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The Quantum Approximate Optimization Algorithm (QAOA) by Farhi et al. is a quantum
computational framework for solving quantum or classical optimization tasks. Here, we explore
using QAOA for Binary Linear Least Squares (BLLS); a problem that can serve as a building
block of several other hard problems in linear algebra. Most of the previous efforts in quantum
computing for solving these problems were done using the quantum annealing paradigm. For the
scope of this work, our experiments were done on the QISKIT simulator and an IBM Q 5 qubit
machine. We highlight the possibilities of using QAOA and QAOA-like variational algorithms for
solving such problems, where trial solutions can be obtained directly as samples, rather than being
amplitude-encoded in the quantum wavefunction. Our simulations show that Simulated Annealing
can outperform QAOA for BLLS at a circuit depth of p < 3 for the probability of sampling the
ground state. Finally, we point out some of the challenges involved in current-day experimental

implementations of this technique on a cloud-based quantum computer.

I. INTRODUCTION

The application of quantum computing to hard opti-
mization problems is a candidate where quantum com-
puting may eventually outperform classical computation
[IH6]. At the time of writing this paper, Noisy Inter-
mediate Scale Quantum (NISQ) computers [5] are being
developed by several firms and research groups [THI3].
The two main approaches to quantum optimization are
(i) the Quantum Annealing (QA) physical heuristic [6]
and (ii) Quantum Approximate Optimization Algorithm
(QAOA) [] on the gate-model quantum computer [IJ.

In this paper, we explore and propose the use of QAOA
for hard problems in linear algebra. In particular, we fo-
cus on the problem of binary linear least squares (BLLS)
[I4-16]. This problem and its variant (binary compres-
sive sensing [I7]) have applications in signal [16, [I7] and
image processing [15] [I8]. Another interesting context of
BLLS is that it can be a building block for other hard
problems in linear algebra[l19]. This can be seen in previ-
ous works that applied quantum annealing to this domain
of problems [20H23]. We hope that our work provides in-
sights to fellow researchers to further explore the use of
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NISQ era methods [4, 24] for problems in linear algebra
and numerical computation. In Section 2, we cover the
necessary background and related work for our paper.
Section 3 is about formulating the BLLS problem for the
QAOA ansatz. The experiments, results and discussion
are detailed in Section 4. We finally conclude our paper
in Section 5. We also have Appendices to complement
and support the information in the main paper.

II. BACKGROUND AND RELATED WORK
A. Background
1. The binary linear least squares problem

Given a matrix A € R™*" an unknown column vector
of variables x € {0,1}" and a column vector b € R™
(Where m > n). The linear BLLS problem is to find
the  that would minimize ||Az — b|| the most. In other
words, it can be described as:

argmin || Az — b|| (1)

The motivation behind choosing the BLLS problem as a
target problem is twofold: firstly, its an NP-Hard prob-
lem [16] that makes it a relevant target for potential
speedup. Secondly, it can act as a building block for
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other hard problems in linear algebra, such as the Non-
negative Binary Matrix Factorization [2I]. One reason
why one may view BLLS a building block for other prob-
lems is because multiple binary variables can be clubbed
together for a fixed point approximation of a real vari-
able [20, 22, 25H28]. Amongst these, there are some prob-
lems that are NP-hard for which an approximate solution
would be acceptable [22] 28]. In these cases, QAOA may
be able to provide an improvement finding approximate
solutions compared to classical solvers and increase the
probability of sampling the best solution.

2. Non-negative Binary Matriz Factorization (NBMF)

NBMF is a specialized version of the Non-negative
Matrix Factorization (NMF') problem. Given a matrix
V e RZ;", the problem is to factorize it into matri-
ces W € RY)" and H € {0,1}"*"™ (H would have non-
negative real entries in NMF).

NMF and its variants are used in multiple disciplines
such as computer vision[29], astronomy[30] and data
mining[3I], just to name a few. BLLS can be used in
order to solve the NBMF variant by using the alternat-
ing least squares method [32].

Algorithm 1 Alternating least squares for NMF

1: procedure MAIN(V) > V is the matrix to be factorized
2 Randomly initialize the matrix H € {0,1}"*"

3: while not converged do
4
5

for row i from 1 to m do
(W)™ « argming,r |[ViT — HT(W;)T|2 such
that W e RT;"

6: end for

7 for column j from 1 to n do

8: Hj « argming_ |[V; — WHj||2 such that H €
{07 1}r><n

9: end for

10: end while
11: return W H
12: end procedure

In Algorithm[I] line[5]is solved classically since efficient
algorithms exist for it[33], it’s line [8] that is solved using
BLLS (where QAOA would be applied).

In the past, quantum annealing was used as a sub-
routine within this algorithm to solve NBMF and other
NMF related problems[21] 22]. Based on our work with
this paper, QAOA can be an alternative to quantum an-
nealing for NBMF, which can be explored in the future.

3. Quadratic Unconstrained Binary Optimization (QUBO)

The QUBO Objective function is as follows,
F(Q) = Z Vaqa + Z Wabqdaqb (2)

a<b

where ¢, € {0,1}, v, and wg;, are real coefficients for the
linear and quadratic parts of the function respectively.
The QUBO objective function is NP-hard in nature [34].
One salient feature of this objective function is that many
application domain problems map naturally to QUBO
[20H22] 35] [36]. In the process of applying BLLS to gate
model quantum devices, we use the QUBO formulation
as an intermediate stage of expressing the problem.

4. The Quantum Approzimate Optimization Algorithm
(QAOA)

Algorithm 2 Quantum Approximate Optimization Al-
gorithm (minimize)

1: procedure MAIN(B, C',p) > The main routine of the

algorithm

2: B+ {0}, + {0}, expt_val < 0, best_res < ()

3: Pick at random 8 € [0, 7]?,~y € [0, 27]?

