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The study of alloys using computational methods has been a difficult task due to the usually unknown stoichiometry
and local atomic ordering of the different structures experimentally. In order to combat this, first-principles methods
have been coupled with statistical methods such as the Cluster Expansion formalism in order to construct the energy
hull diagram, which helps to determine if an alloyed structure can exist in nature. Traditionally, density functional
theory (DFT) has been used in such workflows. In this work we propose to use chemically accurate many-body
variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC) methods to construct the energy hull diagram of
an alloy system, due to the fact that such methods have a weaker dependence on the starting wavefunction and density
functional, scale similarly to DFT with the number of electrons, and have had demonstrated success for a variety of
materials. To carry out these simulations in a high-throughput manner, we propose a method called Jastrow sharing,
which involves recycling the optimized Jastrow parameters between alloys with different stoichiometries. We show that
this eliminates the need for extra VMC Jastrow optimization calculations and results in a significant computational cost
savings (on average 1/4 savings of total computational time). Since it is a novel post-transition metal chalcogenide alloy
series that has been synthesized in its few-layer form, we used monolayer GaSxSe1−x as a case study for our workflow.
By extensively testing our Jastrow sharing procedure for monolayer GaSxSe1−x and quantifying the cost savings, we
demonstrate how a pathway towards chemically accurate high-throughput simulations of alloys can be achieved using
many-body VMC and DMC methods.

I. INTRODUCTION

The accurate modeling of alloys with first-principles meth-
ods is a difficult computational effort in the materials science
community1. The main issue arises from the usually unknown
stoichiometry and local atomic ordering of the alloyed struc-
tures. One way to combat this is to manually create supercells
with a specific stoichiometry and local atomic ordering deter-
mined empirically or intuitively2–4. Another, more systematic
option is to create a large set of alloyed structures (of varying
compositions and stoichiometries) and determine the energy
hull diagram of the alloy series from first-principles coupled
with statistical methods1,5,6. Popular methods usually involve
the Special Quasirandom (SQS)7 generation of several struc-
tures, evaluation of energies from first-principles, and then us-
ing the first-principles energies as a training set for statistical
methods such as the Cluster Expansion1 formalism.

Constructing an accurate energy hull diagram is essential
for predicting the energetic stability and favorability of alloys.
The accuracy of an energy hull diagram depends critically on
the choice of the method used to generate total energies. Den-
sity functional theory (DFT) has been used for this purpose,
thanks to its balance between accuracy and computational
scaling on modern computer clusters. On the other hand, dif-
fusion Monte Carlo (DMC)8,9 is another ground state method
which can provide total energy differences with significantly
better accuracy than DFT, with minimal functional and basis
set dependence10–14. DMC has a very similar computational
scaling to DFT, N3−4, though with nearly a thousand times
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larger prefactor, but its embarrassingly parallel algorithm can
utilize parallel computation architectures using larger number
of nodes. Recently, DMC has been used to calculate chem-
ically accurate total energies and electronic properties for a
wide variety of two-dimensional (2D) and bulk structures,
demonstrating the routine applicability of this method11–34. In
this work, building on our previous DMC study of 2D GaSe10,
we propose to use DMC to reliably calculate the energetics of
2D GaSxSe1−x as a case study. This will enable accurate sim-
ulations of alloy properties for experimental characterization
and validation.

DMC calculations require multiple steps to obtain the total
energy of a structure and the stochastic nature of the method
introduces uncertainty in the observables, in contrast to the
deterministic nature of DFT. Constructing an adequate energy
hull diagram requires the high-throughput calculation of the
energy of several structures. Similarly to the development of
the decade old field of high throughput DFT35, researchers
have attempted to bridge the gap between high throughput
computing and Quantum Monte Carlo (QMC) and increase
the computational efficiency of the QMC workflow36,37. For
example, Saritas et al.37 developed a high throughput proce-
dure to determine the DMC formation energy of certain ma-
terials directly from the ICSD database. In this work, we pro-
pose a new high throughput workflow to determine the alloy
formation energy of 2D GaSxSe1−x with near chemical ac-
curacy. We went on to test various wavefunction optimization
methods, which included recycling Jastrow parameters (which
we call Jastrow sharing) among various alloy configurations
to reduce the overall computational cost and localization er-
rors.

