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Compressive sensing (CS) is a recent method of sampling sparse, finite, discrete or 

continuous signals below the Shannon-Nyquist rate with minimal loss of information. To 

make this possible, CS requires the signals to be sparse in some unspecified basis and the 

acquiring sensor to sample globally and incoherently. Since hyperspectral images (HSI) 

consist of hundreds of contiguous spectral bands, a single HSI is several hundreds of 

megabytes in size which requires expensive sensors to acquire, a high bandwidth to 

transmit, and are costly to store and process. However, due to the high spectral correlations, 

HSI has a low information rate and are reduced in size considerably using data reduction 

algorithms. This implies the images can be sparsely represented in some unspecified basis 

making HSI ideal for CS. The goal of the work presented in this dissertation is to reduce 

the data size of HSI using simulated CS acquisition, or data directly obtained from a 

compressive sensor, and then process the data in the reduced sensed form. By extending 

the fundamental CS concepts of the Restricted Isometry Property (RIP) and Restricted 

Conformal Property (RCP) to two new properties, Restricted Entropy Property (REP) and 



Restricted Spectrum Property (RSP) it is shown that fundamental HSI discrimination 

metrics in the sensed data space can be maintained. In addition to REP and RSP, this 

dissertation also shows that three concepts, sample correlation/covariance matrix, 

orthogonal subspace projection (OSP) and subspace volume, commonly used to design HSI 

algorithms, are also preserved via CS. By taking advantage of these CS-derived concepts, 

two specific hyperspectral imaging application, hyperspectral target detection/anomaly 

detection and band selection can operate in the compressively sensed sample domain 

(CSSD) which is a significantly reduced data space. The derivations of the analytical forms 

and the experimental results of these two applications show that the accuracy of results 

obtained from using data in the CSSD suffers minimal loss when the compressive sensing 

sampling rates (CSSR) are adequate. In addition, a new approach to estimating the CSSR 

is developed in this dissertation.
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Chapter 1: Introduction 

The focus of this dissertation is to utilize and extend compressive sensing (CS) 

concepts to reduce the computational and memory space requirements of algorithms 

developed for hyperspectral imaging (HSI) data exploitation [1]–[3]. For a single HSI 

image, hyperspectral sensors produce hundreds of two dimensional, band images across a 

narrow and contiguous range of discrete frequencies [3]. The fine spectral resolution 

enables data processing algorithms to extract significant information which is lost in electro 

optical sensing (EOS). Enhanced anomaly detection, target detection, material 

identification, material quantization, and classification all become possible as a result of 

the increased spectral resolution [4]–[6]. The high spectral resolution of hyperspectral 

sensors produces large data sets which are hundreds of megabytes per image. Typical 

images have dimensionality on the order of tens of thousands of pixels and each pixel has 

hundreds of bands encoded using a dynamic range of 25o bits [7]–[9]. Due to such large 

amounts of data, it is often not feasible to implement many HSI data processing algorithms 

on board the collection systems when facing the size weight and power (SWaP) 

requirements [10]. Therefore, images are typically compressed and cached until further 

data processing can be off-loaded at the ground station [11]. Also, off-loading the data can 

be laborious given the limited transmission bandwidth between collection systems and 

ground stations. While HSI have high bandwidth requirements for collection, storage and 

transmission, they contain far less information entropy [12]. Due to the high spectral 

resolution, the spectral samples exhibit high correlation in the sense that knowing one 

sample gives prediction power over the adjacent samples. This implies that HSI are highly 
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compressible and data reduction (DR) can be applied before storage or transmission [3]. 

Common DR methods are reviewed in Chang 2013 [3]. However, this does not solve the 

costly system requirements of high bandwidth during collection, nor does it address the 

fact that images must be uncompressed prior to further processing. Ideally, these images 

could be acquired using a compressive sensor which would avoid high bandwidth during 

acquisition. Further, it would be advantageous to process these images in compressed form 

directly and produce comparable results to that using the uncompressed data. 

The goal of this dissertation is to take advantage of the fundamental property of CS 

known as the restricted isometry property (RIP) in order to process data in the 

compressively sensed sample domain (CSSD) and realize practical improvements in 

algorithm runtime and memory efficiency with minimal to no loss of accuracy [13]. RIP is 

a length preserving property of signal vectors when collected compressively. The specific 

HSI processing algorithms to be addressed in this dissertation are anomaly detection, target 

detection and band selection [4], [14]. Underpinning each of these algorithms are pixel and 

band discrimination as well as similarity measures which can be re-derived using RIP. 

Using these modified measures, algorithm performance can be preserved while processing 

far less bands and significantly fewer pixel data samples. 

The chapters begin with a review of fundamental CS principles followed by 

Chapter 2 which details the application of CS to HSI images in four variations which 

include one spectral and three spatial sensing modes. In addition, a new method of 

estimating the compressive sensing sampling rate (CSSR) for HSI is presented. Chapter 3 

utilizes RIP to derive HSI specific properties which are preserved in the CSSD including 

sample correlations/covariance, orthogonal subspace projection (OSP), and subspace 
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volumes of the band subsets. Chapter 4 details new CS principles which extend the length 

preservation property of RIP into new HSI properties, information entropy and spectral 

information divergence. The following chapters, Chapter 5 and Chapter 6, take advantage 

of these properties and apply them to HSI data processing algorithms. The first set of 

algorithms are designed for target detection include the Reed-Xiaoli anomaly detector 

(RXD) [15] and Linearly Constrained Minimum Variance filter (LCMV) [16]. The key 

insight into these algorithms is to exploit how the inter-band correlation and covariance 

matrices can be derived using data in CSSD. Developing these algorithms in CSSD allows 

significant reduction in computational complexity and memory space requirements while 

maintaining detection accuracy. A second application is band selection (BS) using 

orthogonal subspace projection (OSP) and sample subspace volume metrics [17]–[19] 

where the preservation of OSP and volume under a CS transform is shown to lead to 

comparable BS results using the data in CSSD with considerable savings in runtime and 

memory storage. 

Compressive Sensing Review 

The Shannon-Nyquist rate sets an efficient lower bound on the bandwidth required 

when using uniform sampling to discretely encode a continuous signal [20]. A sampling 

rate 𝑓q  at twice the highest frequency component 𝑓Fr0  of the acquired signal, 𝑓q ≥ 2𝑓Fr0 

will ensure that no information is lost for any continuous signal [21]. Recently, a new 

sampling method for the class of sparse signals was introduced by Emmanuel Candes, 

Justin Romberg, Terence Tao and David Donoho known as compressive sensing (CS) 

[22]–[24]. This new acquisition paradigm samples sparse, finite, discrete or continuous 

signals incoherently via non-adaptive linear projections at a much lower rate given 
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knowledge of the maximum sparsity of the signal [25]. Using CS implies a finite and 

sparsely populated signal subspace. The advantage of CS is the ability to under-sample the 

sparse signals with minimal to no information loss. Sparsity is a necessary condition 

because the incoherent under-sampling cannot accommodate information across the entire 

signal subspace simultaneously. Global incoherent projections are required to ensure 

collection is unconstrained, signal independent, and no prior information is required about 

where the signals are located in the signal sub-space [26]. 

The sparsity of a general discrete, finite signal vector 𝐱 = (𝑥5, 𝑥@,… , 𝑥.)x ∈ ℜ.05 

is conceptually measured as the cardinality of the non-zero elements 𝑘 = ‖𝚿𝐱‖z where 𝚿 

is a sparsity transform [27]. This measure is limited to idealized signals because real-world 

signals are corrupted by background interferers and noise. Noisy signals can be viewed as 

sparse signals embedded in an unwanted background typically decaying according to a 

power law [28]. Therefore, a number of other surrogate measures of sparsity have been 

proposed to determine the sparsity of an underlying signal. The most obvious alternative 

measure of sparsity utilizes thresholding 𝑘 = |{𝑥4	|	𝑥4 > 𝑡}| for some application-oriented  

selected threshold 𝑡. This can be effective for additive noise models where the sparse 

components are linearly separable from the unwanted components, but is not appropriate 

for sparse signals with noise components significantly aliasing the primary signal. More 

advanced noise removal algorithms such as principal component analysis (PCA) [29], 

maximum noise fraction (MNF) [30] or independent component analysis (ICA) [31] are 

often introduced as a post collection or pre-processing step to deal with background and 

noise. These transforms project the signals into signal representations with different base 

which mixes the spectral and spatial information and can be computationally prohibitive 
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on collection systems for larger images. Other sparsity estimation methods measure 

relative sparsity of signals using the form 𝑘 = ‖𝚿𝐱‖5	/	‖𝚿𝐱‖@. [32]–[34]. These measures 

can be used to compare sparsity between signals, but reliably measuring the true sparsity 

of a signal remains an open problem [33]. The work presented in this dissertation does not 

require the sparsity of the HSI to be estimated directly, but considers the components of 

the HSI to be sparse and develops methods to estimate the incoherent sampling rate by 

analysis of the incoming samples. 

The global incoherent sampling of CS is done by repeated linear projections using 

the inner product between the signal vector and normalized incoherent sampling vectors 

𝑦4 = 〈𝐱	|	𝛟4〉 for 1 < 𝑖 < 𝑚 where 𝑚 ≪ 𝑛 is the number of compressive samples and 𝑚/𝑛 

is the compressive sensing sampling rate (CSSR) [35]. To perform mathematical analysis, 

the vectors are arranged as row vectors to form a sampling matrix 𝚽E =

[𝛟5
x, 𝛟@

x, … , 𝛟F
x ] ∈ ℜF0. and compressive sensing is performed compactly as 𝐲 = 𝚽E𝐱. 

The subscript 𝑘 confers the idea that any signal vector with sparsity from zero up to 𝑘 can 

be encoded without information loss using the matrix 𝚽E  and an explicit relationship exists 

between 𝑘 and 𝑚 derived from the incoherence. 

Compressive Sensing Acquisition 

The design of the sampling matrix 𝚽E  is of critical importance in creating efficient 

CS systems. A sufficient condition of the sampling matrix 𝚽E  is the restricted isometry 

principle (RIP) as stated in equation (1.1) [13]. The RIP condition was derived from the 

Johnson-Lindenstrauss (JL) lemma which proves that a relatively small number of points 

in a high dimension can be encoded in a low dimensional space while preserving distances 

between the points [36], [37]. Practically, this inequality tells us that the sampling must be 



 

 

6 
 

length preserving within a small tolerance. CS takes advantage of the JL lemma through 

the derivation of the RIP condition in equation (1.1) [38]. The error term in this equation 

𝛿E is known as the restricted isometry constant (RIC) and 𝛿E → 0	as 𝑚 → 𝑛. The RIP 

condition is a sufficient condition to ensure high probability of precise recovery of the 

sensed signal. 

 (1 − 𝛿E)‖𝐱‖@@ ≤ ‖𝚽𝐱‖@@ ≤ (1 + 𝛿E)‖𝐱‖@@ (1.1) 

A related and useful concept derived from the RIP condition is the restricted 

conformal property (RCP) [39]. This property, shown in equation (1.2), is a consequence 

of the RIP condition and shows that the angles between finite signals are preserved when 

encoded by the same sampling matrix [40]. Here 𝜁 is the angle between any two signal 

vectors in the original data space (ODS) 𝜁 = ∠(𝐱4, 𝐱�) and 𝜌 = ∠(𝚽E𝐱4, 𝚽E𝐱M) is the angle 

between the identical vector pair in the compressively sensed domain (CSD). 

 
(1 − 𝛿E)
(1 + 𝛿E)

cos(𝜁) ≤ cos(𝜌) ≤
(1 + 𝛿E)
(1 − 𝛿E)	

cos(𝜁) (1.2) 

Another useful property of CS is the preservation of eigenvalues from ODS to CSD 

[25]. As 𝑚 → 𝑛, the eigenvalues of the inner product and outer product spaces go to one 

as shown in equation (1.3). This means that as 𝚽E  becomes closer to full rank 

‖𝚽E
x𝚽E − 𝐈‖@ < 𝛿E and ‖𝚽E𝚽E

x − (𝑛/𝑚)𝐈‖@@ < 𝛿E are implied [25]. 

 1 − 𝛿E ≤ 𝜆F4.(𝚽E
x𝚽E) ≤ 𝜆Fr0(𝚽E

x𝚽E) ≤ 1 + 𝛿E (1.3) 

It has been shown in Foucart and Rauhut book, page 141, to be a hard problem to 

construct 𝚽E  deterministically while maintaining the RIP condition [25]. In order to 

maintain RIP, the entries of 𝚽E  are drawn from a probability distribution creating sampling 

vectors which are orthogonal in expectation E�𝛟4
x𝛟M� = 0 for 𝑖 ≠ 𝑗 and have a near certain 
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probability of incoherence to 𝚿. The probabilistic construction of the sampling matrix is a 

key insight to CS. Typically the columns of 𝚽E  are normalized to unity explicitly or in 

expectation. This ensures that the new basis does not distort the vector lengths. Incoherence 

is measured using equation (1.4) where 𝛗4 and 𝛙M are column vectors of 𝚽E =

[𝛗5, 𝛗@,… , 𝛗.] and 𝚿 = [𝛙5,𝛙@, … ,𝛙.] for 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

	 𝜇(𝚽E,𝚿) = max
5�4,M�.

|〈𝛗4, 𝛙M〉|		where		𝜇 = � 5
√.
, 1 	 (1.4)	

A simple experiment can be conducted to show that the inner product space 

approaches identity as 𝚽E
x𝚽E → 𝐈 + 𝐄 with 𝐄 → 𝟎 as 𝑚 → 𝑛 and the outer product 

approaches a scaled identity matrix 𝚽E𝚽E
x → (𝑛/𝑚)𝐈 + 𝐄 with 𝐄 → 𝟎 as 𝑚 → 𝑛. Fig. 1 

shows a plot of ‖𝚽E
x𝚽E − 𝐈‖@@ and ‖𝚽E𝚽E

x − (𝑛/𝑚)𝐈‖@@ with respect to increasing 𝑚 for 

𝑛 = 1000. Fig. 1(a) shows the exponential decay of the matrix inner product and Fig. 1(b) 

shows the exponential decay of the matrix outer product. Considering the entries of the 

inner product matrix [𝚽E
x𝚽E]4M for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, when 𝑖 = 𝑗 the inner product of 𝛗4

x𝛗M =

1 due to the column normalization, and when 𝑖 ≠ 𝑗 the two random vectors rapidly become 

orthogonal as the dimensionality increases. In addition, consider the entries of the outer 

product matrix [𝚽E𝚽E
x]4M for 1 ≤ 𝑖, 𝑗 ≤ 𝑚, when 𝑖 = 𝑗 the outer product of E�𝛟4

x𝛟M� =

E[‖𝛟4‖@@] = 𝜇@ + ∑ 𝜎M@.
M¥5 = .

F
 for 𝜎M@ = 1/𝑚 arising from the normalized columns, and 

when	𝑖 ≠ 𝑗 the value tends to zero as dimensionality increases. Also notice in the simple 

experiment, the magnitude does not converge exactly to zero. This residual is due to the 

probabilistic construction of 𝚽E  and the expectation of orthogonality between random 

vectors. The error will tend to zero as 𝑚 → ∞, but is clearly not useful when under- 
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Fig. 1. Convergence of inner products to identity as CSSR increases 

sampling 𝑚 < 𝑛. In addition, Fig. 1(c) shows the angle of between two random vectors as 

the dimensionality increases from 1 → 𝑛. The angle approaches 90° as the dimensionality 

increases but some residual error exists. The residual error leads to approximate 

preservation of the signal lengths via RIP and fluctuations in the results when deriving HSI 

data processing algorithm using data in the CSSD. 

Compressive Sensing Sampling Rate 

The number of incoherent samples determines the efficiency of a CS system and 

the CSSR determines the quality of the sample reconstruction [41]. If 𝚽E  is constructed 

using a Gaussian distribution, then it has been shown that the number of samples needed 

follows equation (1.5) where 𝑐 = 2 is an application-dependent quantity [22]. Other 

distributions such as Bernoulli distribution conforming to RIP is also suitable for CS [42]. 

While Bernoulli distributions can be used for signal acquisition, this dissertation uses 

Gaussian distribution for the purpose for sensing through the entire dissertation. However, 

it does not preclude the use of other distributions to construct 𝚽E . 

	 𝑚 ≥ 𝑐𝑘	log(𝑛/𝑘)	 (1.5)	

(a) (b) (c)
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Calculation of CSSR can be accomplished via a sparsity estimation and a direct 

application of (1.5). An alternative approach to direct estimation is using sequential CS 

(SCS) [41], [43], [44]. This approach seeks to estimate CSSR directly via a detection 

problem. The compressive samples are taken one at a time and analyzed to detect when 

enough samples have been observed. An obvious form of analysis originally proposed for 

SCS is the reconstruction of the signal. CS is a probabilistically consistent acquisition 

method which means that increasing the number of samples collected results in a 

reconstruction converging to the true signal in probability. Therefore, reconstruction can 

be performed in-line with sequential sampling. Sampling is terminated when the 

reconstructed signal converges to a consistent vector which is assumed to be the true signal. 

Despite that, this approach may be effective but is computationally expensive due to the 

reconstruction process which has a computational complexity on the order of O(𝑛«) [45]. 

Introduced in Chapter 2 is a novel light-weight, and recursive analysis method used to 

improve sequential CS and estimate CSSR. 

Compressive Sensing Reconstruction 

The reconstruction of CS-encoded signals searches for an optimal 𝐱∗ ≈ 𝐱 by 

solving the non-linear convex optimization reconstruction problem of equation (1.6). This 

can be done using the basis pursuit (BP), the matching pursuit optimization (OMP) or the 

iterative hard thresholding (IHT) developed in [46]–[48]. 

 𝐱∗ = argmin
𝚿𝐱°

‖𝚿𝐱′‖5		subject	to		𝐲 = 𝚽E𝐱′ (1.6) 

Note that the sparse basis of the signal representation matrix 𝚿 is not required to be 

specified for CS encoding [23], [38]. CS only requires a sparse representation to exist so  
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Fig. 2. The notational optimization surface using 𝐿5 and 𝐿@ vector norm 

that the decoding can be done by optimizing over the sparse search space while constrained 

by the sampling matrix. Therefore, CS is a universal encoding scheme and the 

representation matrices are used for reconstruction where the fidelity of reconstruction is 

determined by the compact representation. The use of the 𝐿5 norm to reconstruct sparse 

signals was a key discovery in CS. However, while convex, the 𝐿5 is not differentiable. 

This leads to iterative numerical solutions using BP, OMP or IHT. A sparse solution to 

equation (1.6) will exist in the range space of the sampling matrix and simultaneously at a 

point of the 𝑛 dimensional 𝐿5 ball [49]. Sparse signals have a small 𝐿z norm meaning that 

most values of the vector are zero and the solution point will exist on the axis of the 

subspace created from the columns of the sampling matrix. Fig. 2 illustrates the location 

of the solution and why using 𝐿5 results in the an optimal solution. In those diagrams the 

tan-colored plane is the space spanned by the columns of the 𝑚-dimensional sampling 

matrix 𝚽E . The solution exists in the intersection of this subspace and the axis containing 

the 𝐿5 measure. Using the 𝐿@-ball results in a minimal energy solution which is not sparse 

ℜ"
#$	
#

{#': ) = +,#′}

ℜ"

#$ ≈ #	

{#': ) = +,#′}
(a) (b)

ℜ0 ℜ0
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while using the 𝐿5 will find the sparsest but not minimum energy solution on the point of 

the 𝐿5-ball. 