4: while (8,7) can be further optimized, or a limit is
reached do

5: Initialize res_set < {0}

6: for a fixed number of shots do

7 res_set < res_set U QAOA(E, C, B, v, D)

8: end for

9: From res_set, calculate the expectation value and
store in expt_val

10: Based on the expt_val, pick new 2p angles (3,7)
by classical optimization

11: end while

12: From the final res_set, set the result with lowest en-
ergy, best_res «+ min(res_set)

13: return best_res

14: end procedure

15: procedure QAOA(B,C, 3,7,t)

16: Initialize n qubits, [¢) < |0)®"

17: Apply Hadamard transform, |¢) = 1/4/27(|0)4]1))®™

18: g1

19: while j <t doA

0 ) e e 50l

21: %) e i )

22: j—J+1

23: end while

24: Measure [¢) in standard basis and store in a classical
register o

25: return o

26: end procedure

In 2014 Farhi et al. proposed an algorithm that uses
both quantum and classical computation for solving opti-
mization problems [4]. The potential advantage of using
this algorithm is that it can be implemented by using low
depth quantum circuits [37], making it suitable for NISQ
devices. We here briefly summarize the QAOA formal-
ism applied to binary optimization problems. For the re-
quired preliminaries of quantum computing, the authors
recommend the textbook by Nielsen and Chuang [I].

One popular method of encoding an optimization prob-
lem to be solved using QAOA, is to first formulate the



problem as an Ising Objective function.

F(O’) :Zha0a+ZJabUan (3)

a<b
where o, = 2¢, — 1 (4)

Where o, € {—1,1}, h and J are coefficients associated
with individual and coupled binary variables respectively.
The Ising model is a popular statistical mechanics model,
associated primarily with ferromagnetism [38]. Because
it has been shown to be NP-Complete in nature [39],
the objective function associated with it can be used to
represent hard problems [40]. It is important to note
here that we still don’t know if quantum computing can
help solve NP-Complete problems efficiently [41]. Our
hope for quantum algorithms, at the very least, is to be
able to compete with classical heuristics when it comes
to certain classes of hard problems.

The problem then would be to maximize or minimize
Eqn, depending on how it is set up. The quantum
Ising Hamiltonian, which naturally maps the Ising ob-
jective Eqn to qubits, can be expressed as:

C =3 hat+ 3 JubVs”  (5)

a<b
where () = (251 1) ® (619) ® (@1, 1 1) (6)

wd o = (5 °)) (7)

Here, indices a, b, ¢ label the qubits, n is the total number
of qubits, () is the Pauli Z operator and I is the identity
operator. The other type of Hamiltonian in the QAOA
process is a summation of individual Pauli X operators
for each qubit involved in the process, which intuitively
represents a transverse field in the Ising model:

By s ®
where 6% = (221 @ (6) @ (®1_uii ) (9)

o (x 01
and 6 = <1 O> (10)

In QAOA, the qubits are first put in a uniform super-
position over the computational basis states by applying
a Hadamard gate, which maps |0) — (|0) + [1))/+/2, on
every qubit. Then, the Hamiltonian pair C and B is ap-
plied p number of times using a set of angles v and S,
where, for 1 <[ < p, each[42] v, € [0,27] and §; € [0, 7]
M]. The expectation value of the Hamiltonian C' with
respect to the resultant state |1(~, 8)) is calculated as

C(v,B) = (W7, B)| C [(7, B)) (11)

A classical black-box optimizer then uses the expecta-
tion value as its input and suggests new v and f sets (of
length p each). The hope is that as the number of qubits
(more specifically, variables) n involved in the optimiza-
tion increases, if for circuit depth p < n we are able to

efficiently sample the best solution, we would have an
advantage in using QAOA over classical methods. Al-
though algorithm [2]is a summary of the QAOA method,
we recommend readers the original paper [4] for further
details.

5. Implicit filtering optimization

As mentioned before, QAOA requires us to give it
the sets of angles v and 8 in order to change the state
of the quantum system. The most common way to
do this is to use classical black-box optimization tech-
niques that do not need the derivative information of the
problem[9] 43, 44]. Since the expectation value C(, f)
of the objective function cost (or energy) would be ap-
proximate in nature, we need an optimization technique
that can handle noisy data. The technique of our choice
for this work is the Implicit Filtering algorithm [45].

In essence, Implicit Filtering or ImFil is a derivative-
free, bounded black-box optimization technique that ac-
commodates noise when it tries to suggest the best
parameters to minimize the objective function. Vari-
ous other techniques for noisy optimization exist, such
as Bayesian Optimization[46], COMPASS[47], SPSA[4]],
etc. However, we found Implicit Filtering the best for
our current efforts. For further details, we recommend
the book by C.T Kelly on the topic [45].

B. Related work

One of the first applications of quantum computing
for solving problems in the field of linear algebra is the
HHL algorithm for solving a system of linear equations
[49]. This was followed by works for solving linear least
squares [50], preconditioned system of linear equations
[51]], recommendation systems [52] and many others [53-
56]. Although the classical counterparts of the above
mentioned algorithms run in polynomial time, the quan-
tum algorithms mentioned above run in the polylog time
complexity.

However, there are some caveats with such kind of al-
gorithms [57]. Among the many caveats, we’'d like to
emphasize on the two that affect the practicality of their
utility in the near future. Firstly, they require fault tol-
erant quantum computers whereas, at the time of writ-
ing this paper, we have just entered the NISQ era [5].
Secondly, for the algorithms focused on linear system of
equations [49] [51), [53] and least squares [50} [54], the out-
put data is encoded as a normalized vector of a quantum
state |z) (which means that the probability amplitudes
of the basis states encode the data). This means that we
need an efficient method to prepare the input data as a
quantum state [57H60]; and the output will be a quan-
tum state as well, which means it wouldn’t be available
for us in the classical world directly by performing mea-
surement in the standard computational basis. This can



be mitigated by either measuring the final state in a ba-
sis of our choice if our goal is to know some statistical
information about x [49] 6I] or learning certain values
in z (though that will eliminate the exponential speedup
[51).

