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Today’s healthcare system is seeing rapid technological advancements with 

the availability of vast amounts of information and computing resources. This has led 

to important developments in the field of smart healthcare for disease prevention and 

monitoring, diagnosis and treatment, hospital management, and health decision 

making. Smart healthcare utilizes technology such as internet of things (IoT) and 

enables physical sensing to collect information that can be processed and intelligently 

acted on to improve one’s health. IoT devices have been used for monitoring physical 

health such as heartbeat, respiration, and sleep activities to name a few. Devices that 

must be worn for health monitoring can be uncomfortable and pose health concerns 

as they are potential carriers of bacteria and viruses. On the other hand, non-contact 

sensing is advantages by preventing the spread of bacteria and viruses as nothing is 

worn or touched. However, designing smart health systems that utilize non-contact 

sensing can be challenging due to environmental factors like noise, obstructions, and 

multiple people. Thus, in this dissertation we contribute to the field of smart 



  

healthcare by showing how useful radar is for non-contact sensing. We showed how 

radar can preserve privacy, provide continuous monitoring, travel through material 

and obstructions, sense multiple people, and work well in challenging environments. 

These advantages are explored through three smart healthcare applications using 

radar-based non-contact sensing. Our applications use CW and FMCW radar for 

sensing and machine learning for thinking and driving intelligent decisions.  We show 

how radar-based non-contact sensing systems can be deployed in the operating room 

for gesture control and at home to monitor coughing, sneezing, and medication 

tampering with high accuracy. Our three applications are built end-to-end and provide 

new ways for interaction and monitoring of health.  
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Chapter 1: Introduction 

Smart Healthcare 

Today’s healthcare system is seeing rapid technological advancements with 

the availability of vast amounts of information and computing resources. This has led 

to important developments in the field of smart healthcare for disease prevention and 

monitoring, diagnosis and treatment, hospital management, and health decision 

making. Smart healthcare can be viewed as a health service system that uses different 

kinds of technologies such as wearable and internet of things (IoT) devices to access 

health related information for making smarter decisions to improve people’s lives 

(Tian et. al. 2019). As IoT devices and the like are pervasive and easily available, 

they can connect people, materials, and institutions related to healthcare faster than 

ever before. Additionally, IoT devices with cloud connectivity and embedded 

machine learning can actively manage and respond to medical ecosystems needs in an 

intelligent manner. Generally, smart healthcare solutions utilize technologies for 

sensing, thinking, and actions illustrated in Fig. 1. 1. Sensing includes cameras, 

microphones, accelerometers, radars, and many others, which are used to collect 

physical information about one’s health. Intelligent thinking is implemented with 

artificial intelligence through the development of machine learning and deep learning 

models. Actions can be taken with more available information leading to better 

healthcare.   
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Fig. 1. 1. Smart healthcare process. 

The process that enables smart healthcare to sense, think, and act has been 

realized through the development of smart healthcare applications such as obstructive 

sleep apnea diagnosis Tran (2019), non-contact sensing for Covid-19 Taylor (2020), 

and monitoring vital signs such as heartbeat and respiration Lv (2021). However, it 

can be challenging to design systems for complex and changing environments such as 

an operating room or a family home. Operating rooms have varying lighting 

conditions, dark and bright, tools, surgical methods, and requirements for sterility. 

Typically, wearables, camera systems, and headsets are used in an OR setting, but 

these systems are uncomfortable for people who wear or use them for long periods of 

time. In family homes there are obstructions such as walls, furniture, and interference 

can happen from multiple people in the same vicinity. Obstructions can cause systems 

that rely on light sensing to fail as they are blocked. Privacy is a concern as traditional 

sensing methods such as cameras and microphones collect personal identifiable data. 

Thus, there is a need for smart health applications that use non-traditional sensing 

methods such as radar. Radars have advantages of low transmission power, simple 

structure, high sensitivity, and can work in situations where light or audio-based 

sensing systems fail. Additionally, radars can preserve privacy and monitor health 

conditions in new and challenging environments. In this dissertation we explore three 
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smart healthcare applications using radar-based non-contact sensing to illustrate and 

address these concerns.   

Dissertation Statement 

A versatile design for smart healthcare applications utilizing radar for non-

contact sensing is effective for building robust, unobtrusive, and privacy preserving 

systems that empower people to make informed decisions.  

Radar-based non-contact sensing 

Generally, radar systems built for smart healthcare are composed of four 

components which include: radar hardware, signal processing, gesture/activity/health 

monitoring and intelligent actions (Ahmed 2021). A basic radar hardware architecture 

will include transmitting and receiving antennas, a local oscillator used with a mixer 

to change the frequency of the signal, a band-pass filter, a power amplifier, and an 

analog to digital converter (ADC). Once a signal is transmitted and reflects off a 

human subject the received signal is demodulated to baseband, I phase I(t) and Q 

quadrature phase Q(t). Digital signal processing is then used to further process the 

quadrature I(t) and Q(t) signals. This typically involves amplifying the signal, 

reducing noise, converting the signal from analog to digital using an ADC, 

representing the signal in several formats, and using a Fast Fourier Transform (FFT) 

to detect objects at multiple distances. Depending on the application, the radar data 

can be expressed in time-amplitude for gesture profiling, range-amplitude for distance 

features, time-range for time varying distance features, and time frequency (Ahmed 

2021). After selection of the signal representation, features can be created for training 
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machine learning algorithms for gesture, activity, and health recognition. The 

outcome from the machine learning models can then be used for intelligent actions to 

control and manipulate devices, monitor health, and send important health 

notifications.  

 

Fig. 1. 2. Radar-based non-contact sensing. 

Radar-based non-contact sensing is achieved in this work using continuous 

wave (CW) and frequency modulated continuous wave (FMCW) radars illustrated in 

Fig. 1. 2.  CW radars utilize the Doppler frequency shift introduced by an object 

moving in the field of view (FoV) of the radar to detect the speed and direction or 

velocity of an object’s motion. The advantages of CW radars are that they can be 

implemented on low-cost devices with simple front-end architectures and high 

sensitivity. Additionally, CW radars can have low analog to digital converter (ADC) 

requirements for sampling. Small sampling rates enable low power embedded digital 

signal processing. However, CW radars are limited as they are unable to detect 

distance to an object and typically sense a single moving object at one time. The CW 

radar does not modulate the frequency and has no time-of-flight (ToF) information 
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needed to calculate the distance from an object. When sensing multiple objects, the 

Doppler frequencies will overlap and make it difficult to distinguish one object from 

another.  

FMCW radars extend CW radar architectures and can provide both Doppler 

and range information of objects. It is also possible for FMCW radar to detect 

multiple objects at the same time at different distances and distinguish objects with 

micro-Doppler and micro-range features.  Sensing using FMCW radar begins with a 

synthesizer that generates a chirp signal and transmits the waveform out on a 

transmitting antenna. When an object moves in the FoV of the radar the waveform is 

reflected and obtained at the receiving antenna. Once the wave form is acquired the 

transmitted and received signals are mixed and down converted to the intermediate 

frequency (IF) signal. The IF signal is then processed most with an amplifier, then 

low-passed filtered and sampled with an ADC. The IF signal will have frequencies 

corresponding to reflections from multiple objects and can be observed by performing 

a fast Fourier transform (FFT) on each chirp signal. When processing the IF signal 

with the FFT, the frequency of the IF signal will be proportional to the range of the 

moving object. However, FMCW radars can consume more energy and require more 

complex architecture than CW radar. Additionally, the size profile of FMCW radars 

is larger and the displacement accuracy of an FMCW radar may not be as good as that 

of unmodulated CW system. The CW radar can easily achieve sub-millimeter 

accuracy in contrast to FMCW radar.  

Given the limitations and advantages of CW and FMCW radar, we show how 

both CW and FMCW radar can be effectively used for smart health applications. We 
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show how CW radar can be used to create a small wearable device and detect simple 

hand gestures with low power. We then show how CW and FMCW radar can be used 

together to build systems for health monitoring for detecting coughs and sneezes with 

multiple people and for monitoring medication tampering in the home.  

Dissertation Overview 

 In this dissertation we showcase the use of radar for non-contact sensing for 

three smart healthcare applications. The first smart healthcare application presented is 

a Doppler radar system for gesture control in the operating room enabling interaction 

while both hands are busy. The second smart healthcare application presented is a 

smart home monitoring system that uses a FMCW radar system for detecting cough, 

sneezing, and face touching. Finally, the third smart healthcare application presented 

is a monitoring system for medication tampering in the home. In summary the main 

contributions and scope of analysis can be defined as follows: 

• A Doppler radar system for non-contact sensing and gesture interaction with 

medical images. Our system enables gesture control while both hands are busy 

with about 95% accuracy in an operating room setting.    

• A smart home monitoring system that uses FMCW radar for detecting cough, 

sneezing and face touching with 96% accuracy.  Our system can be deployed 

throughout a home for continuous monitoring and detection of activities 

through walls and with multiple people. 

• An at home system using FMCW radar for monitoring medication tampering 

with 99% accuracy. Our system can classify eight tampering methods with 

three types of medication containers.  
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Chapter 2: Enabling one hand and no hands interaction for 

sterile manipulation of medical images using Doppler radar 

Summary 

In our first smart healthcare application we show how surgeons can interact 

with medical images using finger and hand gestures in two situations: one hand-free 

and no hands-free interaction. We explain how interaction with only one hand or a 

couple of fingers is beneficial and can help surgeons have continuous interaction, 

without the need to release their tools and leave the operating table, saving valuable 

patient time. To this end, we present RadSense, an end-to-end and unobtrusive system 

that uses Doppler radar-sensing to recognize hand and finger gestures when either one 

or both hands are busy. Our system permits the following important capabilities: (1) 

touch-less input for sterile interaction with connected health applications, (2) hand 

and finger gesture recognition when either one or both hands are busy holding tools, 

extending multitasking capabilities for health professionals, and (3) mobile and 

networked, allowing for custom wearable and non-wearable configurations. We 

evaluated our system in a simulated operating room to manipulate preoperative 

images using four gestures: circle, double tap, swipe, and finger click. We collected 

data from five subjects and trained a K-Nearest-Neighbor multi-class classifier using 

15-fold cross validation, achieving a 94.5% precision for gesture classification. We 

conclude that our system performs with high accuracy and is useful in cases where 

only one hand or a few fingers are free to interact when the hands are busy. 
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Background 

Healthcare professionals, such as surgeons, use imaging technology daily for 

providing patient care. One challenging use-case that surgeons face involves 

interacting with medical images in a sterile way, when either one or both hands are 

busy. The challenges are apparent as surgery is a collocated collaborate practice 

Mentis (2017) and the ability to learn and see the body is critical and difficult to 

achieve Mentis, Chellali, and Schwaitzberg (2014). To effectively communicate 

peculiar details of the anatomy, surgeons must talk, point, instrument tools, and 

interact with medical images while abiding by requirements for sterility Mentis 

(2017). When surgeons want to interact with images, they often hold tools in hand. 

To release or not release the tools is an important decision that the surgeon must 

make. In most cases, image interaction needs to occur while holding a surgical tool. 

In O'hara et al. (2014a, 2014b) they showed that there was a clinical need to provide 

image control while holding surgical instruments. For example, in minimally invasive 

procedures, where surgeons use small cuts and a camera to see inside the body, 

surgeons must hold a laparoscope and scissor tool while interacting with medical 

images Mondada (2003). How to control and interact with an imaging system while 

utilizing both hands is therefore critical and challenging. It was suggested in O'hara et 

al. (2014a, 2014b) that image manipulation, using gestures and voice commands, can 

be combined with the use of surgical tools, preventing the surgeon from removing 

gloves and re-scrubbing, which takes precious time. From this understanding, we 

explain how previous systems will not meet these requirements and how we 
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developed a new system that allows for finger and hand gestures in two situations: 

one hand-free and no hands-free interaction while holding surgical tools. 

Previous gesture recognition systems, computer vision Mondada (2003); Tan, 

Chao, Zawaideh, Roberts, and Kinney (2013); Jacob, Wachs, and Packer (2013); 

Ebert, Hatch, Ampanozi, Thali, and Ross (2012); Feng et al. (2018); Ruppert, Reis, 

Amorim, de Moraes, and da Silva (2012) and wearable based Jalaliniya, Smith, 

Sousa, Büthe, and Pederson (2013); Schwarz, Bigdelou, and Navab (2011); Hettig et 

al. (2015), have been developed to help surgeons in fields such as radiology and 

urology interact with images in a sterile way. Many of these systems require the 

surgeon to release their tools and are uncomfortable and get in the way. For example, 

vision-based systems, Microsoft Kinect being the most popular, show that interaction 

with images requires the surgeon to use large hand motions to perform actions such as 

zooming in and out, panning, rotating, or changing the brightness. To perform these 

actions surgeons must stand at least four feet from the Microsoft Kinect, release their 

tools, and hold their hands positioned towards the device and monitor. In addition, 

tracking fingers while holding an object in hand is often a difficult task for the Kinect. 

Vision-based systems also require line-of-sight for interaction, are impacted by 

lighting, and fail when obscured by sterile drapes and sheets. On the other hand, 

wearable solutions do allow for interaction while hands are busy, but they are 

cumbersome and get in the way, as they most often use inertial measurement units 

(IMUs) or Electromyography (EMG) sensors, which require adherence to the skin, or 

the area being observed for gesture recognition. 
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To mitigate the disadvantages presented by computer vision and wearable 

devices, researchers Chi et al. (2018, 2016, pp. 1–10); Yao et al. (2018); Li and Zhu 

(2016); Khan et al. (2016); Li, Robucci, Banerjee, and Patel (2015) have proposed the 

use of ubiquitous ambient signals such as WiFi, Bluetooth, and radio frequency (RF) 

for robust gesture and activity recognition. Ambient signals allow for sensing in 

different environmental conditions without devices that have to be worn. Most of 

these systems have not been evaluated for gesture recognition with busy hands and 

utilize existing WiFi infrastructure, which we argue is problematic in a hospital 

setting. For example, devices connecting and reconnecting to the network limit 

network bandwidth, which affects system accuracy and response. The WiFi access 

points are typically omni-directional and pick up background motion, which adds 

noise to the system. Also, hospitals have multiple windows, floors, and rooms, which 

creates high risk for spotty WiFi dead zone connections with not enough coverage. 

Dissertation Contributions 

To this end, we developed a new hybrid, both wearable and non-wearable, 

gesture recognition system we call RadSense, short for radar sensing. RadSense is an 

end-to-end, mobile, and unobtrusive directional radar system, that uses the Doppler 

Effect to sense in-air hand and finger gestures for continuous sterile medical image 

interaction when one or both hands are busy. The system captures motion using radar 

and wirelessly transmits the motion via Bluetooth Low Energy (BLE) network to a 

computer for gesture classification and image control. The system can be worn on the 

human body or attached to an object with Velcro enabling unobtrusive gesture 

detection, as it is small and does not require adherence to the skin. Accurate gesture 
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detection can also occur when the system is covered by a sterile gown to meet 

requirements of sterility. We evaluated our system in a simulated operating room 

(OR) to manipulate preoperative images using four gestures: circle, double tap, swipe, 

and finger click shown in Fig. 1. 3.  

 

Fig. 1. 3. Simulated OR: the MicroDicom CT scan image viewer application (a), the 

laparoscopic view (b), the laparoscopic trainer (c), the radar attached to an overhead 

light (d). 

We show how surgeons can use these gestures to interact with medical images 

in two situations: one hand free and no hands-free interaction. We collected data from 

five subjects and trained a K-Nearest-Neighbor multi-class classifier using 15-fold 

cross validation, achieving a 94.5% precision for gesture classification. The design, 

implementation, and evaluation of our system provides the following research 

contributions: 

1. Design of a new end-to-end and unobtrusive gesture recognition system that 

uses radar and the Doppler effect for interacting with medical images. The 
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system can be worn and covered by a sterile gown or attached to an object for 

unobtrusive hand and finger gesture recognition while holding surgical tools. 

2. Hand and finger gesture detection when either one or both hands are busy 

using only two features: zero-crossings and magnitude difference of the 

signal. We show that our system can detect gestures with a precision of 94.5% 

using a K-Nearest Neighbor classifier with low false positives. 

3. An evaluation of our system in a simulated OR using four gestures: circle, 

double tap, swipe, and finger click. 

