 4.5: Inter-clusters similarity using sequence of length 15

4.5.2 Using the Hamming Distance to cluster sequences of length 20

Using k =3, the solution below shows cluster 3 as 644 protein sequences, cluster

2 as ten protein sequences and cluster 1 as 56 protein sequences. The intracluster
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Figure 4.10: Histogram for 40 consensus sequence up and downstream.

distance for Cluster 1 is 32.03, and Cluster 2 is 20.98 and Cluster 3 is 37.535. The

inter-cluster distances are on Table 4.6.

Intercluster similarities 0 1 2

0 32.0325255 26.5062628 34.7837004

1 26.5062628 20.98 29.2574376

2 34.7837004 29.2574376 37.5348752

Table 4.6: Inter-clusters similarity using sequence of length 20

We observe very close scores with regard to our well separated and how close

the substrates are from each other. We proceed to use phosphorylated alphabets

for sequence analysis using the SVD.
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4.6 Using Singular Value Decomposition with Phosphorylated Al-

phabet Encoding scheme - Example for clustering

The singular value decomposition didn’t produce excellent performance, but

we just wanted to show and compare this performance to the others. For example,

the total number of sequences left after cleaning ten up and downstream substrates

was 791 sequence. The sequences were encoded using the encoding schemes discussed

in the method section 3.3. The singular value decomposition was applied to the

encoded sequence, and we selected the best U singular vectors. The 15, 20, 30,

40 sequences were also cleaned and Table 3.3 was applied on the sequences after

cleaning. We applied the Singular Value Decomposition technique on this matrix

to find Singular values. The SVD was applied in other to find clusters in our PIM

Substrate data. The k-means clustering was applied to the datasets to find clusters.

The performance using SVD wasn’t the best. We will learn more about the results

as we moved forward to with other methods.

4.6.1 Finding the Ideal-k using encoding schemes with ten sequences

The substrate sequences of length ten were used to identify the relevant protein

sequences. The ideal-k was first identified for using functional alphabets, charged

alphabets, standard alphabets, and structural alphabet figure. The ideal-k uses

within cluster sums of squares or average silhouette score to find the most optimal

k. The most optimal-k was 3. We utilized k=3 during our clustering process to
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determine the classes of the pim substrates.

Figure 4.11: Ideal-k for Standard Alphabets

For a majority of the ideal-k’s the most optimal-k =3. We chose three and

moved into the next step which was clustering with kMeans.

4.6.2 Clustering using k-means

K-means algorithm is used to group the singular vectors in distinct clusters.

The clusters are then used to verify the significance of the substrate.

The k-means algorithm in [125] begins with a random set of k center-points

(µ). For each updated step, all points y are assigned to their nearest center-point

(see equation 4.1).
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Figure 4.12: Ideal-k for Structural Alphabets
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The center-points points of the PIM Substrate get changed by calculating the

mean of the points connected to a specific center-point. (see 4.2).
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The process continues until all points observed continue to exist at the center-

points assigned to them, then the algorithm stops.

The k-means was applied to the PIM Substrates and below shows our cluster-

ing results.
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Figure 4.13: Ideal-k for Functional Alphabets

The figure 4.15 scatterplot shows the first two singular vectors. We did not

cluster this datasets. The figure 4.16 and the figure 4.17 represents the PIM Sub-

strates with two clusters and three clusters.

4.6.2.1 Sum Squared Errror

The Sum of Squared Error(SSE) represents the distance to the nearest PIM

Substrate cluster.

SSE =
KX

i=1

X

x✏Ci

(m
i

, x) (4.3)

The x represents the PIM substrates data point in cluster C

i

and m

i

is the

point that was identified by C

i

. The m

i

represents the mean of the cluster. The
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Figure 4.14: Ideal-k for Charged Alphabets

lower the SSE, then the more similar PIM Substrates that belong to that cluster.

The SSE was used to select the best clusters and to further evaluate our results

figure 4.15, the figure 4.16, the figure 4.17.The result below shows the clusters. The

figure 4.17 cluster 2 as the lowest SSE.

The SSE was used to select the best clusters for the 15 up and downstream

and to further evaluate our results figure 4.19, figure 4.20 and figure 4.21.The result

below shows the clusters. The figure 4.21 cluster 3 as the lowest SSE and we can

further study the cluster results to see how well the pim substrates are classified

correctly using cluster k=3.

The SSE was used to select the best clusters for the 20 up and downstream

and to further evaluate our results figure 4.22, figure 4.23 and figure 4.24.The result
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Figure 4.15: PIM Substrate Scatterplot

below shows the clusters. The figure 4.24 cluster 3 as the lowest SSE. We need

to classify the pim substrate using the clusters to determine how well this specific

method clustered the sequences.

We believe a better approach will be to use PhoSC and PhoSc-con and cluster

using hierarchical clustering to find the best clusters.
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Figure 4.16: 2-Clusters: PIM Substrate Scatterplot

4.6.3 Result examples using NetAnaPhoS on PIM Substrates

4.6.3.1 Network Analytics on PIM Substrate - Using a small exam-

ple(NetAnaPhoS)

The pathways play a significant role in understanding the mechanisms of the

actions of a drug [126]. It also helps scientist understand more about the metabolism

of drug [126].

For example, all addictive drugs a↵ect brain pathways. The reward pathway

is an example of such.

We extracted a few subsets of our graph(Top 10) or elements of our graph that

had highly significant nodes and searched the associations with the PIM Substrate
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Figure 4.17: 3-Clusters: PIM Substrate Scatterplot

database. Then we applied a network analytic approach to finding high influence

nodes using degree, PageRank, authority and hub scores. We applied network an-

alytics using a directed and undirected graph. The Top 10 was used to test this

specific case. The nodes = 78 and edges = 65 and average degree = 0.833 and the

graph density = 0.011 and connected component = 14.

For the directed case, RS11HUMAN stands out to be a very significant gene

based on its high connection to pathways in the network. The gene as the most

neighbors and the results is in figure 4.25.

For the directed case, RS11HUMAN and SENP3HUMAN stand out to be a

very significant gene using hub scores. RS11 HUMAN comes up again as a vital

node.
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Figure 4.18: 4-Clusters: PIM Substrate Scatterplot

The PageRank scores give us the importance rank of a node. The pathways

for this experiment were most important using PageRank. We can investigate these

pathways for possible drugs that target these pathways.

For the directed case, multiple pathways stand out to be authorities as well.

It will be essential to analyze these pathways to find drugs that would be relevant

to treat prostate cancer.

The first case was for the directed network, and we further investigated the re-

sults for the undirected network using degree, PageRank and betweenness centrality.