In addition to 2D GaSxSe1−x being a suitable case study
that builds off our previous QMC work10, it has been reported
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that alloying is a promising route to control the properties
of several monolayer or few layer materials3,4,38–43 (includ-
ing post transition metal chalcogenides, or PTMCs5,6,44–46),
which makes the study of 2D alloys with accurate QMC
methods useful for theorists and guiding experimentalists
in synthesis and characterization. For example, it has ex-
perimentally been reported that when GaSe nanostructures
are alloyed with Te, the material undergoes a hexagonal to
monoclinic transition and there exists an instability region
where the phases compete and two different band gaps can
be found at the same composition6. Janus monolayers45,47

(a class of two-dimensional 2D alloyed structures) have also
gained attention due to their applications for Schottky con-
tacts, as demonstrated theoretically with Janus GaSSe on
top of graphene45. In addition, PTMCs such as GaSe and
GaS can be engineered for specific applications by chemical
functionalization48–50, creating heterostructures45,51–54, and
applying strain55–57. PTMCs such as GaSe have also been
reported to be suitable substrate material for other 2D struc-
tures, as well58,59.

In section II we outline our DFT and QMC approaches and
convergence criteria. In section III A we present our DFT re-
sults in order to initially screen 2D GaSxSe1−x alloys. In sec-
tion III B we describe our Jastrow sharing methodology and
present a detailed analysis of this methodology at the varia-
tional Monte Carlo (VMC) and DMC level. In section III C
we present DMC results using various supercell sizes for al-
loys and compare extrapolated results using different wave-
function optimization methods. In section III D we give an
analysis of the computational cost savings of our approach.
Finally, we provide concluding remarks and future perspec-
tives in section IV.

II. COMPUTATIONAL METHODS AND THEORY

Benchmarking DFT calculations were performed using
the VASP code with projector augmented wave (PAW)
potentials60,61. For these VASP benchmarking calcula-
tions, the Perdew-Burke-Ernzerhof (PBE)62 and strongly
constrained and appropriately normed (SCAN)63 meta-GGA
functionals were used. In addition, the PBE+D264 and
PBE+D365 methods of Grimme and the SCAN+rvv1066 func-
tionals were used to investigate vdW effects at the DFT level.
At least 20 Å of vacuum was given between periodic layers of
GaSxSe1−x in the c-direction, a kinetic energy cutoff of 350
eV was used, and a 6x6x1 reciprocal grid was used for the
primitive cells of the alloys and the number of k-points were
scaled appropriately with supercell size.

DMC calculations use wavefunctions from other ab-initio
methods, in our case DFT-PBE, as input (trial wavefunction)
to obtain an equilibrium that is computationally tractable.
For DFT calculations within the QMC workflow, the Quan-
tum Espresso (QE)67 code was used. For Ga, S, and Se
we used norm-conserving Burkatzki-Filippi-Dolg (BFD)68,69

pseudopotentials. DMC calculations require norm-conserving
pseudopotentials and BFD pseudopotentials have been thor-
oughly tested in DMC10,70. For details of pseudopotential

testing, conversion and validation, refer to the discussion and
Table S1 in the Supplementary Information (SI). For the pseu-
dopotentials, we used a kinetic energy cutoff of 160 Ry (see
Fig. S1), which gives a convergence of less than 1 meV at the
DFT level. We used the same supercell reciprocal twist grid
in QE as our benchmarking VASP calculations which is tested
in Fig. S2.

After the trial wavefunction is generated using DFT,
VMC and DMC8,9 calculations were carried out using the
QMCPACK71,72 code. VMC calculations are the intermediate
steps between the DMC and DFT calculation, where the sin-
gle determinant DFT wavefunction is converted into a many-
body wavefunction, through the Jastrow parameters73,74. Jas-
trow parameters help model the electron correlation and re-
duce the uncertainty in the DMC calculations75,76. The auto-
mated DFT-VMC-DMC workflows were generated using the
Nexus77 software suite. Up to three-body Jastrow78 correla-
tion functions were included. The linear method79 was used
to minimize the variance and energy respectively of the VMC
total energies . The cost function of the variance optimization
is 100% variance minimization and the cost function of the
energy optimization is split as 95% energy minimization and
5% variance minimization, which has been shown to reduce
uncertainty for DMC results75. The explicit details of how we
modified this optimization procedure for our high-throughput
QMC workflow will be given in section III B.