With respect to quantum annealing, O’Malley and Ves-
selinov’s paper in 2016 [20] was one of the first that
proposed to solve linear least squares. Other works
in this domain were for solving specific NMF problems
[21, 22 [62], polynomial system of equations [25], un-
derdetermined binary linear systems [23] and polynomial
least squares [27]. It’s hard to speculate about speedups
analytically with (i) D-wave’s noisy implementation of
quantum annealing [63] and (ii) the problem of expo-
nential gap-closing between the problem Hamiltonian’s
ground state and its excited states [64]. In the work by
O’Malley and Vesselinov [21], they used a time to target
benchmark in which classical solvers (Tabu search [65]
and gurobi [66] in their comparison) have to match or
find better solutions than the ones returned by quantum
annealing (not necessarily the optimal solution) in the
same amount of time. The D-wave quantum annealer
was able to beat those classical solvers for the bench-
mark, but the authors also mention that a combination
of the two classical techniques would probably perform
better than the D-wave by compensating for each other’s
shortcomings. The other important result in subsequent
papers [22, [62] was to show that combining reverse and
forward annealing improved results over just using for-
ward annealing for most cases. Golden and O’Malley
saw an improvement of 12% over forward annealing [62],
but that came at the price of having at least 7 reverse
annealing runs per QUBO (which was reported to have
the QPU runtime of 29 forward anneals). It is important
to note that certain quantum inspired algorithms may
perform just as well or better than quantum annealers
for such highly dense problems in terms of variable inter-
actions [67]. The above mentioned quantum annealing
techniques use the Ising objective function for problem
formulation. This means that measuring the post an-
nealing quantum state in computational basis gives us a
bitstring which directly encodes the vector z (which we
hope to be the best solution to Eqn) , unlike a lot
of gate-model algorithms like the ones mentioned above
[49-511, 53| [54] that encode the solution in the amplitudes
of |z).

NISQ-compatible algorithms for efficiently solving lin-
ear algebra problems are highly desirable as of the time of
writing this paper. The work by Chen et. al [68] proposes
a hybrid algorithm that uses quantum random walks for
solving a particular type of linear system, producing a
classical result in O(nlogn). However, the closest related
works to ours are the recent papers that employ varia-
tional algorithms [69H7T]. The major difference however,
is that, in those papers : i) The output is encoded as the
vector of probability amplitudes of the quantum state
|x) and ii) The problems explored thus far are convex in
nature and solved in polynomial time classically.

We in this paper implement QAOA on similar prob-
lems which were implemented on D-wave’s quantum an-
nealer previously, and therefore briefly mention a com-
parison here. The standard QAOA circuit strategy can
be seen as similar to a bang-bang quantum annealing
schedule, where cost and driver Hamiltonians are alter-
nated. The Quantum Alternating Operator Ansatz ex-
tends this with more general operators [72] than available
to Ising Hamiltonian annealers. Furthermore, QAOA is
a gate-based quantum computational algorithm, a type
of framework which promises universal programmability
in terms of mapping an arbitrary problem graph to a
qubit layout, even if the latter is not all-to-all connected.
Conversely, in quantum annealing architectures mapping
the logical problem qubits to a graph of physical hard-
ware qubits can be a significant challenge in the general
case [(3]. Our work is certainly not the first in applying
QAOA to various relevant computational problems, and
we refer the reader to a small list of examples [74H70]; in
this work, we make an attempt to highlight some of the
salient features and challenges of QAOA in the context
of problems applicable to linear algebra and numerical
analysis.

III. QAOA FOR BLLS

Before we go deeper, we here set the context of how
QAOA will be used in this work. Rather than treating
QAOA as an approximation algorithm with theoretical
guarantees for the quality of solution obtained, it is used
as a heuristic supported by empirical results.

A. Problem formulation

O’Malley and Vesselinov first gave a QUBO formula-
tion for the BLLS problem [20]. The details of how that
is done is in Appendix E Referring back to Eqn, if
AeR™™ beR™andx € {0,1}", we can refine Eqn(2)
to be

F(z) = Zvjacj + ijkxjxk (12)

i<k
where v; = ZAij (Asj — 2b;) (13)

and wjj, = 2 Z AijAik (14)

Which means that the number of qubits depends only
upon the size of the column vector z. All the rows in
Matrix A and vector b are preprocessed classically in or-
der to produce the coefficients of the QUBO problem.
By the equivalence stated in Eqn, we can then con-
vert the problem into an Ising objective function (plus



an offset value, irrelevant for optimization)

F(o) = Z hjo; + Z Jjro oy + offset (15)
J i<k
where 0; = 22; — 1 (16)

B. Mapping to quantum gates

Using the h,J coefficients from Eqn(L5]) along with the
mapping to a quantum Ising Hamiltonian given in Eqn
we get:

C =3 "o + > Juel Vo (17)
J i<k

Because the individual components of Eqn commute

[], we can express the Hamiltonian simulation of C' with
an angle ; as follows

. oa . L~ ( . 5 (2) ~(2)
e~ nC — He(fzhjm)ajz) H e(*”jk%)"jz)”kz (18)
J Jj<k

Similarly, the exponential of hamiltonian B can be bro-
ken down as

- 5y (@)
e B — He(_zﬂ’)aj (19)
J

In order to realize Eqn and Eqn, we use the fol-
lowing gates

Ry(w) = o—ige™ _ < cosw/2 —i smw/2> (20)

—isinw/2 cosw/2
_jws(2) 671‘00/2 0
RZ(U‘)) =e 2 = ( 0 eiw/Q (21)
1000
0100
CNOT = 0001 (22)
0010

While Eqn is the only gate needed to realize Eqn,
Egn alone can merely help with the single qubit
components of Eqn. For the components that re-
quire two qubit interaction, the following gate combina-
tion (expressed diagrammatically) is used as a template
ot _

e(—iJ1,2m)6

(23)

—bB— R.(2vJ12) —b—

While Eqn shows the ZZ interactions for adjacent
qubits, this strategy can be generalized to any pair of
qubits in the system. Appendix [B] provides an example
of a QAOA circuit for BLLS.

1. For IBM @ specific gates

Our experiments were done on an IBM Q device
(ibmg-london) available to us through the IBM Q Net-
work.  This machine has the following basis gates:
{U1,U3,Us,CNOT, I}. The first three gates in the set
can be described as

1 0
a0 = (5 ) (24)
_(YV2 e V2
Us(N, ¢) = <ei¢/\/§ RSRYNG)
[ cos0/2  —esind)2
Us(0, ¢, A) = <ei¢ sin@/2 A e) cos9/2) (26)
We can implement Eqn and Eqn [T7] as

R.(w) = Us(m,0,m) Us(—5) Us(m, 0,m) Us(5)  (28)

R, (w) = Us(w, (27)

Another practical consideration to be taken is the qubit
connectivity of a real quantum computer. As the num-
ber of qubits increase, it is safe to assume that full con-
nectivity between physical qubits is not feasible to engi-
neer. This means that for distant-qubits to interact with
each other, we would need logical qubit replacement us-
ing SWAP operations. Appendix [C] elaborates on this
with a demonstration with IBM Q gates.