The Figure 4.25 and figure 4.29
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Figure 4.19: 2-Clusters:15 sequence

4.6.3.2 Top 15 Drug Repositioning Candidate

The top 15 authority scores using the directed case was used to find the drug

repositioning candidates. The score results show the following drugs/chemicals could

be beneficial for the treatment of prostate cancer. E.g., Adenosine-5-Diphosphoribose,

Diphthamide, Guanosine-5’-Diphosphate, L-Serine, Pyridoxal Phosphate,7-Methyl-

Gpppa, 7-Methyl-Guanosine-5’-Triphosphate, 7n-Methyl-8-Hydroguanosine-5’-Diphosphate,

LY2275796, Tigapotide, Alpha-Hydroxy-Beta-Phenyl-Propionic Acid, Anisomycin,

Omacetaxine mepesuccinate, and Puromycin.
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Figure 4.20: 3-Clusters:15 sequence PIM Substrate

4.6.3.3 Identification of High Influence using PIM Substrates - Ex-

ample 2

In this second example, we identified an approach to clustering sequences if a

majority of the sequences belonged to the same cluster. The substrate with high

influence was determined by finding the distance to the centroids. The closer a pim

substrate is to centroid the more critical the sequences are. For our experiment,

we used statistical measures to determine the statistical significance of the result to

ensure the best PIM substrates were selected. The result below shows the closeness

of the PIM substrates to the centroid and the first ten pim substrates identified using

the 4.15 our techniques. The top 25 PIM substrates were used to extract relevant
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Figure 4.21: 4-Clusters:15 sequence PIM Substrate

pathways. The PIM database was used to select channels relevant or associated with

the high 25 PIM substrates. Our results show consistencies with the lab showing a

majority of the substrates identified to be connected to the study where determined

by our methodology to be relevant for the research. For example, APOEHUMAN

allows the binding of lipoprotein particles. It takes the role as a ligand for the LDL

(apo B/E) receptor and the specific apo-E receptor of hepatic tissues. [127] justifies

the expression in prostate cancer.

4.6.4 Network Characteristics using Top PIM Substrate

The top genes found from the previous step was used to identify Reactome(pathway)

associations, and the pathways were further used to determine drugs that are con-
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Figure 4.22: 2-Clusters:20 sequence PIM Substrate

EHIL1HUMAN

MDHCHUMAN

ZN609HUMAN

APOEHUMAN

MAP4HUMAN

SFR19HUMAN

TUT4HUMAN

MED1HUMAN

SRRM2HUMAN

CHERPHUMAN

Table 4.7: Top 10 PIM Substrates

nected to these pathways. The first step found all pathways that related to any of

the significant genes identified using figure 3.8. The second step was to see all drugs

that are connected directly to the pathway that was detected in the previous step.
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Figure 4.23: 3-Clusters:20 sequence PIM Substrate

Statistics Score

Mean 0.0012471

Median 0.00012534

Minimum 0.00078323

Q1 0.0011613

Q3 0.00134823

Interquartile Range 0.00018693

Maximum 0.0015905

Range 0.00080727

Lower Fence -0.0016426

Upper Fence 0.00162861

Table 4.8: Statistical Results from Using the One Centroid

Both the first and second step were combined to perform network analytics. The

nodes in this network are 4,537, and the edges are 29,632. The average degree gives
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Figure 4.24: 4-Clusters:20 sequence PIM Substrate

Figure 4.25: Degree: PIM Substrate to Degree
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Figure 4.26: PageRank: PIM Substrate to Pathway

Figure 4.27: Authority: PIM Substrate to Pathway
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Figure 4.28: Undirected Degree: PIM Substrate to Pathway

Figure 4.29: Undirected Betweeness: PIM Substrate to Pathway
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Figure 4.30: Undirected Hub: PIM Substrate to Pathway

13.062. This means each node connects on the average out to 13 other nodes. The

network diameter is 10. The Graph density is 0.003. The average path length =

4.247. The figure 4.31 contains a mixture of both genes, pathway, and drugs after

we calculated the betweenness centrality. Using the betweenness centrality measure,

we select drugs with very high scores. The figure 4.32 shows drugs with very high

betweenness centrality.

4.6.5 Our Results: Sequence Clustering

The PhoSc clustering uses the Phosphorylated alphabets, and PhoSc-con uses

the hydro scaled Phosphorylated alphabets for clustering phosphorylated sequences.

We shed some light on some other encoding approaches, but we will be focused on

the encoding scheme with the best results.
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Figure 4.31: Top 20 Gene-Pathway-Drug Betweeness

4.6.5.1 PhoSc and PhoSc-con clustering

We applied phosphorylated alphabets and what we called the phosphorylated

alphabets-const to encode the pim substrate sequences. We used the Hierarchi-

cal clustering algorithm on the hamming distance (Protein sequence distance) to

find clusters of protein sequences that are similar to one another. The hierarchical

method of clustering is a method of clustering objects into groups by finding their

distances. The first step is finding the distances between the objects. For example

in the case of sequences, the distances between all protein sequences where found.

Each of these distance was treated at first independently of one another. In other

words, each represents a cluster. The algorithm will then find the two clusters that
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Figure 4.32: Top Drugs: Using Betweeness

are close to one another and merge two most similar clusters. It goes on until all

the clusters are combined.

The distance was calculated by using distance metrics like Euclidean distance.

Many other distance metrics can be used. The Euclidean distance is defined as the

length of a path between two points.

The goal is to use the Euclidean distance to determine hierarchical clusters

between the PIM sequences by first finding the hamming distance between the

sequences (10 sequences). It is also vital to have distance metrics selected to have a

linkage criterion. The linkage criteria help to determine how the distance is created.

The distance is either cluster based on two very similar parts of the cluster which are

also known as single-linkage or two least similar which is also referred to as complete
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linkage or the center of the cluster which is also known as the average-linkage. We

have selected the single-linkage in other to group by closely similar clusters. Similar

clusters are then typically combined sequentially. Our results show very promising

findings.

Figure 4.33: Ideal-k for PhoSc on 10 sequence(Cluster = 3)

The diagram below shows the result of clustering the sequences into 3 clusters

using positional linkage hierarchical clustering.

4.6.5.2 Identification of PhoSc: using fake sequence + real rhab-

domyosarcoma sequences

We used this experiment to demonstrate that our method(PhoSc) can select

the rhabdomyosarcoma sequence from the group of sequence that contained both
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Figure 4.34: Positional Linkage using Hierarchical clustering using 10 se-
quence(Cluster = 3)

the fake sequences and rhabdomyosarcoma sequences. We had 700 real-sequences

for rhabdomyosarcoma and 700 pseudo or fake protein sequences.

4.6.5.3 Standard Encoding SVD analysis

The rank for the matrix was 780. We constructed a matrix similar to the

term-document matrix using the binary encoding and apply the SVD after finding

the rank of the matrix. The figure below shows the results of the experiment. Since

r = 780. The figure doesnt display its high dimensional results. However, we can

use the inter-cluster and intra-cluster similarities to determine how the cluster are

within and how dispersed they are from one another. The cluster 1 contains SSE =

432.7217, the SSE scores of the cluster 2 contains SSE=439.4497, and the cluster 3
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had an SSE score of 457.8834. In this experiment, we used the cosine similarity to

measure the distances.

Figure 4.35: SSE scores using cosine similarity

Figure 4.36: SSE scores using Euclidean Distance

We performed the same experiment with the Euclidean distance. The SSE

scores are illustrated on the chart. We use the elbow method to determine which
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clusters worked the most for our sequences(ideal-k).

Figure 4.37: Ideal-k Standard encoding using cosine similarity

4.6.5.4 Phosphorylated Categorization

We have applied encoding scheme that contains phosphorylated categorization.

This setup gives us a more dispersed chart compared to the standard encoding chart

(See Figure). The reason behind this is that we have imposed encoding scheme on

the alphabet representation. The SSE scores are below.

