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Abstract

Diabetes is a disease characterized by an excessive level of glucose in the blood-
stream, which may be a result of improper insulin secretion. Insulin is secreted in a
bursting behavior of pancreatic β-cells in the islets of Langerhans, which is affected
by oscillations of cytosolic calcium concentration. We used the Dual Oscillator Model
to explore the role of calcium in calcium oscillation independent and calcium oscilla-
tion dependent (CaD) modes as well as the synchronization of metabolic oscillations
in electrically coupled β-cells. We also implemented a synchronization index in order
to better measure the synchronization of the β-cells within an islet. We observed that
voltage or calcium coupling result in increased synchronization and are more effective
in CaD modes. Furthermore, we studied heterogeneous modes of coupled β-cells, their
arrangements in the islets, and their synchronization. We saw that increasing calcium
coupling or increasing voltage coupling in heterogeneous cases increases synchroniza-
tion; however, in certain cases increasing both voltage and calcium coupling causes
desynchronization, primarily in voltage. To better represent an entire islet, we altered
previous code by further optimizing run-time and memory usage to allow for a greater
number of cells to be simulated for a longer period of time.

Key words. pancreatic β-cells, islet, calcium, metabolic oscillations, Dual Oscillator
Model, Synchronization Index
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1 Introduction

Insulin is a hormone secreted by pancreatic β-cells that manages blood plasma glucose lev-
els. Improper insulin secretion can result in chronically elevated levels of glucose in the
bloodstream in a disease known as diabetes. Diabetes can lead to kidney failure, blindness,
limb amputation, cardiovascular disease, and death [3]. There are two types of diabetes;
Type I involves an autoimmune destruction of β-cells which results in a complete absence
of insulin. Type II involves a deficiency of insulin caused by insulin resistance as well as a
failure of β-cells to produce enough insulin to compensate. Type II is the more common
form of diabetes, with a rising number of cases concentrated in industrialized countries [3].
The rise in diabetes has driven research to better understand β-cells.

Our research focuses on understanding β-cells by investigating calcium oscillation indepen-
dent (CaI) and calcium oscillation dependent (CaD) modes. We do this through exploring
the effects of voltage and calcium coupling as well as different types heterogeneous cellular
bursting arrangements on the synchronization of cells in these modes. We have arranged our
report as follows. In Section 2 there is a brief overview of the physiology of β-cells as well as
the Dual Oscillator Model. The methodology is described in Section 3 and the results are
described in Section 4. The conclusions of our research are drawn in Section 5.

2 Background

2.1 Physiology

In the pancreas, the endocrine cells are found in clusters called islets of Langerhans [3]. The
islet consists of α, β, and δ cells; β-cells are responsible for insulin secretion. The process of
insulin secretion begins when glucose enters a β-cell. Glycolysis starts, during which adeno-
sine diphosphate (ADP) is converted to adenosine triphosphate (ATP). The ratio of ATP to
ADP increases, causing the ATP dependent potassium channels (KATP) to close and the β-
cell to depolarize. As a result, the calcium (Ca2+) channels open, allowing Ca2+ to flow into
the cytoplasm from the outside of the cell. The increase in Ca2+ triggers the endoplasmic
reticulum (ER) to open its large Ca2+ store, leading to a higher concentration of Ca2+ in
the cell. Due to this greater concentration, insulin is released into the bloodstream through
exocytosis. The ATP/ADP ratio is restored by exocytosis and other cell functions, such as
the calcium pump that expels excess Ca2+, lowering the concentration. The KATP channel
is reopened and the cell is repolarized, resetting the β-cell.