Being a real-space wavefunction method, DMC calcula-
tions need to be performed at increasing supercell sizes to
eliminate finite-size errors. We used supercell sizes up to 72
atoms and extrapolated to the infinite cell size. In order to
smooth the image interactions at each supercell used in the
extrapolation, we used the optimal_tilematrix func-
tion in Nexus, which allows constructing appropriate super-
cells with the largest Wigner-Seitz (WS) radius for a given
size. We used Jackknife fitting to obtain a linear fit of DMC
data and extrapolate to the infinite-size limit for total ground
state energy of each alloyed structure. In addition, the locality
approximation76 was used to evaluate the nonlocal pseudopo-
tentials in DMC. A timestep of 0.01 Ha−1 (convergences tests
are shown in Fig. S3) was used for all DMC simulations.

To initially create and screen these GaSxSe1−x alloyed
structures with varying concentrations, the Special Quasiran-
dom Structure (SQS) method7 was employed as implemented
in the ATAT code1. The alloy formation energy in units of
eV/formula unit (otherwise known as the mixing enthalpy) is
defined as:

Eform = EGaS1−xSex
− (1− x)EGaS− xEGaSe (1)

where EGaS1−xSex is the energy of a GaSxSe1−x cell, EGaS is
the energy of a GaS cell, and EGaSe is the energy of a GaSe
cell, all per formula unit (f.u.). After the SQS generation of
random alloys, first-principles calculations are done to calcu-
late the formation energy of each structure. These energies are
then used to obtain fitted energies via the Cluster Expansion
formalism1. Further details and convergence criteria can be
found in the Supplementary Information (SI).
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III. RESULTS AND DISCUSSION

A. DFT Calculations

In contrast to a previous DFT study where the 2D
GaSxSe1−x alloys were constructed manually2, we used the
SQS method to generate alloys and DFT to initially optimize
the geometries. Lattice parameters of 2D GaS and GaSe have
been determined experimentally2, therefore accurate determi-
nation of the geometry is an important step for the respec-
tive 2D alloys, which have unknown experimental lattice con-
stants. Due to this, we performed geometry and lattice op-
timization calculations with PBE, PBE-D2, PBE-D3, SCAN
and SCAN+rvv10 DFT functionals to benchmark. This pro-
cess also allows us to construct the energy hull diagrams us-
ing each functional (see Fig. 1 and Fig. S4). We find that
all the tested functionals are in good agreement with each
other in their formation energies, but lattice parameters dif-
fer slightly for each structure. However, we find that the
SCAN+rvv10 functional gives the overall best agreement with
the experimental lattice parameters of 2D GaS and GaSe2,80

(see Table S2 in SI). This is expected since it has been pre-
viously reported that SCAN yields lattice constants and opti-
mal geometry in closer agreement to experiment for several
2D materials10,81. Therefore, we use the geometries from the
SCAN+rvv10 functional as a starting point for DMC calcula-
tions. To ensure that the optimal geometry of these structures
are closest to exact and do not bias the energy, we isotropi-
cally scaled the lattice (starting from the geometry and lattice
constants obtained from SCAN+rvv10) and confirmed what
the location of the minimum energy was with respect to lat-
tice constant for the equation of state (see Fig S5-9). The
benchmarking of lattice parameters with different functionals
are done using VASP because the plane wave cutoff of PAW
potentials are more than an order of magnitude smaller than
BFD pseudopotentials.