Related Works 

Touch-less gesture recognition systems help facilitate the sterile interaction 

between surgeons and the digital mediums they want to control de la Barre, Chojecki, 

Leiner, Muhlbach, and Ruschin (2009). In practice surgeons interact with two types 

of intraoperative imaging systems: a main display that shows the anatomy of the 

human body for operating, and a secondary display for pre-operative images Mentis 

(2017). For medical image interaction with these systems, several gesture recognition 

systems have been proposed and studied in literature with the focus in two main 

categories. This includes vision-based and wearable solutions. Each solution has its 

own set of limitations and advantages which we describe next. 

Vision-based Approaches 

Vast majority of research uses vision-based gesture recognition systems like 

the Kinect O'hara et al. (2014a, 2014b); Yusoff, Basori, and Mohamed (2013); Lopes 

et al. (2017); Gallo, Placitelli, and Ciampi (2011) to capture in-air arm, hand and 
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body motions, skeletal information, and voice commands for interacting with medical 

images. The Kinect uses depth, IR, color, and sound sensing. Fields such as radiology 

Tan et al. (2013); Jacob et al. (2013); Ebert et al. (2012, pp. 301–307); Feng et al. 

(2018) and urology Ruppert et al. (2012) have successfully used the Kinect to interact 

with 2D and 3D medical image data using hand and arm gestures. For example, 

Kenton O'hara et al. (2014a, 2014b) developed a gesture system for manipulating a 

3D model in vascular surgery using the Kinect. In their study, they showed that 

surgeons could collaborate, communicate, and interact with the system in a sterile 

way using one hand, two hands, and voice controls. The surgeon, however, is unable 

to hold a tool and track a finger, as the Kinect is more suited for hand, arm, and body 

tracking. For more fine-grained gestures, research has turned to devices for finger 

tracking like the Leap motion Bizzotto et al. (2014, pp. 655–656); Cho, Lee, Park, 

Ko, and Kim (2018). The Leap Motion can accurately track objects while being held 

in the hand. A touch-free medical interface, using Leap motion, was developed in 

Nathaniel Rossol (2014), tracking a pen while being held in the hand for gesture 

recognition. When compared to the Kinect, Leap motion has a smaller field of view 

(FOV) and shorter-range detection. We argue that positioning the device near the 

FOV of the surgeon’s hands, while operating can therefore be difficult. It was shown 

in P. Hughes (2015) that surgeons prefer the Kinect over the Leap motion due to its 

wider FOV and range, but found the Kinect to be tiresome, as surgeons were 

physically exhausted from holding their hands and arms up. Although useful, vision-

based systems are limited by their range of detection, require line-of-sight sensing for 

interaction, are affected by lighting conditions [14], and fail when obscured by sterile 
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drapes and sheets. Unlike vision-based approaches, our system is instrumented with a 

radar, capable of detecting hand and fine-grained finger motion while holding 

surgical tools. Our system is not as sensitive to lighting conditions and can travel 

through material, with the ability to be placed behind a sterile gown or attached to an 

overhead medical light for interaction. 

Wearable Approaches 

Devices that can be worn on the human body, often requiring attachment to 

the skin and body parts, known as wearables, have been used for gesture interaction 

with medical images. For example, Shahram Jalaliniya et al. Jalaliniya et al. (2013) 

used inertial measurement units (IMUs) worn on the wrist and pressure sensitive 

floors (non-wearable) for detecting hand and foot gestures to interact with medical 

images. In addition, the use of inertial sensors Schwarz et al. (2011, pp. 129–136) 

worn on the body have been used for multiple user-defined gestures by tracking 

relative pose within a performed gesture. While others have used commercial 

products like the Myo arm band Hettig et al. (2015) for exploring 3D medical image 

data. We argue that these systems are uncomfortable, having to touch the skin, and 

are obtrusive, getting in the way of surgeon, not allowing the use of gestures while 

holding surgical tools. Our radar gesture interface can also be worn, but does not 

require attachment to the arm, hands, or skin of the surgeon. Instead, our radar can be 

attached on the chest via Velcro. We argue that this allows for an unobtrusive way to 

recognize gestures that may be more comfortable. Furthermore, we can attach our 

radar to other objects, such as a overhead medical light, for gesture interaction. In 

both cases, our system can be used while holding surgical tools. 
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System Design 

The RadSense system (see Fig. 1. 4) allows a surgeon to perform gestures, 

while holding surgical tools, to interact with secondary intraoperative imaging 

systems. The system allows the surgeon to remain at the operating table, not having to 

release tools or scrub out to interact with images. The system works by using 

directional radar, to minimize background noise, and the Doppler effect to capture 

hand and finger motion. This motion is captured from the radar using a custom-built 

data collection module. The data collection module sends the captured motion to a 

data relay unit which transmits the motion to a computer via BLE. The computer then 

receives the motion detects and classifies gestures, which are then used as commands 

to control a secondary intraoperative imaging system. In the following sections we 

describe the details of how to interact with our system through gestures, how our 

system captures hand and finger motion for gesture detection, the hardware 

components of the system, an algorithm we developed to detect gestures with high 

precision, and the features we use to reliably distinguish gestures for classification. 

 

Fig. 1. 4. System architecture design: from right to left, radar (1), custom data 

collection module (2), data relay (3), data analysis computer (4), image interaction 

(5). 
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Doppler Effect and Quadrature Signal Processing 

Our system uses the well-known Doppler effect or Doppler Shift principal to 

sense hand and finger motion. The Doppler Shift phenomenon is observed when a 

source emits a signal that is reflected by a moving object and the received signal is 

observed to have a change in frequency. In our approach, we chose a radar that has 

the source and receiver co-located. When a user moves their hand or fingers toward 

or away from the radar, it reflects the emitted radio waves causing a shift in 

frequency. The received signal captured by the radar can be described by the 

following equation: 

𝑓𝑟 = 𝑓𝑡(
𝑐 + 𝑣

𝑐 − 𝑣
) 

 

where, 𝑓𝑟 is the frequency of the received wave, 𝑓𝑡 is the frequency of the transmitted 

wave, 𝑣 is the velocity of the object (moving hand/fingers), and 𝑐 is the speed of 

light. The shift in frequency is defined as 𝑓𝑑 =  𝑓𝑟 − 𝑓𝑡  and can be used to determine 

gestures. 

Detecting the Doppler shift from hand and finger motion is done using 

quadrature signal processing. First, our radar system demodulates from equation (1) 

into the baseband in-phase I and quadrature-phase Q. Demodulation is a process of 

detecting a received signal represented as a quadrature signal with real part I and 

complex part Q. In radar applications we can represent quadrature signals as complex 

numbers with in-phase I referring to the momentary amplitude of the real-signal and 

the quadrature-phase Q referring to the momentary amplitude of the real signal 

shifted by 90°. Once we obtain the demodulated I and Q components we can calculate 

the phase of the signal to determine direction of the hands and fingers. To do this we 
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use the differentiated and cross-multiply algorithm (DACM) proposed in Wang et al. 

(2014) to compute the instantaneous phase of the quadrature signal to obtain from 

equation (1). A positive phase value describes an object moving toward the radar and 

a negative phase value describes an object moving away from the radar. We use this 

principle to detect the direction of the hands and fingers moving towards and away 

from the radar. The DACM algorithm given in discrete form Wang et al. (2014), i.e.: 

Θ(𝑛) = ∑
𝐼(𝑘) ∗ [𝑄(𝑘) − 𝑄(𝑘 − 1)] − 𝑄(𝑘) ∗ [𝐼(𝑘) − 𝐼(𝑘 − 1)]

𝐼(𝑘)2 + 𝑄(𝑘)2

𝑛

𝑘=2

 

where theta Θ(n) represents the instantaneous phase and 𝐼(𝑘) and 𝑸(𝑘) represent the 

𝒌𝒕𝒉, I and Q channel sample from the frame of size n. We chose the DACM algorithm 

as it has advantages over the widely used arctangent demodulation method that can 

handle the phase discontinuity problem by automatically phase unwrapping for phase 

reconstruction without ambiguities Gu (2016). 

Gesture Set and Interaction 

We created four initial gestures that can be used for interaction with the 

secondary intraoperative imaging system shown in Fig. 1. 5(a–d). Our system is not 

restricted to this gesture set as any gesture can be created by following a set of rules. 

The rules include varying the length of a gesture, making one motion longer than the 

other, varying the size of the gesture, making a large motion with the hand compared 

to a small gesture with the finger, and the location of the gesture, far or close to the 

radar sensor. We used these rules to develop four initial gestures that can be used 

while holding surgical tools in two cases described next. 
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Fig. 1. 5. Gesture Set: swipe (a), circle 5 (b), double tap (c), and finger click (d). 

One Hand-free Interaction 

One hand interaction involves the surgeon having only one hand free to 

perform hand gestures and interact with images. In this scenario the surgeon can hold 

a surgical tool in one hand while still performing gestures with the second hand, 

shown in Fig. 1. 6. The radar is worn on the chest of the surgeon for gesture 

detection. In this position, the surgeon can perform the following three gestures while 

holding one tool: hand swipe to scroll through images, a hand circle switch between 

commands, and a hand double tap to flip an image left or right (see Fig. 1. 5(a–c)). 

The hand swipe occurs in front of the chest, the arm extended half the length of the 

arm, with a swinging motion either up or down. The circle is performed with the arm 

extended in front of the chest, the hand then moves either clockwise or 

counterclockwise, and performed five times, named circle 5 gesture, in order to create 

a long distinguishable gesture. The double tap occurs with the arm extended as far as 

possible in front of the chest. The four fingers of the hand are then moved towards the 

palm and then away from the palm twice. 
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Fig. 1. 6. One hand interaction: viewing the image (a), performing a gesture (b), 

RadSense worn on chest (c) busy hand holding tool (d). 

No Hands-free Interaction  

No hands-free interaction involves the surgeon having no hands free, but only 

the index finger available to perform gestures. In this scenario the surgeon can hold 

two surgical tools, one in each hand while still being able to interact with medical 

images, shown in Fig. 1. 7. For example, if using a laparoscopic grasper or scissors, 

the index finger used to manipulate the end effector is free. For this configuration, the 

radar is attached to an overhead medical light, to be in view of the finger. In this 

position, the surgeon can perform a finger click gesture, like pulling a trigger and then 

releasing, to flip an image left or right. Performing the same click can also be used to 

toggle between flipping left or right. In this case the radar is attached to an overhead 

medical light, angled towards the finger for gesture detection. 
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Fig. 1. 7. No hands interaction: RadSense attached to medical light (a), viewing 

image (b), performing finger gesture while holding a tool (c) busy hand holding tool 

(d). 

Hardware Design 

The hardware for our system (see Fig. 1. 8) uses the K-LC2 25-GHz K-band 

Doppler radar transceiver RFBeam (2016), a custom-built data collection module, and 

a RFduino micro-controller to obtain the demodulated I and Q signal channels for 

gesture recognition. Our hardware design is simple, small, and low cost; all 

components total less than $80. In the following sections, we introduce the major 

subsystems of our hardware platform. 
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Fig. 1. 8. Custom PCB design (a), including the front view of the circuitry (left), and 

back view of the radar attachment (right), and the Wearable Radar Interface design 

(b). 

To sense hand and finger motion, we used the K-LC2 continuous wave (CW) 

radar, capable of sending Doppler shifts. The K-LC2 cannot be used to detect the 

range or distance of an object, but only displacement of movement of the object due 

to lack of modulated spectral information Gu (2016). Two other types of radar 

technology exist known as frequency modulated continuous wave (FMCW) radar and 

pulse or impulse radar. These two types of radar are capable of sensing range 

information. We chose CW radar over FMCW and impulse radar as CW radar has 

higher accuracy in detecting movement, can operate in low power, and requires 

simpler hardware and signal processing techniques to condition the input signal Gu 

(2016). 

To capture hand and finger motion, we designed a custom data collection 

module which connects to our radar, by leveraging the design in Li et al. (2015). To 

do this we created a printed circuit board (PCB), that amplifies and applies a low-pass 

filter on the captured I and Q signals, from the radar, for short-range movement 

detection. We define short range as the distance from the chest of a subject to end of 

their arm fully extended. The data collection module includes a 12-bit ADC that is 

used to transmit the I and Q signals to a Simblee RFduino micro-controller via a 

serial peripheral interface bus (SPI). We housed the data collection module inside a 

3D printed case with Velcro attached to the back side. The Velcro allows our system 

to be worn on the human chest or attached to an object such as an overhead medical 

light for gesture detection. 
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To transmit the hand and finger motion from our custom data collection 

module to a computer, we designed a data relay module. Our data relay module uses 

the Simblee RFduino micro-controller. This micro-controller houses an ARM Cortex-

M0, running at 16 MHz, and a BLE module used to transmit the digital I and Q 

signals sampled every 3 milliseconds to a central computer. 

The radar module consumes 35 mA at 5 V (0.175 W), the RFduino consumes 

10 mA at 3.3 V (0.033 W), L324 consumes 0.8 mA at 3 V (0.0024 W), the AD7924 

consumes 2 mA at 3.0 V (0.006 W), and the AD780 consumes 1 mA at 3.0 V (0.003 

W). The total power consumption of the wearable radar interface is 0.2194 W while 

transmitting data. A 3.7 V lithium-ion rechargeable battery is used to power our 

system with appropriate step up/down regulators. The RFduino micro-controller 

program uses less than 24KB of memory. 

Gesture Detection 

To reliably classify gestures, we developed a highly precise real-time gesture 

detection algorithm shown in Fig. 1. 9. Our detection algorithm is used to detect the 

start and end of a gesture. Once the start and end of a gesture has been determined we 

calculate a set of features to classify gestures. We also create a simple threshold to 

determine if there is no movement explained next. 
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Fig. 1. 9. Gesture detection algorithm: step 1, capture the raw I and Q with 2080 

samples (a), step 2, calculate the velocity of motion, filter the velocity with Savitzky-

Golay filter, calculate the change points that indicate the start and end of the gesture, 

and compare the gesture mean with a predetermined threshold (b). If the mean is 

greater than the threshold, we continue to step 3 and calculate the I/Q gesture frame 

by finding the midpoint between change points and extending the frame 520 samples 

to the left and right (c). 

 

In step 1, we capture a frame size of 2080 samples of raw I and Q channel 

values from the radar shown in Fig. 1. 9 (a). We chose a frame size of 2080 by 

observing the average window size used during labeling for data collection which was 

about 1040 samples. We wanted a larger frame size, double in our case, to allow for 

our frame to include additional motion information for easier detection as our 

gestures create an impulse in the signal and then flat lines. This window size 

corresponds to about 6.23 s of motion for 2080 samples, sampled every 3 

milliseconds. 

In step 2, We find the start and end points within the captured frame shown in 

Fig. 1. 9 (b). To do this we calculate the velocity of the I and Q quadrature signal by 

taking the forward difference of the instantaneous phase using the DACM algorithm 

shown in equation (2). The forward difference is then calculated as: 

 

Θ𝑑(𝑛) = Θ(𝑛 + 1) − Θ(𝑛) 

 

where Θ𝑑(𝑛) represents the phase difference corresponding to the gesture velocity. 

To de-noise the velocity signal while maintaining the shape of its original curve we 

apply a Savitzky-Golay (SG) filter with polynomial order equal to 21 and frame 

length equal to 89. The filtered velocity signal is a good indicator for detecting hand 

and finger motion as little motion happens between +0.2 m/s and −0.2 m/s and hand 

and finger motion happens outside this range. In Fig. 1. 9 (b) there is a larger 
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variation in velocity where the gesture happens compared to where there is no 

movement. We use this observation to calculate the change points by observing 

where the root-mean-square (RMS) level of the velocity signal changes most 

significantly. The inflexion points help us identify the start and end of a gesture. For 

our purposes we want to identify two inflexion points that divide our gesture frame 

into three sections. We use the changepoint detection method Lavielle (2005); 

Killick, Fearnhead, and Eckley (2012) to find two change points 𝐾 = 2, by 

minimizing the function: 

𝐽(𝐾) = ∑ ∑ Δ(𝑥𝑖; 𝜒([𝑥𝐾𝑟
. . . 𝑥𝑘𝑟+1 − 1])) + 𝛽𝐾

𝐾𝑟+1−1

𝑖=𝐾𝑟

𝐾−1

𝑟=0

 

where 𝐽(𝐾)  is the total residual error from the three sections for two change points 

𝐾 = 2, for a given signal 𝑥𝑘𝑟
, … , 𝑥𝑘𝑟+1

− 1, given the empirical estimate 𝜒 and the 

deviation measurement Δ, where β represents the fixed penalty added for each change 

point. We use the RMS empirical estimate statistic and find two change points 

indicating the start and end of a gesture. After finding the two change points we 

calculate the mean of the velocity signal between the two change points. We created a 

threshold +0.2 m/s by averaging a total of 60 s worth of collected velocity values with 

no movement. If the mean of the velocity signal, defined by the change points, falls 

below this threshold we ignore the gesture and consider it as no movement. In the 

other case we continue to step 3. 