The process of the calcium channels opening and closing results in calcium oscillations,
whereas the flow of ions in and out of the cell lead to voltage oscillations. During process of
glycolysis, there is a positive feedback loop of fructose 1,6-bisphosphate (FBP) on phospho-
fructokinase (PFK) causing the production of more FBP until fructose 6-phosphate (F6P)
is depleted, which causes PFK activity to stop until F6P levels recover. This process causes
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metabolic oscillations. There are different flux of glucokinase (JGK) values that determine
whether a cell is CaI or CaD. If it depends on the calcium oscillation levels, it is CaD, and if
it does not depend on the calcium oscillation levels, it is CaI. The range of CaD is from 0.01
JGK to 0.176 JGK . The range of CaI is from 0.045 JGK to 0.15 JGK . Ca2+ links the electrical
and metabolic oscillations that are exhibited by β-cells in response to elevated glucose levels
in the bloodstream. Together these two oscillations regulate the secretion of insulin by the
β-cells. Each time an oscillation completes is considered a burst representing one cycle of
insulin secretion. β-cells can be classified into two categories, slow and fast, based upon their
bursting periods. Slow bursting β-cells burst approximately every four to six minutes. Fast
bursting β-cells burst approximately every ten seconds [2]. In islets however, there is a mix
of differently bursting cells called heterogeneity. The timing of the insulin secretion process
is dependent on the (JGK) value of the cell.

The β-cells do not act independently to release insulin. They are connected by gap junctions,
which are proteins split between the cell membranes that allow small molecules to travel from
cell to cell. Gap junctions impact the voltage between cells as well as Ca2+ concentration
in each cell. A transmembrane current is created across the gap junction due to the flow of
ions between cells [3]. As the process of insulin secretion happens for one cell, it is signaled
to the connecting cells and the bursting is synchronized [2].

In healthy cells insulin secretion is oscillatory; however, in pre-diabetic subjects these oscil-
lations do not occur. It is possible that the lack of oscillations are connected with dysyn-
chronization of β-cells in an islet. This is thought because in an islet when β-cells are not
synchronized, insulin secretion in an islet does not oscillate.

2.2 Dual Oscillator Model

The Dual Oscillator Model (DOM) [6] represents the process of insulin secretion for a single β-
cell by seven differential equations consisting of three components: electrical, mitochondrial,
and glycolytic.
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dV

dt
= −

IK + ICa + IK(Ca) + IK(ATP )

Cm

(2.1)

dn

dt
=
n∞(V )− n

τn
(2.2)

d[Ca]

dt
= fcyt(Jmem + Jer) (2.3)

d[Caer]

dt
= −σV ferJer (2.4)

d[ADP ]

dt
= Jhyd − δJANT (2.5)

d[G6P ]

dt
= k(JGK − JPFK) (2.6)

d[FBP ]

dt
= k(JPFK −

1

2
JGPDH) (2.7)

Equations (2.1) through (2.4) contain the electrical model, equation (2.5) describes the cell’s
mitochondrial activity, and equations (2.6) and (2.7) represent glycolytic activity. Ii indicates
the ionic currents through the specific channels where i ∈ {K,Ca,K(Ca), K(ATP )}. Note
that IK and ICa are voltage dependent, IK(Ca) is Ca2+-activated, and IK(ATP ) is sensitive to
the ATP/ADP ratio. V shows the membrane potential and Cm represents the membrane
capacitance. In equation (2.2), n is the activation variable for the voltage dependent K
channel. Jx serves to show flux where x ∈ {mem, er, hyd,ANT,GK,PFK,GPDH}. The
volume fraction of the relationship between the ER and the cytoplasm is given by σV as seen
in equation (2.4).

The following equations, (2.8) through (2.11), use Ohm’s law and form the basis for equation
(2.1). gi is the conductance where as ḡi represents the maximal conductance for the respective
current.