C. Experiment methods

The dataset used in our experiments was randomly
generated (seeded for reproducibility) consisting of A €
R40>7 € R and = € {0,1}" where n € {3,4,5,9,10}
is the size of the problem. Due to the exponential nature
of simulating quantum computation on classical hard-
ware and the limited resources in our hands, we decided
to limit our problem sizes to 10 qubits. Instead of al-
locating computational resources to even larger qubit
numbers, we focus on: i) increasing the number of prob-
lem instances we average over, ii) comparing exact wave-
function versus bitstring-sampling experiments, iiii) com-
paring QAOA performance (waveform) with Simulated
Annealing and random sampling. All values for A in
the dataset are generated by uniformly sampling float-
ing point approximations of real values in the interval
[-1.0,1.0), and then rounding the values to 3 decimal
places. For each value of n, we generate 100 test cases
with 40 cases in which Az* = b, where the best solution
x* is sampled randomly and b <— Ax*. The other 60 cases
have Az* # b, where b is generated similarly to A and the
best solution z* is found by going through all 2" possible
values for z. This is done to cover both scenarios of the
least squares problem. The matrix A is a sparse matrix



having density of 0.2, this was done because sparse ma-
trices have a lot of applications in numerical computation
and machine learning [78-80].

We use the QISKIT [8I] SDK to write our own im-
plementation of the QAOA algorithm. As mentioned
before, ImFil [45] is our black-box optimizer of choice.
The only parameter of ImFil we choose to control here is
the budget, which governs the maximum iteration limit.
The rest of the ImFil parameters for our experiments use
their default values. Similarly, unless explicitly stated,
all giskit parameters values taken are default as well. All
classical simulations were conducted on standard x86-64
based laptops. Following is a list of the experiments we
conducted.

1. Experiments with no noise

Our first set of experiments on the dataset were done
on a simulator with the statevector backend, giving us the
exact waveform. This means that we are able to compute
the exact expectation value C(v, 3) for the set of angles
~v and (. These experiments help assess the performance
of QAOA in a perfectly noiseless environment for a large
dataset.

The above set of experiments were done for p =1, 2 and
3 with random starting points: 20 for p =1, 40 for 2 and
60 for 3 (seeded for reproducibility). Our preliminary
study suggested a budget of 200 iterations for p = 1,2
and 400 iterations for p = 3 respectively. This ensured
that at least 70% of our tests converged within the budget
while being computationally feasible. At the end of the
process, for each problem, the best result from all the
starting points is chosen and recorded.

2. Ezperiments to compare no noise and shot-noise
performance

For our next set of experiments, we use measurement
based results on the simulator. Each circuit is run a
number of times, specified by the ‘shots’ parameter. This
means that the expectation value we get for a given v and
[ is approximate in nature. Thus, while quantum circuit
simulation itself is noiseless and deterministic in produc-
ing the same wavefunction before taking each shot, a fi-
nite number of shots is sampled from the resulting wave-
function output probability distribution, introducing a
stochastic component. In a real quantum device, one is
always limited to this finite tomography, as one has no
direct access to the qubit register’s quantum wavefunc-
tion.

Since in a real quantum device, we do not have access
to the qubit register’s waveform, simulations with shot-
noise are important to conduct. Each experiment was
done 10 times per shot value. The shot values chosen
for these experiments are in the set {2in — 2 < i <
n+2,i € Z}. We chose this range in order to observe

the performance in the limit of perfectly reproducing the
wavefunction.

Also, the problem instances chosen for this set of exper-
iments are a random subset of the original dataset. For
each problem size n € {3,4,5,9,10}, we randomly choose
5 problems of the 100 problems (while maintaining the
2 : 3 ratio of the problems by their type). This is done
because doing the shot-noise experiments on the original
dataset would be computationally infeasible for the lim-
ited computational resources at our disposal, since each
shot-noise experiment is at least 50 times slower than its
statevector counterpart.

The parameters of these experiments have also been
modified accordingly. They were done for p =1, 2 and
3, for a budget of 200 iterations with random starting
points: 5 for p =1, 10 for 2 and 15 for 3 (seeded for
reproducibility), with the best result being chosen and
recorded. For fair comparison, this subset of problem
instances was also run with the statevector backend for
the same parameters.

3. Ezxperiments on an IBM @ device

Based on the results of the first two sets of experi-
ments, we design our experiments for the 5 qubit IBM
Q device ‘ibmg-london’. In a real device like this one,
the qubits face decoherence issues, coherent gate errors,
control errors, incoherent gate errors, leakage, cross-talk,
readout noise and more. The first set of IBM Q experi-
ments was to run QAOA for problems with n =5, for pa-
rameters p =1, budget of 200 iterations and a shot value
of 1024. The reason for choosing these parameters for
QAOA is to take into account the gate depth limitation
and noisy computation, thus choosing the minimal num-
ber of qubits while still covering a non-trivial problem
graph structure, which can still be easily verified with
classical methods at this size. The next set of experi-
ments was to take the v and S from the results of the
statevector experiments done in Section (where
n =5) and to try and recreate the distribution and ex-
pectation values using the quantum computer.

D. Results

Two metrics we use here to quantify the performance
of QAOA in the simulations are (i) the probability of
sampling the best possible solution (or the ground state
of Hamiltonian ) and (ii) the relative error €, of the
expectation value C(v,f) (from Eqn) with respect
to the ground state energy E ;. We define €, as

C(’Ya ﬂ) B Egs

i (29)

-

We note that €, is zero when the expectation value is
exactly equal to the groundstate energy, and can grow
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FIG. 1. One instance of convergence behaviour for the QAOA
optimization routines run on an exact statevector simulator,
shot-noise simulator with 2° = 32 shots, and the 5-qubit IBM
Q (ibmg_-london) quantum processor with 2'© = 1024 shots,
each with 5 variables and a circuit depth of p=1. All C(~, 3)
values dealing with shot-noise (qvm and gpu) are approximate
in nature. For comparison, we include the exact ground state
energy. The data in the figure is a result of the experiments

described in Sections [ITC2 and [ITC3l

beyond 1 depending on the spectral width as compared
to the groundstate cost.