In Step 3, we calculate the midpoint between the two change points and 

extend our frame 520 samples to the right and to the left of the midpoint Fig. 1. 9 (c). 
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We use these left and right points for the start and end of our raw I and Q channel 

gesture frame. If the gesture is off center within the 2080 sample frame and we cannot 

extend our frame to the right or to the left by 512 samples, we truncate the frame to 

the max sample less than 512. At this point our gesture is still unknown, but we are 

more confident that a gesture happened. Our gesture frame is now created, and we 

can continue to calculate features to classify the gesture. 

Feature Extraction 

We experimentally developed two features to reliably classify our four 

gestures. To do this we extract two features from our captured gesture frame of 1040 

samples. Previous works have used zero-crossing Gao et al. (2016) and the magnitude 

differences between the highest crest and the lowest crest through each signal Wan, 

Li, Li, and Pal (2014) achieving above 90% accuracy for classification. Also, the set 

of measurable properties using the Doppler effect were described in Gupta, Morris, 

Patel, and Tan (2012) for sound waves that are also applicable to radar. We base our 

feature set off this work and show how we can obtain higher than 94% accuracy for 

classification explained in our evaluation section. The two features are described 

next. 

 

The first feature we calculated was the sum of the zero-crossings of the 

quadrature signal. We normalize each channel so that the signal is centered at zero 

along the x-axis. The zero-crossings is proportional to the phase of the signal. To find 

the zero crossings for each channel, I and Q, we look for the following conditions:  

𝑋𝑖 < 0 and 𝑋𝑖 − 1 > 0 and 𝑋𝑖 > 0 and 𝑋𝑖 − 1 < 0 where 𝑋𝑖 represents the 𝑖𝑡ℎ 
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sample for channel I or Q. We then take the sum of all zero-crossings found for both I 

and Q as a feature. 

The second feature we calculate is the difference of the maximum, minus the 

minimum, magnitude. The magnitude of the signal is proportional to the amplitude of 

the signal. The amplitude is higher when the hand and fingers approach the radar and 

lower when they recede. The magnitude difference is calculated as: 

𝑀
^

= 𝑚𝑎𝑥(𝑀(𝑡)) − 𝑚𝑖𝑛(𝑀(𝑡)) 

where 𝑀
^

  is the magnitude difference, and 𝑀(𝑡) is the magnitude defined as: 

𝑀(𝑡) = √𝐼(𝑡)2 + 𝑄(𝑡)2 

where 𝑡 is the 𝑡𝑡ℎ sample of the signal. 

When the two features, discussed previously, are used together, they cluster 

the feature set into 4 categories (see Fig. 1. 10 (a)). This is important as it makes our 

machine learning model more accurate. The magnitude difference helps distinguish a 

large gesture, hand performing circle 5 gesture, from a small gesture, finger 

performing finger click. The sum of the zero-crossings help distinguishes between the 

length of the gesture, short, finger click and double tap, or longer, swipe and circle 5. 

The two features we chose may make our system less robust if additional gestures are 

added. To retain the high accuracy of our system, we suggest to use additional 

sensors, each with their own trained models of just a few gestures. Thus, the gesture 

set can be extended by adding more sensors. 
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Fig. 1. 10. Sum of zero crossing features, and magnitude difference, the circle 

indicates correct prediction and x indicates incorrect prediction (a), and Confusion 

matrix classification accuracy for radar training data (b) 

Evaluation and Results 

We evaluated our system in a simulated OR, by training a K-Nearest-

Neighbor (KNN) multi-class classifier using a 200 labeled gesture data set composed 

of the sum of the zero-crossings and magnitude difference features described 

previously. We collected our data from five subjects, with Institutional Review Board 

(IRB) approval, two male, and three female. Each subject was asked to perform our 

four gestures 10 times each. We trained each subject on how to perform gestures, and 

then collected the gesture data. We used a camera to record video of the gestures for 

accurate labeling of each gesture. The magnitude difference (y-axis) and sum of zero-

crossings (x-axis) features are shown in Fig. 1. 10 (a). 

 

For the KNN model we used the Euclidean distance and squared inverse 

distance weight with K = 10 for the number of nearest neighbors. We evaluated our 

trained KNN model using 15-fold cross validation achieving 94.5% accuracy 
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calculated from the confusion matrix (see Fig. 1. 10 (b)). In detail we take the 200 

examples divide them into 15 equal folds (13 examples per fold), then randomly 

shuffle the folds. Then K-1 folds are used for training (15-1 = 14) and the last fold (1) 

is used for validation. This process is repeated K (15) times, leaving one different fold 

for validation each time. After each K-iteration we calculate the classification 

accuracy and then take the average of all iterations for mean classification accuracy 

(see Fig. 1. 11 (a)). In addition, we varied the number of folds and found 15-fold 

cross validation to have the highest accuracy (see Fig. 1. 11 (b)). For comparison, we 

also trained three additional models using 15-fold cross validation: cubic support 

vector machine (SVM) achieving 94.5% accuracy, Ensemble Bagged Trees (EBT) 

achieving 91% accuracy, and Fine Decision Tree (FDT) achieving 90% accuracy (see 

Fig. 1. 12). In addition, we varied the number of folds for cross validation for the 

KNN: 5-fold achieving 93% accuracy and 10-fold achieving 93.4% accuracy. We 

also varied the features and found that using both features resulted in the highest 

accuracy of 94.5%. 

 

Fig. 1. 11. K-Fold cross validation process (a), and Evaluation of K-Fold cross 

validation (b) 
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Fig. 1. 12. Model comparison using 15-fold cross validation. 

System Precision and Recall 

To evaluate our trained KNN model we analyzed the precision and recall of 

our confusion matrix Table 1. 1. Precision measures the proportion of positive 

identifications of gestures that were correct. Recall measures the proportion of actual 

positive gestures that were correctly identified. We can see in Table 1. 1 that the 

precision for circle 5 is 0.98, with 2% classified as swipe, with recall 0.98. The 

precision and recall for double tap is 0.94 with recall of 0.8668 with 6% classified as 

finger click. The precision and recall for finger click is 0.90 with recall 0.9375 with 

10% being classified as double tap. The swipe gesture precision is 0.96 and recall is 

0.9796, with 2% of the gestures classified as circle 5 and another 2% classified as 

double tap. The biggest discrepancies were between the double tap and finger click 

gestures as they were similar in movement (two motions) and distance (arm length 

similar to distance between overhead light and finger position). 

Table 1. 1 System training precision and recall 

Gesture Circle 5 Double Tap Finger Click Swipe 

Precision 0.9800 0.9400 0.9000 0.9600 

Recall 0.9800 0.8668 0.9375 0.9796 
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Detection Through Material 

We also found that our system can reliably classify gestures when covered by 

material (see Fig. 1. 13 (a)). This is particularly useful for meeting requirements of 

sterility, as surgeons can wear the RadSense system underneath their sterile gown. 

We performed a preliminary evaluation and trained a new, supervised KNN model 

and removed the finger click gesture. In this experiment, we had one subject wear the 

radar on the left side of the chest and then wear a sterile gown over the radar. The 

subject performed each gesture 10 times each. We were able to achieve an accuracy 

of 97% when covered by a sterile gown (see Fig. 1. 13 (b)). The precision and recall 

are shown in Table 1. 2. 

 

Fig. 1. 13. The radar worn on the chest of a subject behind a sterile gown (a), and the 

confusion matrix results when the radar is covered by the sterile gown (b). 

Table 1. 2. Training precision and recall for through material detection 

Gesture  Circle 5 Double Tap Swipe 

Precision 0.9700 1 0.9400 

Recall 0.9691 1 0.9434 

Discussion 

We tested our system in a simulated OR (see Fig. 1. 3). We used a monitor to 

display CT scan images using the MicroDicom application. Images were retrieved 

from the national institute of health (NIH) national biomedical imaging archive 
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(NBIA). The MicroDicom application allows for scrolling, zooming, rotating, 

panning, measuring, and drawing on a CT scan image. Finally, we mapped our 

gesture set to a set of commands to control the CT scan images. We mapped the 

following gestures to the following commands: swipe to scrolling up and down, 

double tap to flip the image left and right with the hand, finger click to flip the image 

left and right, done while holding a surgical tool, and circle 5 to switch between 

commands, up or down for swipe, and left or right for double tap and finger click. 

 

Fig. 1. 14. Accuracy of commands when using real-time system 

We tested our commands by having five subjects perform the gestures 10 

times each then took the average of correctly executed commands. The system was 

able to detect gestures and control the CT scan images shown in Fig. 1. 14, but future 

work is required to analyze the usability and failure rate of our system. The real-time 

system was particularly bad at detecting the swipe gestures as we observed that users 

swiped too close to the radar or shifted the radar up and down on the shirt when 

performing a swipe. Also, the finger click gesture, often was classified as a double 

tap, but since they were mapped to the same command users did not notice. This 

miss-classification between the finger click and double tap was not a big issue for 

users, as the two gestures were used in two different configurations: one hand 
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interaction (using the hand) or no hands interaction (using the finger). The hold 

gesture was not explicitly trained, but rather, any movement below our threshold was 

assumed to be a hold.   
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Chapter 3: Smart homes that detect sneeze, cough, and face 

touching 

Summary 

In our second smart healthcare application we developed a wireless sensing 

system capable of detecting voluntary coughs, sneezes, and face touching with alert 

based notifications sent to a mobile application. Our work is motivated by the fact 

that coughing, sneezing, and face touching activities are three primary ways of 

spreading disease. With the onset of COVID-19 it is paramount to monitor these 

activities at home and practice good hygiene. To do so, our system uses radio 

frequency technology to capture motion, speed, direction, and range information from 

human activities. It does this by using a combination of a continuous wave Doppler 

and frequency modulated continuous wave radar. By observing a set of features 

related to the sensed motion, we designed a set of fuzzy logic IF-THEN rules that can 

differentiate each activity from each other with an overall accuracy of 96%. In 

addition, our system enables smart homes to detect and localize these activities at 

different distances up to 2.74 m, through walls, and with multiple people. We 

envision our system helping not only with prevention of COVID-19 but supporting 

contact tracing efforts by monitoring people's activities at home. 

Background 

The rampant and rapid spread of COVID-19 is unrelenting and its impact on 

healthcare has been devastating. As the writing of this paper, there has been a total of 

11, 590, 195 confirmed cases and 537,429 deaths globally with the United States 

leading with 2,935,008 confirmed cases and 130,284 deaths according to the Johns 
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Hopkins University (JHU) (JHU 2020). To combat this pandemic, several guidelines 

have been issued by the Centers for Disease Control and Prevention (CDC) (CDC 

2020) and the World Health Organization (WHO) (WHO 2020). The guidelines 

suggest that people wash their hands often, avoid close contact, cover their mouth and 

nose with a face cover, avoid touching their face, cover coughs and sneezes, clean 

and disinfect often, and monitor health daily. In addition, contacts with people testing 

positive for COVID-19 are asked to stay home and maintain a social distance of six 

feet from others for at least fourteen days. Thus, there is a need for at home 

monitoring systems to track and locate people's activities to help people properly 

clean and maintain proper hygiene and social distancing. 

Dissertation Contributions 

This has motivated us to research a new smart home monitoring system shown 

in Fig. 1. 15, that alerts people of activities related to coughing, sneezing, face 

touching, and entering and leaving a room. In contrast to previous works which have 

mainly used audio sensing Birring et al. (2008); Sun et al. (2011a, pp. 425–434) or 

wearable and portable sensors Drugman et al. (2019); Jasmine and Jayanthy (2020), 

our system uses radio frequency (RF) technology to capture the motion characteristics 

of activities performed by humans. Previous systems are limited and suffer from 

environmental sounds and obstructions, are often required to be worn, making them 

obtrusive and uncomfortable, have dependence on batteries reducing monitoring time, 

and have privacy concerns because of microphone recordings. We address these 

issues by using a combined continuous wave (CW) and frequency modulated 

continuous wave (FMCW) radar that can detect motion, speed, direction, and range 
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information from human activities. Our system is unobtrusive, as it can be mounted to 

a wall or stand in a room and can continuously monitor activities with an overall 

accuracy of 96%. In addition, our system can detect activities at different distances, 

through a wall, and with multiple people described in section 3 and section 4. We 

envision our system helping not only with prevention of COVID-19, but supporting 

contact tracing efforts by monitoring peoples activities at home. 

 

Fig. 1. 15. This figure shows the system architecture from left to right: activities that a 

human can perform in front of the radar, the radar's transceiver that captures the 

human activity's motion and outputs the motion's speed, direction, range, and raw in-

phase (I) and quadrature-phase (Q) signals, the processing pipeline which consists of 

a home server that connects to the radar by USB, performs the activity separation, 

feature extraction, applies the fuzzy IF-THEN rules, classifies the activity, and sends 

Wi-Fi alerts to a mobile phone, and finally the mobile application which displays the 

alters from the pipeline including the distance at which the activity was performed, 

the time the activity was captured, and the type of the activity classified. 

The main contributions of our work include the following: 

 

1. We designed a new smart home activity monitoring system that detects 

coughing sneezing, face touching, and entering/leaving a room with an overall 

accuracy of 96%. The design includes a mobile application to alert people of 

the time, location, and type of activity detected. In addition, our system is the 

first to use a combined CW and FMCW radar for sneeze, cough, and face 

touching activity detection in the home. 
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2. We provide solutions for accurately separating activities with a CW and 

FMCW magnitude filter and differentiating activities with two features and a 

set of fuzzy logic IF-THEN rules. The features include the interquartile range 

and relative direction feature of the activity's velocity. 

3. We provide an evaluation of our system in different scenarios. We show that 

with a single individual our system can achieve 96% accuracy. Our systems 

can detect activities at close, near, and far ranges with 100%, 100%, and 90% 

accuracy respectively. Our system can detect activities with obstructions such 

as through a wall with an accuracy of 81%. In addition, our system can detect 

activities with multiple people with 95% accuracy. 

Related Works 

There has been a proliferation of research Birring et al. (2008); Sun et al. 

(2011a, 2015, pp. 97–108); Hata et al. (2009, pp. 1–5); Matos et al. (2006); Monge et 

al. (2018); Larson et al. (2011, pp. 375–384); Di Perna et al. (2017, pp. 190–193); 

Amrulloha et al. (2015); Hoyos Barcelo et al. (2018); Pham (2016); Nguyen and Luo 

(2018); Sun et al. (2011b) focused on the use of audio signals as the primary way of 

detecting respiratory symptoms such as coughing and sneezing. Devices that include 

microphones worn as a necklace Birring et al. (2008); Larson et al. (2011, pp. 375–

384) have been effective in detecting and counting the frequency of coughs as they 

are close to the source of the sound. Others have used smartphones Sun et al. (2015, 

pp. 97–108); Monge et al. (2018) or ubiquitous devices Sun et al. (2011a, pp. 425–

434); De Silva (2009, pp. 223–229) and their built-in microphones to detect the 

sound-related respiratory symptoms. Methods of detection using audio include the 



 

37 

 

use of fuzzy IF-THEN logic, Hidden Markov Models, or engineered features used to 

train supervised and semi-supervised models for classification of coughs or sneezes. 

Most recently Laguarta et al. (2020) developed an AI speech (audio) processing 

framework that leverages acoustic biomarker feature extractors to pre-screen for 

COVID-19 from cough recordings using a convolution neural network (CNN). 

Despite their usefulness, audio sensing systems suffer from environmental noise and 

obstructions, limited monitoring time due to dependence on batteries, variations in 

recording conditions such as distance from the microphone, and privacy concerns as 

many systems continuously monitor audio with a microphone. 

Beyond audio sensing other modalities for monitoring respiratory symptoms 

such as coughing and sneezing include the use of electrocardiogram (ECG), 

Thermistor, chest belts, Oximeter, and accelerometer, sensors Drugman et al. (2019); 

Jasmine and Jayanthy (2020). These devices have been effective in detecting 

voluntary coughs at various volume levels and with background noise, throat 

clearing, speech and laugh. Recently a new approach Soliński et al. (2020) that uses a 

portable spirometer device has been developed that can effectively classify the 

airflow of a cough versus a non-cough. Although promising, most of these devices 

are required to be always worn by the user, or carried by the user, can be 

uncomfortable, have limited battery life, and are affected by interference such as 

rubbing of skin or materials. 