IK = ḡKn(V − VK) (2.8)

ICa = ḡCam∞(V − VCa) (2.9)

IK(Ca) = gK(Ca)(V − VK) (2.10)

IK(ATP ) = gK(ATP )(V − VK) (2.11)

The activation variables n and m are given by

n∞(V ) =
1

1 + e−(16+V )/5
(2.12)

m∞(V ) =
1

1 + e−(20+V )/12
. (2.13)

The K(Ca) conductance in (2.14) is given by an increasing sigmoidal function of the Ca2+

concentration and the K(ATP) conductance in (2.15) is dependent on the ADP and ATP
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concentrations, where the conductance function O∞ is given by the Magnus-Keizer expression
[1].

gK(Ca) = ḡK(Ca)

(
Ca2

K2
D + Ca2

)
(2.14)

gK(ATP ) = ḡK(ATP )O∞(ADP,ATP ) (2.15)

The free cytoplasmic calcium concentration [Ca] in equation (2.3) uses the fraction of free
to total cytosolic Ca2+ (fcyt) along with equations (2.16) through (2.19).

Jmem = −(αICa + kPMCA[Ca]) (2.16)

Jer = Jleak − JSERCA (2.17)

Jleak = pleak([Caer]− [Ca]) (2.18)

JSERCA = kSERCA[Ca] (2.19)

These equations describe the flux of Ca2+ across the membrane (Jmem), the flux of Ca2+

out of the endoplasmic reticulum (Jer), leakage permeability (pleak), and SERCA pump rate
(kSERCA). In equation (2.16), α converts current to flux and kPMCA is the Ca2+ pump rate.
In our reduced model, only the leakage (Jleak) leads to flux out of the ER, and only the
SERCA pumps (JSERCA) lead to Ca2+ flux into the ER.

2.3 Coupling

Coupling of N3 cells is considered to better understand the way β-cells interact in islets
through gap junctions. To couple multiple cells in an islet, we created a diagonal coupling
matrix G, which connects the voltages and calcium concentrations between a cell and its
neighboring cells. We construct a vector,

y =



Vi
ni

[Ca]i
[CaER]i
[ADP ]i
[G6P ]i
[FBP ]i


, where i = 1 to N , (2.20)

that contains these values for all of the cells. We now define our system of ODEs to be

dy

dt
= f(t, y) +Gy

where f(t, y) encompasses the happenings inside each cell taken from the DOM and Gy
accounts for the adjusted behavior of the β-cells due to coupling.
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3 Numerical Methods

The DOM can be examined two ways: as a single cell model and as an islet model. The
single cell model shows how one β-cell reacts to electrical and metabolic oscillations repre-
sented in equations (2.1)-(2.7). The islet model replicates this single cell model for N3 cells
then uses the coupling matrix G to consider how the cells interact. Both models are based
on Matlab files used in previous work at University of Maryland, Baltimore County High
Performance Computing Facility [2]. This file was adapted from Bertram’s XPPAUT file
that implemented the DOM [1].

3.1 Islet Model

The islet is modeled as a cube of N×N×N cells with indexing (i, j, k). For computational
purposes, the values associated with each cell are stored in a vector y, in equation (2.20).
The indexing is given as l = i + N(j − 1) + N2(k − 1) to access the (i, j, k)th element in
y. To compute the impact of coupling on each cell, the C matrix shows the influence of the
surrounding cells on each individual cell. C is a matrix of coupling coefficient values that is
modified to account for the chosen coupling values in C ′. G is a box diagonal matrix, with
each box on the diagonal containing C ′. Each row represents the effects of connecting cells
to one cell. If the mth and nth cells are not connected, then the (m,n) and (n,m) entries of
the matrix will be zero; if they are connected, the entries will be their coupling relation. The
diagonal of matrix C is the number of neighboring cells multiplied by the coupling value, g.
More information on the coupling matrix can be found in [4].

To accurately represent an islet, the initial values of each cell are taken from a normal dis-
tribution around the average value with standard deviation 20% of that average value. This
allowed the initial values of each cell to be chosen within a certain range of the mean to see
how the cell bursts synchronize. We took into account the heterogeneity of an islet and used
three different patterns as seen in Figures 3.1, 3.2, and 3.3. The equal pattern in Figure 3.1
alternated between two JGK values from cell to cell. In Figure 3.2, we see a layers pattern
where each row alternates the JGK values. The last pattern we modeled is called a layered
split pattern that alternated between half rows of JGK values seen in Figure 3.3. Within
these patterns, we used various combinations of JGK values in CaD and CaI ranges.