1. Optimization trajectory for QAOA

In Figure (I} we see an example of how QAOA with
ImFil performs on a BLLS problem. As the iterations
progress, the fluctuations in the energy expectation value
also reduces. This happens either till the black box op-
timizer converges to a solution (depending on default
internal parameters in our case) or the iterations have
reached the maximum threshold (governed by the bud-
get). Here the experiments done with the statevector
backend, which has access to the exact energy expecta-
tion value, sets the baseline for the other modes of ex-
periments. While our simulations containing shot-noise
due to measurement do relatively well against statevec-
tor results, the experiments on a real quantum device
are mixed. At the time of writing, the IBM Q device we
tested on did not approximate the theoretically-optimal
QAOA result distribution very well, but it still finds the
best solution every time. We have discussed this further
in Section and have included the results for refer-
ence.

2. QAOA results with no-noise

Before we study the results of QAOA for BLLS with
shot-noise, it is important to evaluate the theoretical per-
formance of the same without any noise at all. Figure
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FIG. 2. Comparison of converged final relative error e,

(median), for p € {1,2,3}, as a function of problem size
n € {3,4,5,9,10}. Simulations performed with access to the
exact wave form (statevector backend) done on 100 problem
instances per n with an optimization budget of 200 iterations
for p € {1,2} and 400 iterations for p = 3. The dashed curves
in the plot are fitted to the experimental data. The infor-
mation presented in this figure is the output of experiments

described in Section [ITC1l

shows the relative error growth with respect to the
problem size n for the experiments described in Section
We use Median as measure of central tendency
and Median Absolute Deviation (MAD) for our error
bars. Simulations larger than p = 3 take a lot more
time for the complete dataset and were computationally
infeasible for this project.

Using the information from the medians calculated, we
attempt to fit curves for different values of p. Based on
the curve fit, we find that the growth in €, to be polyno-
mial in nature (as described by €, = a x n, where a and
b are coeflicients, see Appendixfor details). This poly-
nomial growth may be partly attributed to some spin
configurations with energies close to the ground state.
You can see that going from p = 1 to p = 2 decreases the
relative error moderately. The difference in performance
between p = 2 and p = 3 is more modest, particularly for
the larger problem sizes n. There may be room for further
improvement if we allow a larger simulation time budget,
for example by tightening the classical optimizer’s con-
vergence parameters and increasing the number of initial
starting points for the optimizer. Further rigorous experi-
mentation would be required to draw definite conclusions
about the scaling based on such numerics.

8. No noise vs Shot-noise optimization

Figure [3] shows us how QAOA with ImFil performs for
the parameters described in Section[[IT C 2]for statevector
and measurement based results for 2712 shots. We have
5 different problem instances per n € {3,4,5,9,10}. The
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of experiments we average over, as detailed in Section
[[IITC2 Another effect of the smaller dataset here is that
the relative error’s growth doesn’t seem fully monotonic
to the problem size, unlike in Section However,
it still shows a general upward trajectory. Simulations
for p = 4 and upwards become computationally infeasi-
ble due to the time required, even for the smaller dataset
we worked with in Figure This can be attributed to
the exponential growth in runtime as a function of the
circuit depth p [4].

4. Probability of sampling the ground state
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FIG. 3. Comparison of converged final relative error (me-
dian), for p € {1,2,3}, as a function of problem size n €
{3,4,5,9,10}, done on 5 problem instances per n with a bud-
get of 200 iterations. (TOP) shows the results from the op-
timization having access to the exact waveform (statevector
simulator), while (BOTTOM) shows the results using a shot-
noise simulator with 2"%? shots. For drawing the bottom
plot, we use the best angles found using shot-based optimiza-
tion and used the statevector backend for one more run at
those angles in order to compute the exact expectation value
and corresponding relative error. These results are from the

experiments described in Section

reason for choosing 2772 shots for this comparison was to
try and see if the optimizer could replicate the statevector
results given plentiful shots. In subsequent figures, we’ll
be showing the performance of the optimizer with fewer
number of shots.

We can see the similarities between the top and bottom
plots in Figure[3} The main difference however, seems to
be the result and error bar overlap between the results
of p =1 and 2. While the two lines are close to each
other in the statevector results uptil problem size of 9,
the measurement-based results for the two parameters
are extremely close to each other (when considering me-
dian and MAD). This could be attributed to the noise
due to approximate results, or due to the small number
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FIG. 4. Comparison of success probabilities of sampling the
ground state, for QAOA at circuit depths p = 1,2,3 , Sim-
ulated Annealing and random sampling. (TOP) shows the
success probability per-query and (BOTTOM) shows the cu-
mulative success probability after 10 queries. The box plots
indicate the nature of the experimental results (with medi-
ans as triangles) while curves in the figure are fitted to them.
The QAOA results are from the statevector (no noise) exper-
iments as described in Section and the approach for
comparing it with Simulated Annealing and random sampling
is described in Section [IT D4l

We compare the probability of sampling the ground
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FIG. 5. In this bar graph, we collect the number of experiment
instances in which we observe the exact ground state bitstring,
at least once (on the Y axis) for n € {3,4,5,9,10}. Each n has
5 problem instances, which is repeated 10 times for a given
shot value. We compare the QAOA shot-noise simulator ex-
periments (color-coded with the number of binary variables,
n), with the results one would expect randomly sampling from
a uniform distribution shots times (black bars, labeled with
rand, x-axis positioning corresponding to its colour-labeled
partner). The QAOA data in this figure comes from sam-
pling the circuit with optimized angle sets v* and §*, after
acquiring them by optimizing for a circuit depth of p = 3 and
a budget of 200 iterations, as described in Section

state of the BLLS problem (henceforth also referred to
as the success probability) for QAOA with two classi-
cal methods: random sampling and Simulated Anneal-
ing. For the Simulated Annealing experiments, we chose
10 steps, an exponential decay schedule, and ran it on
problem sizes n from 3 to 20 (with 100 problems per n).
For this problem size, Simulated Annealing is very cheap
computationally on a classical computer, as compared to
simulating the quantum circuit with a classical computer.
This allows us to consider statistics of a larger number
of random problems per n. See Appendix [E] for further
details.