In contrast to these past systems, we use RF sensing to detect the motion 

characteristics of respiratory symptoms related to voluntary coughing and sneezing. 

The RF sensing technique has more robust properties as RF is not affected by lighting 
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or environmental sounds, can travel through material, and can report motion 

information such as speed, direction, and range for an observed activity. For example, 

Yao et al. (2018, pp. 1718–1726) have shown that RF sensing can be used to detect 

human motion through walls. Also, privacy can also be preserved, to some extent, 

when using RF as shown by Li and Zhu (2016a, pp. 571–582). They explain how 

Doppler signatures are specific to locations of RF antennas in the room and not 

necessarily associated with an individual. Thus, we used RF to design our system to 

include: no invasion of personal privacy, by not monitoring conversations with a 

microphone, monitoring with multiple people in a home, at different distances, 

through wall detection, and detection without wearing a device or relying on battery 

power. 

Furthermore, our system is not limited to sensing only two activities and can 

be extended to sense other activities such as face touching and entering/leaving a 

room. To do this we designed a calibration process described in section 3.5, that 

allows our system to collect FMCW/CW signatures for any type of activity, which 

can then be used to define rules to classify the activity performed. These additional, 

non-respiratory activities, fall under more general activity recognition and have been 

thoroughly researched Wan et al. (2014); Chi et al. (2016); Li and Zhu (2016b, pp. 

238–247); Chi et al. (2018, pp. 237–249); Khan et al. (2016, pp. 1–9); Mahmoud et 

al. (2020). In this study, we only evaluated a few external motion activities. We did 

not evaluate our system on internal motion activities such as blood glucose 

monitoring. Further research could be done to combine our external motion activity 

detection with smart health devices that do internal health monitoring such as Gao et 
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al. (2017, 2016, pp. 199–208). Still activities such as touching the face and 

entering/leaving a room have not been combined with respiratory symptoms such as 

sneezing and coughing for activity recognition. 

About the use of RF sensing for coughs and sneezes, we found very little 

research. One technique Oncu (2016, pp. 5161–5164) designed a Doppler radar 

system, that can detect cough and apnea, but only a small experiment was conducted 

with one observed cough event in a 40 s measurement. Majority of research that uses 

ambient sensing such as RF or Wi-Fi focus mainly on breathing and heart rate 

monitoring Nguyen & Tran (2020); Li, Valero, Shahriar, Khan, & Ahamed (2020); 

Adib et al. (2015, pp. 837–846); Kukkapalli et al. (2016, pp. 1–3); Liu et al. (2015, 

pp. 267–276). To our knowledge, our system is the first in smart home monitoring of 

voluntary coughs and sneezes, with the combination of other activities like face 

touching and entering/leaving a room, using CW/FMCW radar for sensing. 

Theory of Operation 

Our system uses a combined CW Doppler and FMCW radar to detect motion, 

speed, direction, and range information from human activities. The basic principle of 

the radar utilizes the CW Doppler frequency shift to detect the speed and direction or 

velocity of an activity's motion and the FMCW time of flight (TOF) to detect the 

range or distance at which activities are performed. This process starts with the radar 

transmitting a signal. When a person is in the field of view (FoV) of the radar, the 

transmitted signal will bounce back off the person to the receiver of the radar. The 

received signal is then mixed with the transmitted signal to down convert to an 

intermediate frequency signal, representing either the Doppler frequency of the 
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human motion performed by a person's activity, or a time shift based on the distance 

to the person performing the activity. We refer the reader to Miller et al. (2019); Wan 

et al. (2014) and Adib et al. (2013); Solano-Pérez et al. (2020) for a detailed 

description on how CW Doppler and FMCW radars work. Each activity performed 

can then be characterized by its motion characteristics, velocity, direction, and 

distance from the radar. Our systems characterize five types of activities including 

coughing, sneezing, face touching, and entering and leaving a room shown in Fig. 1. 

16. 

 

Fig. 1. 16. A total of 19 activities captured over a 4 min continuous period. From top 

to bottom the figure shows the FMCW magnitude, FMCW range, CW magnitude, 

and CW velocity. Activities at close range include enter, touch face, sneeze, sneeze, 

cough and leave. Activities at near range include enter, touch face, sneeze, sneeze, 

cough, cough, and leave. Activities at far range include enter, touch face, sneeze, 

sneeze, cough, and leave. Each activity is separated by have a delta t greater than or 

equal to 1.5 s. 
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It is important for us to explain the motion events and anatomy phases of each 

activity we detect. For each activity a different set of phases occurs which produces 

different reflections back to the radar. These reflections travel further when an object 

is moving away from the radar and closer when an object is moving towards the 

radar. We use this principle to show that each activity will have a unique set of 

reflections which we can use to distinguish them apart from one another. We now 

explain the motion events and anatomy for each activity: coughing, sneezing, face 

touching, and enter/leaving a room. 

Coughing Anatomy and Motion Events 

The anatomy of coughing shown in Fig. 1. 17 is composed of three phases 

Umayahara et al. (2020): inspiration, compression, and expiration. In the first phase 

of inspiration, a person inhales air, pressure increases, and there is an expansion of air 

in the body. During this phase the glottis remains open allowing air in. The glottis is 

the part of the larynx consisting of the vocal cords and the opening between them. 

The movement of the chest will be forward or towards the radar as it expands, 

causing reflections to the radar to be closer or shorter. In addition, we assume that the 

head moves backward or away from the radar, which causes reflections to the radar to 

be father or longer. To our knowledge, there is no established or widely agreed upon 

explanation of the motion of the head in inspiration phase. We assume that inhalation 

naturally causes the head to move backwards. For the next two phases we also 

assume certain head motions. In the second phase of compression, the glottis 

temporarily closes, muscles compress the air in the lungs, and the head is assumed to 

start to move forward. The compression phase lasts approximately 0.2 s Umayahara 
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et al. (2020). The increase in pressure causes the reflections from the chest to the 

radar to be shorter and the head is positioned to move forward and will now be closer 

to the radar causing the reflection to the radar to be shorter. In the final phase of 

expiration, the glottis opens resulting in a rapid discharge of the air from the lungs 

through the mouth. The chest will start to move away from the radar causing the 

reflection to the radar to be longer and the head is assumed to move forward causing 

reflection from the head to the radar to be shorter. In general, the radar will receive 

several reflections, long and short, produced by each phase of coughing. Our system 

captures these reflections for coughing activities and calculates their FMCW range 

and magnitude, and CW velocity, and magnitude depicted in Fig. 1. 16. 

 

Fig. 1. 17. Anatomy of the cough showing three phases, (inspiration, compression, 

expiration) and the motions of the chest and head performed during each phase 

causing short and long radar signal reflections back to the radar. 

Sneezing Anatomy and Motion Events 

The anatomy of sneezing Songu and Cingi (2009) is shown in Fig. 1. 18 

composed of two phases: inspiration and expiration. Typically, inspiration and 

expiration happen together in a single phase, but we broke them out to show the 

motion events during each phase. There is usually a phase before inspiration called 
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the sensitive phase, where there is stimulation of the nasal mucosa by chemical or 

physical irritants Songu and Cingi (2009). In the inspiration phase of sneezing, a 

person inhales air, pressure increases, and there is an expansion of air in the body. 

The movement of the chest will be forward, causing reflection to the radar from the 

chest to be shorter. We assume that the head moves backwards causing reflection 

from the head to the radar to be longer. Also, we argue that the glottis does not close 

all the way, but rather the pallet lowers, and the tongue raises as explained here you 

(2013). This causes the airway through the mouth to be smaller and the airway 

through the nose to be larger. This leads to the second phase, expiration where there 

is a lower increase in pressure since air is compressed less and expands less, during 

sneeze than cough. The air flow will then be expelled through the nose as the airway 

is larger when the pallet and tongue are raised. In this phase, the chest will move 

away from the radar causing reflections from the chest to the radar to be longer. For 

the motion of the head we assume that it moves forward, and closer to the radar than 

during coughing. This causes the reflections from the head to the radar to be shorter. 

From these two phases, the radar will receive several short and long reflections 

produced by sneezing. Our system captures these reflections for sneezing activities 

and calculates their, FMCW range and magnitude, and CW velocity and magnitude 

depicted in Fig. 1. 16. We assume that sneezing will have more reflections that are 

shorter over the entire period of both phases. We assumed that when a person sneezes 

their head will move more forward and at a faster rate towards the radar than a cough. 

This is one way we can distinguish coughing from sneezing. Although this 

assumption won’t hold for all cases, in our experiments in section 4 which used 
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voluntary sneezes, we observed the subject moving their head closer to the radar 

during sneezing than when coughing. Thus, the overall motion of sneezing tends to be 

more forward or towards the radar than with coughing with a more positive direction 

as shown in Fig. 1. 24 (b). 

 

Fig. 1. 18. Anatomy of the sneeze showing two phases, (inspiration and expiration) 

and the motions of the chest and head performed during each phase causing short and 

long radar signal reflections back to the radar. 

Motion Events for Face Touching 

The motion events for face touching, depicted in Fig. 1. 19 (a), can be 

described in three steps. In the first step we assumed that the person's arm starts at the 

side of their body naturally hanging down. This leads to the second step, by which the 

person starts to touch their face by swinging their arm up. The reflections from the 

arm and hand to the radar will start off shorter as the hand is raised, but over the 

period that the arm is moving towards the face, majority of the movement will be 

away from the radar, causing longer reflections back to the radar. In the third step, the 

person will touch their face and then start to swing their arm down, moving towards 

the radar causing reflection from the radar to the arm and hand to be shorter. The arm 

will then go back to its natural position, hanging at the side of their person, and will 
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move away from the radar casing reflection from the radar to the arm and hand to be 

longer. Many reflections from the radar during the third step tend to be towards the 

radar. Our system captures these reflections for each step of face touching and 

calculates their, FMCW range and magnitude, and CW velocity, and magnitude 

depicted in Fig. 1. 16. 

 

Fig. 1. 19. This figure shows the motion of the arm and hand moving up to touch the 

face and then back down to the side causing short and long radar signal reflections 

back to the radar 

Motion Events for Entering and Leaving a Room 

The motion events for entering and leaving a room, depicted in Fig. 1. 20 (b), 

are described next. For entering the room, we assumed that the radar was in a position 

so that when a person entered a room they would be walking away from the radar. 

The reflections from the radar to the person walking would start of short as the person 

entered and then get longer as they continued walking away from the radar entering 

the room. When leaving the room, the reflections from the radar to the person would 

start off longer, and then get shorter as the person walked towards the radar leaving 

the room. Our system captures these reflections for entering/leaving a room and 

calculates their FMCW range and magnitude, and CW velocity, and magnitude 

depicted in Fig. 1. 16. Compared to the motions events described previously for 

coughing, sneezing, and face touching, the direction away and towards for 
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entering/leaving a room respectively, will be substantially different as shown in 9 (b). 

We use this knowledge to differentiate the entering/leaving activities from all other 

activities we captured. 

 

Fig. 1. 20. This figure shows that when a person is entering a room they are walking 

away from the radar and when a person is leaving a room they are walking towards 

the radar causing short and long radar signal reflections back to the radar 

System Design 

Our system characterizes five types of activities including coughing, sneezing, 

face touching, and entering and leaving a room with a set of architectural components 

described next. The architectural components of our system include the OPS243–C 

FMCW/Doppler radar (OPS243-C 2020) for sensing an activity's motion, a home 

server that processes, classifies, and produces mobile alerts, and a mobile application 

that allows the user to view the alert-based notifications shown in Fig. 1. 15. The 

FMCW/Doppler radar is capable of detecting speed, direction, and range information 

for objects in its FoV. In addition, the radar can report the demodulated I/Q signals 

for calculating the FMCW/CW magnitude. In our setup, we connected the radar via 

USB to a Raspberry Pi 4 which we used as a home server. The home server acquires 

radar information for processing. The processing steps include activity separation, 

calibration, feature extraction, defining a set of fuzzy IF-THEN rules, classification, 

and the propagation of mobile alerts via Wi-Fi to a mobile application. None of the 
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processed data is saved on the home server, but is saved on the mobile device storage 

for historical use. The mobile application, which we named CSTF-Monitor, for 

cough, sneeze, touch face monitor, can run on both iOS and Android, and allows the 

user to add a room where the sensor is located and view a table which shows the 

distance, time, and type of activity detected. The environmental setup used to test our 

system and processing steps to classify each activity are described next. 

Experimental Environment 

The environment for our data collection experiments was done in a house in 

the basement shown in Fig. 1. 21. The radar was placed 1 m above the ground on a 

stand. The only furniture in the environment was an office chair, for the subject to sit 

on. We marked three distances from the radar sensor with tape at 0.91 m, 1.83 m, and 

2.74 m for close, near, and far locations. Following our approved institutional review 

board (IRB) protocol and CDC guidelines for CDC (2020), we made sure to sanitize 

the area before and after each data collection experiment. Participants were also asked 

to maintain 6 feet of distance separation from others, as well as wash their hands, use 

hand sanitizer regularly, and wear a face mask to not spread germs. 

 

Fig. 1. 21. The environmental setup for data collection experiments including the 

office chair, the radar and home server attached to a stand, and the locations of far, 
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close, and near locations (a) and the blueprint layout showing the subject locations 

depicted as red circles at 0.91 m, 1.83 m, and 2.74 m from the radar (b). (For 

interpretation of the references to color in this figure legend, the reader is referred to 

the Web version of this article.) 

Capturing and Separating Activities 

Our system uses the Doppler velocity magnitude and FMCW range magnitude 

as a filter to capture each activity separately. To do this we experimentally derived a 

minimum threshold value 𝑀𝑇 of 20 for the Doppler velocity magnitude and FMCW 

range magnitude. The 𝑀𝑇 threshold value is configurable and can be adjusted during 

calibration. The magnitude for both CW Doppler and FMCW were calculated using 

the demodulated in-phase I and quadrature-phase Q components of the intermediate 

frequency signal and calculating the magnitude 𝑀 at time 𝑡 as 𝑀(𝑡) =

√𝐼(𝑡)2 + 𝑄(𝑡)2. If an activity's magnitude for both the Doppler/FMCW were less 

than the threshold (𝑀 <  𝑀𝑡), no measurements are reported, otherwise 

measurements are reported when (𝑀 >  𝑀𝑡). Thus, when a subject is still and not 

moving very much and in front of the radar, the magnitude 𝑀 will be below the 

threshold 𝑀𝑇 and the radar will not report any data, otherwise if the user moves in 

front of the radar such that the motion causes the magnitude 𝑀 to be greater than the 

threshold 𝑀𝑇 then the radar will report motion data. When measurements are reported 

they include the FMCW magnitude, FMCW range, CW magnitude, and CW velocity 

shown in Fig. 1. 16. In order to separate each event from one another, we look for a 

gap greater Δt than or equal to 1.5 s between each reported value. The Δt gap is 

configurable and can be adjusted during calibration for activities where Δt happens at 

a faster or slower interval. 
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In Home Deployment and Coordination 

Our system is capable of being deployed throughout the home to monitor 

activities in different locations. We did not deploy our system throughout the home, 

but only deployed it in the basement of the home to conform to our IRB protocol 

which required a single controlled location for data collection in order to make it 

easier to follow CDC guidelines for CDC (2020). For deployment throughout a home, 

at least one of our radar systems would have to be setup in each location that needs 

monitoring shown in Fig. 1. 22. Each radar can then be connected by USB to a home 

server, that contains our processing pipeline shown in Fig. 1. 15, and a 

representational state transfer (REST) application programming interface (API) that 

allows for retrieving alert notifications for each location by hypertext transfer 

protocol (HTTP) GET methods used by the client mobile application. The home 

server and mobile application are connected to a wireless home network for 

communication. For our experiments we used a Raspberry Pi 4 module, which is a 

credit card sized computer for our home server. To receive alerts, the mobile 

application client periodically polls the REST API by calling HTTP GET methods for 

each radar system for alerts. The mobile application can run on both Apple ios and 

Android platforms and displays an image of the layout of the home, and for each 

location includes a table that shows the distance (close, near, far) where an activity 

happened, the time the activity happened, and the type of the activity that happened 

(sneeze, cough, face touching, entering/leaving a room). 
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Fig. 1. 22. Home deployment and coordination. 