Figure 3.1: Equal-50-Percent Figure 3.2: Layers Figure 3.3: Layered-split
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3.2 Optimizating the Numerical method

To obtain numerical solutions for the DOM, we chose the built-in Matlab solver ode15s,
which can solve stiff differential equations in the form My′ = F (t, y). This particular solver
is based on numerical differentiation formulas and efficiently solves large sets of equations at
each time step. It effectively uses a mass symbolic Jacobian matrix obtained directly from
the DOM code through the streamlined means of Matlab’s Automatic Differentiation. We
implemented a modified version of ode15s to optimize runtime and memory usage specifically
for the DOM [4].

For simulations of a large N or high end time, the output is too large to write a MAT-file.
To overcome this issue, we added a loop into the code that would run the simulation for a
given amount of time and save the results in a MAT-file. Then the end value is taken as the
new initial condition and the simulation is run for the next time period, saving these results
in a new MAT-file. We call this loop the Time Interval Loop (TIL).

3.3 Synchronization Index

In order to quantitatively measure the level of synchronization for each simulation, we wrote
code to output the synchronization index of V, [Ca], and [FBP] traces. To weigh the stiff and
nonstiff regions of the oscillations equally in the index, we interpolated the data from the
simulation using a time vector with equal spacing of 36ms per entry. A Pearson correlation
is then run on the matrix containing all the V, [Ca], or [FBP] traces per simulation. We
use the built-in Matlab function, corr, for the Pearson correlation. The (i, j)th entry of the
resulting coefficient matrix is the Pearson coefficient for the ith and jth traces. We determine
the index by taking the minimum average value of the rows. For this index we choose for
what time period of each simulation to run the correlation. Since we are considering what
pattern the simulation settle into, we typically run our SI on the last fifteen minutes of the
simulation.

4 Results

Our simulations examined the behavior of voltage, calcium, and FBP under varying pa-
rameters and between heterogeneous groups of cells representing an islet. Our results show
simulations of varying JGK values in the CaI, CaD, and mixed CaI and CaD ranges, as well
as varying levels of calcium coupling and voltage coupling.
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4.1 Time Study

We did a time study in order to compare the use of the Matlab solver ode15s versus the
modified ode15s version. Note that this time study was performed before we implemented
the TIL. We found we could model larger amounts of cells without running out of memory
(O.M.) using the Modified ode15s; however, the time saving effects of the Modified ode15s
solver are minimal.

ode15s Modified ode15s
N 0 pS 10 pS 0 pS 10 pS
2 1173 265 1159 263
3 2387 345 2288 338
4 O.M. 493 2908 466
5 O.M. 947 3376 844
6 O.M. O.M. 4167 1180
7 O.M. O.M. O.M. 1768
8 O.M. O.M. O.M. 2693
9 O.M. O.M. O.M. 4288
10 O.M. O.M. O.M. O.M.

Table 4.1: Simulations modeled the cells for one hour, homogeneous, a JGK value of
0.18µM·ms−1, and perturbed initials conditions with either voltage coupling or no coupling.

4.2 Adding Dz

We began by investigating CaI versus CaD modes. We added diazoxide (Dz) twenty min-
utes into an hour long simulation. Dz locks the KATP channels open, thus keeping the cell
from depolarizing. Therefore, the Ca2+ channel cannot open and Ca2+ cannot enter the cell.
When Dz is added, as seen in Figures 4.1a and 4.1b, Ca2+ oscillations terminate. Addition-
ally, in the CaD mode, Figure 4.1b, the metabolic oscillations terminate; however, in the
CaI mode seen in Figure 4.1a, the metabolic oscillations continue.