 

Conclusion 

Chapter 1 introduced the data intensive problems of HSI processing and proposed 

the use of compressive sensing (CS) as a data reduction (DR) technique. Using CS has a 

distinct advantage over other DR algorithms in that it can be imposed at the time of 

collection by the sensor and processing data in the compressively sensed domain (CSD) 

can be done in such a way as to arrive at the results computed using the original data space 

(ODS). In addition, this chapter has reviewed the abstract CS principles required for 

applying CS to HSI. These principles will be exploited to develop HSI processing 

algorithms in the CSD in subsequent chapters. 
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Chapter 2: Compressive Sensing for Hyperspectral Imagery 
 

 

Fig. 3. Hyperspectral image and pixel vectors, band images and band vectors 

Applying compressive sensing (CS) to hyperspectral images (HSI) can be done in 

a number of variations [50]–[52]. The HSI pixels can be considered sparse pixel vectors 

(PV) and the bands can be interpreted as sparse band tensors (BT) or sparse band vectors 

(BV) as depicted in Fig. 3. Let a hyperspectral image be denoted 𝐈 ∈ ℜ./0.102 consisting 

of 𝑛5 rows and 𝑛@ columns with 𝑁 = 𝑛5𝑥𝑛@	total pixels and 𝐿 spectral bands. 

Spectral Compressive Sensing of Hyperspectral Imagery 

A hyperspectral image 𝐈 can be expressed as a set of sparse PVs containing the 

image spectra in a set {𝐫4}4¥5;  with 𝐫4 = (𝜆5, 𝜆@,… , 𝜆2)x ∈ ℜ205 across a range of spectral 

wavelengths µ𝜆M¶M¥5
2

 [3]. The spectral mode of 𝐈 is sensed using the CS sampling matrix 

 𝐲4 = 𝚽E2𝐫4 (2.1) 

!"#$%&'(, ( !"'%*'(, +,

!"
'%
*'
(,+
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!"
'%
*'
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Fig. 4. Applying compressive sensing to hyperspectral pixel vectors 

𝚽E2 ∈ ℜ
FG02 where 𝑘2 < 𝑚2 ≪ 𝐿 and 𝑘2 is the maximum sparsity of the PV set and 𝑚2 

is compressively sensed band rate (CSBR) used for the spectrum. The application of CS to 

the spectral PVs is in equation (2.1) and further depicted in Fig. 4. Each PV is sampled 

using the same sampling matrix requiring 𝑘2 to be the maximum sparsity among all PVs. 

Spatial Compressive Sensing of Hyperspectral Imagery 

Another view of a hyperspectral image is to consider 𝐈 as a set of 𝐿 two-dimensional 

sparse band tensors (BT) as a set {𝐁:}:¥52  so that 𝐁: ∈ ℜ./0.1  [52]. Such tensor modes can 

be sensed using two sampling matrices 𝚽E./
∈ ℜFI/0./  and 𝚽E.1

∈ ℜFI10.1 where 

𝑘./ < 𝑚./ ≪ 𝑛5 and 𝑘.1 < 𝑚.1 ≪ 𝑛@. Here 𝑘./ and 𝑘.1 are the maximum sparsity of the 

rows and columns respectively of all the bands and 𝑚./ and 𝑚.1 are the compressive 

sensing sampling rates (CSSR) for each corresponding mode. The model in (2.2) is used 

to compress the band tensor modes one at a time and is further depicted in Fig. 5. The two 

sampling matrices in (2.2) are used to compressively sense each of the bands and is constant 

for a particular HSI. 

 𝐘: = 𝚽E./
𝐁:𝚽EI1

x  (2.2) 

!"

!#

$

%& = ()*&

*& ∈ ℜ)-#

. ∈ ℜ/0-/1-)	
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Fig. 5. Applying compressive sensing to hyperspectral band tensors 

The BT model can be extended using the singular value decomposition (SVD) of 

𝐁: = 𝐔𝚲𝐕xwhere 𝐔 = [𝐮5, 𝐮@,… , 𝐮./] and 𝐕 = [𝐯5, 𝐯@,… , 𝐯.1] are the singular vectors 

and 𝚲 = 𝑑𝑖𝑎𝑔(𝜎5, 𝜎@, …𝜎¼½¾{./,.1}) are the singular values [53], [54]. Using this, the 

sampling matrices can be applied to the singular vectors using equation (2.3). This model 

will be used when referring to compressively sensed band tensors using SVD (BT-SVD) 

and is depicted in Fig. 6. Here again constant sampling matrices are used to compressively 

sense each band. Notice that this model implies that the eigenvalues of a square band tensor 

¿𝜆4 = 𝜎4 for 1 ≤ 𝑖 ≤ min	{𝑛5, 𝑛@} are preserved and the CS transform can be 

accomplished by solely sensing the eigenvectors. 

 

 
Fig. 6. Applying compressive sensing to SVD of hyperspectral band vectors  
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Fig. 7. Applying compressive sensing to hyperspectral band vectors 

Finally, an HSI can be expressed as a set of 𝐿 sparse BVs vec(𝐁:) = 𝐛: =

(𝑏:5, 𝑏:@, … , 𝑏:;	)x	where 𝐛: ∈ ℜ;05 by concatenating each spatial row or column of pixels 

in a band to form the vector [55]. The band vectors are sensed using the sampling matrix 

𝚽E; ∈ ℜ
FH0; where 𝑘; < 𝑚; ≪ 𝑁. Here 𝑘; is the maximum sparsity of the band 

vectors and 𝑚; is CSSR. CS applied to the BVs is depicted in Fig. 7 using (2.4). 

 𝐘: = 𝚽E;vec(𝐁:) = 𝚽E;𝐛: (2.4) 

Designing the incoherent sampling matrices 𝚽E  for each HSI mode of PV, BT and 

BV is of critical importance for the performance of CS-derived algorithms applied to HSI 

[25]. The entries of the matrices 𝚽EG , 𝚽EH, 𝚽EI/
, and 𝚽EI1

 are obtained using random 

realizations from Gaussian distributions. The input signal dimensionality from the set 

{𝐿, 𝑛5, 𝑛@} is specified as the subscript to the sparsity 𝑘 subscript. This explicitly denotes 

the HSI being sensed. The output number of compressive samples/observations is 

determined by CSBR and CSSR and is the most critical CS system design parameter. 

Compressive Sensing Sampling Rate Estimation 

The number of compressive samples created must be large enough to achieve high 

reconstruction accuracy but low enough to ensure efficient system resource utilization 

!"
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Fig. 8. Sequential compressive sensing (SCS) notional iteration 

[41],[56]. A naïve approach to this problem is to explicitly set the signal sparsity as a 

limiting sensing system parameter. This is analogous to setting the number of pixels in an 

imaging system which dictates the upper bound on the spatial frequencies which can be 

acquired set by the Shannon-Nyquist rate [21]. The system created would be capable of 

acquiring signals up to the specified sparsity. This approach is not in keeping with CS 

principles in that many signals with lower sparsity acquired would be further compressible. 

An alternative approach is to compute the signal sparsity dynamically as it is being 

acquired.  

An in-line method to finding the number of compressive samples is to collect 

incoherent observations to determine if enough samples have been obtained. This paradigm 

has been the core of sequential CS (SCS) algorithms [44]. SCS algorithms construct a 

closed loop of collecting samples, running applications and then testing for the resulting 

application output convergence. The signal reconstructions using basis pursuit (BP), 

orthogonal matching pursuit (OMP) or iterative hard thresholding (IHT) are the ubiquitous 

applications used in SCS research [41], [43]. Collection is terminated when the 

reconstructed signal converges to a consistent solution in a mean squared error sense. A 

notional flow of SCS is included in Fig. 8. 

While reconstruction is a sufficient choice for SCS, BP, OMP, and IHT  algorithms 

run on the order of 𝑂(𝑛«) implying a high computational cost for SCS using reconstruction. 

Incoherent
Projection Application Convergence

Test

no

yes
Terminate
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Recently, other algorithms have been proposed which take advantage of the sensed samples 

in the compressively sensed domain (CSD) [57], [58]. Detection, classification and feature 

selection have theoretical foundations using length preserving metrics for discrimination 

and can take advantage of RIP. Convergence of any of these application outputs would 

suffice in SCS and may reduce the computational burden. The HSI data processing 

algorithms designed for anomaly and target detection as well as band selection can be 

utilized in the SCS flow of Fig. 8 to determine an application-specified CSSR in subsequent 

chapters [3], [4]. While these applications may have lower computational complexity as 

compared to reconstruction, there is a novel and light-weight method to determine CSSR 

using SCS by taking advantage of recursive statistical moments of the collected 

compressive samples, which are analyzed to determine convergence and subsequently an 

appropriate CSSR. The following derivation will utilize the generalized signal 𝐱 =

(𝑥5, 𝑥@,… , 𝑥.)x ∈ ℜ.05 and 𝚽E  but can be extended to include the three modes of the BT 

set, BT-SVD set, PV set or BV set by using the corresponding sampling matrix. 

As stated in Chapter 1, the CS encoding can be expressed as a set of inner products 

between the 𝑚 rows of 𝚽E = [𝛟5
x,𝛟@

x,… , 𝛟F
x ] where 𝛟4

x = (𝜙45, 𝜙4@,… , 𝜙4.)x ∈

ℜ50.	then the signal vector 𝐱 is encoded into 𝑚 scalars which are 𝑦4 = 〈𝛟4, 𝐱〉 for 1 ≤ 𝑖 ≤

𝑚 [59]. Furthermore, consider the input pixel vector as constant and the sampling vectors 

as random. Then each inner product can be expressed as a summation of Gaussian random 

variables 𝜙4M, multiplied by 𝑥M for 1 ≤ 𝑗 ≤ 𝑛 as in equation (2.5) [60]. This implies all of 

the 𝑦4 are Gaussian random variables distributed with 𝜇 = 	0 and 𝜎@ = ∑ 𝑥M@.
M¥5 . 

 𝑦4 =À𝜙4M𝑥M

.

M¥5

		where	𝜙4M 	~	N(0,1) (2.5) 
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Fig. 9. Flow chart of recursive kurtosis CSSR estimation technique 

With the 𝑦4	~	N(0, ∑ 𝑥M@.
M¥5 ), the information conveyed in the encoding process is 

preserved in the variance of the entries of	𝑦4. In order to find the dimensionality 𝑚 of 𝐲 =

(𝑦5, 𝑦@, … 𝑦F)x, a question arises, “how many samples are needed to estimate the Gaussian 

distribution of N(0, ∑ 𝑥M@.
M¥5 )?” This is a density estimation problem and has been well 

studied [61]. While there are many techniques used for this purpose, employing a method 

that is amenable to the sequential collection and computation is desired. This will minimize 

the work needed by the encoding process at each iteration. One approach is to estimate the 

sample variance of the samples 𝜎È@(𝑦5, 𝑦@, … ) as they are collected and then determine 

convergence to 𝜎@ = ∑ 𝑥M@.
M¥5 . However, this requires knowing the full uncompressed 

signal to compute 𝜎È@. Another simpler method to determine convergence is to estimate the 

kurtosis 𝛽Ê(𝑦5, 𝑦@, … ) of the collected samples and then determine when the estimate 

converges to zero or the value of 3 for excess kurtosis. Fig. 9 gives an overview of the 

estimation method. Here using 𝛽Ê4 = 𝛽Ê4g5 + 𝛿4 is an on-line kurtosis estimate which relies 

on a recursive form of the first three moments mean, variance and skewness in equations 

(2.6), (2.7), (2.8), and (2.9) [62]. 

 𝜇4 = 𝜇4g5 +
(𝑦4 − 𝜇4g5)

𝑖  (2.6) 

Initialize:
i=1, !"# = 0

Generate Gaussian 
Sampling Vector 
&' ∈ ℜ*+#

Sample the vector
,' = &',.	

Update the Kurtosis 
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!"' = !"'0# + 2'

Is !"' ≈ 0?

Terminate:
45 = 6

Yes
No

Increment CSSR 
estimate	6 = 6 + 1



 

 

19 
 

 𝜎4@ = 𝜎4g5@ +
(𝑦4 − 𝜇4g5)@(𝑖 − 1)

𝑖  (2.7) 

 𝛾4 = 𝛾4g5 +
(𝑦4 − 𝜇4g5)«(𝑖 − 1)(𝑖 − 2)

𝑖@
−
3(𝑦4 − 𝜇4g5)𝜎4g5@

𝑖
 (2.8) 

 𝛿4 =
(𝑦4 − 𝜇4g5)Í(𝑖 − 1)(𝑖@ − 3𝑖 + 3)

𝑖«
+
6(𝑦4 − 𝜇4g5)@𝜎4g5@

𝑖@
−
4(𝑦4 − 𝜇4g5)𝛾4g5

𝑖
 (2.9) 

The stopping criteria of this algorithm can be implemented as a hard threshold from the 

excess kurtosis value 3 or using a change point detection method. The initial estimate of 

all the moments is set to zero at 𝑖 = 1 such as 𝜇5 = 0, 𝜎5@ = 0, 𝛾5 = 0, 𝛽5 = 0. Due to the 

variation of the kurtosis, a one dimensional Kalman filter of the recursive kurtosis (RK) is 

computed [63]. Using this, a convergence point can be selected from the plots. 

A simple test was constructed to validate the above mentioned estimation method. 

A sparse signal was constructed by randomly assigning 𝑘 = 20 values between 1 and 100 

to the range [1,1000] and then transformed via the discrete cosine transform (DCT). The 

sparse signal has an optimal CSSR at 𝑚∗ = 2𝑘	log	(𝑛/𝑘) = 157 using equation (1.5) and 

the raw signal is depicted in Fig. 10(a). Incoherent linear projections were then taken 

sequentially 𝑦4 = 〈𝛟4	|	𝐱〉 from 1 ≤ 𝑖 ≤ 500 and the kurtosis was computed using 

equation (2.9) at each sample. To validate the convergence to the true signal, the 

reconstruction was performed using OMP at each iteration denoted 𝐱È4 [47]. The recursive 

kurtosis as well as the sum of squared error between the reconstruction and original signal 

was computed SSE4 = ‖𝐱 − 𝐱È4‖@@. The kurtosis 𝛽4 and the SSE as well as the 1D Kalman 

filter are plotted in Fig. 10(b). Salient features of this graph show the convergence of the 

SSE to zero and the convergence of the kurtosis to 3 just before the optimal CSSR of 157. 

This result lends credibility to the consistency of the CS reconstruction and effectiveness  
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Fig. 10. Recursive kurtosis CSSR experiment signal (a) and result (b) 

of using SCS, recursive kurtosis (SCS-RK) to estimate CSSR paradigm in Fig. 8. SCS and 

SCS-RK will be used in the detection and band selection algorithms discussed in 

subsequent chapters. The simple test from Fig. 10 was modified by adding additive 

Gaussian noise to the test signal shown in Fig. 11(a). the SNR is set to 4:1 and the result is 

shown in Fig. 11(b). This plot displays the convergence. However, the convergence is 

slower due to the addition of noise. This is paralleled in the reconstruction error which 

takes considerably longer to converge to zero with the addition of noise. This test implies 

that finding the convergence point of the signal may require advanced analysis of the curve. 

Here change-point detection or thresholding could be employed [64]. In this study, CSSR  

 

Fig. 11. Recursive kurtosis CSSR experiment with additive Gaussian noise 4:1 SNR 

(a) (b)

(a) (b)
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Is estimated by judging  the order of magnitude from the SCS-RK curves to determine an 

appropriate CSSR. 

The SCS-RK method of estimating CSBR and CSSR for HSI is cast in terms of a 

single sparse input signal. The application of CS to HSI requires a single sampling matrix 

to accommodate multiple PV, BV and BTs. Therefore, the kurtosis measure of each set of 

HSI vectors is collected and the mean is used to estimate a single CSSR for the set. 

Conclusion 

This chapter provides mathematical notations needed to precisely identify different 

portions of the hyperspectral image. Using these notations, CS is applied to the pixel 

vectors (PV), band vectors (BV) or band tensors (BT). In addition, estimating the 

compressive sensing band rate (CSBR) and compressive sensing sample rate (CSSR) is 

discussed and a novel method of computing the CSSR is put forth using sequential 

compressive sensing (SCS) augmented with recursive kurtosis (SCS-RK) statistics. The 

SCS and SCS-RK are used for estimating an optimal CSBR and CSSR for the anomaly and 

target detection as well as band selection applications. The CS models and notations 

developed in this chapter will be continuously used in the subsequent chapters. 
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Chapter 3. Preservation of Hyperspectral Properties 
 

Many hyperspectral image (HSI) data processing algorithms rely on the 

discrimination or similarity measures between HSI pixels or bands [65]–[67]. For example, 

target detection algorithms utilize the sample correlation and covariance matrices to 

suppress background effects [2]. Sequential band selection algorithms utilize orthogonal 

subspace projection (OSP) to find distinct bands [55], and band subset selection algorithms 

take advantage of measuring the sample subspace volumes [18]. These three fundamental 

HSI measures are unaffected by compressive sensing (CS) applied to the samples in each 

band. Specifically, sensing the two-dimensional band tensors (BT) or one dimensional 

band vectors (BV) using CS does not significantly change the results. This chapter 

develops a new set of lemmas required to demonstrate the preservation of the sample 

correlation and covariance matrices as well as the OSP and subspace sample volumes when 

using data in the compressively sensed sample domain (CSSD). A preliminary study has 

been done in this area, but is lacking considerably in rigorous development and 

completeness [58]. 

Preservation of Sample Correlation and Covariance 

The covariance and correlation matrices capture the inter-band statistics and are a 

useful estimate of the variation between spectral bands [68]. This variation is 

predominantly used to characterize the background and noise behaviors of HSI to enable 

anomaly and target detection. The following derivations show that the covariance and 

correlation matrices are minimally affected by CS applied to the spatial samples using BV, 

BT or BT-SVD models. Without loss of generality, assume the pixel vectors (PV) are mean 

centered, therefore the correlation and covariance matrices are equal 𝐑 = 𝐊 and for clarity 
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of derivation, the normalization constants are omitted. Each of the following derivations 

use CS to sense the band information and utilize the compressed spatial samples to estimate 

the sample correlation and covariance matrices. There are three variations to compress the 

spatial bands of BV, BT, and BT-SVD. 

Using the BV model of HSI from (2.4), let 𝐗 = [𝐛5, 𝐛@, … , 𝐛2] and then compute 

the pixel sample correlation matrix as 𝐑 = 𝐗x𝐗	 ∈ ℜ202 [4]. The correlation matrix is 

computed using bands in CSSD such that 𝐑𝚽 → 𝐑 where 𝐑𝚽 is the correlation computed 

using compressed samples. Sensing the band vectors in 𝐗 yields equation (3.1). 

 𝐗𝚽 = �𝚽EH𝐛5,𝚽EH𝐛@,… ,𝚽EH𝐛2� = 𝚽EH𝐗 (3.1) 

The sensed sample correlation matrix is 𝐑𝚽 = 𝐗𝚽x 𝐗𝚽 ∈ ℜ202  given by equation (3.2). 

 𝐑𝚽 = Ð𝚽EH𝐗Ñ
x
𝚽EH𝐗 = 𝐗x𝚽EH

x 𝚽EH𝐗 (3.2) 

Using 𝚽EH
x 𝚽EH → 𝐈 + 𝐄 the correlation computed using CS applied to BV is in (3.3). 

 𝐑𝚽 = 𝐗x(𝐈 + 𝐄)𝐗 = 𝐑 + 𝐗x𝐄𝐗 ≈ 𝐑 (3.3) 

Also, the error 𝐄 → 𝟎 is appreciably small as 𝑚; → 𝑁 compared to 𝐑. Therefore, the 

sample correlation matrix is approximately preserved when computed using bands in the 

CSSD and the BV model. 

Next, consider the BT and BT-SVD models of band sensing in (2.2) or (2.3) [52], 

it is possible to show that indeed 𝐑𝚽 → 𝐑 as 𝑚./ → 𝑛5 and 𝑚.1 → 𝑛@. Begin by 

representing the image using the BTs to transform 𝐗𝚽 to the CSSD by equation (3.4). 