As seen in Fig. 1 f), all the monolayer GaSxSe1−x struc-
tures have positive formation energy, which implies that
these structures are potentially not energetically favorable at
zero temperature and cannot form spontaneously in vacuum
(metastable). In addition, Janus GaS0.5Se0.5 (where S and
Se atoms are on the opposing faces of the 2D layer), has the
highest formation energy, which means that this structure is
the least energetically favorable in free-standing form. This
is a similar finding to Ersan et al.47, where it was found that
monolayer Janus PtXY (X = S, Se, Te) is the least favorable
alloyed structure in the 2D PtXY alloy series. Even though
these reported Janus structures are thermodynamically sta-
ble (as a result of phonon and molecular dynamics simula-
tions) in vacuum47, they can perhaps be synthesized on a sub-
strate material82,83. In free-standing form, molecular dynam-
ics simulations showed that certain Janus structures can spon-
taneously curl84. Figure S4 and 1 f) also reflects the band gap
tunability (color axis) of GaSxSe1−x monolayers at the DFT
level, opening the door to various electronic applications. Fol-
lowing the initial geometric optimization and construction of
the energy hull diagram with DFT, we selected certain struc-
tures to further run QMC on to test our Jastrow sharing pro-

cedure which we will discuss in the next subsection.

B. Jastrow Parameter Sharing

In attempt to reduce the number of wavefunction optimiza-
tion simulations required to perform DMC for all the 2D
GaSxSe1−x structures involved in the Cluster Expansion for-
malism, we propose a systematic method we call Jastrow

sharing. Wavefunction optimization using Jastrow parame-
ters is key to reducing variance and the localization error of
subsequent DMC simulations32,70,85. Jastrow parameters are
typically optimized using the cheaper VMC calculations, but
these costs can be important considering the large number
of materials simulated in the Cluster Expansion formalism.
Computational cost analysis will further be discussed in Sec-
tion III D. Our Jastrow sharing approach involves a judicious
selection of optimized Jastrow parameters from a single com-
pound, and reusing it in all the rest of the materials studied.
In this section we discuss the various methods we used to test
and validate this method for GaSxSe1−x and the limitations of
this method with respect to other material classes.

In our method, we use a supercell that has the smallest
Wigner-Seitz (WS) radius to obtain the optimized Jastrow pa-
rameters that will later be used in all DMC calculations. The
maximum Jastrow cutoff radius possible in a structure is equal
to its WS radius, which is equal to the radius of the largest
inscribing sphere that can fit into the simulation cell. Even
though the Jastrow cutoff can be optimized, this increases the
computational scaling of the VMC optimization78, hence it is
more practical to use the maximum Jastrow cutoff possible
for a periodic system (WS radius), and update each Jastrow
parameter at a fixed cost. Therefore, it is imperative that the
smallest WS radius among all the structures is determined in
advance in order to reuse the same set of Jastrow parameters
for all the structures. For three-body Jastrows, a cutoff radius
of 2 Å (on the order of GaSxSe1−x bond lengths) was used.
Due to the fact that three-body Jastrows (energy optimization)
usually capture shorter-range correlations, we made this arbi-
trary choice to minimize computational cost while attempting
to capture such interactions. The full workflow of our proce-
dure is given in Fig. 5.

We performed DMC calculations on four structures: x =
0.333 (12 atom cell, Fig. 1 c)), x = 0.5 (16 atom cell, Fig.
1 b)) and x = 0.667 (12 atom cell, Fig. 1 d)) and the Janus
GaS0.5Se0.5 structure (highest formation energy, 16 atom cell,
Fig. 1 a)). Except for the Janus structure, all these compounds
lie on the bottom of the DFT hull diagram. However, this se-
lection can be made on a finite threshold above the DFT hull or
more ambitious plans can involve all the SQS generated struc-
tures. The reason we decided to investigate materials with low
and high formation energy is to observe if QMC can correctly
capture these energy differences and to demonstrate that our
method can work for the entire energy hull.

Among the unit cells of the alloyed structures we selected
to study, x = 0.875 has the smallest WS radius (see Fig. 1
e)). Therefore, according to our procedure, we would use
GaS0.875Se0.125 to generate the Jastrow parameters to be used



4

a)

c)

b)

d)

e)

b

a

b

c

a

b

c

c

c

c

b

b

b

b

b

b

b

b

a

a

a

a

x = 0.5
Janus

x = 0.5

x = 0.333 x = 0.667

x = 0.875

Ga

S

Se

B
an

d
 G

ap
 (eV

)

S Concentration in GaS
x
Se

1-x

5
10

15
20

25

2.75

2.70

2.65

2.60

2.55

2.50

GaSe GaSGaS
0.5

Se
0.5

E
fo

rm
 (

m
eV

/f
.u

.)