(a) CaI: JGK = 0.095µM·ms−1 . (b) CaD: JGK = 0.2µM·ms−1

Figure 4.1: Simulations using 5×5×5 block of cells, homogeneous, no-coupling, and adding
Dz at 20 minutes.
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4.3 Coupling Trends

Next we considered coupling in the CaD and CaI modes. Figures 4.2a and 4.2b, show that
in the CaI modes, as voltage coupling increases, synchronization increases. Figures 4.3a
and 4.3b demonstrate that for CaD modes, increasing voltage coupling seems to increases
synchronization when making a visual comparison.

(a) gv = 5pS (b) gv = 10pS

Figure 4.2: CaD runs with a JGK value of 0.095µM·ms−1, a 3×3×3 block of cells, homoge-
neous, gCa = 0ms−1 and the initial conditions are perturbed.

(a) gv = 5pS (b) gv = 10

Figure 4.3: CaD runs with a JGK value of 0.18µM·ms−1, a 3×3×3 block of cells, homoge-
neous, gCa = 0ms−1 and the initial conditions are perturbed.
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Increasing calcium coupling when the calcium coupling value is greater than 0.045ms−1, does
not have a significant effect on synchronization when making a visual comparison in both
CaD and CaI modes as shown by Figure 4.4a compared to Figure 4.4b and Figure 4.5a
compared to Figure 4.5b.

(a) gCa = 0.045ms−1 (b) gCa = 0.909ms−1

Figure 4.4: CaI runs with a JGK value of 0.095µM·ms−1, with a 3×3×3 block of cells, are
homogeneous, gv= 0pS, and the initial conditions are perturbed.

(a) gCa = 0.045ms−1 (b) gCa= 0.909ms−1

Figure 4.5: CaD runs with a JGK value of 0.18µM·ms−1, with a 3×3×3 block of cells, are
homogeneous, gv= 0pS, and the initial conditions are perturbed.
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When calcium coupling values are less than 0.045ms−1, there is greater synchronization as
the calcium values increase in both CaD and CaI modes as shown by Figures 4.6 and 4.7.

(a) gca= 0.000009ms−1 (b) gca= 0.0018 ms−1 (c) gca= 0.0036 ms−1

Figure 4.6: CaI runs with a JGK value of 0.095µM·ms−1, with a 3×3×3 block of cells, are
homogeneous, gv= 0pS, and the initial conditions are perturbed.

(a) gca= 0.000009ms−1 (b) gca= 0.0018 ms−1 (c) gca= 0.0036 ms−1

Figure 4.7: CaD runs with a JGK value of 0.018µM·ms−1, with a 3×3×3 block of cells, are
homogeneous, gv= 0pS, and the initial conditions are perturbed.
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4.4 Heterogeneity

We tested three different types of heterogeneity patterns with various pairs of JGK values
and various calcium and voltage coupling values. We found the differences between the three
heterogeneity patterns to be small as seen in Figures: 4.8, 4.9, and 4.10.

(a) Equal-50-percent (b) Layers (c) Layered-split

Figure 4.8: Mixed CaD and CaI with JGK values of 0.14 and 0.18µM·ms−1, with a 3×3×3
block of cells, gv= 5pS, gCa= 0ms−1, and the initial conditions are perturbed.

(a) Equal-50-percent (b) Layers (c) Layered-split

Figure 4.9: CaI pairs with JGK values of 0.05 and 0.14µM·ms−1, with a 3×3×3 block of cells,
gv= 0pS, gCa= 0.045ms−1, and the initial conditions are perturbed.

(a) Equal-50-percent (b) Layers (c) Layered-split

Figure 4.10: Mixed CaI and CaD pairs with JGK values of 0.095 and 0.2µM·ms−1, with a
3×3×3 block of cells, gv= 5pS, gCa= 0.045ms−1, and the initial conditions are perturbed.
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4.5 Synchronization

In order to quantify synchronization, we created a plot of the synchronization index (SI)
for a set of simulations with varying parameters. Simulations were run with either the
same or perturbed initial conditions as well as for a time period of one or two hours. Note
that we apply the SI to the last fifteen minutes of each simulation. Each chart consists
of twelve scatter plots with each plot representing a different voltage and calcium coupling
combination. The x-axis shows the pairs of JGK values while the y-axis represents the
SI values. To represent the SI values of voltage, calcium, and FBP per simulation, each
point is given a certain shape and color, voltage synchronization is a pink triangle, calcium
synchronization a green circle, and FBP synchronization a blue X as seen in the legend,
Figure 4.11. An SI value of one represents complete synchronization.