𝐗𝚽 = �vec(𝚽E./
𝐁5𝚽EI1

x ),… , vec(𝚽EI1
𝐁2𝚽EI1

x )  (3.4) 

If the sampling matrices are broken into 𝑚./ and 𝑚.1vectors 𝚽EI/
x =

�𝛟55, 𝛟5@, … ,𝛟5FI/
  ∈ ℜ./0FI/ and 𝚽EI1

x = �𝛟@5, 𝛟@@, … , 𝛟@FI1
  ∈ ℜ.10FI1, the 𝑖𝑗ÒÓ 
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entry of 𝐗𝚽 for each band tensor 𝐁: is written as in equation (3.5) where 1 ≤ 𝑖 ≤ 𝑚.5, 1 ≤

𝑗 ≤ 𝑚.@ and 1 ≤ 𝑙 ≤ 𝐿. 

 �𝚽EI/
𝐁:𝚽EI1

x  
4M
= 𝛟54

x 𝐁:𝛟@M (3.5) 

Subsequently 𝐗𝚽 can be further expressed using the sensed and vectorized BTs in matrix 

form as equation (3.6). Each column is a different band. 

𝐗𝚽 = Ô
𝛟55
x 𝐁5𝛟@5 ⋯ 𝛟55

x 𝐁2𝛟@5
⋮ ⋱ ⋮

𝛟5FI/
x 𝐁5𝛟@FI1

⋯ 𝛟5FI/
x 𝐁2𝛟@FI1

Ø (3.6) 

Then the entries of 𝐑𝚽 = 𝐗𝚽Ù 𝐗𝚽 are computed using the sum in equation (3.7). 

[𝐗𝚽x 𝐗𝚽]4M = ÔÀÀ(𝛟5Ó
x 𝐁4𝛟@E)Ð𝛟5Óx 𝐁M𝛟@EÑ

FI1

E¥5

FI/

Ó¥5

Ø

4M

 (3.7) 

Rearranging the summation in (3.7) yields the following summation. 

[𝐗𝚽x 𝐗𝚽]4M = ÔÀ𝛟5Ó
x 𝐁4 ÚÀ𝛟@E𝛟@E

x

FI1

E¥5

Û𝐁Mx𝛟5Ó

FI/

Ó¥5

Ø

4M

 (3.8) 

Next, using the fact derived from RIP ∑ 𝛟@E𝛟@E
x = 𝚽.1𝚽.1

xFI1
E¥5 = (n@/m.1)𝐈 + 𝐄 and 

𝐄 → 𝟎 as 𝑚.1 → 𝑛@ resulting in equation (3.9). 

[𝐗𝚽x 𝐗𝚽]4M = Ü
𝑛@
𝑚.1

Ý ÔÀ𝛟5Ó
x 𝐁4𝐁Mx𝛟5Ó

FI/

Ó¥5

Ø

4M

+ [𝐄]4M (3.9) 

If the BTs are broken into column vectors 𝐁4 = �𝐛45, 𝐛4@,… , 𝐛4.1� and 𝐁M =

�𝐛M5, 𝐛M@,… , 𝐛M.1� equation (3.9) can be re-written as a summation of dot products as in 

equation (3.10). 
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[𝐗𝚽x 𝐗𝚽]4M = Ü
𝑛@
𝑚.1

Ý ÔÀÀ(𝛟5Ó
x 𝐛4E)Ð𝐛MEx 𝛟5ÓÑ

.1

E¥5

FI/

Ó¥5

Ø

4M

+ [𝐄]4M (3.10) 

Transposing the dot products and then rearranging the summation results in the following. 

[𝐗𝚽x 𝐗𝚽]4M = Ü
𝑛@
𝑚.1

Ý ÔÀ𝐛4Ex ÚÀ𝛟5Ó𝛟5Ó
x

FI/

Ó¥5

Û
.1

E¥5

𝐛MEØ

4M

+ [𝐄]4M (3.11) 

The equality of ∑ 𝛟5Ó𝛟5Ó
xFI/

Ó¥5 = 𝚽./𝚽./
x = (𝑛5/𝑚./)𝐈 + 𝐄 and 𝐄 → 𝟎 as 𝑚./ → 𝑛5 is 

invoked again which arrives at equation (3.12) is approximately the scaled covariance 𝐑. 

 [𝐑𝚽]4M = Ü
𝑛5
𝑚./

Ý Ü
𝑛@
𝑚.1

Ý ÔÀ𝐛4Ex
.1

E¥5

𝐛MEØ

4M

+ [𝐄]4M ≈ 𝑐𝜎4M@ + [𝐄]4M (3.12) 

This derivation proves the preservation of the covariance and correlation matrices when 

computed using the compressed band tensors. 

It should be noted that the BV mode requires a considerably larger sampling matrix 

𝚽EH when compared to the dimensionality of the two sampling matrices 𝚽EI/
 and 𝚽EI1

 

using the BT models. The BV and BT models are related by considering 𝚽EH ∈

ℜÐFI/FI1Ñ0(./.1). Therefore, the BV sensing matrix can be seen as multiple concatenated 

copies of the BT sensing matrices. Given the lower dimensionality, the BT models have 

lower memory requirements than the BV method. 

It has been shown that applying CS to the HSI bands using the BV and BT models 

has little effect on the accuracy of the correlation and covariance matrices. Therefore with 

adequate CSSR of each spatial mode the matrices of 𝐑 and 𝐊 can be replaced by 𝐑𝚽 and 

𝐊𝚽 and the inverse of these matrices will hold as well 𝐑g5 ≈ 𝐑𝚽g5 and 𝐊g5 ≈ 𝐊𝚽g5. 
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Preservation of Sample Orthogonal Subspace Projection 

Orthogonal subspace projection (OSP), developed for HSI applications by Harsanyi 

and Chang [3], [17], has been used for target detection and band selection. In this 

derivation, OSP is used to compute the projection distance of one band vec(𝐁:) = 𝐛: to a 

subset of bands µvec(𝐁M)¶M¥5
_

= µ𝐛M¶M¥5
_

 which does not contain 𝐛:. The set of bands is 

arranged in a matrix according to (3.13). From the matrix containing the band subset 

 𝐔 = �vec(𝐁5)	|	vec(𝐁@)	| 	…	|	vecÐ𝐁_Ñ� (3.13) 

OSP constructs an orthogonal projector P𝐔a = 𝐈 − 𝐔(𝐔x𝐔)g5𝐔x [69]. The RIP and RCP 

conditions in (1.1) and (1.2) preserve the length and angle between vectors of the 

projections which is maintained in CSSD. Compressing the bands such as 𝚽EH𝐛: and 

𝚽EH𝐔 results in a projector in CSSD described in equation (3.14). 

P𝚽ßH𝐔
𝚽EH𝐛: = Á𝚽EH𝐔Ð(𝚽EH𝐔)

x𝚽EH𝐔Ñ
g5
(𝚽EH𝐔)

xÂ𝚽EH𝐛: (3.14) 

The projector P𝚽ßH𝐔
 computes distance from the sensed BV 𝚽EH𝐛: to the subspace 𝚽EH𝐔 

in CSSD. Rearrange the symbols using the matrix transpose rules and apply the property 

𝚽EH
Ù 𝚽E; → 𝐈 + 𝐄 as 𝑚; → 𝑁 results in equal to equation (3.15) and (3.16). 

P𝚽ßH𝐔
𝚽EH𝐛: = Á𝚽EH𝐔Ð𝐔

x𝚽EH
x 𝚽EH𝐔Ñ

g5
𝐔x𝚽EH

x Â𝚽EH𝐛: (3.15) 
 

P𝚽ßH𝐔
𝚽EH𝐛: ≈ 𝚽EH𝐔(𝐔

x𝐔)g5𝐔Ù𝐛: (3.16) 

Appling the 𝐿@-norm to (3.16) results in the following equation. 

àP𝚽ßH𝐔
𝚽EH𝐛:à@

@
≈ á𝚽EH𝐔(𝐔

x𝐔)g5𝐔x𝐛:á@
@
 (3.17) 
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Now the RIP condition can be used to assert the lengths of the projections are preserved 

[70]. However, going one step further and expanding the norm in (3.17) yields (3.18), and 

as 𝑚; → 𝑁, 𝚽EH
x 𝚽EH → 𝐈 + 𝐄 resulting in the approximation in (3.19). 

àP𝚽ßH𝐔
𝚽EH𝐛:à@

@
≈ (𝐔(𝐔x𝐔)g5𝐔x𝐛:)x𝚽EH

x 𝚽EH(𝐔(𝐔
x𝐔)g5𝐔x𝐛:) (3.18) 

àP𝚽ßH𝐔
𝚽EH𝐛:à@

@
≈ ‖𝐔(𝐔x𝐔)g5𝐔x𝐛:‖@@ = ‖P𝐔𝐛:‖@@ (3.19) 

Therefore, the projection length of a vector in CSSD will approximately equal the 

projection length in ODS. This holds for P𝚽ßH𝐔
a = 𝐈 − P𝚽ßH𝐔

 as well. OSP for the band 

vectors (BV) is equivalent to the OSP for band tensors (BT). Using BVs, the OSP of 𝐛: 

onto 𝐔 is a linear predictor (𝛼5, 𝛼5, … , 𝛼4)x such that 𝛼5𝐛5 + 𝛼@𝐛@ + ⋯+ 𝛼4𝐛4 = 𝐛: [17]. 

For BT, the linear predictor is 𝛼5𝐁5 + 𝛼@𝐁@ +⋯+ 𝛼4𝐁4 = 𝐁:. This view makes it clear 

that it is possible to vectorize the band tensors and compute the OSP giving the same result. 

This derivation shows that compressively sampling the BV and BT has little effect on the 

OSP between bands. This can be used as a band discrimination metric when finding the 

most distinct bands in terms of the least squared error. 

Preservation of Sample Subspace Volume 

The volume of the subspace spanned by a band subset is also an important HSI 

measure [71]. Band selection algorithms attempt to find a minimal but descriptive band 

subset. Unsupervised algorithms can take advantage of the volume estimates to find subsets 

which span the HSI data space [72]. The following derivations show that the subspace 

volume using the band subsets is preserved in CSSD. First arrange the bands in the set 
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µvec(𝐁M)¶M¥5
_

= µ𝐛M¶M¥5
_

 into a matrix 𝚳 = �vec(𝐁5)	|	vec(𝐁@)	| 	…	|	vecÐ𝐁_Ñ�, the 

volume of the subspace can be measured using equation (3.20) [73]. 

 𝐽(𝐌) =
1

(𝑝 − 1)!¿
|𝚳x𝚳| (3.20) 

Using the BV model of CS from (2.4), the subspace volume becomes as follows. 

 𝐽Ð𝚽EH𝐌Ñ =
1

(𝑝 − 1)!ç
è(𝚽E;𝚳)

x𝚽E;𝚳è (3.21) 

Using simple linear algebra manipulations it becomes the follow is derived. 

 𝐽Ð𝚽EH𝐌Ñ =
1

(𝑝 − 1)!ç
è𝐌x(𝚽EH

x 𝚽E;)𝚳è (3.22) 

As 𝑚; → 𝑁 the matrix 𝚽EH
x 𝚽E; → 𝐈 + 𝐄 with an exponentially decaying error function. 

Therefore, 𝐽Ð𝚽EH𝐌Ñ → 𝐽(𝐌) as 𝑚; increases. This implies the subspace volume is 

identical both in ODS and CSSD. 

Using CS BT model in (2.2) or (2.3), the band subset of compressed tensors 

é𝚽E./
𝐁M𝚽EI1

x ê
M¥5

_
 are arranged into a matrix becoming 𝚳𝚽 =

�vec Á𝚽E./
𝐁5𝚽EI1

x Â |… |vec Á𝚽E./
𝐁_𝚽EI1

x Â  and the volume of the space spanned by 

that matrix is given by equation (3.23). 

 𝐽(𝐌𝚽) =
1

(𝑝 − 1)!
ç|𝐌𝚽

x𝚳𝚽| (3.23) 

To show that 𝐽(𝐌𝚽) → 	𝐽(𝐌) using the BT models, the inner product can be exploited by 

applying 𝚽EH
x 𝚽E; → 𝐈 + 𝐄 to eliminate the sampling matrices. Begin by breaking the 

sampling matrices into 𝑚./ and 𝑚.1vectors 𝚽EI/
x = �𝛟55,𝛟5@, … ,𝛟5FI/

  ∈ ℛ./0FI/ and 
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𝚽EI1
x = �𝛟@5, 𝛟@@,… , 𝛟@FI1

  ∈ ℛ.10FI1, then the 𝑖𝑗ÒÓ  entry of 𝐌𝚽 for each band tensor 

𝐁: is given as follows. 

 �𝚽EI/
𝐁:𝚽EI1

x  
4M
= 𝛟54

x 𝐁:𝛟@M (3.24) 

Here 1 ≤ 𝑖 ≤ 𝑚.5, 1 ≤ 𝑗 ≤ 𝑚.@ and 1 ≤ 𝑙 ≤ 𝐿. Then writing out the vectorized and 

compressed BTs  in 𝐌𝚽 yields 

𝐌𝚽 = Ô
𝛟55
x 𝐁5𝛟@5 ⋯ 𝛟55

x 𝐁2𝛟@5
⋮ ⋱ ⋮

𝛟5FI/
x 𝐁5𝛟@FI1

⋯ 𝛟5FI/
x 𝐁2𝛟@FI1

Ø (3.25) 

Using this and the inner product, the entries of 𝐌𝚽
x𝐌𝚽 are given by 

[𝐌𝚽
x𝐌𝚽]4M = ÔÀÀ(𝛟5Ó

x 𝐁4𝛟@E)Ð𝛟5Ó
x 𝐁M𝛟@EÑ

FI1

E¥5

FI/

Ó¥5

Ø

4M

 (3.26) 

Rearranging the summation results in the following. 

[𝐌𝚽
x𝐌𝚽]4M = ÔÀ𝛟5Ó

x 𝐁4 ÚÀ𝛟@E𝛟@E
x

FI1

E¥5

Û𝐁Mx𝛟5Ó

FI/

Ó¥5

Ø

4M

 (3.27) 

Next ∑ 𝛟@E𝛟@E
x = 𝚽E.1

𝚽EI1
xFI1

E¥5 = (n@/m@)𝐈 + 𝐄, 𝐄 → 𝟎 as 𝑚.1 → 𝑛@ which follows. 

[𝐌𝚽
x𝐌𝚽]4M = ì

𝑛@
𝑚@
í ÔÀ 𝛟5Ó

x 𝐁4𝐁Mx𝛟5Ó

FI/

Ó¥5

Ø

4M

+ [𝐄]4M (3.28) 

Breaking the BTs into column vectors 𝐁4 = �𝐛45, 𝐛4@, … , 𝐛4.1� and 𝐁M = �𝐛M5, 𝐛M@,… , 𝐛M.1� 

it is possible to re-write as a summation of dot products given in the following. 

[𝐌𝚽
x𝐌𝚽]4M = ì

𝑛@
𝑚@
í ÔÀÀ(𝛟5Ó

x 𝐛4E)Ð𝐛MEx 𝛟5ÓÑ
.1

E¥5

FI/

Ó¥5

Ø

4M

+ [𝐄]4M (3.29) 

Transposing the dot products and then rearranging the summation results in the following. 
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[𝐌𝚽
x𝐌𝚽]4M = ì

𝑛@
𝑚@
í ÔÀ𝐛4Ex ÚÀ𝛟5Ó𝛟5Ó

x

FI/

Ó¥5

Û
.1

E¥5

𝐛MEØ

4M

+ [𝐄]4M (3.30) 

It is known that ∑ 𝛟5Ó𝛟5Ó
xFI/

Ó¥5 = 𝚽E./
𝚽EI/
x = (𝑛5/𝑚5)𝐈 + 𝐄 and 𝐄 → 𝟎 as 𝑚./ → 𝑛5. 

The following equation can be derived. 

 �𝐌𝚽
Ù𝐌𝚽�4M = ì

𝑛5
𝑚5
í ì
𝑛@
𝑚@
í ÔÀ𝐛4EÙ

.1

E¥5

𝐛MEØ

4M

+ [𝐄]4M (3.31) 

This proves the preservation of the volume using the BT in the CSSD implying that 

𝐽(𝐌𝚽)/c → 𝐽(𝐌) as 𝑚.5 → 𝑛5 and 𝑚.@ → 𝑛@. The preservation of the volume will be 

used when developing band subset selection algorithms in later chapters. 

Conclusion 

This chapter has shown the preservation of three HSI specific measures when using 

the sensed samples. By using data in the compressively sensed sample domain (CSSD), 

the covariance matrix, the correlation matrix as well as the orthogonal subspace projection 

and subspace volumes are preserved. Therefore, HSI data exploitation algorithms built 

using these measures can be performed in CSSD. The advantage of using CSSD is to reduce 

the size of the individual bands. The exponential convergence of the inner product of 

random Gaussian matrices ensures the measure converges exponentially in the number of 

compressed samples to the value computed using the original data space (ODS). 
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Chapter 4: The Restricted Entropy and Spectrum Properties 
 

This chapter develops a new inter-pixel measure by extending the restricted 

isometric property (RIP) and restricted conformal property (RCP) to a new probabilistic 

discrimination function useful for hyperspectral (HSI) data processing [13], [39]. The 

narrow spectral range and high number of contiguous spectral bands are the defining and 

prominent features of HSI images [3]. This results in spectral data redundancy which 

implies a lower information rate than the bandwidth and a sparse representation exists so 

that compressive sensing (CS) can be applied directly to this HSI mode [12], [50]. Each of 

the 𝑁 pixels 𝐫4 = (𝑟45, 𝑟4@, … , 𝑟42)x = (𝜆5, 𝜆@, … , 𝜆2)x ∈ ℜ205 for the 1 ≤ 𝑖 ≤ 𝑁 image 

pixels and band center wavelengths of {𝜆:}:¥52  is sensed using equation (2.1). The sensed 

pixels are reduced to 𝐲4 ∈ ℜFG05 where 𝑚2 is the compressive sensing sampling rate 

(CSSR) of the pixel set. The HSI data exploitation algorithms of classification [74], 

anomaly detection [4], target detection [16], [67], endmember finding [65] and linear 

spectral mixture analysis [75] are fundamentally based on measuring the discrepancies and 

similarities between pixels. Using the length preserving property of RIP in (1.1) and the 

angle preserving property of RCP in (1.2), inter-pixel measures based on the Euclidean 

distance (ED) or spectral angle mapper (SAM) between pixels are preserved in the 

compressively sensed band domain (CSBD) [76]. Algorithms developed using these 

measures in the original data space (ODS) have been utilized in the hyperspectral 

community for some time [2], [3]. While ED and SAM measures are geometric inter-pixel 

measures, an alternative probabilistic measure known as Spectral Information Divergence 

(SID) was introduced by Chang in 1999 [76]. This measure is based on the Kullback-

Leibler (KL) distance between probability distributions [77]. This metric evaluates the 
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difference in the shape of the probability distributions and incorporates all moments of the 

distribution using information entropy [78]. Also, it was shown that the SID is effective at 

accounting for the spectral variability of the pixels due to the scene environment and 

atmospheric effects [76]. 

A direct correspondence between these measures in ODS and CSBD can be drawn. 

RIP is used to preserve ED in both spaces, RCP is used to preserve SAM in both spaces, 

and the new Restricted Entropy Property (REP) derived here is used to preserve the entropy 

between spectral pixels in both spaces. The KL distance is derived from the information 

entropy and REP implies the KL distance is preserved in both spaces. The preservation of 

the inter-pixel KL distances of an HSI is carried out by Restricted Spectrum Property 

(RSP). 

The KL-distance is a measure of the difference between probably distributions of 

random variables (RV) not pixel vectors directly [77]. Therefore, an RV is defined for each 

pixel and a probability mass function (PMF) is estimated using the pixel data known as the 

spectral information measure (SIM) in equation (4.1) [76].  