The ideal-k for this specific encoding schemes shows the best k = 3. The figure

below shows the ideal-k for the phosphorylated encoding schemes. This method was

selected using [128] who demonstrate that using these techniques helps to separate
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Figure 4.38: Clustering using Cosine similarity Fake vs Real

the phosphorylated elements from the others. The silhouette diagram for the clusters

also shows our close a point is to the other points in its cluster when compared

to how similar it is in other clusters. A majority of our cluster points have high

silhouette scores indicating that k=3 is appropriate for clustering the phosphorylated

alphabets.
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)

The clustering results using the encoding scheme structural alphabets showed

that all clusters had very similar SSE scores cluster 1 with 31.29, cluster 2 with

21.16, and cluster 3 with 28.2156. This result shows the level closeness within each

cluster. The silhouette score figure shows below with an ideal-k of 4. The silhouette
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Figure 4.39: Clustering using Euclidean distances to cluster the datasets - Standard
Encoding

Figure 4.40: SSE scores using Phosphorylated Categorization
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Figure 4.41: Phosphorylated Alphabets with fake vs real sequence

value comparison also shows points that are clustered correctly where they were

supposed to belong.

4.6.5.5 Scaled Phosphorylation Encoding Scheme

We introduced a scaled approach to viewing our encoding schemes which im-

proved the results of the clusters for ideal-k. The figure below shows the silhouette

when the scaled is introduced.

4.6.6 Result using our Method for Sequence clustering (PhoSc)

The linkage result show cluster stability. We intend to do the same test on the

encoding scheme that we impose some constraints on.
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Figure 4.42: Structural Alphabet result using real vs fake sequence

The ideal-k was stable using linkage and phosphorylated scaled encoding schemes.

The clustering results using linkage and phosphorylated hydro scaled encoding worked

well and classified a majority of the fake proteins in the same cluster. The preci-

sion scores for the pseudo proteins using linkage and hydro scaled phosphorylated

elements was 90%. The recall scores were 82.7%.

The ideal-k using PhoSc gave us excellent cluster stability as a result below

indicates making linkage + Phosphorylated Alphabets a stable encoding scheme to

use to select best clusters for network analytics, multimodal clustering.
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Figure 4.43: Hydroscaled Phosphorylated Alphabets for fake vs real

4.6.7 Sequence analysis - Method Comparisons

To validate our approach, we found the precision and recall. The precision

was 92%, and the recall was 85%. Our results compare to others.

4.6.8 Comparison of PhoSc and PhoSc-con on PIM Substrate

.

With regards to PhoSc, Cluster 1 contained a majority of the lab tested sub-

strate with the precision of 90% and the recall of 71%. Our approach can be used

to identify or predict potential phosphorylated elements as well.

With regards to PhoSc-con, Cluster 3 contained a majority of the lab tested
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Figure 4.44: PhoSc for Clustering Fake vs Real

substrate with the precision of 100% and the recall of 76%. Our approach can be

used to identify or predict potential phosphorylated elements as well.

We compare the results with the SVD. The SVD scores give us 50% precision

while the recall was 33%.

4.7 NetAnaPhoS- pim substrates combined analysis of curated databases

We have combined all substrates and generated a network with them. The

total number of interactions extracted given the PIM substrates was 153,846 and

the number of nodes 39980. The network diameter is 4.426. The modularity is 0.768.

The figure 4.49 shows the number of all the disease-related elements connected to
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Figure 4.45: PhoSc-con for Clustering Fake vs Real

Figure 4.46: Precision and Recall using Rhabdomyosarcoma-fake vs real data
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Figure 4.47: Method Comparisons

Figure 4.48: Method Comparisons: PhoSc and SVD

the PIM Substrate after sequence cleaning was performed on the substrate. We

will be utilizing authority, hub, page rank, and the degree to select the drugs for

repositioning candidates.
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Figure 4.49: PIM Related Element Analysis

4.7.0.1 Combined analysis of using Degree

The degree scores show us the number of neighbors connected to every node.

The figure 4.50 shows the nodes with the highest neighbors. The theory is that

nodes with the highest neighbors must be critical because other nodes connect to it.

4.7.0.2 Combined analysis of using Authority Scores

The authority nodes are referred to as essential pages. For example, if you

would love to search for anything in the world, the entire page or web page will be

Google. This means that the Google page as so much influential, it is defined as

an authority. We have selected the nodes with top authorities given the combined

network. The authority scores highlight a lot of drugs have excellent authority, and
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Figure 4.50: Degree: PIM Related Element Analysis

we selected the measure to find some of our initial drug repositioning results.

Figure 4.51: Authority: PIM Related Element Analysis
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4.7.0.3 Combined analysis of using Betweenness Scores

The betweenness centrality of a node is calculated by the percentage of the

number of shortest paths between any two pair of nodes. The figure 4.52 shows

results from applying the betweenness centrality measure. A majority of the genes

identified by the betweenness scores are highly relevant to prostate cancer.

Figure 4.52: Betweeness: PIM Related Element Analysis

4.7.0.4 Combined analysis of using PageRank Scores

The PageRank scores measure the overall importance of each node by voting.

The PageRank of a node uses a combination of the number of links to a particular

node and the value of those links as criteria for finding the importance of that node.

PageRank scores helped to identify some disease and genes using the combination

of all disease-related elements. Some of the results need to be studied by the bi-
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ological lab.The figure 4.53 shows the Top 15 disease-related elements with high

Pagerank scores.For example, the AR gene is expressed throughout prostate cancer

progression.

Figure 4.53: PageRank: PIM Related Element Analysis

4.7.0.5 Some results using Authority Scores

Implementing network analytics techniques helps to find indirect connections

or indirect relationships that exist in a network or graph. The authority score

graph, for example, identifies pathways relevant to the repositioning of drugs. We

used these pathways to identify drugs that target this pathway. An example is

below is tigapotide which is pending Phase II Clinical Trials. Our results found

that Tigapotide is repurposable for prostate cancer.
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Figure 4.54: Chemical Structure of Tigapode

4.7.0.6 Singular Value Decomposition for Drug Repositioning: Path-

way to Drugs using the combined PIM substrates(phosphorylated

protein)

The combined network for pim substrates phosphorylated element was used to

do a pathway analysis using SVD. Given that we had a pathway and drug interac-

tions, we can also apply the Singular Value Decomposition on the pathway to drug

information by creating a term-document matrix. The rows and columns with both

pathways and drug information and applying the Singular Value Decomposition on

the adjacency matrix and finding the centroid. We can directly apply the Euclidean

distance metric to find Reactome to closest to the centroid. Some of the results

include R-HSA-6791226: Major pathway of rRNA processing in the nucleolus and

cytosol and R-HSA-5607764: CLEC7A (Dectin-1) signaling. The following results
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need to be confirmed or verified by a biologist to confirm the actual viability and

relationship to the PIM Substrate. The result can then be further associated with

relevant drugs that go through these pathways. Twenty-five drugs were identified

to go through this pathway. Some drug candidates that target these pathways in-

clude DB07374. Anisomycin, DB04865. Omacetaxine mepesuccinate, DB08437.

Puromycin, DB04805. Virginiamycin S1, DB06151. Acetylcysteine. DB01169. Ar-

senic trioxide, DB00995. Auranofin, DB00244. Mesalazine, DB05183. MLN0415,

DB00795. Sulfasalazine, DB00795. Sulfasalazine, DB00482. Celecoxib, DB04522.