Figure 4.11: SI Legend

4.5.1 Synchronization Index Charts

In the synchronization index chart, we can see the trends as we change parameters. Each
column of graphs represents a specific voltage coupling, which increases from left to right.
Rows of graphs represent a given calcium coupling increasing from top to bottom. The first
three columns in each graph have cells with JGK values all in the CaI range. The next four
columns have one JGK value in the CaI range and one in CaD. The last three columns have
JGK values both in the CaD range. These different columns are designated by dashed lines.

Figure 4.12: Simulations run with a 5×5×5 cube, the same initial conditions, and the equal-
50-percent bursting pattern for one hour.
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In Figure 4.12 after an hour even a small amount of calcium coupling tends to cause voltage
desynchronization. After two hours considering Figure 4.13 in comparison to Figure 4.12
in the mixed pairs of JGK , the synchronization decreases for all of the calcium coupling
strengths.

Figure 4.13: Simulations run with a 5×5×5 cube, the same initial conditions, and the equal-
50-percent bursting pattern for two hours.

Figure 4.14: Simulations were run for one hour with a 5×5×5 cube of cells, the equal-50-
percent bursting pattern, and the initial conditions are perturbed.

We perturbed the initial conditions in Figure 4.14 and Figure 4.15. In comparing these
figures, we observe that there are some instances of desynchronization when the simulations
are run for two hours.
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Figure 4.15: Simulations were run for one hour with a 5×5×5 cube of cells, the equal-50-
percent bursting pattern, and the initial conditions are perturbed.

4.5.2 Synchronization Trends Trend

We can deduce from the SI plot in Figure 4.14, that increasing voltage coupling in the CaD
mode increases synchronization in all three oscillations, voltage, calcium, and FBP. Figures
4.16a through 4.16c demonstrates the trend of synchronization as voltage increases.

(a) gV = 0pS (b) gV = 5pS (c) gV = 10pS

Figure 4.16: Simulations with a 5× 5× 5 block of cells, gCa = 0ms−1, JGK = 0.18µM·ms−1

(blue) or JGK = 0.20 µM·ms−1 (red), and the initial conditions are perturbed.
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Another noticeable trend drawn from Figure 4.14 is that in CaI mode, increasing calcium
coupling increases synchronization of all three oscillations, voltage, calcium, and FBP. Figure
4.17 shows the increasing trend of synchronization as the strength of the calcium coupling
increases.

(a) gCa = 0ms−1 (b) gCa = 0.0033ms−1 (c) gCa = 0.006ms−1

Figure 4.17: Simulations with a 5 × 5 × 5 block of cells, gV = 0pS, JGK = 0.08µM·ms−1

(blue) or JGK = 0.10 µM·ms−1 (red), and the initial conditions are perturbed.

4.5.3 Desynchronization

We observed from our the SI plot in Figure 4.14, that in certain cases, coupling can desyn-
chronize the oscillations. We will compare the noticeable desynchronization cases in the
following graphs.

The first desynchronization case is observed in simulations of CaD modes, where increasing
calcium coupling desynchronizes voltage as seen in Figure 4.18.

(a) gCa = 0ms−1 (b) gCa = 0.006ms−1

Figure 4.18: Simulations with a 5 × 5 × 5 block of cells, gV = 10pS, JGK = 0.18µM·ms−1

(blue) or JGK = 0.20 µM·ms−1 (red), and the initial conditions are perturbed.
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We also see this desynchronization through the synchrony values as seen in Table 4.2.