 𝑝4: =
|𝑟4:|

∑ |𝑟4:|2
:¥5

 (4.1) 

According to (4.1), 𝐫4 is considered the output of a RV defined on a probability space X =

(Ω, Σ, P) where the sample space Ω consists of all individual wavelengths {λ:}:¥52  of the 

HSI, the event space Σ is a power set of the wavelengths and the probability measure P is 

the probability the 𝑙ÒÓ wavelength capture energy [60]. In other words, the PMF of P is the 

probability that the photons entering the sensor will contain energy in the 𝑙ÒÓ	of 

wavelengths or equally how many photons entering have components of each wavelength. 
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Restricted Entropy Property Lemma 

Using the PMF of the pixel RV defined by the SIM in (4.1), let 𝐩4 =

(𝑝45, 𝑝4@,… , 𝑝42)x so that the information entropy of the 𝑖ÒÓ pixel 𝐫4 is defined by 𝐻(𝐩4) =

−∑ 𝑝4: log	(𝑝4:)2
:¥5  [78]. In this section a lemma called the Restricted Entropy Property 

(REP) shows that the entropy measure in ODS is approximately preserved in CSBD such 

that 𝐻(𝐩4) → 𝑯(𝚽EG𝐩4) as 𝑚2 → 𝐿. Notice that 𝐻(𝐩4) is the entropy of the pixel values 

in 𝐫4 computed using the PMF values of 𝑝4: 	and 𝐻(𝚽EG𝐩4) is the entropy computed using 

the sensed pixel values in 𝐲4 = 𝚽EG𝐫4. Therefore, 𝚽EG𝐩4 does not imply that the PMF is 

being transformed and is nonsensical when used outside the entropy operator 𝐻 and the 

distance metrics 𝐷föd and 𝐷÷2	which uses the SIM and the entropy. 

The first step of the proof is to express the entropy in terms of the angles between 

the 𝐿 unit basis vectors and the pixel vector 𝐫4	 which is denoted 𝜃: = ∠(𝐞:, 𝐫4) where 𝐞: =

(0, 0,… , 1, 0, 0)x is the basis vector with the 𝑙ÒÓ position equal to 1 and all other positions 

equal to 0. 

 𝐻(𝐩4) = −À𝑝4: log(𝑝4:)
2

:¥5

= −À
𝑟4:
�̅�4
log ì

𝑟4:
�̅�4
í

2

:¥5

 (4.2) 

 																				= −ÀÜ
|〈𝐞:|𝐫4〉|

∑ |〈𝐞:|𝐫4〉|2
:¥5

Ý logÜ
|〈𝐞:|𝐫4〉|

∑ |〈𝐞:|𝐫4〉|2
:¥5

Ý
2

:¥5

 (4.3) 

 												= −ÀÜ
|𝐞:x𝐫4|

∑ |𝐞:x𝐫4|2
:¥5

Ý logÜ
|𝐞:x𝐫4|

∑ |𝐞:x𝐫4|2
:¥5

Ý
2

:¥5

 (4.4) 

where �̅�4: = ∑ |𝑟4:|2
:¥5 . Furthermore, (4.4) can be re-expressed as follows to eliminate the 

vectors norms which are constant and canceled out. 
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 𝐻(𝐩4) = −ÀÜ
‖𝐞:‖‖𝐫4‖ |cos 𝜃:|

∑ ‖𝐞:‖‖𝐫4‖ |cos𝜃:|2
:¥5

Ý
2

:¥5

log	 Ü
‖𝐞:‖‖𝐫4‖ |cos 𝜃:|

∑ ‖𝐞:‖‖𝐫4‖ |cos𝜃:|2
:¥5

Ý (4.5) 

 																= −ÀÜ
| cos 𝜃:|

∑ | cos 𝜃:|2
:¥5

Ý
2

:¥5

log	 Ü
| cos𝜃:|

∑ | cos 𝜃:|2
:¥5

Ý (4.6) 

Now express the cos	(𝜃:) using the law of cosines to express the entropy algebraically as 

vector magnitudes as in equation (4.7). 

 cos(𝜃:) =
‖𝐞:‖@@ − ‖𝐫4‖@@ − ‖𝐞: − 𝐫4‖@@

2‖𝐞:‖@@‖𝐫4‖@@
 (4.7) 

By taking advantage of the RIP condition in (1.1), it is possible to replace the vector 

magnitudes in the law of cosines with the transformed magnitudes ‖𝐫4‖@@ ≈ á𝚽EG𝐫4á@
@
. 

 cos(𝜃:) ≈ cos(𝛼:) =
á𝚽EG𝐞:á@

@
− á𝚽EG𝐫4á@

@
− á𝚽EG𝐞: − 𝚽EG𝐫4á@

@

2á𝚽EG𝐞:á@
@á𝚽EG𝐫4á@

@  (4.8) 

Now redefine the entropy of (4.5) in CSBD 𝚽EG  where 𝛼: = ∠(𝚽EG𝐞: ,𝚽EG𝐫4) in equation 

(4.9). In addition, this redefinition allows the angle to be preserved by the RCP property 

during CS so that 𝐻Ð𝚽EG𝐩4Ñ = 

−ÀÜ
á𝚽EG𝐞:áá𝚽EG𝐫4á|cos 𝛼:|

∑ á𝚽EG𝐞:áá𝚽EG𝐫4á|cos𝛼:|
FG
:¥5

Ý logÜ
á𝚽EG𝐞:áá𝚽EG𝐫4á|cos𝛼:|

∑ á𝚽EG𝐞:áá𝚽EG𝐫4á|cos 𝛼:|
FG
:¥5

Ý
FG

:¥5

 (4.9) 

							= −ÀÜ
è〈𝚽EG𝐞:,𝚽EG𝐫4〉è

∑ è〈𝚽EG𝐞:,𝚽EG𝐫4〉è
FG
:¥5

Ý logÜ
è〈𝚽EG𝐞:,𝚽EG𝐫4〉è

∑ è〈𝚽EG𝐞: ,𝚽EG𝐫4〉è
FG
:¥5

Ý
FG

:¥5

	 (4.10) 

= −ÀÜ
è𝐞:x𝚽EG

x 𝚽EG𝐫4è
∑ è𝐞:x𝚽EG

x 𝚽EG𝐫4è
FG
:¥5

Ý log Ü
è𝐞:x𝚽EG

x 𝚽EG𝐫4è
∑ è𝐞:x𝚽EG

x 𝚽EG𝐫4è
FG
:¥5

Ý
FG

:¥5

 (4.11) 

As 𝑚2 → 𝐿, then 𝚽EG
x 𝚽EG → 𝐈 + 𝐄 with 𝐄 → 𝟎 and the entropy is simplified to the 

following. 
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	 𝐻Ð𝚽EG𝐩4Ñ ≈ −ÀÜ
|𝐞:x𝐫4|

∑ |𝐞:x𝐫4|2
:¥5

Ý logÜ
|𝐞:x𝐫4|

∑ |𝐞:x𝐫4|2
:¥5

Ý
2

:¥5

 (4.12)	

	 = −À
𝑟4:
�̅�4
log ì

𝑟4:
�̅�4
í

2

:¥5

= −À𝑝4: log(𝑝4:)
2

:¥5

= 𝐻(𝐩4)	 (4.13)	

This proves the entropy preservation of 𝐻Ð𝚽EG𝐩4Ñ → 𝐻(𝐩4) as 𝑚2 → 𝐿 and the entropy 

estimates in OSD will coincide with those in CSBD. A corollary to (4.13) is the cross 

entropy between two pixels. Let 𝒒M = Ð𝑞M5, 𝑞M@, … , 𝑞M2Ñ
x
 be the PMF computed using the 

SIM of the 𝑗ÒÓ  pixel 𝐬M, then the cross entropy is defined as 𝐻Ð𝐩4, 𝐪MÑ = −∑ 𝑝4: log𝑞M:2
:¥5 . 

The proof takes advantage of REP by observing the similarities between the entropy and 

cross entropy equations. Starting with (4.10), the cross entropy in CSBD is as follows. 

𝐻Ð𝚽EG𝐩4,𝚽EG𝐪MÑ

= −ÀÜ
è〈𝚽EG𝐞:,𝚽EG𝐫4〉è

∑ è〈𝚽EG𝐞:, 𝚽EG𝐫4〉è
FG
:¥5

Ý logÜ
è〈𝚽EG𝐞:,𝚽EG𝒔M〉è

∑ è〈𝚽EG𝐞:, 𝚽EG𝒔M〉è
FG
:¥5

Ý
FG

:¥5

 
(4.14) 

																			= −ÀÜ
è𝐞:x𝚽EG

x 𝚽EG𝐫4è
∑ è𝐞:x𝚽EG

x 𝚽EG𝐫4è
FG
:¥5

Ý log Ü
è𝐞:x𝚽EG

x 𝚽EG𝒔Mè
∑ è𝐞:x𝚽EG

x 𝚽EG𝒔Mè
FG
:¥5

Ý
FG

:¥5

 (4.15) 

As 𝑚 → 𝐿, then 𝚽EG
x 𝚽EG → 𝐈 + 𝐄 with 𝐄 → 𝟎 then (4.15) becomes as follows. 

 𝐻Ð𝚽EG𝐩4,𝚽EG𝐪MÑ ≈ −ÀÜ
|𝐞:x𝐫4|

∑ |𝐞:x𝐫4|2
:¥5

Ý logÜ
è𝐞:x𝐬Mè

∑ è𝐞:x𝐬Mè2
:¥5

Ý
2

:¥5

 (4.16) 

 = −À𝑝4: logÐ𝑞M:Ñ
2

:¥5

= 𝐻Ð𝐩4, 𝐪MÑ (4.17) 

The lemmas in (4.13) for entropy and (4.17) for cross entropy are used to express the KL 

distance in CSBD. 
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Restricted Spectrum Property Lemma 

The KL distance between the two RV defined by the 𝑖ÒÓ and 𝑗ÒÓ  pixels is 

D÷2Ð𝐩4	||	𝐪MÑ = 𝐻Ð𝐩4, 𝐪MÑ − 𝐻(𝐩4) where 𝐻(𝐩4) is the information entropy and 

𝐻Ð𝐩4, 𝐪MÑ is the cross entropy [77], [78]. Using (4.13) and (4.17), the KL distance in the 

CSBD is defined as D÷2Ð𝚽EG𝐩4	||	𝚽EG𝐪MÑ = 𝐻Ð𝚽EG𝐩4,𝚽EG𝐪MÑ − 𝐻(𝚽EG𝐩4). The REP 

and cross entropy corollary are directly applied resulting in D÷2Ð𝚽EG𝐩4	||	𝚽EG𝐪MÑ →

D÷2Ð𝐩4	||	𝐪MÑ as 𝑚 → 𝐿. The KL distance is not symmetric. However, the SID between 

pixels enforces a symmetric measure and is defined as Dföd(𝐩4	||	𝐪M) = D÷2Ð𝐩4	||	𝐪MÑ +

D÷2Ð𝐪M	||	𝐩4Ñ. Knowing that D÷2Ð𝚽EG𝐩4	||	𝚽EG𝐪MÑ → D÷2Ð𝐩4	||	𝐪MÑ as 𝑚 → 𝐿 implies the 

RSP property in equation (4.18). 

 DfödÐ𝚽EG𝐩4	||	𝚽EG𝐪MÑ → DfödÐ𝐩4	||	𝐪MÑ (4.18) 

Real Hyperspectral Test Images 

The algorithms developed in this study are verified through experiment with real 

HSI data sets. A common set of benchmarked data sets are used throughout the HSI data 

processing literature [2], [3], [5], [6]. A fundamental property of HSI exploitation is 

spectral data redundancy. Therefore, the inter-band correlation is measured as well as 

CSBR and CSSR using the SCS-RK method developed in the previous chapter. 

HYDICE Data Set 

The Hyperspectral Digital Imagery Collection Experiment (HYDICE) data set is 

often used to validate HSI detection algorithms [7]. Here it will be used to validate the 

preservation of REP and RSP. It was collected in August 1995 by the airborne visible 
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infrared imaging spectrometer (AVIRIS) over Aberdeen Proving grounds in Maryland, 

USA. The sensor has a spectral range of 0.4–2.5 𝜇m and the image consists of 64 x 64 

pixels at 1.56 m ground spatial distance (GSD). Low SNR bands of 1-3 and 202-210 were 

removed. In addition, water vapor absorption bands of 101-112 and 137-153 were removed 

leaving 169 bands. There scene has 15 painted target panels, a large grass field background, 

forest left of the field and a road. The set of panels are arranged in a five by three grid. The 

ground truth map is in Fig. 12(b). The red pixels in the image are considered pure panel 

pixels and the surrounding yellow pixels are the panel spectra mixed with the background. 

 

 
Fig. 12. HYDICE hyperspectral test image and ground truth 

 
Fig. 13. HYDICE scene (a) 5 spectral signatures (b) inter-band correlation 

(a) (b)

(a) (b)
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Each row is a unique material and each column represents a different panel size with the 

left-most column being 3mx3m, the middle is 2mx2m and the right column is 1mx1m. The 

panels in row 2 and 3 are made with the same material and differing paint. Rows 4 and 5 

also are the same material but different paint. The 5 spectra from the panels is plotted in 

Fig. 13(a) and are used as a-priori information to detection algorithms. The inter-band 

correlation is plotted in Fig. 13(b) showing the high redundancy between spectral bands. 

The CSBR and CSSR plots using SCS-RK are depicted in Fig. 14 and Fig. 15. 

These plots show variation of the kurtosis as a function of increasing CSSR. The 

convergence point of each of these graphs is used to construct the sampling matrices such 

 
Fig. 14. HYDICE CSSR convergence (a) PV plot and (b) BV plot 

 
Fig. 15. HYDICE CSSR convergence of BT (a) columns and (b) rows 

(a) (b)

(a) (b)
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𝚽EG  using the CSBR from Fig. 14(a), 𝚽EH using CSSR from Fig. 14(b), and 𝚽EI/
 and 

𝚽EI1
 from the CSSR extracted from the two plots in Fig. 15. 

Empirical Results 

Using RIP, RCP and RSP the following pixel discrimination metrics of Euclidean 

distance (ED) in (4.19), spectral angle mapper (SAM) (4.20), spectral information 

divergence (SID) (4.21) and a combination of SID and SAM called SIDAM in (4.22) are 

defined using pixels 𝐫4 and 𝐫M and corresponding PMFs of 𝐩4 and 𝐪M. 

 D!dÐ𝐫4, 𝐫MÑ ≈ D!dÐ𝚽EG𝐫4, 𝚽EG𝐫MÑ = á𝐲4 − 𝐲Má@
@
 (4.19) 

 Df"hÐ𝐫4, 𝐫MÑ ≈ Df"hÐ𝚽EG𝐫4,𝚽EG𝐫MÑ = cosg5 Ú
è〈𝐲4, 𝐲M〉è

‖𝐲4‖@@á𝐲Má@
@Û	 (4.20) 

To empirically validate the preservation of each discrimination metric of D!d , Df"h , Dföd, 

and Dföd"h  is computed using the data in ODS and CSBD for the set of pixels from the 

HYDICE data set {𝐫4}4¥5Íz#o of Fig. 12(a). 

Dföd(𝐩4, 𝐪M) ≈ Dföd(𝚽EG𝐩4,𝚽EG𝐪M) 

Dföd(𝚽EG𝐩4, 𝚽EG𝐪M) = D÷2Ð𝚽EG𝐩4||𝚽EG𝐩4Ñ + D÷2Ð𝚽EG𝐩4||𝚽EG𝐩4Ñ 
(4.21) 

Dföd"hÐ𝐫4, 𝐫MÑ ≈ Dföd"hÐ𝚽EG𝐫4, 𝚽EG𝐫MÑ 

Dföd"hÐ𝚽EG𝐫4, 𝚽EG𝐫MÑ = Dföd(𝚽EG𝐩4, 𝚽EG𝐪M) ∙ Df"h(𝚽EG𝐫4, 𝚽EG𝐫M) 
(4.22) 

A reference pixel is chosen and fixed as the first input argument. The target spectral 

signatures in Fig. 13(a) will be used as a reference. Each target pixel denoted µ𝐬M¶M¥5
%

 is 

used and a CSBR of 𝑚2 = 64 was extracted from Fig. 14(a) using SCS-RK based method 
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detailed in Chapter 2. Fig. 16(a) shows the metrics computed for D!d(𝐬5, 𝐫4), Df"h(𝐬5, 𝐫4), 

Dföd(𝐬5, 𝐫4), and Dföd"h(𝐬5, 𝐫4) in both ODS and CSBD. Fig. 16(b) shows a zoomed in 

portion of the measures so the correlation between the metrics is evident. Fig. 17 displays 

the measures for D!d(𝐬@, 𝐫4), Df"h(𝐬@, 𝐫4), Dföd(𝐬@, 𝐫4), and Dföd"h(𝐬@, 𝐫4) in ODS and 

CSBD using the second target pixel from Fig. 13(a). Fig. 18 plots the measures for 

D!d(𝐬«, 𝐫4), Df"h(𝐬«, 𝐫4), Dföd(𝐬«, 𝐫4), and Dföd"h(𝐬«, 𝐫4) in ODS and CSBD. 

 

Fig. 16. All four inter-pixel metrics in the ODS and CSBD for reference pixel 1 

 

 

Fig. 17. All four inter-pixel metrics in the ODS and CSBD for reference pixel 2 

(a) (b)

(a) (b)
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Fig. 18. All four inter-pixel metrics in the ODS and CSBD for reference pixel 3 

 

Fig. 19. All four inter-pixel metrics in the ODS and CSBD for reference pixel 4 

 

Fig. 20. All four inter-pixel metrics in the ODS and CSBD for reference pixel 5. 

(a) (b)

(a) (b)

(a) (b)
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Fig. 19 and Fig. 20 show the plots of the measures for D!d , Df"h , Dföd, and  Dföd"h  for 

reference target pixels 𝐬Í and 𝐬% from Fig. 13(a) in ODS and CSBD. A measure of accuracy 

for the discrimination metrics is computed using the Pearson correlation between the 

measures in ODS and CSBD. Equation (4.23) shows the correlation computed for each 

metric 𝜂 = {𝐸𝐷,𝑆𝐴𝑀, 𝑆𝐼𝐷, 𝑆𝐼𝐷𝐴𝑀} and each reference pixel µ𝐬M¶M¥5
%

 across the entire 

pixel set {𝐫4}4¥5Íz#o . The correlation bounded between [−1,1] are specified in Table 1. These 

correlations indicate that indeed the measures are being preserved approximately giving 

further relevance to the correspondence of RIP and ED, RCP and SAM, RSP and SID as 

well as SIDAM. 