Phosphonoserine, DB02010. Staurosporine, DB06616. Bosutinib.

4.7.0.7 Node Impact using Perturbation Analysis

We conducted a perturbation on the PIM network generated from the above

step to identify significant biological associations composed of high-influence nodes.

A two-step approach inspired by *our previous study [37] that was targeting on

individualized medicine has been designed [8] identifying high-influence nodes to

diabetes based on di↵erent centralities, [129] and determining the biological asso-

ciations based on the perturbation results. To be specific, we first selected the

high-influence nodes. The influence of a node can be measured by several centrali-

ties including the degree centrality, closeness centrality, as well as betweenness and

PageRank centralities. The degree centrality of a node is defined as the total num-

ber of links of that node. Nodes with high degree centrality will be expected to

have a high influence because such influence is contributed from their immediate
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neighbors. The closeness centrality of a node is measured by the average distance

of that node from all other nodes in the network. The betweenness centrality of a

node is calculated by the percentage of the number of shortest paths between pairs

of nodes the nodes with high betweenness centrality measures bridge nodes that

connect a significant sub-networks. The PageRank of a node uses a combination of

the number of links to a particular node and the value of those links as criteria for

finding the importance of that node. Nodes were selected for removal based on the

values of their centrality measures. Once the high-influence nodes were chosen, we

removed them and measured the e↵ect on the modularity of the network. The node

with the highest centrality measure was removed first. The modularity produced

by the node removal were examined to determine the high-influence nodes; higher

modularity corresponds to nodes with higher influence. In this step, we identify

the high-influence nodes and performed perturbation to determine the significant

biological associations with the PIM Substrate. We found EGFR, PTEN, and AR

to disrupt the network significantly.

4.8 NetAnaPhoS: Rhabdomyosarcoma for network analysis using gene-

drug-pathway

The result below shows the scores of the various centrality measures using

a tri-mode(gene-drug-pathway). The P63 for example in figure 4.57 as shown to

be directly relevant in the studies of rhabdomyosarcoma. This could be a possible

target for drug repositioning. Neutrophil degranulation was also found to be a
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relevant pathway. We also found some other relevant disease-related element using

betweenness centrality like atk1 and DB04313. ABCB1 was also considered an

influence node found using the degree centrality measure. The ABCB1 has been

found relevant in rhabdomyosarcoma network making it a very relevant target. For

more of the centrality results check figure 4.55, figure 4.58, figure 4.57, and figure

4.56.

Figure 4.55: Degree for Rhabdomyosarcoma

4.8.0.1 Protein-Protein Interaction Analysis for Rhabdomyosarcoma

Our goal for analyzing protein-protein interactions was to find critical proteins

that in rhabdomyosarcoma and PIM substrates and to use these highly essential
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Figure 4.56: Pagerank for Rhabdomyosarcoma

proteins to find biological regulatory pathways.

Rhabdomyosarcoma (protein-protein interactions):

The total number of nodes for the source proteins are 632, and the total number

of nodes for the target proteins are 3115, and the total number of interactions is

5785.

The first proteins or the source proteins all fall within the same clusters show-

ing that a majority of these proteins interact with similar proteins.

The second sets of proteins have distinct clusters in blue and two other groups.

In the distinct blue cluster, we found IKKB HUMAN to be based on PROSITE

a member of Protein Kinase dom and a member of Protein Kinase ST. We also found

that NUAK1 HUMAN is a member of Protein Kinase dom, Protein Kinase ATP,
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Figure 4.57: Betweeness Centrality for Rhabdomyosarcoma

Figure 4.58: Hub for Rhabdomyosarcoma

163



Figure 4.59: protein-protein interaction for rhabdomyosarcoma: Source clustering

Figure 4.60: protein-protein interaction for rhabdomyosarcoma: Target clustering
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and Protein Kinase ST. We also found PLK1 HUMAN is a member of Protein

Kinase ATP, Protein Kinase DOM, and Protein Kinase ST. The protein kinase

ATP implies that they have an ATP binding region signature, the protein kinase

st means that they have serine and threonine protein kinases active site signature

and protein kinase dom implies that they belong to the protein kinase domain

profile. We had various other new proteins that were identified by our method. The

IKKB HUMAN is linked or connected to sulfasalazine which is a candidate found

to treat rhabdomyosarcoma.

4.8.0.2 Rhabdomysarcoma Phosphorylated Protein Extraction.

PhosphoSitePlus contains 29,082 non-redundant sites on 14, 256 non-redundant

proteins and over 90% of the protein sites are from human and mouse. The database

also contains phosphorylation sites, acetylation sites, and ubiquitination sites. Our

work was focused on the extraction of the rhabdomyosarcoma phosphorylation site

from the PhosphoSitePlus database. The database contained gene name, protein,

UniProt accession number, the residue position and letter, and the protein sequence.

For our research, we were interested in the proteins and genes the sequence were

attached. The rhabdomyosarcoma protein database contained 948 proteins and 945

genes. The 948 proteins were used to create our integrated multimodal network.
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4.8.0.3 Rhabdomyosarcoma Network generation.

We integrated 108208 biological interactions from di↵erent sources which in-

cluded CTDBASE, DISGENET, UniProt, DRUGBANK and PHOSPHOSITEPLUS

to form the rhabdomyosarcoma network. The network contained 21021 nodes and

108208 edges with the average degree 9.686. The network shows a secure connection

because we have more edges than the nodes. Table 4.9 shows more of the network

properties and illustrates the strength of the connection of the network.

Table 4.9: Network Properties of Phosphorylated Protein in Rhabdomyosarcoma

Network Properties Network Scores

Nodes 21021

Edges 108208

Average Degree 9.686

Network Diameter 16

Path Length 5.888

Connected Components 201

4.8.0.4 Identification of high influence nodes in protein phosphory-

lated in Rhabdomyosarcoma.

The next steps will be to utilize di↵erent measures in identifying nodes that

are highly influential using various centrality measures on our integrated multimodal

protein phosphorylated in rhabdomyosarcoma. We measured the level of influence

by using: Degree centrality, closeness centrality, betweenness centrality, HITS algo-
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rithm, and PageRank. The degree of a specific node is the number of neighbors that

the node has. The degree centrality of the graph counts merely how many neigh-

bors a node as. If the network is directed, we will have outdegree and in degree.

Figure 2 is the degree of the undirected graph. The closeness centrality is derived

by finding the mean distance from one node to the other nodes in a network. The

betweenness centrality can be obtained by measuring the degree to that a node lies

on the path between another node. The nodes with high betweenness centrality will

have a very high influence on the network. They have high control over the infor-

mation passing through them. The HITS algorithm consists of both authority and

hub scores. The nodes with high authority scores are the nodes linked from nodes

that are known as a hub. The nodes with high hub scores are the nodes that are

connected to nodes that are considered to be authorities. The result below shows

the top 10 influence nodes of all the centrality measures. The Pagerank algorithm

intuition is that links are synonymous with votes for anodes relevance, the more the

votes a node has, the more the important it is. The votes from connected nodes will

have more than votes from irrelevant ones. The figures below show the result from

centrality measures [130].