0

f)
a)

b)c) d) e)

GaS
x
Se

1-x
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DMC-J3 Janus x = 0.5 x = 0.333 x = 0.667

Janus Jastrow 0 -6(6) 2(6) 3(10)

x = 0.5 Jastrow 0(4) 0 4(7) 15(11)

x = 0.333 Jastrow -1(4) -2(4) 0 17(10)

x = 0.667 Jastrow -6(5) -10(6) -1(6) 0

x = 0.875 Jastrow -2(5) -15(7) -2(5) 9(9)

DMC-J2 Janus x = 0.5 x = 0.333 x = 0.667

Janus Jastrow 0 -3(7) -9(7) -6(7)
x = 0.5 Jastrow 3(4) 0 5(7) -9(8)

x = 0.333 Jastrow -7(5) 4(9) 0 6(9)
x = 0.667 Jastrow -9(7) -2(8) -2(6) 0
x = 0.875 Jastrow -8(4) -5(8) -2(6) -3(7)

TABLE I. The differences (in meV/f.u.) between total energies
(DMC) calculated with self-Jastrows and shared-Jastrows including
up to two-body and up to three-body terms with the associated er-
ror bars in parenthesis. The rows represent which Jastrows are used
and the columns represent each alloyed structure for which the DMC
energies are calculated.

in the remainder of the calculations. However, in order to
understand the sensitivity of our method to this decision, we
make a benchmark study where we optimize Jastrow param-
eters of all the structures separately as it is typically done in
DMC calculations. For testing, a 16 atom cell was used for
x = 0.5, Janus, 0.875 and a 12 atom cell was used for x =
0.333, 667. To be able to use all 5 of these sets of Jastrow
parameters across all the structures we study, we still use the
smallest WS radius as the cutoff parameter for two-body Jas-
trow parameters. The smallest WS radius we have in this case
is 3.12 Å. This is longer than 2 Å, hence no modifications
are required for 3-body Jastrows. The testing of our Jastrow

sharing procedure is tabulated in Table I, where we show the
energy difference (in meV/f.u.) between the total energy of
each structure using its own optimized Jastrow parameters (we
will define this as a self-Jastrows) and the total energy of each
structure using the optimized Jastrow parameters of a differ-
ent structure (we will define these as shared-Jastrows), with
the associated error. In order to accept the Jastrow-sharing

procedure as valid, we expect the localization error obtained
with self-Jastrows and shared-Jastrows to be comparable and
the total energy difference (per f.u.) between self-Jastrows

and shared-Jastrows to be as minimal as possible.
In Table I, the columns represent the different selected

structures and the rows represent the various optimized Jas-
trow parameters. The upper quadrant contains the energy dif-
ference at the DMC level using up to three-body Jastrows and
the lower quadrant contains the energy difference at the DMC
level using up to two-body Jastrows. A more detailed table
with VMC energies, including two- and three-body Jastrows
are given in Table S3 in the SI. From the data in Table I, we
observe that at the DMC level, the total energy differences be-
tween shared-Jastrows and self-Jastrows are overall smaller,
with differences ranging from 0 - 17 meV/f.u. We also ob-
serve that the energy differences calculated with DMC are
nearly identical whether or not two-body or three-body in-
teractions are included in the Jastrow factor due to the fact

that we don’t have enough resolution to differentiate between
the results. The lack of significant variations in the DMC en-
ergies here also suggest that the localization errors of these
pseudopotentials are very small or negligible since the quality
of the Jastrow parameters, with regards to the Jastrow cutoff,
do not affect the DMC calculations.