System Calibration Process 

Before our system can classify activities, it must be calibrated. The calibration 

process shown in Fig. 1. 23 is used to capture data related to a specific subject or 

group of subjects, such as a single family or multiple families. Our calibration process 

is not limited for data collection related to our specific set of activities (coughing, 

sneezing, face touching), but can be extended for collecting data related to other 

activities such as enter/leaving a room which we include in our study. The data 

captured during the calibration process is used to calculate a set of features which are 

used to create a set of fuzzy logic IF-THEN rules for accurately classifying activities 

in the home. The calibration process begins by enabling the calibration mode for the 

radar. The radar will then apply the magnitude filter we described earlier in section 

3.3. Next, the subject will have to walk in front of the radar and sit still. In our setup 

we wanted to detect activities while sitting, but different positions such as standing 

could also be done. Then the calibration process will check if there is no motion 𝑀 <

 𝑀𝑡,  (subject sitting still) for a period t for two cases: 
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• Case 1: 𝑡 > 𝑇1 𝑎𝑛𝑑 𝑡 < 𝑇2 

• Case 2: 𝑡 > 𝑇2 

where 𝑇1 is the first-time threshold and 𝑇2 is the second time threshold. When Case 1 

for the time of no motion t is true the radar will turn on a LED indicating that the 

subject can start to perform an activity. While the user is performing an activity the 

radar will sense and capture motion data if the magnitude 𝑀 >  𝑀𝑡. When the user 

stops performing the activity the calibration process will then loop back to check for 

Case 1 or Case 2. When Case 2 is true the subject has either stopped moving for a 

period 𝑡 > 𝑇2 or has left the FoV of the radar. The radar will then save the captured 

data for when all Case 2 events were true and turn off the LED to indicate that the 

calibration processing is done. Lastly the features for creating the fuzzy logic IF-

THEN rules will be calculated and the calibration process will stop. 

 

Fig. 1. 23. System calibration process 

Initial Calibration for a Single Subject 

For initial experiments, for a single subject, we calibrated our system by 

collecting Doppler and FMCW intermediate frequency signal I/Q, magnitude, range, 

and velocity information for each activity. Before starting the experiments, we made 

sure that the subject and principal investigator followed CDC guidelines for CDC 

(2020), by washing their hands, wearing a face mask, and practicing social distancing 

of 6 feet from others. The environment was also sanitized before and after a subject 

was in and out of the room. We used the calibration process described previously in 
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Fig. 1. 23 for three experiments with a single subject. The subject was asked to 

perform activities at each distance, 0.91 m, 1.83 m, and 2.74 m, for a total of nine 

experiments. For each experiment we started by having a subject stand behind the 

radar, then enter the room. The subject would walk in front of the radar to the labeled 

location, one of the three distances, and sit still on a chair. When the radar turned the 

LED on, the subject would perform an activity, and upon completing the activity 

would sit still again. This was repeated three times pausing for at least 5 s between 

each activity. Finally, the subject would get up from the chair and walk out of the 

room by walking towards the radar. We collected three observations for each activity, 

coughing, sneezing, touching the face, entering/leaving the room, at each of the three 

distances for a total of 27 observations. For the sneezing activity we asked the subject 

to perform a voluntary sneeze by taking a deep breath, inhaling air, and mimic a 

sneeze as described in section 3, by which they would exhale out through their mouth. 

For the cough activity, we asked the subject to perform a voluntary cough by taking a 

deep breath, inhaling air, and mimic a cough as described in section 3, by which they 

would exhale and cough through their mouth at least two or three times. For the other 

activities the subject was asked to mimic the process as described in section 3. The 

data collection was done as a manual calibration step, required by our system. We 

used this set of data to define fuzzy logic IF-THEN rules for activity differentiation 

described next. 

Feature extraction and classification 

To differentiate each activity from each other, we calculated two features, the 

interquartile range (IQR) of the Doppler velocity and the number of positive Doppler 
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velocity values minus the number of negative velocity values. The IQR describes how 

spread out the data points for the velocity are from the mean of the velocity for each 

activity. The positive minus the negative velocity values describes the relative 

direction of each activity, towards or away from the radar sensor. Using this feature 

set, we designed two control systems composed of fuzzy logic IF-THEN rules to 

differentiate and classify each activity. We refer the reader to Bai and Wang (2007, 

pp. 17–36) for fundamentals on fuzzy logic. 

Touching the Face: From our initial data collection experiments we found that 

the IQR for the activity of touching the face, was the largest amongst all other 

activities at all distances shown in Fig. 1. 24 (a). We use this knowledge to 

differentiate touching the face from all other activities using a set of fuzzy logic rules 

with linguistic variables {‘LOW’,‘HIGH’}. The following fuzzy IF-THEN rules were 

designed: 

• Rule 1: If the IQR of the Doppler velocity is HIGH, THEN the activity 

measured is touching the face 

 

• Rule 2: If the IQR of the Doppler velocity is LOW, THEN the activity 

measured is NOT touching the face 

 

 

Fig. 1. 24. This figure shows the interquartile range of the Doppler velocity at 0.91 m, 

1.83 m, and 2.74 m for each activity (a) and the positive minus negative Doppler 

velocity feature at 0.91 m, 1.83 m, and 2.74 m for each activity (b). 
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Entering and Leaving the Room: We also observed that the relative direction 

for entering the room was low and leaving the room was high when compared to all 

other activities at all distances shown in Fig. 1. 24 (b). We use this knowledge to 

differentiate entering/leaving the room from all other activities using a set of fuzzy 

logic rules with linguistic variables {‘AWAY’,‘STEADY’,‘TOWARDS’} The 

following fuzzy IF-THEN rules were designed: 

• Rule 1: If the direction of the Doppler velocity is AWAY, THEN the activity 

measured is entering the room 

• Rule 2: If the direction of the Doppler velocity is TOWARDS, THEN the 

activity measured is leaving the room 

• Rule 3: If the direction of the Doppler velocity is STEADY, THEN the 

activity measured is touching the face, coughing, or sneezing 

First Fuzzy Control System: We used the designed rules for the activities touching 

the face and entering/leaving the room to design an aggregate set of rules for our first 

fuzzy control system. The rules are used to differentiate touching the face from all 

other activities and leaving/entering the room from all other activities respectively. 

The activities for coughing and sneezing are grouped into a single membership 

function and differentiated in a second control system. The universe variables and 

membership functions for Doppler velocity IQR and the relative direction features as 

well as the output membership function are shown in Fig. 1. 25. The parameters were 

determined experimentally based on the previously collected data for a single subject. 

For the first control system the following fuzzy IF-THEN rules were designed: 
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• Rule 1: If the direction of the Doppler velocity is STEADY & the IQR of the 

Doppler velocity is LOW, THEN the activity measured is sneezing or 

coughing 

• Rule 2: If the direction of the Doppler velocity is STEADY & the IQR of the 

Doppler velocity is HIGH, THEN the activity measured is touching the face 

• Rule 3: If the direction of the Doppler velocity is AWAY, THEN the activity 

measured is entering the room 

• Rule 4: If the direction of the Doppler velocity is TOWARDS, THEN the 

activity measured is leaving the room 

 

Fig. 1. 25. Control system 1 Doppler velocity IQR membership function (a), Doppler 

velocity direction membership function (b), and the activity membership function (c). 

 

Second Fuzzy Control System: We used a second fuzzy control system to 

differentiate between a sneeze and a cough. The second system will be executed only 

when Rule 1 in the first control system evaluates to true. Then, we redefined the 

direction membership functions using linguistic variables {‘AWAY’, ‘SOMEWHAT 

AWAY’, ‘SOMEWHAT TOWARDS’, ‘TOWARDS’}. By observing the Doppler 

velocity relative direction feature shown in Fig. 1. 24(b), we found that the sneeze 

and cough can be differentiated by this feature alone. We observed that the sneeze 

can be somewhat away or towards, while the cough can be somewhat towards and 
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away. The universe variables and membership functions for the relative direction 

features as well as the output membership function are shown in Fig. 1. 26. The 

parameters were determined experimentally based on the data collected previously. 

For the second control system the following fuzzy IF-THEN rules were designed: 

• Rule 1: IF the direction of the Doppler velocity is SOMEWHAT AWAY OR 

TOWARDS THEN the activity measured is sneezing 

• Rule 2: IF the direction of the Doppler velocity is SOMEWHAT TOWARDS 

OR AWAY, THEN the activity measured is coughing 

 

Fig. 1. 26. Control system 2 Doppler velocity direction membership function (a), and 

the activity membership function (b). 

Definition of Distances from the Radar 

Our system also detects where an activity happened, either close, near, or far 

from the radar sensor. The set of distances were defined using fuzzy logic rules with 

linguistic variables {‘LOW’, ‘MEDIUM’, ‘HIGH’}. To define the fuzzy inputs for 

the distances we captured human activity range values using FMCW radar at 0.91 m, 

1.83 m, and 2.74 m respectively from the radar sensor and observed their root mean 

square (RMS) distance show in Fig. 1. 27 (a). The output membership function for 
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the distances is shown in Fig. 1. 27 (b). The following fuzzy IF-THEN rules were 

designed: 

• Rule 1: IF the RMS of FWMC range is LOW, THEN the activity measured 

was close 

• Rule 2: IF the RMS of FWMC range is MEDIUM, THEN the activity 

measured was near 

• Rule 3: IF the RMS of FWMC range is HIGH, THEN the activity measured 

was far 

 

Fig. 1. 27. This figure shows the FMCW RMS range values at 0.91 m, 1,83 m, and 

2.74 m. The activities are ordered from left to right: coughing, sneezing, touching 

face, enter room, and leave room (a) and the FMCW range RMS membership 

function (b). 

Evaluation and Results 

We chose to evaluate how well our system can detect a person coughing, 

sneezing, touching their face, and entering or leaving a room in several different 

scenarios. The scenarios involved monitoring a single person's activity, monitoring a 

single person's activities at different distances, monitoring a single person's activities 

through a wall, and monitoring multiple people's activities. For the first scenario, we 



 

58 

 

recorded a subject's activity for a total of 4 min shown in Fig. 1. 16. The subject 

started behind the sensor then entered the room and sat on a chair. They performed a 

set of different activities, then left the room. This was repeated three times, at three 

different distances, for a total of 19 activities observed. We also recorded the subject's 

activities by observation as a ground truth, which captured a total of 20 activities. One 

cough activity was not detected at the far distance. As stated before, we followed 

CDC guidelines for CDC (2020), and had the subject and principal investigator wash 

their hands, wear a face mask, and practice social distancing of 6 feet from others. 

Overall System Accuracy  

When running our system for the experiment in Fig. 1. 16, our system 

achieved 96% accuracy shown in Fig. 1. 28. There was a single cough activity that 

was not captured at the far distance. In Fig. 1. 16 there were a total of four cough 

activities, but our ground truth written observations captured a total of five cough 

activities. Our fuzzy logic rules and control system were able to detect and classify all 

19 observations correctly. 

 
Fig. 1. 28. This figure shows the overall system accuracy for a single subject with a confusion matrix showing the 

accuracy for each activity detected with total accuracy of 96%. Out of five cough events observed by ground truth 

video, one cough was not captured 
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System Accuracy at Different Distances 

For each activity in the experiment shown in Fig. 1. 16, we also applied our 

fuzzy IF-THEN rules defined for the three distances close, near and far. Our system 

was able to group each activity accordingly and classify them with 100% accuracy at 

close distance, 100% accuracy at near distance, and 90% accuracy at far distance 

shown in Fig. 1. 29. There were two cough events recorded by written observation at 

the far distance, but only one was detected. 

 

Fig. 1. 29. This figure shows the system accuracy at different distances for a single 

subject with a confusion matrix showing the accuracy of activities at close with 100% 

accuracy (a), near with 100% accuracy (b), and far with 90% accuracy. (c) Ranges. 

System Accuracy Through a Wall 

We also conducted an experiment to test how well our system performs at 

detecting each activity through a wall. For this experiment, we placed the radar sensor 

in a bathroom behind a wall. Then we had the subject enter a bedroom adjacent to the 

bathroom and sit on a chair 1.52 m from the radar shown in Fig. 1. 30 (a). The subject 

performed a set of activities and then left the room. This was repeated twice for a 

total of 23 observations. We used the same fuzzy IF-Then rules and membership 

functions as applied in the experiment in Fig. 1. 16 and achieved an overall accuracy 

of 81% shown in Fig. 1. 30(b). We found that our first fuzzy control system grouped 

all activities with the membership function shown in Fig. 1. 25(c) with 100% 
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accuracy. When differentiating the cough and sneeze with our second fuzzy control 

system using membership function shown in Fig. 1. 26 (b) we achieved only 20% 

accuracy for detecting a cough and 83% accuracy for detecting a sneeze. The 80% 

miss-classifications for cough were detected as sneezing and the 16.67% miss-

classifications for sneeze were detected as coughing. As mentioned previously, during 

the experiment, we followed CDC guidelines CDC (2020). 

 

Fig. 1. 30. The environment is set up for detection through a wall. From left to right 

shows a through wall blueprint showing a black circle for the radar position and the 

subject location at 1.52 m from the radar depicted by a red circle and the radar shown 

mounted to a wall in the bathroom behind the door, the wall, and the chair where the 

subject sat (a), and the confusion matrix showing 81% over all accuracy for activities 

detected through a wall. 

System Accuracy with Multiple People 

Lastly, we conducted an experiment to see how well our system performs with 

multiple people, one male and one female. As mentioned previously, during the 

experiment, we followed CDC guidelines for CDC (2020) having individuals wash 

their hands, wear face masks, and practice social distancing. Before conducting the 

experiment, we had to calibrate our system by collecting data for each person at their 

respective locations using our calibration process described previously in Fig. 1. 23. 

We used the same environmental setup shown in Fig. 1. 21, but only had one subject 

sit at 3 ft and the second subject sit at 9 ft from the radar in accordance with our IRB 
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and CDC protocol for maintaining social distancing of 6 ft. These were the only two 

locations that we had the subjects sit at. For the initial data collection, we had each 

subject start behind the radar and then enter the room and sit at one of the two 

locations. Each subject performed two activities each, taking turns between each 

activity: touching their face, sneezing, and coughing. Then each subject left the room 

walking towards the radar one at a time. Using this data set we adjusted the values for 

each membership function shown in Fig. 1. 31 (a) and (b), and (c). Then we 

conducted a second experiment where we had each subject stand behind the radar and 

enter the room one at a time. Each subject sat at the same locations as before, and 

performed each activity twice, taking turns between each set. Then each subject left 

the room walking towards the radar one at a time. Between each experiment we made 

sure to sanitize the area. We recorded a total of 16 activities performed. Then we 

applied the same fuzzy IF-Then rules defined in our previous control systems and 

achieved an overall accuracy of 95% shown in Fig. 16 (d). One of the sneezes was 

miss-classified as a cough. 
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Fig. 1. 31. Multi-person Doppler velocity IQR membership function (a), Doppler 

velocity direction membership function for control system 1 (b), and the second 

Doppler velocity direction membership function membership function for control 

system 2 (c), and the confusion matrix showing the accuracy for each activity 

detected with multiple people with a total accuracy of 95% (d). 

Discussion 

Our system is capable of monitoring activities at home including coughing, 

sneezing, face touching, and entering/leaving room shown in Fig. 1. 28. In addition, 

we evaluated our system in different scenarios showing that it can detect our set of 

activities at different distances shown in Fig. 1. 29, through a wall shown in Fig. 1. 30 

(b), and with multiple people shown in Fig. 1. 31 (d). Our system does not require a 

large historical data set for calibration, but can use a couple examples, three of each 

activity in our case, to define fuzzy IF-THEN logic rules capable of differentiating 

each activity from each other. In addition, we identified two features, the IQR, and 

relative distance feature, to differentiate each activity. The IQR distinctly 

differentiates face touching from all other activities as observed in Fig. 1. 24 (a). The 

relative direction feature we created distinctly differentiates enter/leaving a room 

from all other activities as observed in Fig. 1. 24(b). We observed that our system can 

miss-classify a cough for a sneeze or a sneeze for a cough when using the relative 

direction feature to differentiate the two activities. The relative direction feature does 

not distinctly differentiate the cough and sneeze from all other activities. In our 

implementation we expanded the set of linguistic variables for our second fuzzy 

control system and had to define a new set of fuzzy logic IF-THEN rules to 

differentiate coughing from sneezing. This is due to the similarity between the motion 
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movements of the chest and head when sneezing versus coughing. Still our system 

can accurately detect that a sneeze or cough happened. 