The node with the highest degree in figure 2 is called DBO8901. The DB08901

represents ponatinib. In 2016, [131] showed that ponatinib is currently on a clini-

cal trial for treating rhabdomyosarcoma. [131] targeted activated FGFR4 in rhab-

domyosarcoma with the inhibitor ponatinib(AP24534). The next drug with the

highest degree in figure 4.61 above is DB08896 called Regorafenib. [132] Showed

that this drug was considered an inhibitor that can be studied for its anti-tumor ac-
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Figure 4.61: Degree of multimodal phosphorylated protein in rhabdomyosarcoma.

Figure 4.62: Betweenness centrality of multimodal phosphorylated protein in rhab-
domyosarcoma.

tivities. These two examples showed using the phosphorylated proteins as the basis

to create an integrated network helped to highlight the critical aspects of the study

of rhabdomyosarcoma. This helps us pay attention to the relevant aspects of the

network. P19838 NF-kappa-B with gene name NFKB1. [133] suggests that abnor-

mal expressions may contribute to myogenesis and rhabdomyosarcoma. DB080901

168



Figure 4.63: Authority of multimodal phosphorylated protein in rhabdomyosar-
coma.

appears again to be a high influence node on the betweenness centrality graph.

[134] shows the p53 mutations are frequently detected in young children with

rhabdomyosarcoma. Reversing the mutation will reduce the risk of having the dis-

ease. The results from the authority scores show that drug nodes have the most

authority in our datasets. The same DB080901 was the drug with the highest in-

fluence for authority scores as well. TTN was found to be activated in 3 tumor

samples [135].

The betweenness centrality results show RHSA-6798695 as the highest be-

tweenness centrality score (see figure 4.62). R-HSA-6798695 is referred to as neu-

trophil degranulation. [136] indicates that neutrophil degranulation had some anti-

tumor functions with regards to rhabdomyosarcoma.

The authority scores also show that DB01254(dasatinib) was the next highest

influence node. The result showed that a majority of nodes with high influence

in (figure 4.63) were drugs. This implies that a majority of the drugs with high

authority are linked from other nodes that are known as hubs.
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Figure 4.64: The score above show Pagerank vs Authority scores indicating receptor
to e↵ector score.

Figure 4.65: The score above show Pagerank vs Hub scores indicating receptor to
e↵ector score.

We plotted the PageRank vs. hub score and the page rank vs. authority score.

The results show that most nodes are clustered around the origin. The results from

the Pagerank vs. Hub shows that some of the sequences were clustered around

receptor which means these nodes are nodes that are prone to be influenced by a

large number of other nodes. DB08896 in (see figure 4.64) shows that regorafenib
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is influenced by and influences other nodes in the network.

4.8.0.5 Binning the nodes by the types:

These sections above observed the results while all the node types are combined

to view the node types independently of each of other. We rank the nodes by types

below using degree centrality measure to find the topmost influence nodes for each

of the influence types. The degree scores then cluster the nodes. The result of

binning the drugs still gives us the DB08901(Ponatinib) as the first influence node.

The top 5 drugs include Ponatinib, Regorafenib, nintedanib, dasatinib, bosutinib,

and alvocidib. All of the drugs are currently being used to treat rhabdomyosarcoma

or clinical trial phase.

Table 4.10: Top 5 influence nodes for node types(protein, drugbank, pathway &
SNP)

Protein DrugBank Pathway SNP

P19838 DB08901 R-HSA-6798695 rs747622981

P01344 DB08896 R-HSA-6811558 rs7766641

P01112 DB09079 R-HSA-4420097 rs9311651

P04150 DB01254 R-HSA-2559580 rs6778837

P53 DB06616 R-HSA-5673001 rs6445902

Other node types include protein, SNP, drug, and pathway. The top 5 most

influential protein nodes: P19838, P01344, P01112, P04150, and P53. p53, for

example, is a well-known tumor protein. P01344 is associated with Wilms a tu-

mor, Beckwith-Wiedemann syndrome, rhabdomyosarcoma, and Silver-Russell syn-

drome. The top 5 influential pathways are R-HSA-6798695, R-HSA-6811558, R-
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HSA-4420097, R-HSA-2559580, R-HSA-5673001. The top pathway list can also be

used to find more useful candidates that will treat the rhabdomyosarcoma.

Figure 4.66: Protein binned influence nodes.

Figure 4.67: Drug binned influence nodes.

4.9 NetAnaPhoS-Network Analytics for Diabetes Mellitus Phospho-

rylated Protein Network

In this section, we analyzed diabetes phosphorylated protein network using

the various centrality measures. The nodes of the network are 277, and the edges
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Figure 4.68: Pathway binned influence nodes.

Figure 4.69: SNP binned influence nodes.

are 486. The average degree is 1.755, the network diameter is 3, and the graph

density is 0.006.

Indegree: The Indegree shows IRS1, AKT1, and AMPK. We have selected

the first 25 nodes that rank the highest using the indegree.

Outdegree: We have selected the first 25 nodes that rank the highest using

the outdegree. The high-fat diet is connected to a high number of other disease-

related elements. We can take a high-fat diet and find the subgraph of the high-fat
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Figure 4.70: In-degree for diabetes phosphorylated network.

diet to see if we can find a possible drug candidate.

Figure 4.71: Out-degree for diabetes phosphorylated network.

PageRank: The PageRank helps to examine the quality of links to a web
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page. The result shows the phosphorylated network nodes scores for PageRank

given the entire phosphorylated network.

Figure 4.72: PageRank for diabetes phosphorylated network.

4.9.0.1 Perturbation Results for Diabetes Mellitus Phosphorylated

Network

We have the results from our experiment using serial and sequential pertur-

bation technique. We have studied the PageRank, degree, authority scores and

betweenness centrality for both single and sequential perturbation.

The nodes are 277 and edges are 486. We applied single and sequential pertur-

bation on the datasets. The singular perturbation indicates that you take the node

with the most significant score for each of the centrality measures, and you remove

them either one by one without replacement or one by one with replacement to find
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the measure of how distorted the graph currently is. The more disconnected the

graph is, the more the node is. We used the connected components to determine

the impact of the node on the graph.

The Betweenness centrality results for serial and sequential perturbation using

Diabetes mellitus phosphorylated elements.

Figure 4.73: Single Perturbation using Betweeness Centrality Measures on Diabetes
Mellitus Phosphorylated Network

The next measure we tested the single and sequential perturbation approach

on was the PageRank.

Comparing the combined diabetes network to the diabetes mellitus phospho-

rylated network, we observe a noticeable di↵erence in the elements or nodes of the

network. This is due to the separation of the phosphorylated version from the un-

phosphorylated version. We also observed using sequential perturbation produce

more significant gaps with regards to the disconnectedness of the graph. We have

specially selected the betweenness centrality and PageRank measure to demonstrate
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Figure 4.74: Sequential Perturbation using Betweeness Centrality Measures on Di-
abetes Mellitus Phosphorylated Network

Figure 4.75: Single Perturbation using PageRank on Diabetes Mellitus Phosphory-
lated Network

this di↵erence.
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Figure 4.76: Sequential Perturbation using Betweeness on Diabetes Mellitus Net-
work

Figure 4.77: Single Perturbation using Betweeness on Diabetes Mellitus Network

4.9.0.2 Results from Network Analytics for Diabetes Mellitus Phos-

phorylated Protein Network

Our result generated some promising candidates; we confirmed these results

by using PubMed and clinical trials to verify their validity. The increase of proin-
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flammatory cytokines such as IL-6 and TNF-alpha has been associated with over-

nutrition or obesity and type 2 diabetes [137]. Also for LPIN1, mRNA expression

showed low levels of LPIN1 in individuals who are obese and also in individuals

with type 2 diabetes [138]. The AMPK is a protein kinase that has been known

to regulate glucose homeostasis in the body. Thus having a long association to

type 2 diabetes [139]. Studies have also shown a significant link between di↵erent

genetic variants of PPARGC1A and type 2 diabetes [140]. For AKT1, it plays a

role in insulin signaling, and this has been associated with type two diabetes [141].