The success probabilities for QAOA are calculated
from the outputs of the statevector experiments de-
scribed in Section More specifically, these would
be the success probabilities from sampling the optimized
waveform [i(7, 8)).

While the success probability of uniform random sam-
pling is easy to calculate per query as 1/2", things are
not as straightforward with Simulated Annealing. The
main reason being that Simulated Annealing requires k
number of steps to arrive at a result. Assigning k = 1
would be equivalent to random sampling, but by this
logic, assigning & > 1 would yield us a cumulative suc-
cess probability for random sampling.

Thus, our proposed comparison method assumes an
effective probability P.g which is the success probabil-
ity per query for Simulated Annealing. This P.g is not

directly observed, but calculated by extrapolation from
Simulated Annealing run on k > 1 steps. After k steps,
the cumulative success probability would be:

cumulative success prob. = 1 — (1 — Peg)* (30)

Doing a curve fit modeled on Eqn for the results of
Simulated Annealing with & = 10 steps yields us the
value of P.g which would be the effective success proba-
bility, for Simulated Annealing, per query. Conversely,
curve fits were done on the QAOA per query success
probabilities and were extrapolated to cumulative prob-
abilities for 10 queries. The resulting information is plot-
ted in Figure [4 along with the box plots from the experi-
ments. We refer the interested reader to Appendix [E] for
the details.

As Figure [4 suggests, the success probability for all
methods decrease exponentially as the size of the prob-
lem increases. The comparison of QAOA with uniform
random sampling for BLLS corroborates with previous
work done on applying QAOA to a different problem[9].
Even with p =1, QAOA performs much better than uni-
form random sampling. Simulated Annealing on BLLS
however, yields a higher success probability than QAOA
at circuit depth p = 3 when n > 8. This empirical result
is supported by a recent theoretical work on QAOA for
MAXCUT [82] that indicate that there exists classes of
graphs for which quantum advantage is not possible for
p < 6. This would support Simulated Annealing beat-
ing QAOA at p = 3 for BLLS, which has a highly dense
graph structure [20), 21].

It is one thing to calculate probability, it is another to
sample the best solution (or ground state) from a quan-
tum state after QAOA. Figure [f displays the number
of experimental instances where we sample the ground
state, at least once, for a particular set of parameters,
across various problem sizes and instances (for shot-noise
experiments in Section [[ITC2] We contrast this with the
analytical results of getting the ground state by uniform
random sampling. Here, we see that for optimization
done with upto 2™ shots, QAOA has a clear advantage
over random sampling. This can be explained by the
mechanism of QAOA, which selectively amplifies those
bitstring sampling probabilities which have the lowest en-
ergy, while suppressing those with higher energy. In this
way, the success probabilities may be greatly enhanced
over the naive random sampling from the uniform prob-
ability distribution.

5. Effect of shot number on optimization

For QAOA to become practical, the shot number cho-
sen for the computation has to be far less than the num-
ber of eigenstates for our cost Hamiltonian (2" for our
case). For this work, we chose not to randomly guess a
shot number value but rather get an understanding of
the optimization performance for a set of shot numbers
in {2ln —2 < i < n+2i € Z}. We hope this helps
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FIG. 6. Relative error of the optimized QAOA output distri-
bution (y-axis), as a function of number of shots (x-axis), for
a problem instance of the n = 5 case. Circles indicate median,
and we plot the error-bars (using MAD) when approximating
the expectation value with a finite number of shots. Data
represented in the figure is an output of an experiment done
in Section

all future research work in finding better estimates for
the least amount of shots required for QAOA, especially
for these type of applications. In Figure [6] we see the
optimization result for a problem instance where n = 5.
The shot optimization is compared with the statevec-
tor optimization. Here it is important to point that we
optimized using the stochastic blackbox (using a given
shot number) and then calculate the exact expectation
value using the wavefunction (i.e, with the statevector
backend) in order to assess the true value of relative er-
ror. For the most part, our experiments show that as the
problem size increases, we see the optimizer do well even
with 2"~2 shots. This seems to indicate that the number
of shots required to get a good optimization may not be
exponential in terms of the problem size, or at least with
a smaller exponent than applying random sampling from
a uniform distribution. Further research is needed.

6. IBM Q device performance

We briefly mentioned our real device results in Section
The good news is that IBM Q was always able to
find the best solution for our optimization experiments.
But that came at the price of taking 1024 shots for each
QAOA iteration, which is relatively expensive for a prob-
lem size of 5 qubits. When we lowered the shot number,
the optimal bitstring was not always sampled and the
convergence deteriorated further. The immediate cause
of why the optimization process on the device was not
close to the simulation results, is the inability of the de-
vice to approximate the distribution of the measured bit-
strings (for a given circuit). Although this result is not
surprising for QAOA on the current generation of cloud
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accessible quantum computing devices [83H86], it is im-
portant to emphasize on it particularly for readers from
other domains who may be interested in QAOA for their
own applications. For reference, we provide an example
of this in Appendix [D] for the readers.

It is crucial to consider the entire context here. Firstly,
the problem graph of our use case is fully connected. Due
to the sparse connectivity of the on-chip qubits in the de-
vice, logical qubits have to be swapped around a number
of times for them to be able to entangle with each other
(for the ZZ interactions of our problem). This makes the
average gate depth for the final (transpiled) circuits that
run on the ibmg_london machine to be about 35. Since
two qubit gate fidelity is still low (at the time of writing),
the error propagates across the circuit. Secondly, due to
the large circuit depth on the real device, we need to take
decoherence into account. Thirdly, readout-errors were
not considered here and they have significant impact on
the noise in the qubit measurement results.

It should also be emphasized that in this work, we
primarily focused on how to model the BLLS problem
using QAOA. Thus, the experiments on the real devices
were done “as is”, in order to demonstrate the near-term
implementability, without any error mitigation [87]. This
could be looked at for future work.

E. Discussion

We can see the various possibilities and potential ad-
vantages QAOA may provide in solving BLLS and similar
problems. However, there are challenges that need to be
addressed. These are both theoretical and practical in
nature.