 𝜌 ÁD,Ð𝐬M, 𝐫4Ñ, D,Ð𝚽EG𝐬M, 𝚽EG𝐫4ÑÂ 	for	𝜂 = {𝐸𝐷, 𝑆𝐴𝑀, 𝑆𝐼𝐷,𝑆𝐼𝐷𝐴𝑀} (4.23) 

Table 1. Correlations between measure curves for each reference pixel 

 

Conclusions 

This chapter extended the fundamental length and angle preserved CS properties of 

RIP and RCP to the information entropy and further derived the novel restricted entropy 

property (REP). In addition, REP is further extended to restricted spectrum property (RSP) 

by taking advantage of preserving the Kullback-Leibler distance in CSBD. Using these CS 

properties, four new inter-pixel discrimination measures are defined which can be utilized 

Measure ED SAM SID SIDAM

s1 0.9996 0.9939 0.9619 0.9845

s2 0.9998 0.9987 0.9708 0.9906

s3 0.9971 0.9995 0.9781 0.9908

s4 0.9962 0.9970 0.9815 0.9826

s5 0.9992 0.9996 0.9628 0.9738
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in the original data space (ODS) or compressively sensed band domain (CSBD). Therefore, 

algorithms based on comparing pixels such as classification, anomaly detection, target 

detection, endmember finding and unmixing can benefit from CS while maintaining the 

same accuracy. 
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Chapter 5: Compressive Sensing Hyperspectral Target Detection 

Chapters 3 and 4 introduced the idea of using the restricted isometric property 

(RIP), restricted conformal property (RCP) and restricted spectrum property (RSP) as inter-

pixel and inter-band discrimination metrics. This chapter builds on these concepts to 

demonstrate hyperspectral (HSI) sub-pixel anomaly and target detection algorithms can be 

applied in the spectral mode of the compressively sensed band domain (CSBD) and spatial 

modes of the compressively sensed sample domain (CSSD) achieving minimal loss of 

accuracy given an appropriate compressively sensed band rate (CSBR)  and a 

compressively sensed sample rate (CSSR). The majority of HSI pixel-based detectors 

characterize the background interferers and noise using the correlation or covariance 

matrices [2], [4], [14], [79]. Given the large number of pixels in each image, calculating 

these matrices are computationally expensive [69]. The covariance and correlation matrix 

derivation in CSSD of Chapter 3 can be used in to reduce the computing time. This chapter 

presents a spectral-spatial compressive sensing (CS) approach to target detection which 

improves the computational and memory space complexity of the background 

characterization as well as the sub-pixel detection algorithms. 

 The goal of HSI sub-pixel detection algorithms is to automatically model and 

suppress the image background including of noise, atmospheric effects and interferers [14]. 

In doing so, effective thresholds can be established which minimize the false positive rates 

using the Neyman-Pearson lemma as an example [80]. Target detection algorithms applied 

to HSI can take advantage of typically high signal-to-noise ratios (SNR). However, the low 

ground sample distances (GSD) between adjacent image pixels results in targets often 

embedded in a single pixel. Therefore, pixel-based detection algorithms cannot rely on 
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spatial pixel analysis and must exploit the fine spectral resolution of contiguous bands [67]. 

Characterizing the spectra of the background can be done effectively using the second order 

statistics of the inter-band covariance or correlation matrices. As is done with principal 

component analysis (PCA) [29], these matrices can be seen as a model of the spectral 

variation between bands in terms of the eigen-space with the dominating eigenvalue, 

eigenvector pair representing the largest component of the background [69]. Targets and 

anomalies are defined by their infrequent occurrence in the image and therefore can be seen 

as the pixels which align with the smallest eigenvalues/vector pairs. 

Two ubiquitous detection algorithms are considered in this study. The first 

developed by Reed and Xiaoli, referred to as RX detector (RXD) [15] which utilizes the 

Mahalanobis distance to discriminate pixel from the BKG. This is an anomaly detector and 

does not require apriori target information. Another is the constrained energy minimization 

(CEM) target detector developed by Chang and Harsanyi [67]. This detector requires prior 

information in the form of a target spectral signature, and discriminates pixels from the 

background by minimizing the background energy which is not in the direction of the target 

pixel signature. CEM is a single target detection algorithm and use the more general, multi-

target subspace CEM detector known as linearly constrained minimum variance (LCMV) 

detector [16]. The RXD and LCMV algorithms are representative of the many variations 

of HSI detectors and this work can be directly extended to those algorithms. 
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Hyperspectral Anomaly Detection 

The RX anomaly detector computes the Mahalanobis distance from the background 

for each pixel 𝐫4 for 1 < 𝑖 < 𝑁 as in equation (5.1). The background is quantified using the 

sample covariance matrix 𝐊 = 1/(𝑁 − 1)[∑ (𝐫4 − 𝛍)(𝐫4 − 𝛍)x;
4¥5 ] ∈ ℜ202  where 𝛍 is the 

spectral pixel mean computed using 1/𝑁[∑ 𝐫4;
4¥5 ]. The sample covariance matrix 

quantifies the variance between each spectral band. 

 𝛿bcd(𝐫4) = (𝐫4 − 𝛍)x𝐊g5(𝐫4 − 𝛍) (5.1) 

The key insight to applying CS to RXD is that the samples can be sensed within the band 

using the models in (2.2), (2.3) or (2.4). Mixing the information between the samples within 

the band using CS does not affect the computation of the sample covariance matrix. This 

was proven in Chapter 3 using the BV, BT and BT-SVD models of CS. Therefore, it is 

advantageous to compress the bands, transforming them into CSSD, then compute the 

covariance matrix. This reduces the computational cost of finding the covariance while 

generating the same inter-band statistics. Therefore, 𝐊g5 in (5.1) can be replaced with the 

covariance in CSSD, 𝐊g5 ≈ 𝐊𝚽g5 ∈ ℜ202. 

In addition to using the covariance computed using the compressed samples, the 

spectral pixels can be compressed using (2.1) with little effect during the computation of 

the RXD values. Using CSBD in (2.1) imposes CS on both the covariance 𝚽EG𝐊𝚽𝚽EG
x  and 

the data samples Ð𝚽E2𝐫4 − 𝚽E2𝛍Ñ.	Substituting both of these into (5.1) results in CS-RXD 

in (5.2). 

𝛿efgbcd(𝐫4) = Á𝚽E2(𝐫4 − 𝛍)Â
x
Ð𝚽E2𝐊𝚽𝚽EG

x Ñg5 Á𝚽EG(𝐫4 − 𝛍)Â (5.2) 
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Considering the spectral decomposition of the positive semi-definite covariance matrix 

𝐊𝚽 = 𝐔𝚲𝐔x such that 𝐔 = [𝐮5, 𝐮@,… , 𝐮2] are the eigenvectors with 𝚲 =

𝑑𝑖𝑎𝑔(𝜆5, 𝜆@, … , 𝜆2) eigenvalues the result in (5.3) is found. 

 Ð𝚽EG𝐊𝚽𝚽EG
x Ñg5 = Ð𝚽EG𝐔𝚲𝐔

x𝚽EG
x Ñg5 (5.3) 

This can be interpreted using the BT-SVD model showing that when compressing a 2-

tensor the eigenvectors are sensed and the eigenvalues are unaffected. Therefore, the 

inverse of Ð𝚽EG𝐊𝚽𝚽EG
x Ñg5 is given in equation (5.4). 

 Ð𝚽EG𝐔Ñ𝚲
g5Ð𝐔x𝚽EG

x Ñ = 𝚽EG𝐊𝚽
g5𝚽EG

x  (5.4) 

Using the covariance inverse of (5.4), the matrix transpose rules and the CS-RXD form in 

(5.2) RXD is augmented resulting in the following final form. 

𝛿efgbcd(𝐫4) = (𝐫4 − 𝛍)x(𝚽EG
x 𝚽EG)𝐊𝚽

g5(𝚽EG
x 𝚽EG)(𝐫4 − 𝛍) ≈ 𝛿bcd(𝐫4) (5.5) 

With 𝚽EG
x 𝚽EG = 𝐈 + 𝐄 and 𝐄 → 𝟎 as 𝑚2 → 𝐿 and this implies that 𝛿/0g123 → 𝛿123 as 

𝑚./ → 𝑛5, 𝑚.1 → 𝑛@ and 𝑚2 → 𝐿. Under sufficient CSSR for each spatial and spectral 

mode of the image RXD using data in CSBD will converge to CS-RXD. Note that this 

convergence is exponential decaying as the dimensionality increases according to Fig. 1. 

Therefore, CS-RXD can be implemented by computing the sample correlation from the 

sensed samples in each band. This is followed by using the spectrally sensed PVs and 

further applying 𝚽EG  to the covariance matrix. 

Real Hyperspectral Test Images 

The accuracy and runtime reduction of CS-RXD is demonstrated using two, well-

known data sets of HYDICE and HyMap collected using the AVIRIS sensor which are 
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depicted in Fig. 12 and Fig. 21 respectively. The HYDICE and HyMap images are used for 

testing detection algorithms due to the availability of accurate ground truth information. 

Accuracy is quantified via comparison of RXD and CS-RXD results while timing is 

assessed by measuring runtime during covariance and correlation computation as CSSR 

increases. 

HyMap Data Set 

The HyMap image is much larger compared to the HYDICE scene and is used to 

show the scale of the compute time savings when estimating the sample correlation and 

covariance matrices [8]. The image was collected with a HyMap sensor over Cooke City, 

Montana USA in July 2006. The original image is 260 x 800 pixels with 126 bands with 

0.45 – 2.5 𝜇m spectral bandwidth and 2 m GSD. This study used half of the image of 260 

x 400 pixels which contain four targets of varying materials. The targets are labeled F1 

through F4, where F1 is a 3 meter red cotton material, F2 is a 3 meter yellow nylon target, 

F3 is a 1 meter by 2 meter blue cotton target and F4 is a 1 meter by 2 meter red nylon target  

 

 
Fig. 21. HyMap hyperspectral test image and ground truth 

(a) (b)
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Fig. 22. HyMap scene (a) 6 fabric spectral signatures (b) inter-band correlation 

 
Fig. 23. HyMap CSSR convergence (a) PV plot and (b) BV plot 

 
all laid out in a field surrounded by mountainous relief. Band 80 of the scene is rendered 

in Fig. 21 with red ground truth pixels and yellow pixels signifying the surrounding area. 

Fig. 22(a) plots show the 6 fabric spectral signatures used for target detection algorithms 

and Fig. 22(b) showing the inter-band correlation. As with the HYDICE image SCS-RK 

results are plotted in Fig. 23 and Fig. 24 to estimate CSBR and CSSR of the HSI modes 

when constructing the CS sampling matrices by determining the point of convergence. 

 

(a) (b)

(a) (b)
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Fig. 24. HyMap CSSR convergence of BT (a) columns and (b) rows 

 

Anomaly Detection Empirical Results 

To verify the accuracy of CS-RXD, the output of the detector from (5.5) is 

computed and the absolute difference is taken between RXD using ODS and the data in 

CSSD as in equations (5.6) for each pixel location. Each pixel location is assigned a scalar 

detection value by RXD and the differences are rendered in a 2D image showing 

convergence as CSBR and CSSR improves. 

	 |𝛿bcd(𝐫4) − 𝛿efgbcd(𝐫4)|		for		1 ≤ 𝑖 ≤ 𝑁	 (5.6)	

In addition to the differences at each individual pixel location, an aggregate measure using 

the sum of squared errors is used across a range of spectral and spatial CSSR as specified 

in equation (5.7). This metric gives a scalar estimate of convergence at a specific CSSR. 

 ÀÐ𝛿bcd(𝐫4) − 𝛿efgbcd(𝐫4)Ñ
@

;

4¥5

 (5.7) 

 

The first experiment implements RXD on the HYDICE data. This experiment is 

performed in three variations. The first is using the BV spatial representation  

(a) (b)
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Fig. 25. RXD difference images for HYDICE scene using CS applied to BV 

of (2.4) to compress the bands. These sensed bands are then used to compute the covariance 

matrix 𝐊𝚽 = 𝐗𝚽x 𝐗𝚽 ∈ ℜ202  assuming mean centered pixels. The image is 64 x 64 pixels 

and CSSR for the BV of the HYDICE data has range of 𝑚; = [1,4096]. The CSSR has a 

range of 𝑚2 = [1,169]. To demonstrate the convergence of the detector output as CSBR 

and CSSR increases, the error in (5.6) is computed in Fig. 25.  

Here CSBR and CSSR was varied from (a) (𝑚;,𝑚2) = (64,16), (b) (𝑚;,𝑚2) =

(256,32), (c) (𝑚;,𝑚2) = (512,64), (d) (𝑚;,𝑚2) = (1024,128), (e) (𝑚;,𝑚2) =

(2048,169) out of 4096 spatial samples and 169 bands. The difference images are plotted 

on a common dynamic range and show the convergence of 𝛿efgbcd(𝐫4) → 𝛿bcd(𝐫4) when 

using the BV model validating the preservation of the covariance in (3.3) and the CS-RXD 

in (5.5). 

The experiment from Fig. 25 was repeated using the BT model from (2.2) applying 

CS to the BTs which are then used to compute the sample covariance as in (3.7). Again the 

CSBR of the bands varied from 𝑚2 = [1,169] and CSSR for each spatial mode  

 
Fig. 26. RXD difference images for HYDICE scene using CS applied to BT 

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)
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Fig. 27. RXD difference images for HYDICE scene using CS applied to BT-SVD 

varied from 𝑛5, 𝑛@ = [1,64]. The result is in Fig. 26 for (a) (𝑚.5,𝑚.@,𝑚2) = (8,8,16), 

(b) Ð𝑚.5,𝑚.@,𝑚2Ñ = (16,16,32), (c) Ð𝑚.5,𝑚.@,𝑚2Ñ = (24,24,64), (d) 

Ð𝑚.5,𝑚.@,𝑚2Ñ = (32,32,128) and (e) Ð𝑚.5,𝑚.@,𝑚2Ñ = (48,48,169) from 64x64 pixel 

tensor. The convergence of the detector output is evident from the difference images. This  

validates using the BT model to compute the covariance matrix using (3.12) and again the 

CS-RXD of (5.5). 

Another RXD experiment using HYDICE applies CS to the singular vector of the 

BTs using SVD as in (2.3). This approach compresses the singular vectors of SVD and the 

result is in Fig. 27. As before, CSSR varied from (a) (𝑚.5,𝑚.@,𝑚2) = (8,8,16), (b) 

Ð𝑚.5,𝑚.@,𝑚2Ñ = (16,16,32), (c) Ð𝑚.5,𝑚.@,𝑚2Ñ = (24,24,64), (d) Ð𝑚.5,𝑚.@,𝑚2Ñ =

(32,32,128) and (e) Ð𝑚.5,𝑚.@,𝑚2Ñ = (48,48,169) from 64 x 64 pixel tensor. This 

experiment further validates using the BT-SVD model to compute the covariance matrix 

using (3.12) and again the detector output convergence in  

 
Fig. 28. SSE plots of the RXD difference images using HYDICE scene 

(a) (b) (c) (d) (e)

(a) (b) (c)
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Fig. 29. Detection performance resulting using HYDICE and RXD with BV 

(5.5). The aggregate SSE metric in (5.7) is plotted in Fig. 28. These three graphs for (a) 

BV, (b), BT and (c) BT-SVD CS model demonstrate the exponential convergence of the 

detector output across the images for varying CSSR. Notice the dramatic reduction in size 

achievable while maintaining accuracy. Less than 20% of the data is required to see close  

 
Fig. 30. Detection performance using HYDICE and RXD with BT at varying CSSR 

to identical results in all cases. The ground truth of the HYDICE scene is depicted in Fig. 

12(b). Using the ground truth pixel locations, the receiver-operating characteristic (ROC) 

curve is plotted by varying CSBR and CSSR at each variation of band CS model [3]. The  

 
Fig. 31. Detection performance using HYDICE and RXD with BT-SVD 

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)
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Table 2. AUC of ROC curves for varying CSSR for HYDICE and RXD 

 

results of CS-RXD using CS applied to the BVs when computing the covariance matrix is 

in Fig. 29 with (a) ROC curve, (b) the true positive rate (TPR) curve and (c) the false 

positive rate (FPR) curve. Careful observation of these curves show convergence as CSSR 

increases to the curve computed using ODS. The performance rates for CS applied using 

the BT model from (2.2) are plotted in Fig. 30 showing the convergence of the detection 

rates as CSBR and CSSR increases. The other mode of applying CS to the bands is the BT-

SVD model (2.3). The detection performance using the BTSVD model is in Fig. 31 

showing again the convergence of the detection performance as CSBR and CSSR improve. 

Each of the ROC curves validates the detection performance of CS-RXD using 

compressed samples to estimate the sample covariance matrix. Another measure derived 

from the ROC curves is the integral area under the curves (AUC) [80]. Each plot in Fig. 

29(a), Fig. 30(a), and Fig. 31(a) has 6 ROC curves. The ROC using data in ODS along with 

5 other CSSR of increasing size. Table 2 details the AUC and convergence of the detection 

power as CSSR increases towards the full data size. 

A second data set used to validate the accuracy and runtime of CS-RXD is the 

HyMap image from Fig. 21. The first experiment computes the absolute difference in the 

detector output for each pixel location from equation (5.6) as CSBR and CSSR increases. 

The spatial band CSSR has range of 𝑚; = [1,80000] and the spectral CSBR range is 

𝑚2 = [1,126]. 

1 2 3 4 5 No CS

BV 0.7708 0.8207 0.8317 0.8287 0.8540 0.8590
BT 0.7944 0.8099 0.7895 0.8468 0.8485 0.8590
BT-SVD 0.7559 0.7876 0.8143 0.8304 0.8496 0.8590
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Fig. 32. RXD difference images for HyMap scene using CS applied to BV 

Fig. 32 renders the error of each pixel on a common dynamic range for an increasing CSBR 

and CSSR of (a) (𝑚;,𝑚2) = (64,16), (b)	(𝑚;,𝑚2) = (256,32), (c)	(𝑚;,𝑚2) =

(512,64), (d)	(𝑚;,𝑚2) = (1024, 100), and (e) (𝑚;,𝑚2) = (2048,126). The error is 

decreasing as CSSR increases. 

The prior experiment was repeated using the BT model of CS applied in (2.2) and 

the compressed spatial bands are used to estimate the sample covariance matrix. The CSSR  

 
Fig. 33. RXD difference images for HyMap scene using CS applied to BT 

(a) (b) (c)

(d) (e)

(a) (b) (c)

(d) (e)
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Fig. 34. RXD difference images for HyMap scene using CS applied to BT-SVD 

range for the BT modes is 𝑚./ = [1,200] and 𝑚.1 = [1,400] and the spectral range is 

𝑚2 = [1,126]. The error in the detector output for each pixel location is rendered in Fig. 

33 and the images are at (a) Ð𝑚./, 𝑚.1,𝑚2Ñ = (16,16,16), (b) Ð𝑚./, 𝑚.1,𝑚2Ñ =

(32,32,32), (c) Ð𝑚./, 𝑚.1,𝑚2Ñ = (64,64,64), (d) Ð𝑚./, 𝑚.1,𝑚2Ñ = (96,96,100), and 

(e) Ð𝑚./, 𝑚.1,𝑚2Ñ = (128,128,126). The error is decreasing as the CSSR increases. 

Next, the BT-SVD model is applied to the bands as in (2.3) and the compressed bands are 

used to estimate the sample covariance matrix as from (3.12). CSSR is incremented using 

the same rates as done in the previous experiment and results are shown in Fig. 34. The  

 

Fig. 35. SSE plots of the RXD difference images using HyMap scene 

(a) (b) (c)

(d) (e)

(a) (b) (c)
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Fig. 36. Detection performance resulting using HyMap and RXD with BV 

observed trend is  the decreasing error in each pixel as CSSR increases. In addition, the 

aggregate SSE plotted in Fig. 35 shows an exponential decay in error with increasing 

CSSR. Also note the percentage of data used from the image is less than 2.1% resulting in 

a dramatic reduction in data while maintaining the detector output. 

 

Fig. 37. Detection performance resulting using HyMap and RXD with BT 

The ground truth for the HyMap image is in Fig. 21 and shows the pixel locations 

of the 6 fabric signatures. Using the ground truth, the ROC are plotted using the BV, BT  

 

Fig. 38. Detection performance resulting using HyMap and RXD with BTSVD 

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)
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and BT-SVD CS models when computing the covariance matrices. Fig. 36 has the plots 

for the (a) ROC, the (b) true positive rate, and (c) false positive rate using the HyMap 

image, the BV CS model using CS-RXD. Notice the convergence of the curves as the 

CSSR increases. 