Our system also makes some assumptions used to detect and monitor each 

activity. The first assumption we make is in regard to the placement of the radar. We 

assume that when our system is used the radar will be positioned in such a way, that 

when a person enters the room, they will be walking away from the radar. In addition, 

we assume the radar will be in a position such that when a person leaves the room 

they will be walking towards the radar. The second assumption we make is that when 

a person is in a room, and in the FOV of the radar, they are assumed to be quasi-static 

and sitting on a chair. Quasi-static refers to people sitting still, watching TV, or 

typing on a laptop. If a person were to get up and starting walking around, then our 

system would assume the person would be leaving/entering a room, but when a 

person is sitting our system would assume the person would be performing motions 

related to coughing, sneezing, and face touching. We also make assumptions about 

the motion of the head when coughing and sneezing. The motion of the head, during 

inspiration, compression, and expiration, are assumed to start with the head moving 

backward and then start to move forward as the person coughs. Similarly we assume 

the head will move backwards when sneezing during inspiration, and more forwards 

in relation to a cough, as the person exhales. For arm motion we assume that the 

person's arm starts at the side of their body, swings up to touch their face, and then 

after touching their face, swings back down to their side. Lastly, we assume that when 

multiple people are in the room, they will be separated by some distance, in our case 

6 ft for practicing social distancing. There could be cases when multiple people are 
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sitting next to each other, such as on a couch, but we did not have a chance to test our 

system for this case as it violated social distancing practices. 

Our system has some limitations which we will describe next. The first 

limitation is that our system must be calibrated for each person at different distances. 

This is because a set of collaboration data is needed to define the membership 

functions related to each activity. We argue that this approach works well when there 

are limited data sets or acquiring a set of training data for a system is unavailable or 

hard to achieve. In our case, we could not find any existing data sets that have 

captured motion data from activities related to coughing or sneezing. Also, acquiring 

data related to coughing and sneezing assumes some health risks, as people collecting 

the data could get sick from those performing the activities. In our present time, with 

the onset of COVID-19, acquiring data related to coughing and sneezing is either not 

an option due to social distancing laws or highly risky. Thus, for our experimentation 

we performed data in a single-family home with individuals who are healthy and 

voluntary performed coughing, sneezing, face touching, and entering/leaving 

activities. We followed our approved IRB protocol and CDC guidelines CDC (2020) 

to minimize risk during data collection by sanitizing areas before and after each 

experiment as well as washing hands, wearing face masks, and practicing social 

distancing. We also limited the number of people in the study to two, as to minimize 

risk and spread of COVID-19. A second limitation of our system is the detection 

range and FOV. During our experimentation, we showed that activities could be 

detected as far as 2.74 m from the radar. The OPS243–C radar that we used in our 

system is capable of detecting activities at further distances, (50 m–60 m), but we 
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only evaluated distances based on the room size where our experiments were 

performed. Further research could be done to experiment and observe how far 

activities such as coughing, and sneezing could be detected from the radar. The FOV 

is also limited, but can be increased by adding additional sensors. In regard to activity 

detection, our system is not limited to the set of activities we defined and can be 

extended to include others. Although, if additional activities were to be added, then 

new features may need to be created and a new set of fuzzy logic IF-THEN rules 

would have to be defined. Our calibration process can be used to collect data related 

to other activities. Lastly our system is limited to how activities are performed when 

multiple people are being monitored. If activities from multiple people are happening 

at the same time at the same distance from the sensor, our system will assume the 

motion is from one person. This limitation can be avoided by zooming into the 

FMCW reflections from each individual separately Adib et al. (2015, pp. 837–846). 

Although, we did not apply this method, our system can still detect activities from 

multiple people if they perform activities at the same time if they are separated by 

some distance. Again, we separated each subject by 6 ft to practice social distancing, 

but further research can be done to see how our system performs when two subjects 

are closer to each other. Given these limitations, our system is very capable of 

accurate monitoring, and to our knowledge the first smart home monitoring systems 

to use CW/FMCW radar to monitor activities including: coughing, sneezing, face 

touching, and entering/leaving a room. In addition, our mobile application, gives 

people a more detailed view of the activities performed in their household, allowing 

them to clean and practice better hygiene. 
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Chapter 4: Radar-based monitoring system for medication 

tampering using data augmentation and multivariate time series 

classification 

Summary 

 Inadvertent use of medication that has been tampered with can cause serious 

harm. Monitoring how and when medication was last used or touched is important for 

mitigating risks. In our third healthcare application we present a new radar-based 

monitoring system that can detect eight different types of tampering methods with 

three types of medication containers. Our system works by using a FMCW and CW 

Doppler radar to capture motion speed, direction, and range, which we use for 

classifying activities. For monitoring activities at home, our system can be set up 

underneath a kitchen cabinet to monitor medication left out on the countertop. As our 

system uses radar, we can preserve privacy of individuals as the signatures from the 

radar are specific to the locations of the antennas and not necessarily associated with 

an individual. For classifying activities, we created a processing pipeline that extracts 

a set of features from the raw multivariate time series signals from the radar. We then 

used three types of data augmentation techniques including jittering, scaling, and 

magnitude warping, to increase our data sets and increase our classification model 

accuracy. In addition, we evaluated our system using 5-fold cross validation and with 

different types of augmentation data sets. Our system can achieve 99% accuracy 

using a logistic regression classifier with multiple people. 
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Background 

The use of prescription medicine administered at home has risen rapidly. In 

the most recent 2015–2016 survey by the National Center for Health Statistics 

(Martin, Hales, Gu, & Ogden, 2019), almost half 45.8% of the U.S. population used 

prescription drugs. There has also been an increase of 18% usage by children under 

12 and an increase of 85% usage in adults over 60. This has led to several problems 

with at home medication tampering. To clarify, the tampering we refer to is not drug 

tampering or altering of medicine. Instead, we define tampering as an action related 

to the packaging that the medication is contained in. For example, we try to answer 

the question: can I determine if a certain type of medication packaging has been 

tampered with? To answer this question, one would need to know how and when the 

medication container was first touched and is the focus of this research. For example, 

tampering can be done by children who inadvertently misuse medication containers 

found lying around the house (playing with a pill bottle), or damage medication 

packaging, or alter the medicine by opening the container. This can lead to 

unintentional child poisoning which represents an increasingly important global 

health issue (Jovanov, Talukder, Schwebel, & Evans, 2018). Child safety mechanisms 

have existed for decades, such as child-resistant bottle caps, saving many lives, but 

they are not full proof. Some packaging can cause inconvenience and even serious 

harm or death (Lovegrove et al., 2014). Similarly, adults routinely do not take 

medication as prescribed, either by non-adherence (DeMeo & Morena, 2014), or by 

using the wrong dose. Elderly people can also forget to take medication, which is a 

problem for those with dementia (Moshnyaga, Koyanagi, Hirayama, Takahama, & 
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Hashimoto, 2016). In other cases, the elderly can accidentally take the wrong 

medication assuming they have been prescribed several. They could mix medications 

or grab medication from the wrong place. Additionally, for opiate-dependent patients, 

it is of most importance to monitor tampering with medication as substance use needs 

to be regularly observed and tracked (Gutwinski et al., 2013). Storing and monitoring 

medication containers in a single place can be beneficial for protecting people from 

misuse. A monitoring system could provide early warnings for patients and care 

givers when children or others try to access the medication. Thus, there is a need for 

monitoring medication tampering at home to ensure proper use and safely. 

Solutions to the problems discussed previously include smart pill bottles 

(Aldeer, 2021, Toscos et al., 2020), wearable sensors (Odhiambo, Wright, Corbett, & 

Valafar, 2021), Radio-Frequency Identification (RFID) tags (McCall, Maynes, Zou, 

& Zhang, 2010), and human activity tracking using computer vision (Aldeer, 

Javanmard & Martin, 2018). Most of these solutions focus only on medication 

adherence and not tampering, but are still applicable. One proposed solution in 

Kidorf, Brooner, Dunn, and Peirce (2021) describes the use of an electronic pillbox 

that monitored the tampering of a pillbox lid and the containers. Other solutions using 

smart pillboxes focus on medication adherence monitoring detecting lid opening, 

bottle picking and shaking. Computer vision has been used to monitor pill bottle 

picking, hand over mouth, and drinking a glass of water to name a few. Despite their 

usefulness, some of these solutions require modification to medication packaging, 

which can be costly, require to be worn, which can be uncomfortable and have 
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limited battery life, and rely on good quality video, which may not be ideal in very 

dark or bright environments. 

Dissertation Contributions 

To address the limitation of previous systems, we present a new medication 

tampering monitoring system that uses radar shown in Fig. 1. 32. Radar has robust 

properties that allow it to work in environments where computer vision systems fail, 

such as low/high lighting environments. In addition, our system monitors 

continuously, does not require a battery, and senses tampering wirelessly for a low-

cost solution without any modification to medication packaging. Furthermore, our 

system preserves privacy as the signals captured by our radar system are specific to 

the locations of the RF antennas in the room and not associated with individuals. Our 

system works by using a frequency modulated continuous wave (FMCW) and 

continuous wave (CW) Doppler radar that can sense speed and range characteristics 

associated with medication tampering methods. The radar reports a series of 

multivariate time series signals. Using this information, we built a machine learning 

pipeline capable of classifying eight different medication tampering methods. We 

were able to classify a diverse set of activities with 99% accuracy. We did this by 

using a state-of-the-art multivariate time series classification method known as 

WEASEL+MUSE and a set of three data augmentation techniques to increase our 

data set size and limit overfitting during classification. We then validated our solution 

using 5-fold cross validation. The design, implementation, and evaluation of our 

system provides the following research contributions: 
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• A new system for monitoring medication tampering using radar, data 

augmentation, and multivariate time series classification methods. Our system 

provides accuracy of 99% and can classify eight tampering methods with 

three types of medication containers using logistic regression. 

• Application of data augmentation using jittering, scaling, and magnitude 

warping to increase data set size for feature extraction and classification. 

Using the WEASEL+MUSE feature extraction pipeline, we add data 

augmentation methods, showing an increased improvement of 25%. 

• System evaluation for eight tampering methods including: move bottle lid, 

shake bottle, move bottle, move pill hand, move pillbox, move pill in box, 

move pillbox lid, and move pill in blister pack. 

• Preliminary evaluation with multiple users. We handle unbalanced data sets 

and show 99% accuracy across the eight tampering methods with three 

subjects. 
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Fig. 1. 32. This figure shows the experimental setup with the radar mounted 

underneath a kitchen cabinet, the medication below the radar on the counter, and a 

laptop for monitoring the tampering. 

Related Works 

Several works have evaluated systems for monitoring medication adherence 

and are applicable for medication tampering. These systems fit into four categories: 

smart pill containers, wearable sensors, computer vision, and wireless. Most 

applications evaluate performance for monitoring different activities associated with 

medication packaging, such as opening lids, shaking bottles, and picking pills by one 

hand to name a few. The number of activities that can be monitored is fairly small, 

usually less than four, and focuses on mainly one type of container (Aldeer, 

Javanmard et al., 2018). Being able to monitor more activities with different 

containers is important for building robust systems. In comparison, our system uses 

radar, a less traditional sensing method, and can classify eight activities with three 

containers accurately. We present a brief overview of some of these systems, and 

show how our system address their limitations. 

Smart Pill Containers 

Smart pill containers such as pill bottles and pillboxes have been modified 

with different types of sensors for monitoring medication use. In Aldeer, Howard, 

Martin, and Ortiz (2021) they created a smart bill bottle with accelerometers and a 

PIP-Tag for low-power wireless transmission of data. In their work they applied an 

SVM for classification and were able identify up to 16 people who interacted with the 

pill bottle. However, their system does not detect tampering methods such as opening 

the lid or shaking the bottle, and only focuses on user identification. Similarly, in 
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Aldeer, Martin and Howard (2018) they build a pill bottle with accelerometers, a load 

cell, and a switch cell. With multiple sensors they are able to observe five activities 

related to pill-intake. Another system in Jovanov et al. (2018) was developed to 

monitor pill bottle activity using capacitive sensors. Employing a Neural Network, 

they observed 96.4% accuracy when a child is trying to open a bottle. Still, their 

system requires several sensors, 15, and is limited as it only focuses on a single 

tampering method. Commercial electronic pill boxes have also been evaluated in 

Kidorf et al. (2021). They found that electronic pill boxes are effective in protecting 

against tampering and help with at home medication management. Lastly, in Lee and 

Dey (2015) they developed a system called dwellSense for monitoring different 

activities such as medication/pill taking, phone use, and coffee making. They created 

an augmented pill box that can detect lid openings and when a pill was taken. Most of 

the smart pill container systems require modification or additions to pill bottles, 

which could be costly, and have limited monitoring time due to dependence on 

batteries. Our system uses radar and does not require any modification or adherence 

of additional sensors to containers. In addition, our system can detect several more 

activates, eight, and do so with three types of containers, not just pill bottles. 

Wearable Sensors 

Wearable sensors for medication adherence have focused mainly on wrist 

worn watches with accelerometers. In Odhiambo et al. (2021) they used smart 

watches with accelerometers to detect unscrewing/screwing a pill bottle top, topping 

the bottle, placing a pill in the mouth, picking up a drink, and setting a drink down. 

They were able to achieve 97% accuracy using a Neural Network. Their system only 
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focuses on activities associated with taking medicine from a pill bottle and taking the 

pill with water and does not include other types of containers. Closely related in Lee 

and Youm (2021), they used a wrist worn watch with a camera for medication 

behavior monitoring. In their work they applied a convolutional neural network and 

were able to get 92.7% accuracy. They identified the usage of cups, hands, bottles, 

opening of bottles, and taking of pills by the mouth. However, their system captures 

images with a camera that has to hang below the user’s wrist, which can be 

uncomfortable and can move positions causing incorrect capture of activities. 

Similarly in Chen, Kehtarnavaz, and Jafari (2014) they use a wrist worn inertial 

sensor and a Microsoft Kinect for medication adherence, but only recognize two 

actions of twist cap and hand to mouth. A wrist reminder/tracking system was built in 

Mondol, Emi, and Stankovic (2016) to remind users to take medicine and track usage. 

Their system does not focus on medication tampering methods, but does integrate the 

use of voice commands for usability as wrist warn devices have small screens for 

interaction. Custom wrist worn medication monitoring systems have been evaluated 

as will in Lim and Abdullah (2017). They created an accelerometer-based wearable 

worn on both the right and left wrist for monitoring if people took their medication 

from a pill bottle to their mouth. In their work they do not show battery usage, which 

is limited, but do show differences in actions from other activities of daily living. 

Finally, a non-wrist worn wearable, was evaluated in Kalantarian, Motamed, 

Alshurafa, and Sarrafzadeh (2016). They created a wearable necklace with a piezo 

sensor in combination with a smart pill bottle and can detect if pills were consumed 

or not consumed, swallowing, water sipping, and bottle open/closed. The necklace 
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can be cumbersome as it has to be worn at all times, and only one type of container 

was evaluated. In comparison to the wearable systems presented previously, our 

system does not rely on battery power, uses radar instead of accelerometers, and does 

not have to be worn. The radar system we built can also detect tampering methods 

associated with different containers and does not use neural networks which require 

thousands of labeled data for implementation. 

Computer Vision 

Computer vision systems have been developed for monitoring medication 

intake and medication adherence/non-adherence. Most systems utilize cameras and 

depth sensors for capturing images, with Microsoft Kinect, or just Kinect, being the 

most popular. In Yamanaka and Moshnyaga (2018) they use the RGB camera and 

depth sensor on the Kinect to monitor medication intake and non-intake actions, such 

as hand to mouth and hand to eye, with 94% accuracy. Another Kinect based sensor 

system in Tucker et al. (2015) monitored variations in a person’s gait. They 

recognized walking orientations such as moving front, back, left and right for 

medication adherence. Similarly, in Moshnyaga et al. (2016) they used the Kinect 

with voice commands to guide people through the process of taking medication. In 

their work they do not report their system accuracy or the failure rate when using 

voice commands. Other systems have used regular cameras for medication intake 

monitoring (Ammouri and Bilodeau, 2008, Sohn et al., 2015). However, tracking 

body parts and medication containers with images alone is difficult, and the use of 

additional sensing like depth is important for making this task easier. The Kinect and 

camera-based systems rely on good quality images and extreme brightness, or 



 

76 

 

darkness can affect their performance. Privacy is a concern as images are captured. 

Also, obstructions can occur from body parts covering containers or parts of the face 

like the mouth. In comparison to our system, we use radar which works well in 

different environments with varying brightness and darkness. In addition, our system 

does not capture images preserving privacy and can work when covered with a 3D-

printed case. 