One theoretical challenge is the proper pre-processing
of the problem Hamiltonian by scaling and shifting the
coefficients of the objective function, such that we opti-
mally make use of the parameter space §; € [0, 7],y €
[0, 27] (most of the problems in the dataset did not suffer
from this issue, as we found the default scaling to work
well already). However, scaling the problem way beyond
necessity also creates issues as the energy landscape is
periodic in nature [4]. Thus, one possible way is to use
scaling as a heuristic within the QAOA process, and treat
it as a hyperparameter to optimize over.

Another challenge, which is both theoretical and prac-
tical in nature, is the full connectivity in our prob-
lem and in most hard optimization problems in general
[88].Computationally non-trivial problems typically re-
quire a high degree of graph connectivity (for instance,
planar graphs are easy to solve classically [89]). Simulta-
neously, a high connectivity poses a challenge in quantum
chip implementation because not all gatesets implement
non-nearest neighbour interactions natively. Those need
then be implemented effectively by means of a swap net-
work approach [86]. For future work, one option is to
modify the problem formulation by not considering the
77 interactions of a pair of qubits, if its coefficient’s mag-



nitude falls below a user defined threshold. This can
potentially make it easier for QAOA to run, but its ef-
fectiveness in finding the ground state would come under
scrutiny. Nonetheless, it can make for interesting future
work. Also, error mitigation techniques and readout er-
ror correction will also help in improving the results [86].
It would take a combination of the above mentioned ap-
proaches to improve performance on a real device.

Challenges aside, one of the next steps would be to
explore if QAOA can be valuable in applications that re-
quire BLLS as a subroutine, such as NBMF [2I]. An-
other step can be to try the BLLS problem on other
types of quantum computers [9HI3] to see how different
hardware implementations fare. Finally, from a practical
standpoint, it may also be beneficial to apply a mod-
ified QAOA-like ansatz based on just nearest-neighbor
connected CNOT gates, along with a larger number of
parameters [90, O], or apply a SWAP-network QAOA
approach [86]. This may potentially lead to faster con-
vergence and better gpu performance for architectures
with limited connectivity.

IV. CONCLUSION

In this work, we described the implementation of a bi-
nary optimization problem, relevant to hard problems in
linear algebra, on a gate-based quantum computer via
a QAOA approach suitable for NISQ devices. In our
simulations, we show how Simulated Annealing can out-
perform QAOA for p < 3 for problem size n > 8 in terms
of sampling the ground state for BLLS type problems.
We show that the ImFil optimizer backend performs well
under shot noise for this problem type. From our ex-
periments on the IBM Q cloud-based quantum proces-
sor, we conclude that that it is still challenging to imple-
ment linear-depth, high-connectivity circuits on the lat-
est hardware available as of the time of this work. We ex-
pect a future experimental implementation would benefit
greatly from gate-error mitigation techniques and post-
processing readout errors. It would furthermore be very
interesting to see what other hard problems in linear al-
gebra may be implemented using the QAOA ansatz and
what their expected performance would be.
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Appendix A: Detailed QUBO Formulation for
Binary Linear Least Squares

In this section of the Appendix, we describe the
method by which O’Malley and Vesselinov [20] formu-
lated the binary linear least squares (BLLS) problem.
This QUBO formulation will be converted into its equiv-
alent Ising objective function and used in QAOA. Let
us begin by writing out Az — b which would help us in
minimizing x and thereby solve Eqn

Ay A o A, Z1 by
Az1 Ago Az, To by
Axr —b= . ) . -1 .
Aml Am2 Amn In bm
(A1)
Allxl -+ A12£L'2 + ...+ Alnxn — bl
Ao1x1 + Aoy + ... + Aoy, — ba
Ax —b= .
A1 + Apaxa + .o + A Tp — by

(A2)

Taking the 2 norm square of the resultant vector of
Eqn(AZ), we get

m

i=1

(A3)
Because we are dealing with real numbers for A and b,
(I-h?=()?

HA.’E — b”% = Z(Ailxl + Aigaﬁg + ...+ Amxn — bi)Q
=1

(A4)

And thus, the coefficients in Eqn are found by expand-
ing Eqn(A4) to be

v = ZA” (Aij — 2[)1)

Wik = 2 Z Aiink

(A5)

(A6)

You will notice that there is a constant value from
Eqn that we leave out of Eqn and Eqn.
Because this value is not a coefficient for any of the vari-
ables, we can’t optimize over it and it’s left as is, which
is ||b|3. Also, the ground state energy (QUBO) for when
|Az* — b||2 = 0 where z* is the best solution, is —||b||3.

Appendix B: Example QAOA Circuit for BLLS

Let us consider a simple problem, without loss of gen-
erality, to demonstrate how quantum circuits for BLLS



can be designed. Consider the following problem, Find
x € {0,1}3 such that ||Az — b|| is minimized, where

This particular problem is more appropriately catego-
rized as a linear system of equations (4 € R"2) and
has a solution z* = (1,1,0)7, such that Az* = b or
[|[Az* — b]|]2 = 0. However, our problem formulation does
not change.

In order to solve this problem using QAOA, we require
3 qubits. Using the formulation process detailed in the
Appendix A and Eqn, the QUBO formulation we get

J

12
is

F(z) = —1221 — 1229 — 1323 + 6x129 + 122725 + 12(x2x)3
B3

The constant value that didn’t make it to the QUBO
here is ||b||3 = 18. Converting the QUBO into Ising using

Eqn, we get

F(O’) = —1.501 — 1.509 — 0.503 + 1.50109 + 30103 —|—(]§O'§0'3
4

The offset when going from QUBO to Ising is -11.
Therefore, the Ising ground state for this problem is
—18 — (=11) = —7. Now let us assume that we are
designing a circuit for QAOA where p = 1. So for a
given pair of angles (8,7) a circuit would look like the
one shown down below in Eqn.