The experiment was again repeated using the BT model when computing the 

covariance matrix. The performance rates are plotted in terms of the ROC in Fig. 37. The 

curves show a trend of convergence to the true curve as CSSR increases. Finally, the ROC 

curves are plotted using the HyMap image and the BT-SVD CS model to compute the 

covariance matrix. The convergence trend remains when examining Fig. 38. The AUC is 

also computed for the  ROC curves using the BV, BT and BT-SVD when estimating the 

covariance. The AUC values are plotted in Table 3 at six increasingly large CSSR and the 

detection power tends towards the power when utilizing samples in ODS. 

 

Table 3. AUC of ROC curves for varying CSSR for HyMap and RXD 

 
  

1 2 3 4 5 No CS

BV 0.9344 0.9629 0.9611 0.9640 0.9634 0.9610
BT 0.9590 0.9602 0.9581 0.9624 0.9606 0.9610
BT-SVD 0.9509 0.9584 0.9619 0.9625 0.9640 0.9610
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Hyperspectral Target Detection 

An HSI target detection algorithm is  designed in this section to detect known 

targets embedded in the sub-pixel spectrum given prior spectral profiles [16], [67]. Let 

{𝐦4}4¥5
_  be the set of spectral signatures of the 𝑝 targets {𝐭4}4¥5

_  in the HSI 𝐈, and 𝐌 =

�𝐦5,𝐦@,… ,𝐦_� ∈ ℜ20_ be the target signature matrix. Therefore, the detectors attempt to 

find these known signatures in the image while suppressing the background. 

As defined in Chang, 2003, the linearly constrained minimum variance (LCMV) 

detector finds an optimal FIR filter vector 𝐰8/9: ∈ ℜ205 in (5.8) which minimizes the 

energy from the background [16]. Here 𝐑 = 1/N[∑ 𝐫4𝐫x;
4¥5 ] ∈ ℜ202  is the sample 

correlation matrix and 𝐌 is the target sample matrix.  

 min
𝐰
{𝐰x𝐑𝐰}	subject	to		𝐌x𝐰 = 𝟏 (5.8) 

The solution is found using 𝑝 Lagrange multipliers and is given by equation (5.9) [2]. 

 𝛿2ehi(𝐫4) = 𝐫4x𝐑g5𝐌(𝐌x𝐑g5𝐌)g5𝟏 (5.9) 

As with the anomaly detector, applying CS to the band samples has minimal effect on the 

sample correlation matrix. Therefore, the 𝐑𝚽 can be used as a substitute for 𝐑 where the 

sample correlation matrix is computed using the data in the CSSD. The result from Chapter 

3 also implies that 𝐑𝚽g5 ≈ 𝐑g5 and therefore can be used when deriving 𝛿2ehi(𝐫4) in the 

CSSD as follows. 

 𝛿2ehi(𝐫4) ≈ 𝐫4x𝐑𝚽g5𝐌(𝐌x𝐑𝚽g5𝐌)g5𝟏 (5.10) 

While the inter-band statistics are preserved by applying CS to the spatial samples, the 

LCMV algorithm can also benefit from CS applied to the PVs as in (2.1). Applying the 

spectral CS sampling matrix to the sample correlation matrix results in 𝐑𝚽g5
° =
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𝚽EG𝐑𝚽
g5𝚽EG

x . In addition, the PVs can be sensed using 𝚽EG𝐫4 and the target spectral 

signatures can be compressed forming 𝚽EG𝐌. Using all three of these sensed forms of the 

correlation, PVs and spectral signatures, the LCMV detector can be derived using spatial-

spectral CS as follows. 

 𝛿efg2ehi(𝐫4) = Ð𝚽EG𝐫4Ñ
x
𝐑𝚽g5

<Ð𝚽𝒌2𝐌Ñ ÁÐ𝚽EG𝐌Ñ
x
𝐑𝚽g5

<𝚽EG𝐌Â
g5
𝟏 (5.11) 

Using the matrix transpose rules, and substituting 𝐑𝚽g5
° = 𝚽EG𝐑𝚽

g5𝚽EG
x  the following 

equality is found of 𝛿efg2ehi(𝐫4) = 

𝐫4xÐ𝚽EG
x 𝚽EGÑ𝐑𝚽

g5Ð𝚽EG
x 𝚽EG	Ñ𝐌Ð𝐌

xÐ𝚽EG
x 𝚽EGÑ𝐑𝚽

g5Ð𝚽EG
x 𝚽EGÑ𝐌Ñ

g5
𝟏 (5.12) 

Using 𝚽EG
x 𝚽EG = 𝐈 + 𝐄 with 𝐄 → 𝟎 as 𝑚2 → 𝐿, equation (5.12) simplifies so that 

𝛿/0g8/9: → 𝛿8/9: as 𝑚./ → 𝑛5, 𝑚.1 → 𝑛@ and 𝑚2 → 𝐿. Given an adequate CSBR and 

CSSR for each HSI mode, CS-LCMV will converge to LCMV. This convergence is also 

exponential as the dimensionality of the sensing matrices increase. 

Target Detection Empirical Results 

The HYDICE and HyMap datasets in Fig. 12 and Fig. 21 were used to validate CS-

LCMV (5.9) when using compressive samples to compute the correlation matrix 𝐑𝚽 =

𝐗𝚽x 𝐗𝚽 	∈ ℜ202 . These two datasets have full target ground truth location and the average 

of these target locations was used to model the target apriori signatures. As was done in 

the previous section, the absolute output error between LCMV and CS-LCMV for the 

individual pixels is computed in (5.13) and rendered as CSBR and CSSR increases  

	 |𝛿2ehi(𝐫4) − 𝛿efg2ehi(𝐫4)|		for		1 ≤ 𝑖 ≤ 𝑁	 (5.13)	
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Fig. 39. LCMV difference images for HYDICE scene using CS applied to BV 

to show the convergence of the detector output. In addition, an aggregate measure using 

the SSE is computed using (5.14) to measure the convergence of the detector output using 

a single number at each CSBR and CSSR. 

 ÀÐ𝛿8/9:(𝐫4) − 𝛿/0g8/9:(𝐫4)Ñ
@

;

4¥5

 (5.14) 

Fig. 39. renders the results of the absolute error of the detector output for each pixel location 

using the HYDICE image with the BV model for applying CS and the range of CSBR and 

CSSR from 𝑚2 = [1, 169] and 𝑚; = [1,4096] respectively. Specifically, the renderings 

are at CSBR and CSSR of (a) (𝑚;,𝑚2) = (64,16), (b) (𝑚;,𝑚2) = (256, 32), (c) 

(𝑚;,𝑚2) = (512,64), (d) (𝑚;,𝑚2) = (1024,128), (e) (𝑚;,𝑚2) = (2048,169). The 

difference images show the convergence of the detector output at CSSR increases. 

Comparing the difference image of LCMV in Fig. 40 to the difference image computed 

using CS-RXD in Fig. 25 shows the convergence is slower using LCMV. Fundamentally 

anomaly detection and target subspace detection are  

 

Fig. 40. LCMV difference images for HYDICE scene using CS applied to BT 

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)
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Fig. 41. LCMV difference images for HYDICE scene using CS applied to BT-SVD 

two different problems. LCMV uses known information of five target signatures from Fig. 

13 while RXD does not. The weaker convergence of the output is the accumulation of error 

from the five signatures. More specifically, the error across all five signatures is combined 

in the detector output. In addition, the dynamic range of the detector is much smaller than 

RXD leading to images which appear to show a lack of convergence. 

Fig. 40 shows the same experiment and error output of LCMV using the BT model 

to apply CS to the bands which are then used to estimate the correlation matrix. The trend 

of convergence is the same from Fig. 39 showing the error from the five targets being 

detected using LCMV. 

The final experiment in Fig. 41 shows the error output of LCMV using the BT-

SVD to apply CS to the bands and then used when estimating the sample correlation matrix. 

The output of this experiment coincides with the other two using HYDICE and LCMV  

 
Fig. 42. SSE plots of the LCMV difference images using HYDICE scene 

(a) (b) (c) (d) (e)

(a) (b) (c)
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Fig. 43. Detection performance resulting using HYDICE and LCMV with BV 

using compressive samples. The aggregate SSE of the detector error is plotted in Fig. 42 

which shows the slower convergence of the error using LCMV with CS and the (a) BV, 

(b) BT, and (c) BT-SVD CS of the bands. 

 The performance rates of LCMV are also used to verify LCMV accuracy when 

using CSSD data as compared to using ODS. Fig. 43 shows the (a) ROC, (b) TPR and (c) 

FPR using the BV model as the CSSR increases. The detection performance converges to 

that of ODS as CSSR increases. 

 The detection performance is also evaluated using the BT model and is depicted in 

Fig. 44 with the (a) ROC, (b) TPR and (c) FPR. These curves show the same trend of 

convergence using compressed bands to estimate the correlation matrix. Detection 

performance using the BT-SVD model to compress the bands subsequently used to 

estimate the correlation matrix are plotted in Fig. 45. The (a) ROC, (b) TPR and (c) FPR  

 
Fig. 44. Detection performance resulting using HYDICE and LCMV with BT 

(a) (b) (c)

(a) (b) (c)
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Fig. 45. Detection performance resulting using HYDICE and LCMV with BT-SVD 

are all plotted as the threshold increases showing the convergence of the detection rates as 

CSBR and CSSR increases. The final metric used to quantify LCMV accuracy as CSSR 

increases is the AUC of ROC curves at the varying CSSR. Shown in Table 4 is the AUC 

of the ROCs from Fig. 43, Fig. 44, and Fig. 45. The trend of the convergence is less evident 

using this metric with LCMV compared to RXD due to the accumulated error of the five 

targets. 

Table 4. AUC of ROC curves for varying CSSR for HYDICE and LCMV 

 
 

 The other dataset used to validate LCMV is the HyMap image from Fig. 21 [8]. 

This data set has six spectral signatures used for target detection and is described in detail 

in the prior section. Fig. 46 shows the absolute difference of the detector at each pixel 

location as CSBR and CSSR increases. This experiment utilized the BV model of CS to 

compress the bands and then estimate the correlation matrix. Specifically, (a) (𝑚;,𝑚2) =

(64,16), (b)	(𝑚;,𝑚2) = (256,32), (c)	(𝑚;,𝑚2) = (512,64), (d)	(𝑚;,𝑚2) =

(1024, 100), and (e) (𝑚;,𝑚2) = (2048,126). This shows a convergence  

(a) (b) (c)

1 2 3 4 5 No CS

BV 0.8051 0.9032 0.8327 0.8582 0.8943 0.9034
BT 0.8364 0.8908 0.8961 0.9550 0.9127 0.9034
BT-SVD 0.8968 0.9349 0.9108 0.8876 0.8868 0.9034
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Fig. 46. LCMV difference images for HyMap scene using CS applied to BV 

of the error as CSBR and CSSR improves. The experiment from Fig. 46 was repeated using 

the BT model of CS from (2.2) to compress the bands and then estimate the correlation 

matrix. CSBR and CSSR varied from (a) Ð𝑚./,𝑚.1, 𝑚2Ñ = (16,16,16), (b) 

Ð𝑚./, 𝑚.1,𝑚2Ñ = (32,32,32), (c) Ð𝑚./,𝑚.1, 𝑚2Ñ = (64,64,64), (d) Ð𝑚./,𝑚.1, 𝑚2Ñ =

(96,96,100), and (e) Ð𝑚./,𝑚.1, 𝑚2Ñ = (128,128,126). This experiment further validates 

the used of compressive samples to estimate the correlation  

 
Fig. 47. LCMV difference images for HyMap scene using CS applied to BT 

(a) (b) (c)

(d) (e)

(a) (b) (c)

(d) (e)
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Fig. 48. LCMV difference images for HyMap scene using CS applied to BT-SVD 

matrix for LCMV. The final experiment using the HyMap data and LCMV utilized the BT-

SVD model of CS to compress the bands before computing the correlation matrix. The 

absolute difference image in Fig. 48 shows the convergence of the detector output to that 

of ODS as CSSR increases at the same rates of the last experiment. 

The aggregate difference of LCMV using the HyMap dataset is plotted in Fig. 49. 

These show the SSE between LCMV using data in ODS and the detector using data in 

CSSD. The convergence here has an exponential trend. Notice the convergence occurs with 

less than 2% of the data required to  

 
Fig. 49. SSE plots of the LCMV difference images using HyMap scene 

(a) (b) (c)

(d) (e)

(a) (b) (c)
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Fig. 50. Detection performance resulting using HyMap and LCMV with BV 

achieve a detector output with a convergence SSE for all pixel spatial locations. The 

detection performance using CS applied using the BVs which were then used to compute 

the correlation matrix for CS-LCMV applied to the HyMap dataset is captured in Fig. 50. 

This figure plots the (a) ROC curves, (b) TPR and (c) FPR as CSBR and CSSR increase 

over a range of 100 thresholds of the detector output. These graphs show the convergence 

of the detection algorithm rates as CSSR increases. 

Fig. 51 shows the recurring detection performance curves of (a) ROC curves, (b), 

TPR and (c) FPR using the BT model of CS sensing to assist in computing the sample 

correlation matrix. The convergence of these curves using CS applied to the BTs compared 

to that applied to ODS is evident. 

The final experiment using CS-LCMV and HyMap data set produced Fig. 52 which 

shows the performance curves using the BT-SVD model of CS in (a) ROC curves, (b) TPR  

 
Fig. 51. Detection performance resulting using HyMap and LCMV with BT 

(a) (b) (c)

(a) (b) (c)
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Fig. 52. Detection performance resulting using HyMap and LCMV with BT-SVD 

and (c) FPR. The convergence trend is apparent here to showing the convergence of the 

detector output as CSBR and CSSR improves. Table 5 shows the AUC values of the ROC 

curves from Fig. 50, Fig. 51, and Fig. 52 showing the convergence trend of the detection 

power as the CSSR increases. 

Table 5. AUC of ROC curves for varying CSSR for HyMap and LCMV 

 
 

Detection Algorithm Empirical Runtimes 

The compute runtime of the covariance and correlation matrices of the HYDICE  

and HyMap scenes using CS samples are in Fig. 53 and Fig. 54 for (a) the BV, (b) using 

BT and (c) for BT-SVD at varying CSSR. These plots show the linear runtime relationship 

between CSSR and covariance and correlation computing times. The accuracy of the 

detector is extrapolated from the prior difference images, SSE plots and ROC curves in the 

previous sections and is exponentially decaying while the runtime is linearly increasing.  

 

(a) (b) (c)

1 2 3 4 5 No CS

BV 0.9804 0.9971 0.9991 0.9995 0.9997 0.9997
BT 0.9864 0.9941 0.9994 0.9995 0.9997 0.9997
BT-SVD 0.9831 0.9968 0.9991 0.9997 0.9997 0.9997
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Fig. 53. The covariance and correlation matrix estimation runtime for HYDICE 

This trend highlights the benefit of using compressed band vectors. These times do not 

include the CS acquisition simulation. 

The complexity of each algorithm is dominated by the computation of the 

covariance and correlation matrices. If assume a compressive sensor, then the acquired 

samples are already in CSSD. Computing the correlation matrix using the full band data 

requires 𝐿@ inner products of 𝑁 multiplication and 𝑁 − 1 addition operations. The total 

number of operations is (2𝑁 − 1)	𝐿@. Using the CSBV model, the number of operations is 

reduced to (2𝑚; − 1)	𝐿@ operations where 𝑚; ≪ 𝑁. The BT model reduces further to 

Ð2𝑚.5𝑚.@ − 1Ñ	𝐿
@ with 𝑚./ ≪ 𝑛5 and 𝑚.1 ≪ 𝑛@. The BT-SVD model is the most costly 

model with a computational complexity dominated by the 𝒪(𝐿𝑛5𝑛@@) when computing the 

SVD of each 2-D band. 

 

Fig. 54. The covariance and correlation matrix estimation runtime for HyMap  

(a) (b) (c)

(a) (b) (c)
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 The running time is tracked when computing the correlation and covariance 

matrices for CS-RXD and CS-LCMV respectively. The results are in Fig. 53 using the 

HYDICE data and in Fig. 54 for the HyMap data. Each figure shows the increasing linear 

trend as the CSSR increases. In accordance with CSSR used for ROC computation, CSSR 

for the BV model is 𝑚;𝑚2  and 𝑚./𝑚.1𝑚2  for the BT and BT-SVD models.  

Conclusions 

This chapter showed that using CS to reduce the size of the bands in hyperspectral 

images using a band vector, band tensor or band tensor SVD CS models minimally affects 

the estimation of the sample correlation and covariance matrices. Furthermore, applying 

compressive sensing to the spectral domain will minimally affect the detector outputs. The 

experiments conducted showed the convergence of the detector output for each pixel as 

well as an aggregate SSE error metric for the detector output. These errors decay 

exponentially as the sampling rate increases implying considerable data reduction using 

compressive sensing can retain nearly the same performance compared to that using the 

data in the ODS. This finding was further verified by plotting the performance receiver-

operator curves, true positive rates, false positive rates and detection power estimated using 

the area under the ROC curves. Finally, the computational time of the correlation and 

covariance matrices was plotted as the sampling rates increased and showed a considerable 

decrease in computing time with a linearly increasing trend as the sampling rates increased. 
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Chapter 6: Compressive Sensing Band Selection 
 

Band selection (BS) is another hyperspectral (HSI) application which can benefit 

from lower computational and memory advantages enabled by applying compressive 

sensing (CS) to the band samples [81], [82]. Chapter 3 showed the preservation of 

orthogonal subspace projections (OSP) and subspace volumes in the compressively sensed 

sample domain (CSSD) using band vectors (BV), band tensor (BT) or band tensor SVD 

(BT-SVD) sensing models from (2.2), (2.3) and (2.4) detailed in Chapter 2 [19], [83]. This 

chapter utilizes the preserved metrics to develop HSI BS algorithms in CSSD. BS 

algorithms select an optimal subset of bands from the image for further processing. This is 

done by ranking the bands based on importance using band prioritization and then finding 

the bands which are most distinct from each other using band decorrelation [84]. Band 

decorrelation relies on inter-band discrimination measures such as correlation, Euclidean 

distance, spectral angle, spectral information, channel capacity, etc [84], [85]. As was 

shown in chapter 3, many of these measures can be designed based on the restricted 

isometric property (RIP), restricted conformal property (RCP) and restricted spectrum 

property (RSP) to ensure they are preserved in CSSD [13], [39]. Operating on sensed 

samples mitigates the computation and data intensive problems suffered by most BS 

optimization algorithms which use the original data space (ODS) where each band can be 

on the order of mega-bytes in size. 

A prominent feature of HSI is large amounts of redundant data per image due to 

the high number of spectral bands and high spectral correlation. This is a result of the 

hundreds of bands in a narrow spectral range of the sensors [3]. These contiguous bands 

exhibit high data redundancy which can be removed by data reduction (DR) algorithms 
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whose aim is to keep the application specific features for further processing. DR algorithms 

such as principal component analysis (PCA) [29], maximum noise fraction (MNF) [30] 

and independent component analysis (ICA) [31] have been explored for HSI data 

reduction. However, these algorithms project the data into a new data space basis which 

mixes the spectral and spatial information hindering further interpretation. By applying CS 

to the individual bands, the samples in a single band can be first reduced without mixing 

spectral and spatial information. Furthermore, bands can be compared to each other in 

CSSD using RIP, RCP and RSP principles which preserve the underlying cost function of 

BS optimization. This maintains the accuracy of BS while utilizing a reduced image. 

Hyperspectral Image Band Selection 

As explored by Chang 2013 [3] the design of unsupervised BS algorithms must 

take into account several subproblems. Firstly, the estimation of the band subset size must 

be addressed. Effective methods to determine the size of the band subspace have been 

explored and virtual dimensionality (VD) has been shown useful for this purpose [86], [87]. 