STK11, A gene variant in STK11 has been associated with high levels of insulin.

Thus suggesting that it has a link or a connection to diabetes two [142]. MAPK3

has also been associated with the treatment of Type 2 diabetes [143].

4.10 DREiM: Multimode Clustering on Rhabdomysarcoma

The ring structure described in the methodology section depicts the arrange-

ment of three di↵erent connection modes that form a tri-mode. Multimode networks

involve multiple types of entities; bi-mode is a more abbreviated version of a multi-

mode. An example of a bi-mode will be a relationship between pathway and drug.

The bi-mode connections will contain edges between pathway and drugs but no

edges between the pathway and no edges between drug.

For the clustering of the tri-mode, we use protein, pathways, and drugs to

create tri-mode. We created matrix A1,A2, and A3. The matrix below was used to

create the adjacency matrix and to create the Laplacian matrix. The figure below
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shows the clustering results for the matrix.

A1 =

2

66666666664

u1t1 u1t2 · · · u1t7

u2t1
. . . · · · u2t71

...
...

. . .
...

u9t1 u9t2 · · · u9t7

3

77777777775

The matrix represents protein and pathway. The protein is U while the path

represents the t. It represents the first bi-mode.

A2 =

2

6666664

t1v1 t1v2 t1v3

...
. . .

...

t7v1 t7v2 t7v3

3

7777775

The matrix represents the next bi-mode in the ring structure which is the

pathways and the drug. The drug is representing v.

A3 =

2

6666664

u1v1 u1v2 u1v3

...
. . .

...

u9v1 u9v2 u9v3

3

7777775

The matrix represents the last portion of the ring structure. The equation

below shows the construction of the new matrix for decomposition.

L =

2

6666664

D

(9⇥9)
1 A

(9⇥7)
1 A

(9⇥3)
3

A

T(7⇥9)
1 D

(7⇥7)
2 A

(7⇥3)
2

A

T(3⇥9)
3 A

T(3⇥7)
2 D

(3⇥3)
3

3

7777775

The next step will be to apply eigenvalue decomposition on the L matrix and

utilize the k-means algorithm to find the clusters and to select which of the clusters

contain the highly influential nodes.
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4.10.0.1 Ideal-k for rhabdomyosarcoma for multimode clustering

We used ideal-k to determine how many clusters to use to classify our rhab-

domyosarcoma datasets (see figure 4.78). We have selected ideal-k to be 3 for the

multimode network (DReiM) for rhabdomyosarcoma (gene-drug-pathway)

Figure 4.78: Ideal-k rhabdomyosarcoma for multimode clustering.

4.10.0.2 Clustering results for rhabdomyosarcoma - DREiM

The figure below shows the clusters of rhabdomyosarcoma datasets. The re-

sults below show the gene-drug-pathway spectral clustering results using DReiM

(Multimode Clustering)( see figure 4.79). The figure shows red, blue, and green

clusters.
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Figure 4.79: Clustering results rhabdomyosarcoma for multimode clustering.

4.10.0.3 Drug Candidates for Multimode Clustering(DReiM)

We check to make sure all the 5 Top Influential Drugs were in the same cluster.

The top 5 drugs include Ponatinib, Regorafenib, nintedanib, dasatinib, bosutinib,

and alvocidib were all found in the same cluster using DReiM method.

4.10.1 DReiM: Multimode Clustering on Diabetes Mellitus Phospho-

rylated Protein Network

We have applied DReiM to our Diabetes Mellitus datasets using 4-mode. The

results below show the ideal-k for our results, and we have studied the cluster that

not only contained the high influence node but also belong to the cluster that con-

tained the 98% precision. Some of the results are discussed in this section.

Nebivolol was shown to improve blood glucose [144]. Besides, ionomycin has

been shown to lower glucose in diabetic mouse models [145]. In a clinical trial,
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subjects who used valsartan for five years reduced the risk of diabetes by 14% [146].

Metformin is a drug used to treat individuals with type 2 diabetes [147]. Oleic acid

helps to prevent type 2 diabetes in people, and it has antidiabetic e↵ects [148].

4.11 Future Work: Gene expression using K562 cells

The CEL files were extracted from NCBI and parsed into the gene pattern

tool to create the .gct files. The .gct files where further utilized and alongside with

cls file (contains the class files for the files in .gct files). The result was used to

perform the GSEA Analysis. The method checks that a priori defined a set of genes

shows statistically significant, consistent di↵erences between two biological states

(e.g., phenotypes).

4.11.1 GSEA Analysis

The .cel files containing the gene expression data were uploaded into GSEA,

and the class file containing the control and the non-control version was uploaded

as well. The gene set database was selected, and we utilized the transcription factor

gene sets so that we can identify the transcription factors that play a significant role

and further use this transcription factors for pathway analysis. We permuted 1000

times to get a more accurate p-value. The chip platform utilized was A↵ymetrix.

O represents the k562 creb control, and one represents when k562 when creb cells

are knocked out. 86 out of 572 gene sets are upregulated for control for sample

phenotype 0. 486/572 gene sets are upregulated in phenotype 1 for the knocked out
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version. The gene sets filter 43 out of 615 gene sets, and only 572 gene sets were

used for the analysis.

The data sets we used had 20,606 genes. The gene sets that are significantly

enriched at nominal p-value ¡ 5% were utilized. The gene sets are considered the

positive enrichment gene sets. The first result of the gene set enrichment analysis

is the enrichment score (ES), which indicates the extent to which a set of genes is

overrepresented at the top or bottom of a ranked list of genes.

The results from the gene sets were further extracted to find specific genes that

belong to this genesets. The genes were then used to perform pathway analysis. The

Reactome package in R was used to perform a pathway analysis using the Reactome

pathway database. It implements the gene set enrichment analysis and enrichment

analysis. Our results from the pathway analysis were utilized to extracted drugs

that target this pathway.

Figure 4.80: Pathway Analysis using Gene expression
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4.11.2 Using SVD for Pathway Analysis

We utilized SVD in finding clusters of drugs and pathways that play a role in

the treatment of the disease. The clusters show two distinct groups for the pathways

and seven distinct groups for the drug. This indicates that clusters with small drugs

can be possible targets for drug combination.

We used a term-document matrix set up to create clusters of drug vs. pathway.

The goal was to find clusters of drugs and pathways and a combination of drugs and

pathway in a cluster.

For Drug vs. Pathway, The ideal-k, we have selected is 3. We had 3-clusters

in our result. The figure 4.84 shows even more defined clusters.