The results of this circuit will be used to calculate
the expectation value C(v,3). Based on the expecta-
tion value, a new pair of 8 and v will be calculated using
a classical black box optimization algorithm (like ImFil).
These new angles will be fed into another such circuit till
the optimization loop converges.

|O> Rz(_?”Y) Rw(26> <B5)
10) {HH R-(=37) - R.(37) |- R.(28)
0) R.(—) | R.(67) - R.(67) b R. (28) HAF

The results from Eqn would be classical bitstrings
when measured in the standard basis. In order to cal-
culate the energy or cost of a particular bitstring with
respect to the Ising Cost function Eqn, we would first
need to substitute a 1 for each 0 and -1 for each 1 in
the bitstring. In short, this is because (*) describes a
quantum state to have an energy of +1 for |0) and -1
for |1) (in arbitrary units). For our example, if we mea-
sure a bitstring & to be {& = 0,& = 0,& = 1} the
equivalent ising set would be {07 = 1,09 = 1,03 = —1}.
Using Eqn(B4), we get back an energy of -7. This way,
we can calculate C(v, ) for diagonal C Hamiltonians by
averaging the energies of all measured bitstrings.

Appendix C: Implementing Two-Qubit Interactions
on a QPU

As mentioned in Section [ITB1] most practical quan-
tum computers would not have all to all qubit connec-
tivity. But if the problem that we need to solve on a
quantum device requires dense connectivity (such as the
BLLS), we need SWAP gates for allowing distant qubits

to interact with one another. Let us first describe the
SWAP gate in its matrix form

1000

0010
SWAP= | | o0 (C1)
0001

Diagrammatically, we can decompose it with CNOT
gates as

SWAP (C2)

I A N
\d N

To illustrate how this takes place, consider a hypothetical
device where every qubit is only connected to the adja-
cent qubit in a line. Thus in order to realize the gates
described on the LHS of Eqn, one way is to SWAP
between the top and the middle qubit so that it could
interact with the bottom qubit.

FanY
N>

'
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0.41 qpu TABLE I. Curve fit details for various QAOA circuit depths
> from Figure [2f where the curve modeled is of the type: a x n®
50.21 for b = 0.85. All numerical values are rounded to a precision
% of 4 decimal places.
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FIG. 7. A typical instance of QAOA-circuit optimized prob-
ability distributions of the measured qubit bitstring output.
We compare the result for IBM Q device (TOP) versus the
qiskit shot-based simulator (BOTTOM), for the same prob-
lem instance for a total of 10240 shots. This figure represents
data from an experiment done in Section

After our desired two-qubit interaction takes place, the
top and middle qubits are swapped again, returning the
logical qubits to their original place. Of course, there
are other methods (involving SWAP) that the compiler
may take to realize the original unitary operations to be
performed. In Eqn7 we also show the decomposition
of the R, gate as defined in Eqn.

Appendix D: Probability Distribution of Running a
QAOA Circuit for BLLS on a Real QPU

At the time of writing, our experiments on the quan-
tum processor (ibmg_london) are unable to produce re-
sults similar to what a simulator produces. Figure [7]
shows an example of the distribution we get from run-
ning a QAOA circuit with optimized (and fixed) 8 and
~ angles. The simulation suggests a few bitstrings with
a high probability of being measured (with the ground
state having the highest), whereas the distribution from
the quantum processor is more evenly spread out, with
the ground state not having a significantly high proba-
bility of being measured.

Appendix E: Curve fit and Simulated Annealing
details

1. Curve fit

In this part, we describe the details about the curve
fits that appear in Figure [2 and @l We found that for
Figure [2| the polynomial curve of type a x n® for b =
0.85 fits the data moderately well, Table [ shows further
information. We can see from Table [l that the fit error
(a relative error value) doubles when we go from p = 2
to p = 3. However, when we explored other values for
the exponent, we discovered that b = 1.26 reduces the fit
error of circuit depth p = 3 the most to about 0.13, but
increases the error fit of p = 1 and 2 to about 0.22 and
0.17 respectively. On the other end, a value of b =~ 0.65
reduces the fit error for p = 1 the most to about 0.04
but raises p = 2 and p = 3 to around 0.12 and 0.26
respectively. Thus the b = 0.85 value is a compromise
that works the best for all circuit depths we consider in
this paper. Further research on more problem sizes n may
help to fit better growth curves and get a more definitive
value for the exponent b.

The per query and cumulative success probability
curves for QAOA and Simulated Annealing as seen in
Figure 4| fits the curve type 1 — (1 — a/2"")* well (which
turns out to be just a/2'" for k = 1). For Simulated
Annealing, we fix a = 1 such that Peg — 1 as n — 0,
this is because a =~ 0.63 when its value is calculated in
the curve fitting process, which prevents Peg being 1 at
n = 0. The increase in error when a = 1 is negligible
for the Simulated Annealing curve. However, it is not so
negligible in the case of QAOA, and therefore we don’t fix
the value of a to 1. This results in the per-query curves
to go above 1 and cumulative curves to be less than 1
(after reaching 1) for n < 3. We consider this to be a



TABLE II. Curve fit details for various QAOA circuit depths
from Figure [] where the curve modeled is of the type: 1 —
(1 —a/2°™)* at k = 1 for QAOA and k = 10 for Simulated
Annealing (and extrapolated to k = 10 and k = 1 respectively
for plotting purposes). All numerical values are rounded to a
precision of 4 decimal places.

Optimization Method  Coeff. a  Coeff. b  Fit Erro
QAOA, p=1 1.5968 0.3967 0.0655
QAOA, p=2 1.7127 0.3090 0.0247
QAOA, p=3 1.8926 0.3013 0.0380
Sim. Anneal”| 0.6359 0.1397 0.0217
Sim. Anneal™| 1 0.1786 0.0312

aa rel. error of the output produced by the curve wrt observed

data
bb Birst attempt
¢¢ Chosen for plot

modeling artifact and fix the success probability to 1 for
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n < 3 for both cases.

2. Simulated Annealing Experiments

The Simulated Annealing results referenced in Section
MTD 4] Figure [d and Table [[I] were conducted for BLLS
problems of sizes 3 to 20. An initial and final temperature
of Ty = 100 and Ty = 0.01 (in arbitrary units) were
chosen respectively. We define and use a exponential
decay schedule with temperature at iteration ¢ as

Tr\4
7, =10(7)"

o (1)

Each problem was run 1000 times with a set of random-
ization seeds for initialization of the Monte Carlo process.
Each Simulated Annealing run was done with k£ = 10
steps. Our (cumulative) success probability is the count
of all the runs where we end up with the ground state
divided by 1000.
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