In Figure 2, we additionally show that DMC-J3 total en-
ergies are always lower than the DMC-J2 energies. This has
been observed for a variety of systems85. However, in a prac-
tical sense, the variation in a set of Jastrow parameters (J2 or
J3) is more important than the separation between the DMC
energies calculated with J2 and J3 Jastrow parameters. This
is because often the user makes one selection regarding the
number of Jastrow parameters and applies it throughout for
all similar materials studied in the same calculation set, such
as polymorphs or alloys. Ideally, the quality of the Jastrow
parameters should only change the effort required to get the
target uncertainty in the DMC total energies. However, as ob-
served in here, we often see that the quality of the Jastrow
parameters also change the degree of localization error32,70,85

which can lead to inconsistencies when energy differences are
calculated between two structures.

In order to quantify the amount of localization error intro-
duced as a function of the quality of the Jastrow parameter,
we can utilize a quantity called Jastrow sensitivity. The Jas-
trow sensitivity is defined as the amount of energy decrease in
the DMC energy per unit decrease in the VMC energy and is
a property of the pseudopotential used in the calculation85.
Ideally, the Jastrow sensitivity should be small for a given
pseudopotential for all of the relevant valence enviroments
(i.e. different phases of a given material). We infer that a
low enough Jastrow sensitivity could be a reason why we
were successfully able to transfer different Jastrow parameters
across the 2D GaSxSe1−x series. In theory, if the sensitivity of
the pseudopotentials is low for the material class of study, our
Jastrow sharing procedure should be valid.

To further quantify Jastrow sensitivity in our work, we de-
fine a new quantity called shared-Jastrow sensitivity (SJ,S),
which is defined as the DMC energy per unit decrease in
the VMC energy calculated with self-Jastrows and shared-

Jastrows. In order to calculate this for each structure, we
plotted the DMC total energies vs. the VMC total energies
(per f.u.) and obtained the slope for the data (using J2 and
J3 parameters, from Table I), which is depicted in Fig. 2.
Due to the fact that VMC energies obtained with the Janus
Jastrow parameters have a large deviation attributed to cutoff
radius, we excluded these points from the linear fitting. A
more detailed discussion related to the Jastrow parameters of
the Janus structure can be found in the SI. From Fig. 2 we find
the shared-Jastrow sensitivity (per f.u.) to be 0.094 (0.047 per
atom) for the Janus structure, 0.116 (0.058 per atom) for the x
= 0.5 structure, 0.084 (0.042 per atom) for the x = 0.333 struc-
ture, and 0.115 (0.058 per atom) for the x = 0.667 structure.

These sensitivities are comparable in value to the lower
bounds on the Jastrow sensitivities reported by Krogel and
Kent85 (0.05 for Ce 4+ using the locality approximation) and
Dzubak, Krogel, and Reboredo70 (0.07, 0.05, 0.04 for Mn, Fe,
Co respectively). In addition to our calculated shared-Jastrow
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sensitivity, we calculated the standard Jastrow sensitivity of
the individual Ga, S and Se atoms to further prove transfer-
ability across different atomic systems. We obtained this by
calculating the DMC energy with no Jastrow parameters and
the DMC energy using up to J2 and J3 Jastrows, then fitting
a line to the three data points. We obtain a Jastrow sensitiv-
ity of 0.07, 0.14 and 0.04 for Ga, S and Se respectively. As
a result of these sensitivity calculations, we can quantify that
the Jastrows can be transferable between various stoichiome-
tries in the GaSxSe1−x system. If one wished to implement
this Jastrow-sharing procedure for another system, calculat-
ing the shared-Jastrow sensitivity using VMC and DMC en-
ergies from self-Jastrows and shared-Jastrows and the stan-
dard Jastrow sensitivity of the respective atoms and compar-
ing to tabulated results in literature could be a viable method
to check if Jastrow-sharing is feasible.

C. Finite-size Effects

To construct our DMC energy hull diagram and eliminate
finite-size effects, we extrapolate all structures to the ther-
modynamic limit. Therefore, our DMC calculations are per-

formed at different supercell sizes and then extrapolated to the
infinite sized limit as the energy scales as 1/N, where N is the
number of particles. In addition to this, we use a converged
reciprocal grid obeying periodic boundary conditions for each
supercell, which is known as twist averaging. For an addi-
tional benchmark to assess the validity of our approach, we
calculated the DMC cohesive energy (per f.u.) of each struc-
ture by subtracting the appropriate single atom energies of Ga,
Se and S (see SI for single atom calculation details) from the
extrapolated total energy. We calculated the alloy formation
energy (Eform) at the DMC level using equation 1 (see Table
II). The total energy of the GaSe and GaS supercells with the
exact same number of atoms as the specific alloy supercell was
subtracted from the total energy of said alloy. This alloy for-
mation energy was calculated at multiple supercell sizes and
extrapolated to the thermodynamic limit (see Figure 3).