Wireless Sensing 

Most closely related to our work are wireless systems that use radar or RFID 

tags for medication monitoring. In Zhao, Hoti, Wang, Raghu, and Katabi (2021) they 

developed a wireless FMCW radar system for detecting medication self-

administration using inhalers and insulin pens. They used neural networks and 

achieved an accuracy above 95%. Their system has 12 antennas and is fairly large, 

but able to detect distance measurements of movement used for detection. In 

comparison, our system is much smaller, enabling sensing in smaller areas such as 

underneath a kitchen cabinet. In addition, our system captures the speed of motion 

and distance, rather than just the distance alone. In our experiments we use the speed 

and speed magnitude for classifying eight tampering methods, whereas in Zhao et al. 

(2021) they only classify two activities. Furthermore, we used time series 

classification and data augmentation methods allowing for lower compute resources 

and less training data requirements, when compared to their neural network approach. 

Similarly related, several works (Becker et al., 2009, El Abkari et al., 2021, McCall et 

al., 2010) have used RFID tags for medication adherence monitoring. These systems 

work by attaching an RFID tag to medication containers such as pill bottles. Then an 
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RFID reader can be used to track each container wirelessly. Although promising, the 

RFID systems require a tag being adhered to each container, which can fall off, and 

sensing with Ultra-High Frequency for better communication data rates is costly. In 

comparison, our system does not require tags to be attached to containers or a 

separate reader for tracking. In addition, our radar system can send multivariate time 

series speed data sampled at 10,000 Hz. 

System Design 

We constructed a medication tampering monitoring system with an off the 

shelf radar sensor and a software processing pipeline. Our system is capable of 

detecting up to eight different tampering methods for three types of medication 

packages described in Section 3.5. The system starts by collecting motion data for an 

activity performed in the field of view of the radar. We chose to use the OPS243-C 

FMCW and Doppler radar (OPS243-C FMCW and Doppler Radar Sensor, 2021), 

which is capable of reporting speed and speed magnitude values for the motion 

captured. The speed data acquired from the radar is a multivariate time series with 4 

dimensions. Each dimension represents a speed value corresponding to a moving 

object. The radar was set to report speed values in centimeters per second. We also 

configured the radar with a speed magnitude filter, which would make the radar 

report speed values when the speed magnitude was above a threshold. This helped 

with segmenting each activity described in Section 4.5. To identify our set of eight 

medication tampering methods, we constructed a software pipeline to process and 

classify the multivariate time series shown in Fig. 1. 33. The first step in our pipeline 

is to process the data by removing outliers, segmenting the activity, and padding the 
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multivariate time series in order to create an activity frame. These processing steps 

are described in detail in Section 4. An activity frame represents the multivariate time 

series motion data for a single tampering method. Once the activity frame is 

constructed, it is passed into the WEASEL+MUSE feature extraction pipeline 

described in Section 4.6. The WEASEL+MUSE pipeline produces a one-dimensional 

feature vector which is then passed to a logistic regression classifier. The logistic 

regression classifier is used to make predictions on which of the eight tampering 

methods was performed. To train our logistic regression classifier we collected a set 

of training data described in Section 4. This training data was augmented with three 

different types of data augmentation techniques to increase our example size and 

diversify our data set described in Section 4.4. 

 

Fig. 1. 33 This figure shows the processing pipeline for identifying the eight 

tampering methods where: A = Move Bottle Lid, B = Shake Bottle, C = Move Bottle, 

D = Move Pill Hand, E = Move Pillbox, F = Move Pill in Box, G = Move Pillbox 

Lid, and H = Move Pill in Blister Pack. 

Radar Background 

In our system, we use the FMCW and CW Doppler radar to acquire motion 

information for identifying medication tampering methods. Specifically, we use the 

24 GHz OPS243-C radar which can recognize human movement as far as 15 to 20 m. 

Rather than have two separate radars, one for CW and one for FMWC, the OPS243-C 
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combines them onto a single platform. Thus, the radar is capable of reporting object 

speed, direction, and range or distance from the radar at the same time. For detecting 

speed and direction the radar utilizes the CW Doppler frequency shift and for 

detecting distance the radar uses the FMCW time of flight (Miller, Banerjee, & Zhu, 

2021).  

 

Fig. 1. 34. Simplified block diagram of radar components used to capture IF signal 

Sensing with the radar begins with a synthesizer that generates a chirp 

waveform and transmits the waveform out on a transmitting antenna (Tx). When a 

person starts to tamper with one of the medication containers, the transmitted 

waveform is reflected off the hands and the medication container and received at the 

receive antenna (Rx) of the radar. Once the waveform is acquired the Tx and Rx 

signals are mixed to obtain the intermediate frequency (IF) signal. We show a simple 

block diagram of this process in Fig. 1. 34. This can be described using the following 

equations (Li, Lei, Yan, Solovey, & Pahlavan, 2020): 

𝑋𝑇𝑋 = sin[𝜔𝑇𝑋 × 𝑡 + 𝜙𝑇𝑋] 

𝑋𝑅𝑋 = 𝑠𝑖𝑛[𝜔𝑅𝑋 × 𝑡 + 𝜙𝑅𝑋] 

𝑋𝑂𝑈𝑇 = 𝑠𝑖𝑛[(𝜔𝑇𝑋 − 𝜔𝑅𝑋) × 𝑡 + (𝜙𝑇𝑋 − 𝜙𝑅𝑋)] 

where 𝑋𝑇𝑋 and 𝑋𝑇𝑋 represent the two input sinusoids for the Tx and Rx and 

the 𝑋𝑂𝑈𝑇 is the mixed output of the two sinusoids representing the IF signal. Here 𝜔 



 

80 

 

represents the frequency and 𝜙 represents the phase. The IF signal is then amplified, 

low pass filtered, sampled with an analog to digital converter (ADC), and passed to a 

processing unit. The IF signal will have frequencies corresponding to reflection from 

multiple objects and can be observed by performing a fast Fourier transform (FFT) on 

each chirp signal (Wang, Ren, Zhou, Wang, & Yang, 2020). The processing of the 

FFT takes place on the processing unit. The OPS243-C uses the Cortex M4 ARM 

processor. When processing the IF signal with the FFT, the frequency of the IF signal 

will be proportional to the range of the moving hands and medication container. The 

speed of the hands and medication container are proportional to the Doppler shift. A 

spectral peak search can be used to obtain the frequencies corresponding to the hands 

interacting with the medication container. For our purpose, we looked for a total of 

four spectral peaks, corresponding to four detected objects to obtain multivariate time 

series information about the speed, direction, and range of the activities performed. 

We use this information to extract features to train a machine learning classifier to 

identify the tampering methods discussed in Section 4. All of this processing is 

configurable and takes place on the radar hardware itself. 

Real World Monitoring 

Our system can work anywhere around the house to monitor medication 

containers stored in a single location. To monitor more than one location at a time 

multiple radars can be set up. For example, a radar could be placed under a kitchen 

cabinet, inside a bathroom cabinet, inside a dresser drawer, or even from the ceiling 

to monitor medication containers near a bed, desk, or table. In our experiments we 

investigate one of these scenarios (medication stored under a kitchen cabinet), but 
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further experiments can be done to explore different scenarios. Due to the 

configuration of our radar only having a single patch antenna to receive signals, our 

system is limited in that it cannot detect an object’s location in three dimensions. Our 

radar would need to know the angle or arrival from the reflected object. Thus, our 

system can only detect one dimensional data from multiple objects at the same time 

(distance from the radar). However, 3-dimensional tracking radars exist with multiple 

Rx antennas to calculate angle of arrival, but have higher cost, require more complex 

hardware, and use more energy. Thus, to minimize complexity, resources, cost, and 

use, we chose a FMCW radar that can report distance and speed from the radar, but 

not the exact position (x,y,z coordinates) from the radar. 

Benefits of Using Radar 

When monitoring medication, it is advantageous for a system to be covert and not 

readily noticeable. Such cases arise from not wanting others to damage, remove, or 

disable the system, so that tapering will go unnoticed. In addition, systems should be 

robust, being able to work in different environments, such as darkness, and high 

intensity lighting. In addition, systems should be small, compact, and unobtrusive. 

Radar addressed these concerns and is a great solution as the primary sensing 

technology for medication tampering applications. Some benefits of using radar for 

medication tampering include: 

• Privacy: Privacy can also be preserved, to some extent, when using RF as 

shown by Li and Zhu (2016). When using a radar the Doppler signatures are 

specific to locations of RF antennas in the room and not necessarily associated 

with an individual. 
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• Robustness in environments: Radar can work in complete darkness, in smoky 

conditions, as well as in high light intensity and low light intensity 

environments (Patra, Geuer, Munari, & Mähönen, 2018). Thus, medication 

tampering could be monitored in situations where visibility changes often 

(near a window), and in constrained or altered environments (kitchen counter, 

cabinet or drawer). 

 

• Travel through material: Radar signals can also travel through material (Miller 

et al., 2020) making them a great device for covert operations. For medication 

monitoring, a radar could be concealed in cabinet, drawer, or ceiling to 

monitor medication tapering. 

• Compactness and distance: Radar systems are also compact, being the size of 

a credit card or roughly the size of a quarter. They can also sense motion at 

close and far distances up to 20 or more meters (OPS243-C FMCW and 

Doppler Radar Sensor, 2021). This is due to the high spatial resolution of 

radar, and the co-location of transmitters and multiple antennas on a small 

platform (Patra et al., 2018). This is beneficial for medication tampering 

monitoring, as systems can be achieved at low cost and work in situations 

where medication might move to locations at further or shorter distances to 

the radar. 

Types of Medication Containers 

Our system can recognize tampering methods for three different types of 

medication containers shown in Fig. 1. 35. The containers include a pill bottle, a 
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pillbox, and a blister pack. The pill bottle has a child resistant lid that requires 

pushing down and turning to open. The pillbox has 7 compartments for storing 

medication for each day of the week. Each compartment has a clickable lid that 

requires pushing up to open and down to close. The blister pack has small clear 

plastic bubbles with a paper-backed foil to protect medication until it is dispensed. 

Dispensing medication requires pushing or popping the pill out. 

 

Fig. 1. 35. Medication containers. 

Medication Tampering Methods 

In this study, we investigated eight types of medication tampering methods for 

three types of containers and for one case when a pill is put or taken from a hand 

shown in Fig. 1. 36. The three types of containers included a screw cap pill bottle, a 

Monday through Sunday pillbox, and a blister pack. For the pill bottle, we looked at 
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several tampering methods that included opening the lid, closing the lid, shaking the 

bottle, taking the bottle, and putting the bottle back. We grouped opening/closing the 

bottle lid into a single category and called it move bottle lid. For the taking/putting of 

the pill bottle from the counter, we grouped that into a single category and called it 

move bottle. For the pillbox we included several types of tampering methods, taking 

the pillbox and putting the pillbox back, taking a pill from the pillbox, and putting the 

pill back in the pillbox, and finally opening the pillbox lid and closing the pillbox lid. 

We grouped the taking/putting of the pillbox on the counter into a single group called 

move pillbox. For taking/putting a pill in the pillbox we grouped that into a single 

category called move pill in pillbox. Lastly, we grouped open/close pillbox lid into a 

group called move pillbox lid. For the blister pack we investigated two tampering 

methods that included taking a pill from the blister pack and putting a pill back in the 

blister pack. We grouped taking/putting of the pill in the blister pack into a group 

called move pill blister pack. Finally, we included a case where a pill was put and 

taken out of a hand. The taking/putting of the pill in the hand was grouped into a 

category called move pill hand. The groups were created as the tampering methods 

that made them up were very similar. Using these eight categories we can identify 

tampering methods for three common types of medication packaging. 
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Fig. 1. 36. This figure shows the fifteen medication tampering methods which were 

grouped together to form eight tampering methods used in our experiments. 

Experiments 

Typical locations for storing medications include kitchen and bathroom 

cabinets, or dresser drawers. Location is important as to protect others, small children 

for example, from tampering with medications. However, there are cases when people 

forget to put their medication back and leave it out for long periods of time without 

any monitoring. During the absence of observance is when medication tampering 

could occur. For this case, we setup our experiments to monitor three types of 

medication packaging when left on a kitchen counter shown in Fig. 1. 32. The 

medication packaging that we used included a pill bottle, a Monday to Sunday 

pillbox, and a blister pack. To monitor medication tampering we placed the radar 

underneath a cabinet directed down towards the countertop. In this position we could 

capture motion directly related to the movement of any of the three medication 

packages. In addition, directing the radar down was a benefit as it did not pickup 

background motion, such as people walking around the kitchen, but focused only on 

motion related to the medication tampering. The radar was connected to a computer 

to monitor the tampering activities. If the laptop device is not desired, a wireless 

version of the radar can be implemented so that only a radar and power source would 

be needed. 

Radar Configuration 

For our experiments we used our radar with a set of configurations for 

recording speed and speed magnitude, and range and range magnitude reports to 
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generate a multivariate time series for each tampering method. The FMCW 

component was configured to sample at 320,000 Hz, with a sample size of 512, and a 

range FFT size of 1024. The CW component was configured with a sample rate of 

10,000 Hz, sample size of 512, and an FFT size of 512. Speed and range values were 

configured to be reported in centimeters per second. 

Multivariate Time Series 

An example of the raw multivariate time series which can be captured with 

our radar system is shown in Fig. 1. 37. There are a total of eight tampering methods 

captured with 4 dimensions for each time series. Our radar system reports the speed 

values related to four detected moving objects. It does this by applying an FFT to the 

IF signal and then performing a spectral peak search for a total of four peaks. The 

peaks in the frequency spectrum correspond to an object detected and is proportional 

to the distance from the object to the radar. Each speed in the multivariate time series 

signal is reported in centimeters per second. The speed can be negative or positive in 

relation to the hands or containers moving away and towards the radar. 

 

Fig. 1. 37. This figure shows the raw multivariate time series data for eight different 

tampering methods. Each multivariate time series has four dimensions corresponding 

to speed in centimeters per second. The speed is on the y-axis and the x-axis 

represents time in seconds. 
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Data Collection and Preparation 

Collecting data to train a machine learning classifier can be time consuming 

and difficult to prepare. Challenges arise from ensuring a relatively large sample size 

and segmenting recorded events, which must be labeled and verified. We will discuss 

some of these challenges and how we mitigated them to collect quality data. Initially, 

we collected data for each of the eight medication tampering methods: move lid, 

shake bottle, move bottle, move pill, move pillbox, move pill in box, move pillbox 

lid, and move pill in blister pack. The data was collected using the OPS243-C FMCW 

and Doppler radar sensor. For each medication tampering method performed, a 

multivariate time series was acquired from the radar. Each multivariate time series 

had a total of four channels, where each channel represented the speed of motion of 

four objects in the field of view of the radar. We were able to obtain a total of 296 

multivariate time series samples. Once we collected all the data, we took a series of 

steps to prepare our data for classification as follows: 

 

• Outlier removal: We noticed that there were a few data points where the 

speed values were significantly large, into the thousands, and removed them 

by replacing them with a zero. 

• Equal lengths: We also had to make all the multivariate time series the same 

length by padding the shorter ones with zeros. 

• Balance classes: We also balanced the classes for each medication tampering 

method, so that each class had the same number of examples. We did this by 

truncating a larger set to match the set with the smallest length. 
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• Shuffle: To avoid using the same sample for training and testing our model, 

we performed a random shuffle of the data. 

Small Data Sets and Data Augmentation 

Small data sets are a common problem when building original machine 

learning models (Elton et al., 2018, Um et al., 2017, Zhang and Ling, 2018). The 

problem lies in not just collecting good data, but also in labeling the data. Collecting 

and labeling data can be complex and time consuming leading to a limited number of 

samples collected. In our experiments we collected a total of 296 samples for all the 

medication tampering methods. Each sample is a multivariate time series with four 

channels each. The size of our data set would be considered negligible and 

impractical for advanced machine learning methods like neural networks which 

require thousands of samples per class. In addition, our data set would be minute for 

traditional machine learning techniques as it would not allow models to generalize 

well and cause overfitting. Furthermore, model performance would be poor. Solutions 

for increasing the size and quality of our data set could include collecting more data 

or using preexisting data sets that could be combined with our data set. To the best of 

our knowledge, we could not find preexisting motion data like ours collected with a 

radar. The majority of available data sets are composed of images, used to train neural 

networks, and fewer data sets exist for time series. 

 

Fig. 1. 38. This figure shows an example of the data augmentation methods used on 

the original multivariate time series for moving the pill bottle lid. The methods 
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include jitter, scaling, and magnitude warping. The speed (cm/s) is on the y-axis and 

the x-axis represents time in seconds. 