SI 4.18a 4.18b

V 0.930 0.139

Ca2+ 0.987 0.866

FBP 0.997 0.862

Table 4.2: SI Values for Figures 4.18a and 4.18b

The next desynchronization case is observed when comparing Figures 4.14 and 4.15. Desyn-
chronization occurred over time when both voltage and calcium were coupled and in the high
end of the CaD region. In Figure 4.19a, calcium and FBP start to desynchronize around
40 minutes. We also see this desynchronization through the synchrony values as seen in
Table 4.3. When we increase the calcium coupling strength in Figure 4.19b, the oscillations
start desynchronizing around 40 minutes but re-synchronizes around 80 minutes. This is
also apparent in its synchrony indices as seen in Table 4.4.

SI 1 hr 2 hr

Ca2+ 0.603 0.220

FBP 0.537 0.185

Table 4.3: SI Values for Figure 4.19a

SI 1 hr 2 hr

Ca2+ 0.406 0.602

FBP 0.285 0.567

Table 4.4: SI Values for Figure 4.19b

(a) gCa = 0.003ms−1 (b) gCa = 0.004ms−1

Figure 4.19: Simulations with a 5×5×5 block of cells, gV = 5pS, JGK = 0.20µM·ms−1 (blue
and red), and the initial conditions are perturbed.
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The following desynchronization case is when the FBP oscillations stop over time. We ob-
served this case for simulations with calcium coupling only, in CaD mode of high JGK values.
Figure 4.20 demonstrates this desynchronization, where the graph of FBP oscillations be-
come flat around 100 minutes. Note that calcium has small fast oscillations mirroring the
fast spiking electrical oscillations.

Figure 4.20: Simulations with a 5× 5× 5 block of cells, gV = 0pS, gCa = 0.004ms−1, JGK =
0.20µM·ms−1 (blue and red), and the initial conditions are perturbed.

4.6 Future Research

The memory issue that arises when running large numbers of cells is that output from the
ODE solver, which contains the information needed for graphing, is not written to the Matlab
file when the amount of data is too large. We were able to overcome this by using a Time
Interval Loop (TIL), which is the loop we implemented based on a chosen time which writes
the information to multiple files. Although our solution works, it requires the time period
to be manually selected in order for the file to be under a size limit. For example, thirty
minute periods typically work for a 3×3×3 case whereas the time period needs to be reduced
to fifteen minutes for a 5×5×5 model. However, this can vary due to different amounts and
types of coupling and the amount of perturbation of the initial conditions. A method to solve
the issue of choosing a sufficient time would be to create a loop in the ODE solver based on
the number of steps. We found that you can take a certain amount of steps before running
out of memory. If new files were written based on this number of steps, then a greater
number of cells could be simulated without running out of memory and without having to
test to find an appropriate time. Additionally, a time study could be performed considering
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the code before the TIL, the code with our optimization loop, and the code implementing
the loop based on number of steps.

5 Conclusion

We used the Dual Oscillator Model and the modified ODE solver to better understand the
role of calcium oscillations in CaI and CaD modes. In addition, we were able to create a
synchronization index to demonstrate the trends in voltage and calcium coupling, as well as
differing JGK values. Through this, we were able to better study the impact of CaI, CaD,
and mixed modes on oscillations. To improve simulations by modeling more cells in each
simulation, the code was modified to write multiple MAT-files using a loop for a chosen time.

Coupling complex cells together has interesting dynamic effects. In CaI modes, increasing
calcium coupling with no voltage coupling increases synchronization. In CaD modes, increas-
ing voltage coupling with no calcium coupling increases synchronization as well. However, in
CaD modes, voltage coupling with high calcium coupling causes desynchronization in volt-
age. This is reminiscent o the work on coupled cells [5], where adding calcium permeability
between cells leads to a desynchronization of voltage via a pitchfork bifurcation. These re-
sults help us to better understand how calcium is organized in pancreatic islets in the process
of insulin secretion.
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