For the DMC extrapolated cohesive energies and forma-
tion energies, self-Jastrows were used for each respective
supercell. In addition, the optimized Jastrow parameters
of the alloy with the smallest WS radius (we will refer to
this as WS-Jastrow, with parameters taken from the 16 atom
GaS0.875Se0.125 cell) were used to calculate the total DMC en-
ergy for each supercell size. A comparison of the DMC results



7

Janus (x = 0.5) x = 0.5
110

105

100

95

90

85

E
fo

rm
 (

m
eV

/f
.u

.)

Self
WS

0 1/64 1/36 1/24 1/16
1/N

0 1/72 1/48 1/36 1/24
1/N

0 1/72 1/48 1/36 1/24
1/N

0 1/64 1/48 1/32
1/N

10

5

0

-5

-10

-15

E
fo

rm
 (

m
eV

/f
.u

.)

x = 0.333

10

0

-10

-20E
fo

rm
 (

m
eV

/f
.u

.)

10

0

-10

 20

E
fo

rm
 (

m
eV

/f
.u

.)

x = 0.667

FIG. 3. The DMC calculated formation energies as a function of inverse number of atoms (N) in the supercell, extrapolated to the thermody-
namic limit (N→ ∞) for the Janus, x = 0.5, x = 0.333, and x = 0.667 structures. Red represents DMC energies calculated with self-Jastrows

while blue represents DMC energies calculated with WS-Jastrows.

(for extrapolated cohesive energies and alloy formation ener-
gies) using self-Jastrows and WS-Jastrows and comparison to
DFT is found in Table II. In addition, the partial energy hull
diagram for the selected structures using DFT and DMC (with
self-Jastrows and WS-Jastrows) is depicted in Figure 4. From
the linear extrapolated results (Fig. 3) depicted in Fig. 4 and
tabulated in Table II, we clearly see the energies calculated
(and then extrapolated) using self-Jastrows and WS-Jastrows

are nearly indistinguishable.

These extrapolated formation energies demonstrate that an
adequate energy hull diagram can be constructed from DMC
using just one set of Jastrow parameters from the smallest WS
cell, in contrast to optimizing the Jastrows for every structure
at every supercell size. Additionally, using a many-body ap-
proach such as QMC for alloys can provide near-chemically
accurate confirmation of stability and other important elec-
tronic and energetic properties. 2D GaSxSe1−x was chosen
because it is a convenient system to test this methodology
on. This is convenient because it builds on our previous 2D
GaSe10 work and since there is relatively good agreement be-
tween DFT functionals for the formation energy hull diagram
(Fig. S4), it allows us to benchmark the resolution of our
DMC extrapolated (to meV resolution) energies with reliable

DFT energies.
A full schematic of this workflow is given in Fig. 5. This

workflow starts with an input of an initial lattice, followed by
the SQS generation of random alloys and then the construc-
tion of the energy hull diagram with DFT. After analyzing the
DFT hull diagram, the user can choose to run QMC for struc-
tures below a certain energy threshold or discard them. From
the SQS structures, the user must determine which has the
smallest WS radius, and then perform J2 and J3 Jastrow opti-
mization for such. These J2 and J3 parameters are then reused
for DMC calculations of the other selected structures. From
this, the DMC energy diagram can be constructed. A more
detailed analysis of the cost savings of this workflow is given
in the following section.

D. Computational Cost Analysis

We claim that reusing a fixed single set of Jastrow para-
maters across all structures involved in creating a DMC en-
ergy hull diagram is a valid and computationally efficient ap-
proach. Therefore, we compare the efficiency of our proce-
dure to another more conventional way of performing these
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Cohesive Energy (eV/f.u.)