Next, bands are ranked by an importance metric called a band prioritization (BP) measure 

[84]. BP measures such as signal-to-noise ratio (SNR), variance, entropy or information 

divergence have been explored in the literature [66], [88]. In addition, the optimal band 

subset will minimize redundant data. Therefore, a band decorrelation (BD) measure is used 

to evaluate band subsets [84]. This is any measure comparing multiple bands to determine 

application fitness [81]. Finally, the set of band subsets is combinatorically large and the 

cost function is multimodal [82]. This means that an exhaustive search is computationally 

prohibitive. Therefore, a search strategy must be utilized which efficiently traverses the 

band subset metric space. Search algorithms will typically select multiple bands 
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sequentially (SQMBS) using BP and BD measures, or will select and evaluate multiple 

bands simultaneously (SMMBS) further referred to as band subset selection (BSS) [55], 

[71]. Sequential algorithms have been proposed in the literature utilizing sequential 

forward search (SFS) or sequential backward search (SBS) to add bands to a subset or 

remove them from a subset using BP and BD measures [89]. Simultaneous search strategies 

in the literature have included particle swarm optimization [90], firefly algorithm [91], 

band clustering [66], [92], multi-task sparsity pursuit [93], sequential band subset selection 

(SQ-BSS) and successive band subset selection (SC-BSS) [88], [94]. This study develops 

both a SQMBS algorithm based on OSP as well as a BSS based on subspace volume. Both 

metrics are approximately preserved in CSSD. 

Using the notation of the previous chapters, let the entire 3-dimensional HSI image 

be denoted by 𝐈 ∈ ℜ./0.102	 with 𝑁 = 𝑛5𝑥𝑛@	as the spatial dimension with 𝑁 pixels and 𝐿 

spectral bands. Then let the each band be 𝐁: ∈ ℜ./0.1 and the full band set of 𝐿 bands be 

Ω = {𝐁:}:¥52  with the selected band set of 𝑝 bands be Ω? = µ𝐁?M¶M¥5
_

. The cost of the selected 

band subset (SBS) is expressed by the generic objective function 𝐽ÐΩ?Ñ. The goal of any BS 

algorithm is to find the optimal band subset which minimizes or maximizes the cost 

function as in equation (6.1). There are 𝐿 choose 𝑝 combinations resulting in a 

exponentially large search space of size 𝐿!/(𝑝! (𝐿 − 𝑝)!) band subsets to search. 

 Ω?∗ = arg	µmax/min@?⊂@,|@|¥_ 𝐽ÐΩ?Ñ¶ (6.1) 

A SQMBS algorithm will find an optimal band subset by choosing an initial band 

set Ω?z containing a minimal set of bands typically one or two [55], [72]. Then the algorithm 

iterates from 1 ≤ 𝑖 ≤ 𝑝 and the 𝑖ÒÓ	subsequent iterations of the SQMBS algorithms adds a 



 

 

74 
 

single band to the set using the search strategy and inter-band decorrelation measure such 

as orthogonal subspace projection (OSP) as in equation (6.2). 

 Ω?4B5 = arg	µmax/min𝐁C⊂@\@? 𝐽ÐΩ?
4	|	𝐁:Ñ¶ (6.2) 

In contrast, the BSS algorithms can be seen as a direct application of equation (6.1) which 

selects and evaluates complete subsets Ω? where èΩ?è = 𝑝. The largest portion of computing 

time in (6.1) or (6.2) is evaluating the optimality criteria 𝐽ÐΩ?Ñ. This function must compute 

inter-band measures which use 2D band images on the order of mega-bytes. Prior 

algorithms have used simple measures or pre-processing DR to reduce the computing time 

of the cost function 𝐽 [55], [82], [95]. However, these approaches can distort the results by 

missing important data in ODS. This research takes advantage of the CS acquisition 

process to reduce the data size while maintaining the accuracy of the result. 

Compressive Sensing Sequential Band Selection 

The first band selection algorithm developed takes advantage of SFS and OSP in 

an iterative manner searching for an optimal band subset by selecting bands one at a time 

sequentially [17], [89]. The bands are first transformed to CSSD and, using the results in 

Chapter 3, the OSP measure between the sensed bands is approximately preserved [17]. 

This CS-based SQMBS algorithm, detailed in Algorithm 1, first finds the number of bands 

to select. The input to the algorithm uses the HFC method to compute the virtual 

dimensionality (VD) of the image as the number of bands to be selected 𝑝 = 𝑛:3 [96]. The 

algorithm proceeds by transforming all the band vectors into CSSD using (2.4). Once 

transformed, the sensed BVs are created in µ𝚽EH𝐛:¶:¥5
2

. The algorithm proceeds with SFS 

to select bands one at a time. Therefore, an initial condition band subset is required to begin 
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the iteration. The bands are all positive vectors and exist in the first quadrant of the 𝐿-

dimensional cone. Therefore, finding two bands at the extremes of this cone is an effective 

way to capture bands which are dissimilar. This algorithm implementation chooses the 

sensed band vector which has the minimal projection length with the smallest 𝐿@-norm. It 

continues by entering the band selection loop in step 4. Each iteration of the loop will select 

a single band until 𝑝 = 𝑛:3 bands are selected. The orthogonal projection matrix P𝚽ßH𝐔E
a  

is computed by concatenating the selected bands from ΩFfE = µ𝐛G M¶M¥5
4

 into a matrix 𝐔4 =

[𝐛G 5, 𝐛G @,… , 𝐛G 4]. The optimal band to be selected at each iteration is the band which 

 
Algorithm 1. Sequential Forward Search Band Selection using Orthogonal     
Subspace Projection via Compressively Sensed Band Vectors 
Inputs: a. Number of bands to select found using HFC = 𝑝 = 𝑛id  
            b. The compressive sensing sampling rate 𝑚; 
1. Construct the sampling matrix 𝚽𝒌𝑵  using a Gaussian distribution                               

at 𝑚;𝑥𝑁 realizations 
2. Transform each band from {𝐛:}:¥52  into the compressed domain 𝚽EH𝐛: creating a 

compressed set Ω = µ𝚽EH𝐛:¶:¥5
2

 of all band vectors 

3. Find the initial band vector with the minimal magnitude Ω?Ff/ = µ𝚽EH𝐛5¶                         

so that 𝚽EH𝐛G 5 = min
5�:�2

éá𝚽EH𝐛:á@
@ê 

4. Begin SFS loop, set 𝑖 = 1 
a. Form the projector 𝐏𝐔𝚽E

a = 𝐈 − 𝐔4(𝐔4x𝐔4)g5𝐔4x from Ω?FfE  where                                  

𝐔𝚽4 = [𝚽EH𝐛G 5	|	𝚽EH𝐛G @	| … |	𝚽EH𝐛G 4] 
b. Choose the next band which has the maximum orthogonal projection error     

(𝚽EH𝐛:)
∗ = arg	max

𝚽ßH𝐛C∉𝐔E
µ‖𝐏𝐔E

a𝚽EH𝐛:‖@
@¶ 

c. Add the band to selected subset Ω?Ff4B5 = Ω?Ff4 ⋃ 	(𝚽EH𝐛:)
∗ 

d. Increment the loop variable 𝑖 = 𝑖 + 1 
e. Test the loop condition, if 𝑖 = 𝑛id  terminate, else go to step 5 

Output: Selected band subset Ω?Ff_ = µ𝐛G M¶M¥5
_
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has the maximum orthogonal projection to the selected band subset (SBS) subspace formed 

by 𝐔4. Thus, OSP is used as a band discrimination or decorrelation measure to find the 

most unique band at each iteration defined by OSP. In other words, the band which is the 

worst predictor in the linear combination ∑ 𝛼M𝐛G M = 𝐛:4
M¥5  where 𝐛: ∉ Ω? is the most distinct 

band containing unique information not captures by SBS at the current iteration. The 

algorithm is terminated when 𝑝 = 𝑛:3 bands are selected in step 9. 

 
Algorithm 2. Sequential Forward Search Band Selection using Orthogonal 
Subspace Projection via Compressively Sensed Band Tensors 
Inputs: Number of bands to select found using HFC = 𝑝 = 𝑛id 

Compressive sensing sampling rates 𝑚./ and 𝑚.@ 
1. Construct the random sampling matrices 𝚽EI/and 𝚽EI1 using Gaussian realizations 

2. Transform each band tensor {𝐁:}:¥52  into the CSSD using (2.2) or (2.3) creating a 

compressed band set Ω = é𝚽EI/𝐁:𝚽EI1
x ê

:¥5

2
 

3. Vectorize the compressed tensors using évec(𝚽EI/𝐁:𝚽EI1
x )ê

:¥5

2
and find the initial 

band Ω?Ff/ = µ𝐁?𝚽/¶ with minimal magnitude 𝐁?𝚽/ = min
5�:�2

Kàvec(𝚽EI/𝐁:𝚽EI1
x )à

@

@
L 

4. Begin SFS loop, set 𝑖 = 1 
a. Construct the projector by vectorizing the SBS tensors and computing                   

𝐏𝐔𝚽E
a = 	𝐈 − 𝐔𝚽EÐ𝐔𝚽E

x 𝐔𝚽EÑ
g5
𝐔𝚽E
x   from Ω?FfE  where                                                    

𝐔𝚽E = �vec Á𝚽EI/𝐁5𝚽EI1
x Â |	vec Á𝚽EI/𝐁@𝚽EI1

x Â |… |	vec Á𝚽EI/𝐁4𝚽EI1
x Â  

b. Choose the band having maximum OSP error                                         

(𝚽EI/𝐁:𝚽EI1
x )∗ = arg	max

MNO(𝚽ßI/𝐁C𝚽ßI1
P )∉𝐔𝚽E	

Kà𝐏𝚽ß𝐔E
a 𝐯𝐞𝐜 Á𝚽EI/𝐁:𝚽EI1

x Âà
@

@
L 

c. Add the band to selected subset Ω?Ff4B5 = Ω?Ff4 ⋃ 	(𝚽EI/𝐁:𝚽EI1
x )∗ 

d. Increment the loop variable 𝑖 = 𝑖 + 1 
e. Test the loop condition, if 𝑖 = 𝑛id  terminate, else go to step 5 

Output: Selected band subset Ω?Ff_ = µ𝐁?M¶M¥5
_
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The CS-based BS algorithm 1 can be extended to use BTs. Like algorithm 1, using 

tensors takes advantage of OSP and the SFS, but has some important differences. The first 

being that the algorithm must construct two sampling matrices 𝚽EI/
and 𝚽EI1. The second 

difference is the vectorization of the compressed BTs in steps 3) and 4.a) in Algorithm 2. 

Note that computing the compressed bands using CS applied to the BT as in (2.2) or (2.3) 

will typically be more efficient than BV due to the reduced size  BVs as a result of dividing 

the sparsity into two orthogonal modes. 

Compressive Sensing Band Subset Selection 

Band subset selection is a simultaneous multiple band selection (SMMBS) 

selection algorithm which evaluates full band subsets in contrast to the method of SQMBS 

of the prior section [71], [88], [97]. By choosing a band subset cost function 𝐽ÐΩ?Ñ based 

on length or angle and then invoking RIP and RCP in (1.1) and (1.2), it is feasible to create 

algorithms which perform identically in both ODS and CSSD with the advantage of 

considerably reduced data in CSSD thus reducing the computational complexity. 

Using the volume preservation in CSSD detailed in (3.22) of 𝐽ÐΩ?𝚽Ñ → 𝐽ÐΩ?Ñ for 

both the BV and BT CS models, a BSS algorithm can be developed using the successive 

(SC) and sequential (SQ) search algorithms developed by Chang [65], [98], [99]. The 

algorithm begins by finding the size of the selected band subset using virtual 

dimensionality (VD) [86]. The HFC method developed by Chang has been used as an 

effective method to choosing the number of bands for unsupervised band selection [94]. 

The algorithm continues by choosing an initial band subsets using uniform band selection 



 

 

78 
 

(UBS). Then the SQ and SC methods are utilized to evaluate each band subset in turn to 

find the maximum subspace volume. The sequential CS-BSS procedure is in algorithm 3.  

 
Algorithm 3. Band Subset Selection using Subspace Volume and Sequential Subset 
Search via Compressively Sensed Band Vectors 
Inputs: Number of bands to select found using HFC = 𝑝 = 𝑛id  

Compressive sensing sampling rates 𝑚EH 
1. Construct the random sampling matrices 𝚽EH using 𝑚EH Gaussian realizations 

2. Let Ω?∗ = Ω?(z) = é𝐛G 5
(z), 𝐛G @

(z), … , 𝐛G _
(z)ê be the initial set of band selected from.                  

the band set Ω using uniform band subset selection 
3. Simulate compressive sensor using (2.4) to transform all bands to the                                

CSSD Ω = µ𝚽EH𝐛:¶:¥5
2

. 

4. Outer Loop: Let 	𝑙 ← 1 until 𝑙 equals 𝐿, 𝑙 ← 𝑙 + 1 
5. Select the 𝑙ÒÓ band 𝐛: to be the input to the inner loop 

a. Inner Loop: Let 𝑗 ← 1 until 𝑗 equals 𝑝 ← 𝑝 + 1 

b. Construct ΩM
(:) = é𝚽EH𝐛G 5

(:), … ,𝚽EH𝐛G Mg5
(:) , 𝚽EH𝐛:, 𝚽EH𝐛G MB5

(:) , … ,𝚽EH𝐛G _
(:)ê               

by replacing the 𝑗ÒÓ  band with the selected band 

c. Evaluate 𝐽(Ω?M
(:)) using volume cost function 

d. If 𝐽ÁΩM
(:)Â > 𝐽(ΩM∗), then ΩM∗ ← ΩM

(:) 

6. Result BSS is ΩM∗ with maximal volume 

 

This algorithm loops over the bands to find the position in the selected band subset which 

has the maximal cost value. This algorithm can also be developed using BTs in step 3. and 

5b from (2.2) or (2.3). 

The successive CS-BSS procedure is in algorithm 4 and is developed with BTs. This 

algorithm takes advantage of (3.31) of 𝐽ÐΩ?𝚽Ñ → 𝐽ÐΩ?Ñ preserves the cost function. The 

algorithm begins with UBS and the search strategy takes each band in the selected subset 

and swaps it out for a possibly better band by trying all other bands. Each position in the 
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subset is optimized separately. The result is the band subset which has maximal volume. 

The SC search strategy can also be developed using BVs. 

 
Algorithm 4. Band Subset Selection using Subspace Volume and Successive Subset 
Search via Compressively Sensed Band Tensors 
Inputs: Number of bands to select found using HFC = 𝑝 = 𝑛id  

Compressive sensing sampling rates 𝑚./ and 𝑚.@ 

1. Let Ω?∗ = Ω?(z) = é𝐁5
(z), 𝐁@

(z), … , 𝐁_
(z)ê be the initial set of band selected from the band 

set Ω using uniform band subset selection 
2. Simulate the compressive sensing using (2.2) or (2.3) to transform all bands to CSSD 

so that Ω = é𝚽EI/
𝐁:𝚽EI/

x ê
:¥5

2
. 

3. Outer Loop: Let 𝑗 ← 1 until 𝑗 equals 𝑝 ← 𝑝 + 1 
a. Inner Loop: Let 	𝑙 ← 1 until 𝑙 equals 𝐿, 𝑙 ← 𝑙 + 1 
b. Construct the following BSS 

Ω:
(M) = é𝚽EI/𝐁5

(:)𝚽EI/
x , … ,𝚽EI/𝐁Mg5

(:) 𝚽EI/
x ,𝚽EI/𝐁:,𝚽EI/𝐁MB5

(:) 𝚽EI/
x , … ,𝚽EI/𝐁_

(:)𝚽EI/
x ê 

by replacing the 𝑗ÒÓ  band with all the selected band in sequence 

c. Evaluate 𝐽(Ω?:
(M)) using volume cost function 

d. If 𝐽ÁΩ:
(M)Â > 𝐽(Ω:∗), then Ω:∗ ← Ω:

(M) 

4. Output is the BSS is Ω:∗ with maximal volumne 
 

The SQ and SC based algorithms are related but traverse the search space in 

different ways. The SQ algorithm traverses the full bands space and then the selected band 

subset. In contrast the SC algorithm traverses the selected band subset followed by the full 

band space. The computational complexity of each is 𝑂(𝑝𝐿) for 𝐿 bands and 𝑝 selected 

bands. 

Band Selection Evaluation Metric 

To evaluate the subsets of selected bands an unnormalized version of the Tanimoto 

index called the coincident band rate (CBR) (6.3) is used to compare the BS results from 
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ODS and CSSD [100]. This measures the cardinality of the intersection SBS using the full 

band data and the band subset selected from the compressed band data. 

 𝑛eFb = Sµ𝐛G M¶M¥5
_

∩ µ𝚽EH𝐛G M¶M¥5
_ S (6.3) 

This is computed for a range of 1 ≤ 𝑚; ≤ 𝑁 to validate the BV version of algorithm 1 and 

3 and over 1 ≤ 𝑚./ ≤ 𝑛5 and 1 ≤ 𝑚.1 ≤ 𝑛@ for the BT-based algorithms of 2 and 4. Due 

to the high correlation between HSI bands and the error inherent in the probabilistic 

approximation of CS, a BS algorithm may sometimes converge to a point that does not 

exactly correspond to the full SBS but approximately close. CBR measures the exact match 

of the selected band subsets. 

Real Hyperspectral Test Images 

The algorithms developed in this chapter are verified through experiment with real 

HSI data sets. The HYDICE image from Fig. 12, Pavia University and Salina Valley 

dataset are used to verify the accuracy of the algorithms and the demonstrate the algorithm 

runtime savings provided by CS. These datasets are used because they exhibit high inter-

band correlation which is an assumption made by the all BS algorithms. Sequential CS 

using recursive Kurtosis (SCS-RK) from Fig. 8 and Fig. 9 is used to estimate CSSR input 

the BS algorithms. 

Pavia University Data Set 

The Pavia Centre University scene was collected over Northern Italy using the 

ROSIS-03 sensor [9]. It has a spectral range of 0.43 – 0.86 𝜇m and contains 610 x 340 

pixels at 1.3 m GSD and 203 bands. The 12 bands with the largest noise were removed 

before processing. This scene is used for classification and has 9 classes and is a university 
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which is largely urban depicted in Fig. 55. The inter-band correlation is plotted in Fig. 56 

showing a very high rate of data redundancy which is a result of the narrow spectral range 

of the sensor. The kurtosis is plotted across CSSR ranges for each mode of PV, BT and BV 

in Fig. 57 and Fig. 58. These plots are used to estimate CSSR required to construct the 

sampling matrices. 

 

 
Fig. 55. Pavia University hyperspectral test image and classification ground truth 

 
Fig. 56. Inter-band correlation of the Pavia University Scene 

(a) (b)
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Fig. 57. Pavia University Scene CSSR convergence (a) PV plot (b) BV plot 

 
Fig. 58. Pavia University Scene CSSR convergence of BT (a) columns (b) rows 

Salinas Data Set 

The Salinas image was acquired using the AVIRIS sensor over Salinas Valley, 

California on October 9, 1998. The sensor has spectral range of 0.4 – 2.5 𝜇m and consists 

of 512 x 217 pixels at 3.7m GSD and 224 bands. As with the Indian Pines data, the 20 

water absorption bands were discarded 108-112, 154-167 and 224 leaving 104 spectral 

bands in the image. The scene is used to validate classification algorithms and has 16 

classes and is largely agricultural depicted in Fig. 59. The inter-band correlation of the 

Salinas scene is plotted in Fig. 60 and shows considerable data redundancy among the 

spectral bands. Again, the kurtosis is plotted in Fig. 61 and Fig. 62 for the PV, BV and BT. 