Figure 4.81: Ideal-k using GSEA to discover clustered pathways
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Figure 4.82: Ideal-k using GSEA to discover clustered drugs

Figure 4.83: silhouette using GSEA to discover clustered drugs

4.12 Validation of our experiment-PIM Substrate

We used degree, authority, and PageRank to select drug candidates. One

hundred sixty-eight drug candidates were found by our current algorithm using the

Top 50 degree, Top 50 authority, Top 50, and Top 50 PageRank scores. We cleaned

the result datasets by removing chemical names that weren’t a specific drug name

and that left us with 168 drugs. We considered drugs currently in clinical trials
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Figure 4.84: Drug Clusters using Gene expression

Figure 4.85: Pathway Clusters using Gene expression

phase I, II, III a candidate since they have been selected by top pharmaceutical to

go on the trial. We used clinical trial data sets to determine the validity of our

results.

The real positives (TP) are cases in which we predicted yes (these drugs treat

prostate cancer or are on clinical trials to treat prostate cancer), and these drugs to

treat cancer or are on clinical trials to treat prostate cancer. The real negatives (TN):

We predicted no, and they don’t or can’t be repositioned for prostate cancer.The

false positives (FP): We predicted yes, but they can’t be repositioned for prostate
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cancer. (Also known as a ”Type I error.”) The false negatives (FN): We predicted

no, but they can be repositioned for prostate cancer. (Also known as a ”Type II

error.”)

The result is below on the table.

N=168 PREDICTED NO PREDICTED YES

ACTUAL NO TN=27 FP=33 60

ACTUAL YES FN=6 TP=98 104

33 131

Table 4.11: Validation of our experiment

4.12.0.1 Precision

The precision is widely used in classification. The precision measures the

exactness of our results. It checks how often the method predicts a correct answer.We

used Equation 4.4 to find the precision score and the score = 0.74.

precision =
tp

tp+ fp

(4.4)

4.12.0.2 Recall

The recall checks for the completeness. The number of positive results that

were label positive. The recall represents the rate of true positive or sensitivity score.

The Equation 4.5 was used to calculate the recall and the score for the recall = 0.94.

recall =
tp

tp+ fn

(4.5)
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4.12.0.3 Accuracy

The accuracy shows how well our results classified correctly in the identification

and otherwise. The equation for finding accuracy score is below and the score =

0.76.

accuracy =
tp+ tn

tp+ tn+ fp+ fn

(4.6)

The results above show that Recall is 94%, Precision is 74%, and Accuracy is

76%. The precision with 100% that all label classes belonged to the class they were

a label. The precision doesn’t tell us anything about results that were mislabeled

or misclassified. The recall, on the other hand, doesn’t tell us anything about the

mislabel classes. F-measure is used to combine both precision and recall and the

F-score = 82.8%.

accuracy =
2 ⇤ precision ⇤ recall
precision+ recall

(4.7)

4.13 Validation of our experiment for Rhabdomyosarcoma

4.13.0.1 Degree

The results from the degree show the calculation of the degrees for each node

(gene, SNP, drug, disease, etc.) in the network. The scores from the degree were

used to find clusters by applying the k-means clustering on the degree scores. The

degree was clustered into three groups using the k-means clustering. The result from
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the k-means clustering was compared with other results using other methods. The

performance of the degree is below.

Figure 4.86: Accuracy for Rhabdomyosarcoma for Degree

4.13.0.2 Betweeness

The results from the Betweenness centrality shows the calculation of the Be-

tweenness score for each of the nodes in the network. The scores for each of the

nodes was used to find the clusters. The K-means clustering algorithm was used to

find groups of nodes. The silhouette score was used to select the best cluster. The

Betweenness centrality result performance is below:

Figure 4.87: Accuracy for Rhabdomyosarcoma for Betweeness
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4.13.0.3 Page-rank Scores

The PageRank algorithm was also utilized to find essential nodes. The scores

from the PageRank were further used to see groups of clusters using the k-means

algorithm, and the results of the algorithm were compared with the algorithm of

the multimode network.

Figure 4.88: Accuracy for Rhabdomyosarcoma for Pagerank

4.13.0.4 Neural Network using Autoencoder

The autoencoder is a neural network that is used for unsupervised learning.

The autoencoder applies backpropagation [149] [97] . Therefore making the value

that is targeted the same as the value that is inputted. The mathematical represen-

tation is a(i) = b

(i) .

Given that, we have an example of an unlabeled set of training vectors

{b(1), b(2), b(3), . . .}, where b

(i) 2 <n.

The autoencoder’s ambition is to try to learn a function h

W,t

(b) ⇡ b. It

learns this function to produce a similar output to the original b. It imposes some
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constraints on this matrix or network to uncover novel structures about the data.

The hidden layers will further help to uncover this structure. The autoencoder does

quite similar to the PCA which is to learn in low dimensional spaces. To demonstrate

with an example, if you had a 15 x 15 image. The number of pixels for this image

will be 225. We can have pi represent the number of pixels, where pi = 225 pixels.

If there are only, hl= 20 layers in between where he represents hidden layers and the

output layer is the same as the input layer. It tries to reconstruct the 225 pixels.

The input vector is given a function to compress it ac(2) 2 <50. The function is also

known as the activation function. The activation function formula is written below:

⇢̂

j

=
1

m

mX

i=1

h
hi

(2)
j

(b(i))
i

(4.8)

The neuron is considered either active, if the values of its output are closest

to 1 or not active if it’s values are closest to 0.

The hi

(2)
j

implies the activation of the hidden unit of j for the autoencoder.

hi

(2)
j

(a) gives the activation function when specific input is given in this case a.

The activation function across all the hidden unit is average, and this constraint is

enforced on the data.

⇢̂

j

= ⇢, (4.9)
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The expectation is that the average of each of the hidden neurons will be close to

0.05 to meet the requirement of the constraints. To be able to accomplish this a

penalty term is applied to optimize that penalizes ⇢̂
j

from deviating significantly ⇢.

The penalty choice below was chosen to give a significant result.

s2X

j=1

⇢ log
⇢

⇢̂

j

+ (1� ⇢) log
1� ⇢

1� ⇢̂

j

. (4.10)

The formula or concept above is based on KL divergence.

s2X

j=1

KL(⇢||⇢̂
j

), (4.11)

The overall cost function will result in the formula below:

Jsparse(W, b) = J(W, b) + �

s2X

j=1

KL(⇢||⇢̂
j

), (4.12)

In our experiment, the adjacency matrix was used to build a clustering model

using a neural network. The auto-encoder and decoder model was fully built sym-

metrically. The hyperparameters and loss function was defined, and the model was

fit to our datasets. The weights of the trained model were saved and utilized to

build clustering layers. The input features are converted into soft labels. The vec-

tors represent the probability of the sample belonging to each cluster. The input is

193



the above encoder input which is the adjacency matrix, and its output layer is the

clustering layer or the clustered layer. The loss function was used to compute loss

using the mean squared error. We use KMeans for predicting clusters of the pre-

dicted data from Neural Network encoder. The performance of the Neural Network

is below:

Figure 4.89: Accuracy for Rhabdomyosarcoma for NN

4.13.0.5 Tanimoto coe�cient

The drug candidates will be selected by comparing the chemical similarity

between FDA approved drugs and the identified drug candidates. This based on

the dogma that chemicals with a similar structure might have similar biological

activity. In other words, if a drug candidate has an identical chemical structure to

one of the FDA approved drugs, then we assume that drug candidate might have

similar biological activities to the FDA approved the drug, and it might be useful

for treating that disease. To calculate the drug similarity, we do the following:

1) The drug name was first to convert to its SMILE representation, the sim-

plified molecular-input line-entry system (SMILES), one type of chemical represen-
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tations, by programmatically invoking the PubChem Power User Gateway (PUG)

web service; 2) The mostly used PubChem fingerprints based on the SMILES was

generated; and 3) The Tanimoto coe�cient was calculated for each drug pair based

on their fingerprints by using the Chemistry Development Kit (CDK).