A less used solution for time series data would be to augment the data to 

increase the size and diversify the data set. Data augmentation techniques have been 

applied successfully in the field of computer vision (Taylor & Nitschke, 2017) and 

include methods such as cropping, permutation, rotating, flipping, and inverting 

images. Some of these methods have been translated to work on time series data (Um 

et al., 2017), but not all data augmentation methods are appropriate. When applying 

augmentation methods, it is important to consider that time series data has temporal 

data which might affect the model performance if it changes. We found three time 

series data augmentation techniques that increased our data set and improved our 

model performance. The three methods we used included jittering, scaling, and 

magnitude warping. We followed the implementation given by Iwana and Uchida 

(2021). For each activity we had 4 time series variables or dimensions making them 

multivariate. Thus, given a multivariate time series (MST) defined as a vector of 𝑘 

time series variables 𝑋1𝑡, 𝑋2𝑡, … , 𝑋𝑘𝑡 where 𝑘 is 4, we applied the following: 

• Jittering: Add random noise to the MST from a Gaussian distribution 

1

 σ√2𝜋
𝑒

−(𝑥−𝜇)2)

2𝜎2  with mean μ = 0 and a standard deviation σ = 0.03, based on Um 

et al. (2017). 

• Scaling: Increase or decrease the magnitude of all elements in the  by 

multiplying by a scalar. The scalar is computed from a Gaussian distribution 

1

 σ√2𝜋
𝑒

−(𝑥−𝜇)2)

2𝜎2  with mean μ = 1 and a standard deviation σ = 0.1, based on Um 

et al. (2017). 
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• Magnitude Warping: Alter the magnitude of the  by convolving the  with a 

curve created by cubic spline. The convolution is performed by multiplying 

the  with a cubic spline with 4 knots at random magnitudes from a Gaussian 

distribution 
1

 σ√2𝜋
𝑒

−(𝑥−𝜇)2)

2𝜎2   with mean μ = 1  and a standard deviation σ = 0.2, 

based on Um et al. (2017). 

The data was augmented using the original multivariate time series data starting 

with jittering. Then the original and augmented data was augmented again with 

scaling. Finally, this was repeated with magnitude warping (MW). As an example, the 

effects of each augmentation meted is shown in Fig. 1. 38 for moving the pill bottle 

lid. This process is slightly different from approaches in Iwana and Uchida (2021) 

and Um et al. (2017) as we created more samples by augmenting the augmented data. 

After we generated all the augmented data we combined it with our original 296 

sample data set to obtain a new data set of 2368 samples. The increase in our data set 

for each augmentation method is shown in Table 1. 3. We then applied the 

preparation steps described previously in Section 4.3. 

Table 1. 3. Increase data size with data augmentation 

Data Set Total Examples MTS Total  

(4 Dimensions) 

Original 269 1184 

Jitter + Original 592 2368 

Scaling + Jitter + Original 1184 4736 

MW + Scaling + Jitter + Original 2368 9472 

Event Segmentation 

Given a continuous amount of speed data sampled from the radar at 10,000 Hz 

for the CW signal, we had to separate and label each event. To do this, we created a 

speed magnitude filter. The filter set a threshold of 5 for the speed magnitude, thus 
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motion data was only captured when speed magnitude values were above this 

threshold. The threshold was found experimentally and can be configured if needed. 

The filter made the task of segmenting each motion event simple, by creating gaps of 

time between each event. As a result, we segmented motion events for each class by 

looking for a gap between events of time greater than 2 s. The speed magnitude filter 

was a feature of that we configured on the radar. We then compared our segmentation 

counts to hand recorded counts for verification. This process was necessary so that we 

could proceed with feature extraction and classification. 

Event Segmentation 

Building a good classifier for multivariate time series is challenging due to the 

high dimensionality introduced by the multiple univariate time series that make them 

up (Baydogan & Runger, 2015). Several approaches can be taken to tackle this 

classification problem. The most basic approach would be to apply a dimensionality 

reduction method such as principal component analysis (Wold, Esbensen, & Geladi, 

1987). Another approach would be to simply concatenate all the dimensions of the 

multivariate time series into a single univariate time series and use proven univariate 

time series classification solutions (Rakthanmanon et al., 2012, Schäfer, 2015). 

However, these approaches can be domain specific, are not noise robust, and do not 

always consider the relationship of features between dimension (Schäfer & Leser, 

2017). Instead we found a relatively new feature extraction method called 

WEASEL+MUSE that is domain agnostic, and claims to be among the most accurate 

classifiers when compared to state of the art (Schäfer & Leser, 2017). The 

WEASEL+MUSE method builds off the bag-of-patterns model and the WEASEL 
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(Word ExtrAction for time SEries cLassification) pipeline. In addition, 

WEASEL+MUSE has outstanding robustness on motion recognition data and is why 

we chose it to extract a set of features from our medication tampering data set. What 

is different in our approach is that we also extract features from the augmented data 

we generated and show that WEASEL+MUSE performs well in this scenario. We use 

WEASEL+MUSE to build a set of histograms over feature counts which we use to 

train a logistic regression machine learning model. The parameters we used for 

WEASEL+MUSE were set to strategy being uniform, word size of 4, and a set of 

windows between sample lengths starting at 5 and ending at 70. We used a logistic 

regression classifier for multiple classes using the one-vs-rest scheme. The classifier 

is implemented using liblinear (Fan, Chang, Hsieh, Wang, & Lin, 2008). 

Evaluation and Results 

To show the improvements in accuracy across all eight medication tampering 

methods, we compared the classification results of the original data to the 

classification results with the augmented data. We did the comparison using k-fold 

cross-validation after following our steps described previously in Sections 4.3, 4.4, 

4.5, 4.6. In the k-fold cross validation method, the data is split into k equal folds, of 

which k-1 folds are used for training. Then the resulting model is validated on the 

remaining part of the data, the test set, which is then used to compute the accuracy. 

For our experiments, we chose to set k to 5 for 5-fold cross validation. Other values 

of k can be used, but values of 2, 5, and 10 are the most widely used (Goyani & Patel, 

2017). The results are displayed in Fig. 1. 39, Fig. 1. 40 as confusion matrices. The 

original data of 296 examples without augmentation had a total of 74% accuracy, 
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while the augmented data with 2368 examples had a total of 99% accuracy. This was 

about 25% improvement in classification accuracy when using the larger data set with 

augmentation. In addition, each of the eight medication tampering methods improved 

their accuracy to above 98%. These results are similar to those achieved with other 

data sets using WEASEL+MUSE with 8 or more classes (Schäfer & Leser, 2017). 

 

Fig. 1. 39. This figure shows the confusion matrix results using the original data set 

with a total of 74% accuracy. The labels for the 8 medication tampering methods are 

as follows: A is Move Bottle Lid, B is Shake Bottle, C is Move Bottle, D is Move Pill 

Hand, E is Move Pillbox, F is Move Pill in Box, G is Move Pillbox Lid, and H is 

Move Pill in Blister Pack. 
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Fig. 1. 40. This figure shows the confusion matrix results using the augmented data 

set with a total of 99% accuracy. The labels for the 8 medication tampering methods 

are as follows: A is Move Bottle Lid, B is Shake Bottle, C is Move Bottle, D is Move 

Pill Hand, E is Move Pillbox, F is Move Pill in Box, G is Move Pillbox Lid, and H is 

Move Pill in Blister Pack. 

Analyzing data augmentation impact on accuracy  

We experimented with the impact of data augmentation on our model’s 

accuracy. As mentioned previously in Section 4.4 we used three data augmentation 

techniques: jittering, scaling, and magnitude warping. For each of these augmentation 

methods, we assessed their impact on our model’s performance as they were added to 

our original data set one by one. In addition, we experimented with the impact of 

accuracy as the augmentation data sets were aggregated. For each of these cases we 

performed 5-fold cross-validation using the same logistic regression classifier. The 

accuracy results for each experiment is shown in Fig. 1. 41. As data augmenting takes 

place you can see that the accuracy increases to above 90% accuracy, with the highest 

accuracy being the data set with all the augmentation techniques. 

 

 
Fig. 1. 41. This figure shows the classification accuracy for different augmentation 

data sets aggregated with the original data set.  



 

95 

 

Preliminary experiments with multiple users 

We evaluated out system with multiple users. For an initial experiment we 

collected data from a total of three subjects. Each subject was asked to perform each 

of the eight tampering methods ten times each. After processing the data we found 

that the number of examples collected for each of the eight classes was unbalanced 

amongst the three subjects. In order to evaluate our system performance, we had to 

balance the classes. To do this we used our data augmentation methods described 

previously to generate enough classes for the smaller sets. In total, we balanced each 

class so that they had ten examples for each tampering method for a total of eighty 

examples for each subject. The initial data counts and balanced data counts are shown 

in Fig. 1. 42 for comparison. Across the eight tampering methods for the three 

subjects, we collected 240 examples for our initial data set. Following the same steps 

described in Section 4.4 we increased our data set using data augmentation to a total 

of 1920 examples. Then we processed the data through our processing pipeline 

described in Section 3. Using the same 5-fold cross validation and logistic regression 

classifier described previously, we were able to achieve 55% accuracy when using the 

original data without augmentation shown in Fig. 1. 43. We achieved 99% accuracy 

when using the original and augmented data set shown in Fig. 1. 44. Thus, our system 

achieved an improvement in accuracy of 44%. 
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Fig. 1. 42. This figure shows the unbalanced data set collected for three subjects 

across the eight tampering methods. It also shows the balanced set for each tampering 

method for comparison. 

 
Fig. 1. 43. This figure shows the confusion matrix results using the original data set 

for 3 subjects with a total of 55% accuracy. The labels for the 8 medication tampering 

methods are as follows: A  Move Bottle Lid, B  Shake Bottle, C  Move Bottle, D  

Move Pill Hand, E  Move Pillbox, F  Move Pill in Box, G  Move Pillbox Lid, and H  

Move Pill in Blister Pack. 



 

97 

 

 
Fig. 1. 44. This figure shows the confusion matrix results using the augmented data 

set for 3 subjects with a total of 99% accuracy. The labels for the 8 medication 

tampering methods are as follows: A is Move Bottle Lid, B is Shake Bottle, C is 

Move Bottle, D is Move Pill Hand, E is Move Pillbox, F is Move Pill in Box, G is 

Move Pillbox Lid, and H is Move Pill in Blister Pack. 

Discussion 

We presented a new radar-based monitoring system for medication tampering 

and pill-taking behaviors capable of detecting eight different types of activities with 

three types of medication containers. We demonstrated the use of data augmentation 

methods and WEASEL+MUSE feature extraction to achieve high accuracy for single 

and multiple users. Moreover, our radar-based system offers multiple benefits 

compared to other types of medication monitoring systems such as smart pill 

containers, wearable sensors, computer vision, and wireless RFID systems. Radar has 

robust properties that allow our system to maintain privacy, operate in dark, smoky, 

or high light intensity environments, and detect through material such as cabinets 

while providing a compact and potentially low-cost apparatus to detect medication 

tampering and adherence. Although we did not demonstrate through material 

detection, our radar was covered with a 3D printed case when operating and 
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performed well. Additional experiments could be conducted to see how the system 

performs when concealed in closed areas such as in a cabinet or drawer. 

Further work is needed to test our system with a large number of participants, 

in different environments, and to differentiate from other motion-behaviors such as 

eating near a kitchen cabinet or brushing teeth if installed near a bathroom sink. More 

work is needed to devise a cloud-based and secure transmitting system so that a 

nearby computer is not needed for the radar-based monitoring system. Also, we 

envision testing the use of multiple low-cost radars such as the RFbeam Doppler 

radar K-LC2 with a single unit price: $22.59 (RFBeam 2016) to increase accuracy 

and the area within which pill-taking motions can be detected, as well as for 

monitoring medication intake. For example, in Li, Robucci, Banerjee, and Patel 

(2015) they build a head mounted systems with an array of three K-LC2 radars to 

detect tongue gestures. This system could potentially be adapted to help with 

monitoring medication intake. 

Another direction to explore would be pairing the system with a smartphone 

safety notification system to alert users of any unwarranted medication tampering, to 

keep an automated log of medication adherence, or to alert care providers or family 

members of missed medication intake. These modalities could be incorporated into 

pre-existing mobile health (mHealth) interventions such as the Corrie Health platform 

for self-management in secondary prevention in cardiovascular disease (Spaulding et 

al., 2019). There is current evidence that mHealth tools can improve adherence 

among patients with cardiovascular disease (Gandapur et al., 2016) and utilizing the 

radar-based monitoring system could augment such technology. In addition, a radar-
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based monitoring system paired with mHealth technology could be economically 

efficient and would only require one upfront installment of radars in the user’s home, 

making the entire system more feasible and salable. 

The new radar-based monitoring system offers an accurate new tool to detect 

medication tampering and pill-taking behaviors with unique benefits over other 

monitoring modalities. Further research is needed to continue the development of this 

system and possibly combine the system with mHealth technology. In the future, we 

believe that this new system could present a powerful tool to reduce the dangers of 

medication tampering by children and to increase medication adherence among a 

variety of medication users. 
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Chapter 5: Conclusion 
 

Our dissertation contributions to the field of smart healthcare by showing how 

useful radar is compared to traditional sensing methods for unexplored use-cases. We 

showed how radar can preserve privacy, travel through material, work well in 

challenging environments, is unobtrusive, small, affordable, and compact. These 

benefits were explored through three smart healthcare applications using radar-based 

non-contact sensing. Our applications use CW and FMCW radar for sensing and 

machine learning for thinking and driving intelligent decisions.  We show how radar-

based non-contact sensing systems can be deployed in the operating room for gesture 

control and at home to monitor coughing, sneezing, and medication tampering.   

In our first smart healthcare application we presented an end-to-end and 

unobtrusive system that uses Doppler radar sensing to recognize hand and finger 

gestures when either one hand or both hands are busy. Our system permits the 

following important capabilities: (1) touch-less input for sterile interaction with 

connected health applications, (2) hand and finger gesture recognition when either 

one or both hands are busy holding tools, extending multitasking capabilities for 

health professionals, and (3) wearable, mobile, and networked, allowing for custom 

configurations. We evaluated or system in a simulated OR, using five subjects, by 

training a KNN multi-class classifier achieving 94.5% gesture recognition accuracy. 

We also tested our real-time system, capable of detecting the start and end of a 

gesture for classification. We mapped four gestures: double tap, circle, swipe, and 

finger click to commands to control a CT scan image application. We found that 

future work is required to evaluate the usability of our system as well as ways to 
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process the radar signal more accurately in noisy conditions. To the best of our 

knowledge, this is the first system to successfully use radar for image interaction in 

the OR. 

In our second smart healthcare application we presented a new smart home 

monitoring system that can detect voluntary coughing, sneezing, face touching, and 

entering/leaving a room. Our system includes a mobile application with alert 

notifications for the type, time, and location of the activity detected. To detect, 

differentiate, and locate each activity, we use a combined CW/FMCW radar to 

capture the motion speed, direction, and range information. We used two features, the 

IQR of the velocity, and a relative direction feature, in order to implement a set of 

fuzzy IF-THEN logic rules which can differentiate activities in different scenarios. 

We also defined a set of distances, (close, near, far), based on the RMS range values 

to locate each activity. With a single individual our system can detect activities with 

an overall accuracy of 96%. In addition, our system can accurately detect activities at 

different distances (0.91 m, 1.83 m, and 2.74 m), through a wall, and with multiple 

people. Our system can be used to track activities at home, helping people maintain 

proper hygiene, knowing which areas to clean and aid in social distancing practices. 

We envision this system being used to help stop the spread of the devastating 

COVID-19 virus as well as support contact tracing efforts. 

In our third smart healthcare application we presented a new system that uses 

radar for monitoring medication tampering. Our system is capable of monitoring eight 

different types of tampering activities using three types of medication containers. We 

used a pill bottle, pillbox, and a blister pack and detected the following activities: 
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moving the bottle lid, shaking the bottle, moving the bottle, moving the pill in the 

hand, moving the pillbox, moving the pillbox lid, and moving the pill in the blister 

pack. In our setup, we attached the radar underneath a kitchen cabinet to monitor 

medication containers left on the countertop. In addition, we show how data 

augmentation methods including jittering, scaling, and magnitude warping can be 

used to increase our data sets, limit overfitting, and increase our model accuracy. 

Furthermore, we presented a processing pipeline for multivariate time series 

classification using the WEASEL+MUSE feature extraction method. Our system 

achieved 99% accuracy for both single and multiple users evaluated using 5-fold 

cross validation. 
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