(a) (b)

(a) (b)
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Fig. 59. Salinas hyperspectral test image and classification ground truth 

 
Fig. 60. Inter-band correlation of the Salinas Scene 

 
Fig. 61. Salinas Scene CSSR convergence (a) PV plot and (b) BV plot 

(a) (b)

(a) (b)
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Fig. 62. Salinas Scene CSSR convergence of BT (a) columns and (b) rows 

Band Selection Empirical Results 

Algorithm 1 and 2 were verified through experiment using the HYDICE dataset 

depicted in Fig. 12. CSSR for the BV CS model in (2.4) was estimated from the 

convergence of the SCS-RK plot in Fig. 14(b) to be approximately 𝑚; = 1350 which is a 

CSSR of 5«%z
Íz#o

= 0.3296. CSSR for BT-CS model in (2.2) or (2.3) was estimated from the 

convergence of SCS-RK plot in Fig. 15 to be 𝑚./ = 𝑚.1 = 37 for a total of 1369 CS 

observations which is a CSSR of 5«o#
Íz#o

= 0.3342. In addition, the HFC estimate of 

𝑝 = 𝑛id = 9 bands as the SBS size. The SBS was computed using algorithms 1 and 2 is 

in Table 6. The SBS results from Table 6 show the coincidence of the algorithm 1 and 2 

output when using the data in ODS and CSSD. CBR shows the closeness of the result with 

variations due to the limited size of the random sampling matrix which 

Table 6. HYDICE CS Band Selection Results 

 
 

(a) (b)

Algorithm CSSR CBR Selected Bands (in order of selection)

Full Band No CS N/A 168    60    52    13   102    55    78    96    71

CSBS-BV 1350 / 4096 8 / 9 168    60    52    13   102    55    78    48    96

CSBS-T 1369 / 4096 7 / 9 168    60    52    13   102    55    81    96    33

CSBS-TSVD 1369 / 4096 7 / 9 168    60    52    13   102    55    76    68    96
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Fig. 63. HYDICE selection result (a) ODS, (b) BV, (c) BT, (d) BT-SVD 

converges to identity when CSSR goes to infinity. Note that the bands which are differing 

are among the bands chosen last. The bands from Table 6 are plotted in Fig. 63 which 

shows the quality of the band selection result and the coincidence between the results in 

ODS to CSSD. Finally, the execution time was recorded as the CSSR was increased in Fig. 

64 from 𝑚; = [1,4096] and 𝑚./ = 𝑚.1 = [1,64]. The linear trend below the runtime of 

ODS is evident which underpins the advantages of performing the BS algorithm 1 in CSSD. 

Algorithms 1 and 2 were also verified through experiment using the Pavia 

University dataset depicted in Fig. 55. CSSR for the BV CS model in (2.4) was estimated 

from the convergence of SCS-RK plot in Fig. 57(b) to be approximately 𝑚; = 30,000 

which is a CSSR of «z,zzz
@zU,Ízz

= 0.1446. CSSR for the BT-CS model in (2.2) or (2.3) was 

estimated from the convergence of the SCS-RK plot in Fig. 58 to be 𝑚./ = 350,𝑚.1 =

200 for a total of 66,980 CS observations which is a CSSR of  

 
Fig. 64. HYDICE selection timing (a) BV, (b) BT and (c) BT-SVD 

(c)(b)(a) (d)

(c)(b)(a)
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Table 7. Pavia University CS Band Selection Results 

 
 

oo,#Vz
@zU,Ízz

= 0.3230. In addition, the HFC estimated the 𝑝 = 𝑛id = 14 bands is the estimated 

SBS size. The SBS was computed using Algorithm 1 and 2 is in Table 7. The SBS results 

from Table 7 show the coincidence of the algorithm 1and 2 output when using the data in 

ODS and CSSD. CBR shows the closeness of the result with variations due to the limited 

size of the random sampling matrix which converges to identity as CSSR goes to infinity. 

Note that the bands which are differing are among the bands which are chosen last. The 

bands from Table 7 are plotted in Fig. 65 which shows the quality of the band selection 

result and the coincidence between the results obtained in ODS to CSSD. Finally, the 

execution time was recorded as CSSR was increased in Fig. 66 from 𝑚; = [1,30000] and 

𝑚./ = [1,610],𝑚.1 = [1,340]. The linear trend below the runtime of using data in ODS 

is evident which underpins the advantages of performing the BS algorithms 1 and 2 in 

CSSD. The runtime graph in Fig. 66(a) using the BV model was computed for 𝑚; =

[1,30000] due to computational limitations. 

 

 
Fig. 65. Pavia University selection result (a) ODS, (b) BV, (c) BT, (d) BT-SVD 

Algorithm CSSR CBR Selected Bands (in order of selection)
Full Band No CS NA 3    91    19    26    49    64    71    74   103    82    85    83     1 78

CSBS-BV 30000 / 207400 14 / 14 3    91    19    26    49    64    71    74   103    82    85    83     1 78

CSBS-T 66980 / 207400 10 / 14 3    91    19    26    70    64    34    74   103    83    86    47    85 1

CSBS-TSVD 66980 / 207400 14 / 14 3    91    19    26    49    64    71    74   103    82    85    83 1 78

(c)(b)(a) (d)
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Fig. 66. Pavia University selection timing (a) BV, (b) BT and (c) BT-SVD 

Generating a full sampling matrix for the BV model would require a matrix 207,400 x 

207,400 which when realized is over 1.6 GB. 

The final dataset used to validate Algorithms 1 and 2 through experiment is the 

Salinas Valley scene in Fig. 59. CSSR for the BV-CS model in (2.4) was estimated from 

the convergence of SCS-RK plots in Fig. 61 to be approximately 𝑚; = 5000 which is a 

CSSR of %,zzz
555,5zÍ

= 0.0450. CSSR for the BT-CS model in (2.2) or (2.3) was estimated 

from the convergence of SCS-RK plots in Fig. 62 to be 𝑚./ = 300,𝑚.1 = 100 for a total 

of 30,000 CS observations which is a CSSR of «z,zzz
555,5zÍ

= 0.2700. In addition, the HFC 

estimated the 𝑝 = 𝑛id = 23 bands is the estimated SBS size. SBS was computed using 

Algorithm 1 and 2 is in Table 8. The SBS results from Table 8 show the coincidence of the 

algorithm 1and 2 output when using the data in ODS and  

Table 8. Salinas Valley CS Band Selection Results 

 
 

(c)(b)(a)

Algorithm CSSR CBR Selected Bands (in order of selection)
Full Band No CS NA 203    45    32    38   165     5    93    67   152    20   121    55    41     10    

34    14     4    40    37   120   153    19   164
CSBS-BV 5000 / 111104 21 / 23 203    45    32    38   165     5    93    67   152    20   120    56    41 10    

14    37    40     4    34   153    19   119   164
CSBS-T 30000 / 111104 22 / 23 203    45    32    38   165     5    93    67   152    20    14   121    56 41    

10     4    40    37    34   120    19   153   164
CSBS-TSVD 30000 / 111104 21 / 23 203    45    32    38   165     5    93    67   152    20   121    55    41 10    

35     3    14    40    37   120    19   153   164
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Fig. 67. Salinas Valley selection results (a) ODS, (b) BV, (c) BT, (d) BT-SVD 

 
CSSD. CBR shows the closeness of the result with variations due to the limited size of the 

random sampling matrix which converges to identity as CSSR goes to infinity. Note that 

the bands which are differing are among the bands which are chosen last. The bands from 

Table 8 are plotted in Fig. 67 which shows the quality of the band selection result and the 

coincidence between the results using data in ODS to and data in CSSD. Finally, the 

execution time was recorded as CSSR was increased in Fig. 68 from 𝑚; = [1,3000] and 

𝑚./ = [1,300],𝑚.1 = [1,100]. The linear trend below the runtime of using data in ODS 

is evident which underpins the advantages of performing the BS algorithms 1 and 2 in 

CSSD. The runtime graph in Fig. 68(a) using the BV model was computed for 𝑚; =

[1,3000] due to computational limitations. The full matrix would be 111,104 x 111,104 

Gaussian realizations which would require a matrix over 800MB in size. 

 

 
Fig. 68. Salinas Valley selection timing (a) BV, (b) BT and (c) BT-SVD 

 

(c)(b)(a) (d)

(c)(b)(a)
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Band Subset Selection Empirical Results 

 The sequential and successive band subset of algorithms 3 and 4 were validated 

using the HYDICE image from Fig. 12. The BV, BT and BT-SVD models in (2.2), (2.3) 

and (2.4) where used to compressively sense the data. Using SCS-RK in Fig. 9 the BV- 

CSSR was estimated using Fig. 14(b) to be 𝑚; = 1350 giving a CSSR of 5«%z
Íz#o

= 0.3296. 

In addition, CSSR of the BT models was estimated using Fig. 15 to be 𝑚./ = 37 and 

𝑚.1 = 37 for a total of 1369 compressive samples giving a CSSR of 5«o#
Íz#o

= 0.3342. The 

results of algorithms 3 and 4 are in Table 9 and Table 10. The SBS results from Table 9 

and Table 10 exhibit the concurrence of the algorithms 3 and 4 when using data in ODS 

and CSSD. CBR shows the closeness of the result with variations due to the limited size of 

the random sampling matrix which converges to identity as CSSR goes to infinity. The 

bands from in Table 9 and Table 10 are plotted in Fig. 69 and Fig. 70 showing the quality 

of the band selection result and the similarity between the results in ODS and in CSSD. 

Finally, the execution time was recorded as  

Table 9. HYDICE CS Sequential Band Subset Selection Results 

 
 

Table 10. HYDICE CS Successive Band Subset Selection Results 

 
 

Algorithm CSSR CBR Selected Bands (in order of selection)

Full Band No CS NA 1    57    53    81    34   102    48    68     2

CSBSS-BV 1350 / 4096 8 / 9 1    57    48    81    68   102    35    53     2

CSBSS-T 1369 / 4096 7 / 9 1    68    50    81    57   102    35    53     2

CSBSS-TSVD 1369 / 4096 9 / 9 1    57    48    81    34   102    53    68     2

Algorithm CSSR CBR Selected Bands (in order of selection)

Full Band No CS NA 53     1    48    57    68    76    23    59   102

CSBSS-BV 1350 / 4096 9 / 9 53     1    48    57    68    76    23    59   102

CSBSS-T 1369 / 4096 5 / 9 54     1    48    60    68    76    22     2   102

CSBSS-TSVD 1369 / 4096 8 / 9 53     1    48    57    68    76    59    34   102



 

 

90 
 

 
Fig. 69. HYDICE sequential subset selection (a) ODS, (b) BV, (c) BT, (d) BT-SVD 

 
Fig. 70. HYDICE successive subset selection (a) ODS, (b) BV, (c) BT, (d) BT-SVD 

CSSR was increased in Fig. 71 and Fig. 72 from 𝑚; = [1,4096] and 𝑚./ = [1,64],𝑚.1 =

[1,64]. The linear trend below the runtime of using data in ODS is evident which underpins 

the advantages of performing the BS algorithms 3 and 4 in CSSD. 

 
Fig. 71. HYDICE sequential subset selection timing (a) BV, (b) BT and (c) BT-SVD 

 
Fig. 72. HYDICE successive subset selection timing (a) BV, (b) BT and (c) BT-SVD 

(c)(b)(a) (d)

(c)(b)(a) (d)

(c)(b)(a)

(c)(b)(a)
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Another dataset of Pavia University from Fig. 55 is used to validate the sequential 

and successive band subset of algorithms 3 and 4. Again, the BV, BT and BT-SVD models 

in (2.2), (2.3) and (2.4) where used to compressively sense the data. Using SCS-RK in Fig. 

9 the BV-CSSR was estimated using Fig. 57(b) to be 𝑚; = 30,000 giving a CSSR of 

«z,zzz
@zU,Ízz

. In addition, CSSR of the BT models was estimated using Fig. 58 to be 𝑚./ = 350 

and 𝑚.1 = 200 for a total of 70,000 compressive samples giving a CSSR of Uz,zzz
@zU,Ízz

=

0.3375. The results of algorithms 3 and 4 are in Table 11 and Table 12. The SBS results 

from in Table 11 and Table 12 display the correspondence of the algorithms 3 and 4 when 

using data from ODS and CSSD. CBR shows the closeness of the result with variations 

due to the limited size of the random sampling matrix which converges to identity as CSSR 

goes to infinity. The bands from in in Table 11 and Table 12 are plotted in Fig. 73 and Fig. 

74 showing the quality of the band selection result and the similarity between the results 

obtained from using data in ODS and in CSSD. Finally, the execution time was  

Table 11. Pavia University CS Sequential Band Subset Selection Results 

 
 

Table 12. Pavia University CS Successive Band Subset Selection Results 

 
 

Algorithm CSSR CBR Selected Bands (in order of selection)
Full Band No CS NA 1     8    18     4    32     2    46     6    63    72    83    85    11 103

CSBSS-BV 30000 / 207400 13 / 14 1     8    17     4    32     2    46     6    63    72    83    85    11 103

CSBSS-T 70000 / 207400 12 / 14 1     8    14     4    32     2    46     6    63    72    83    85    10 103

CSBSS-TSVD 70000 / 207400 14 / 14 1     8    18     4    32     2    46     6    63    72    83    85    11 103

Algorithm CSSR CBR Selected Bands (in order of selection)
Full Band No CS NA 1     3     5     8     2    27    83    46    63    72    11    85     6 103

CSBSS-BV 30000 / 207400 13 / 14 1     3     5     8     2    27    83    46    63    72    11    85    14 103

CSBSS-T 70000 / 207400 12 / 14 1     3     5     8     2    28    83    46    63    72    11    85    14 103

CSBSS-TSVD 70000 / 207400 14 / 14 1     3     5     8     2    27    83    46    63    72    11    85     6 103
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Fig. 73. Pavia U. sequential subset selection (a) ODS, (b) BV, (c) BT, (d) BT-SVD 

 
Fig. 74. Pavia U. successive subset selection (a) ODS, (b) BV, (c) BT, (d) BT-SVD 

recorded for a varying CSSR of 𝑚; = [1,30000]	and 𝑚./ = [1,610] and 𝑚.1 =

[1,340]	with results plotted in Fig. 75 and Fig. 76. The plots display the linear trend evident 

in prior experiments. Also, note that in Fig. 75(a) and Fig. 76(a) are limited due to 

computational constraints mentioned prior. 

 
Fig. 75. Pavia U. sequential subset selection timing (a) BV, (b) BT and (c) BT-SVD 

(c)(b)(a) (d)

(c)(b)(a) (d)

(c)(b)(a)
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Fig. 76. Pavia U. successive subset selection timing (a) BV, (b) BT and (c) BT-SVD 

The final dataset of Salinas Valley from Fig. 59 is used to validate the sequential 

and successive band subset of algorithms 3 and 4. Again, the BV, BT and BT-SVD models 

in (2.2), (2.3) and (2.4) where used to compressively sense the data. Using SCS-RK in Fig. 

9 the BV CSSR was estimated using Fig. 61 to be 𝑚; = 5,000 giving a CSSR of %,zzz
555,5zÍ

=

0.0450. In addition, CSSR of BT models was estimated using Fig. 62 to be 𝑚./ = 300 

and 𝑚.1 = 100 for a total of 30,000 compressive samples giving a CSSR of «z,zzz
555,5zÍ

=

0.2700. The results of algorithms 3 and 4 are in Table 13 and Table 14. The SBS results 

display the correspondence of the algorithms 3 and 4 when using data in ODS and CSSD. 

CBR shows the closeness of the result with variations due to the limited size of the random 

sampling matrix which converges to identity as CSSR goes to infinity. The selected bands 

are plotted in Fig. 77 and Fig. 78 showing the quality of the band selection result and the 

similarity between the results obtained using data in ODS and in CSSD. 

Table 13. Salinas Valley CS Sequential Band Subset Selection Results 

 

(c)(b)(a)

Algorithm CSSR CBR Selected Bands (in order of selection)
Full Band No CS NA 1    38    21    32    37    48    56    65    34     8    93    42     9 15     

4   136     2   153    40     6     7     3     5
CSBSS-BV 5000 / 111104 20 / 23 1    40    21    32    37    47    56    65    34     9    93    38     8 42     

4   133     2   153    14     6     7     3     5
CSBSS-T 30000 / 111104 20 / 23 1    40    19    32    37    48    56    65    34     8   100   164     9 15     

4    42     2   153    38     6     7     3     5
CSBSS-TSVD 30000 / 111104 20 / 23 1    34    19    32    37    48    56    65    38     9    93    40    42 23     

4   136     2   153    14     6     7     3     5
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Table 14. Salinas Valley CS Successive Subset Selection Results 

 

 
Fig. 77. Salinas sequential subset selection (a) ODS, (b) BV, (c) BT, (d) BT-SVD 

 
Fig. 78. Salinas successive subset selection (a) ODS, (b) BV, (c) BT, (d) BT-SVD 

Finally, the execution time was recorded for a varying CSSR of 𝑚; = [1,5000]	and 

𝑚./ = [1,512] and 𝑚.1 = [1,217]	with results plotted in Fig. 79 and Fig. 80. The plots 

display the linear trend underpinning the time savings of using CS and BS. 

 
Fig. 79. Salinas sequential subset selection timing (a) BV, (b) BT and (c) BT-SVD 

Algorithm CSSR CBR Selected Bands (in order of selection)
Full Band No CS NA 2     5    19    34    38    42     3     1    55     4    12    67    32 40     

6    97    47    37     7   133     9   153    62
CSBSS-BV 5000 / 111104 19 / 23 2     5    19    34    38    42     3     1    55     4    12    67    32 40     

6   100    47    37     7     9   120   152    23
CSBSS-T 30000 / 111104 18 / 23 2     5    19    34    38    42     3     1    55     4    12    67    32 40     

6   100    48    37     7     9   120   152    25
CSBSS-TSVD 30000 / 111104 19 / 23 2     5    19    34    38    42     3     1    55     4    12    67    32 40     

6   100    47    37     7     9   120   152    25

(c)(b)(a) (d)

(c)(b)(a) (d)

(c)(b)(a)
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Fig. 80. Salinas successive subset selection (a) BV, (b) BT and (c) BT-SVD 

Conclusion 

This chapter presented the notion of using CS to reduce the size of the bands in 

hyperspectral images using a band vector, band tensor or band tensor SVD-CS models 

minimally affects the orthogonal subspace projection lengths as well as the subspace 

volumes. The experiments conducted showed the convergence of the band selection 

outputs for each data set at an appropriate CSSR. The errors in the band selection output 

converge to the truth exponentially while the runtime increases linearly. This shows that a 

considerably smaller compressively sampled set of data can be used to perform band 

selection using orthogonal subspace projection or subspace volume. 

(c)(b)(a)
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Chapter 7: Conclusions and Future Work 
 

This dissertation investigates various approaches to hyperspectral image analysis 

via compressive sensing. By exploiting the length and angle preserving principles of the 

related restricted isometric property and restricted conformal property in CS, this 

dissertation demonstrates that the applications of target detection and band selection can 

be derived in the compressively sensed sample domain. The principal advantage of 

formulating these applications in compressively sensed sample or band domain is to 

reproduce nearly the same results using compressively sensed data compared to using the 

data in original data space so that significantly reduced computational complexity and 

tremendous memory/storage savings can be achieved. Ideally, a compressive sensor would 

acquire these samples directly and collection systems could immediately perform data 

exploitation without the need for reconstruction. 

The restricted isometric property is also shown to be extensible to include the 

probabilistic measure of information entropy. As a result, not only can length and angle be 

preserved but also the Kullback Leibler distance is preserved as well. This has implications 

for further hyperspectral processing algorithms based on the spectral information 

divergence. Future developments are the formulating of data processing algorithms in 

terms of the information theoretic restricted entropy and restricted spectrum properties 

proposed in this dissertation. 

As a final contribution, this dissertation develops a practical study and presents a 

novel estimation method to find the compressive sensing sampling rates. The proposed 

method is recursive, computationally light-weight and can be built in-line  with data 
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collection. Future work includes the refinement of this method casting it as a detection 

problem so that the rates can be ascertained automatically. 
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