The top-ranked drugs with the highest similarity to the FDA approved drugs

as potential drug candidates can be further evaluated about their biological activity.

When we compared drugs, we identified the current FDA approved drugs.

The figure 2.5 show two drugs that have a similar structure and similar function

and the figure 2.4 show two drugs that are dissimilar in structure and function. The

goal is to find two drugs that are similar both in structure and function.

Chemical Similarity using the Tanimoto coe�cient was applied to our drugs to

find the chemical similarity between drug candidates and already existing prostate

cancer drugs. A majority of the drugs had their similarities ranging from 0.75 to 1

using the Tanimoto coe�cient.

The Tanimoto coe�cient was utilized to find the similarity between two drug

molecules, and we applied the k-means algorithm to the similarity matrix. The

performance of the Tanimoto coe�cient is below:

4.13.0.6 Our Method(DReiM)

Our result showed for the multimodal network precision and specificity to be

100%. The general performance of this technique is below. We applied the same

method for 4-Modes, 5-Modes, 6-Modes, 7-Modes and up to 15-Modes.
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Figure 4.90: Accuracy for Rhabdomyosarcoma for Tanimoto Coe�cient

Figure 4.91: Accuracy for Rhabdomyosarcoma for Multimode Network
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5.14 Conclusion and Future Work

In this dissertation, the sequence level analytics by the use of di↵erent en-

coding schemes [45] was used to extend the task towards drug repositioning using

phosphorylated proteins. Our approach utilized both the network analytical ap-

proach and a multimode approach to accomplish this task. Our method can be

summarized: i) identification of phosphorylated protein through sequence analysis

using the sequence encoding schemes ii) network integration and network analytics

and iii) multimodal network approach to find potential drug candidates.

The experimental results using all the following approach was presented using

the datasets collected from the Lab for PIM Substrates and rhabdomyosarcoma. Our

result shows the need to explore the need for a multilayered approach to analyzing

medical data. Our results show that we can find a combination of the disease-related

element in a cluster that play major together. Our contribution is a novel approach

that helps to incrementally create multimode structures using the various bi-mode

relationship that is connected.

We intend to extend our approach to some other research areas that include:

We intend to apply a molecular docking approach to understand proteins that

have interactions with one another. Our current method doesn’t contain any form of

three-dimensional interaction between the proteins. The application of the docking

approach will act as a filter instead of the sequence approach we utilized in our

current path.

We have applied our approach to PIM substrates and rhabdomyosarcoma. We
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intend to implement the method to other conditions as well with the hope to identify

critical genes, SNP, and pathways that play essential roles in these conditions.

The work can be extended in a decision support system to predict future

interactions between diseases and disease-related elements. We also intend to build

a significant data infrastructure that can search PIM Substrate specifically out and

predict new substrates for lab tests.

We intend to introduce side e↵ects dataset into our analysis to help identify

levels of safety for patients and to enhance our method.
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[117] Albert-László Barabási and Réka Albert. Emergence of scaling in random
networks. science, 286(5439):509–512, 1999.

208



[118] Gitanjali Yadav and Suresh Babu. Nexcade: perturbation analysis for complex
networks. PloS one, 7(8):e41827, 2012.

[119] Ahmed Aleroud and Aryya Gangopadhyay. Multimode co-clustering for ana-
lyzing terrorist networks. Information Systems Frontiers, pages 1–22, 2016.

[120] Inderjit S Dhillon. Co-clustering documents and words using bipartite spectral
graph partitioning. In Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 269–274. ACM,
2001.

[121] H Xia, Z Gong, Y Lian, J Zhou, and XWang. Gene expression profile regulated
by creb in k562 cell line. 48(6):2221–2234, 2016.

[122] Addanki P Kumar, Shylesh Bhaskaran, Manonmani Ganapathy, Katherine
Crosby, Michael D Davis, Peter Kochunov, John Schoolfield, I-Tien Yeh,
Dean A Troyer, and Rita Ghosh. Akt/creb/cyclin d1 network: a novel target
for prostate cancer inhibition in transgenic adenocarcinoma of mouse prostate
(tramp) model mediated by nexrutine R�, a phellodendron amurense bark ex-
tract. Clinical cancer research: an o�cial journal of the American Association
for Cancer Research, 13(9):2784, 2007.

[123] Aravind Subramanian, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee,
Benjamin L Ebert, Michael A Gillette, Amanda Paulovich, Scott L Pomeroy,
Todd R Golub, Eric S Lander, et al. Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide expression profiles.
Proceedings of the National Academy of Sciences, 102(43):15545–15550, 2005.

[124] Vamsi K Mootha, Cecilia M Lindgren, Karl-Fredrik Eriksson, Aravind Subra-
manian, Smita Sihag, Joseph Lehar, Pere Puigserver, Emma Carlsson, Martin
Ridderstr̊ale, Esa Laurila, et al. Pgc-1↵-responsive genes involved in oxidative
phosphorylation are coordinately downregulated in human diabetes. Nature
genetics, 34(3):267, 2003.

[125] James MacQueen et al. Some methods for classification and analysis of multi-
variate observations. In Proceedings of the fifth Berkeley symposium on math-
ematical statistics and probability, volume 1, pages 281–297. Oakland, CA,
USA., 1967.

[126] Hui Zeng, Chengxiang Qiu, and Qinghua Cui. Drug-path: a database for
drug-induced pathways. Database, 2015, 2015.

[127] Marco C Venanzoni, Sergio Giunta, Giovan Battista Muraro, Laura Storari,
Claudia Crescini, Roberta Mazzucchelli, Rodolfo Montironi, and Arun Seth.
Apolipoprotein e expression in localized prostate cancers. International jour-
nal of oncology, 22(4):779–786, 2003.

209



[128] Huiling Chen, Huan-Xiang Zhou, Xiaohua Hu, and Illhoi Yoo. Classification
comparison of prediction of solvent accessibility from protein sequences. In
Proceedings of the second conference on Asia-Pacific bioinformatics-Volume
29, pages 333–338. Australian Computer Society, Inc., 2004.

[129] Mathieu Bastian, Sebastien Heymann, Mathieu Jacomy, et al. Gephi: an open
source software for exploring and manipulating networks. Icwsm, 8:361–362,
2009.

[130] Anam A Gangopadhay A, Odebode I. A network approach to personal-
ized medicine. The 2nd International Congress on Personalized Medicine,
13(11):35, 2013.

[131] Do-Hee Kim, Yeonui Kwak, Nam Doo Kim, and Taebo Sim. Antitumor e↵ects
and molecular mechanisms of ponatinib on endometrial cancer cells harboring
activating fgfr2 mutations. Cancer biology & therapy, 17(1):65–78, 2016.

[132] Estelle Daudigeos-Dubus, Ludivine Le Dret, Claudia Lanvers-Kaminsky,
Olivia Bawa, Paule Opolon, Albane Vievard, Irène Villa, Mélanie Pagès,
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