Structure
DFT

(PBE)
DMC

self-Jastrow
DMC

WS-Jastrow

GaSe -7.135 -7.028(3)10 -
GaS -7.789 -7.659(4) -

Janus -7.360 -7.231(6) -7.240(6)
x = 0.5 -7.456 -7.35(1) -7.35(2)

x = 0.333 -7.347 -7.259(6) -7.258(6)
x = 0.667 -7.564 -7.461(6) -7.464(7)

Formation Energy (eV/f.u.)

Structure
DFT

(PBE)
DMC

self-Jastrow
DMC

WS-Jastrow

Janus 0.1019 0.106(4) 0.096(4)
x = 0.5 0.0059 0.01(1) 0.00(2)

x = 0.333 0.0057 0.006(4) 0.007(4)
x = 0.667 0.0064 0.013(3) 0.010(5)

TABLE II. The calculated cohesive energy (top half) and alloy for-
mation energy (bottom half) all in eV/f.u. obtained from DFT
(PBE, BFD pseudopotentials) and DMC (using self-Jastrows and
WS-Jastrows) for the Janus, x = 0.5, x = 0.333, and x = 0.667 struc-
tures.
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GaSxSe1−x calculated with DFT (PBE) in green and DMC (using
self-Jastrows in red and WS-Jastrows in blue), with associated error
bars.

DMC calculations, where the Jastrow parameters are opti-
mized separately for each structure including the different
sized supercells used in the finite size extrapolations. Oth-
erwise, all the settings in the DMC and VMC calculations are
uniform across all the calculations, including the number of
cores and number of walkers used. In this section we analyze

Wait for J2/J3
optimization

SQS generation

DFT hull diagram

DMC calculations

Initial lattice

No

Yes

Hull energies

below threshold for

screening

Discard structures

NiNo

Yes

Structure 

has the smallest 

WS radius

J2/J3 optimization of
the smallest WS

radius cell

Energy hull diagram
using DMC energies

FIG. 5. The full high throughput workflow proposed in this work to
obtain the energetics of an alloy system with QMC methods.

the computational cost associated with Jastrow sharing. We
can see from our results in Table I that the VMC and DMC
energies are converging to the appropriate ground states with
comparable localization error using the same VMC and DMC
parameters on the same number of nodes/cores, which demon-
strates that Jastrow sharing for GaSxSe1−x is a valid approach.
Therefore, we report the computational time for these two pro-
cedures.

Before proceeding any further, we provide details of our
computational environment. All of the VMC and DMC sim-
ulations are conducted on 8 nodes of our local cluster. Each
node is connected via OmniPath networking and contains 2
Intel 20-Core Xeon Gold 6138 CPUs clocked at 2GHz and
384 GB of 2666MHz DDR4 memory. QMCPack version
3.9.0 is compiled using OpenMPI version 3.0.1 and Intel For-
tran, C and C++ (version 19.0.4.243) compiler.

To quantitatively investigate the computational cost savings
of Jastrow sharing, we report the computational time of VMC
and DMC (total time including every twist) in Table III. We
report the computational time obtained with parameters we
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VMC Computational Time

1 Supercell Extrapolation Energy Hull

Self Jastrow 755±180 7,124±1,816 24,043±5,881
WS Jastrow 134±40 134±40 134±40

DMC Computational Time

1 Supercell Extrapolation Energy Hull

Self Jastrow 2,143±1,071 32,899±16,450 93,066±46,533
WS Jastrow 2,109±1,054 33,259±16,630 93,170±46,616

TABLE III. A measure of the computational cost (time in seconds)
using Self Jastrows and WS Jastrows for 1 supercell, one extrapo-
lated result, and the entire energy hull diagram for VMC (upper half)
and DMC (lower half) simulations. The quantity in the ± gives the
upper and lower bound on cost (discarding unnecessary QMC steps
after target error is reached).

used in our QMC simulations (upper bound) and calculate a
lower bound, which is obtained by removing the number of
extra unnecessary steps after a target uncertainty was reached
(∼10 meV/f.u. for VMC, ∼5 meV/f.u. for DMC). We used
the 36 atom supercell of GaS0.333Se0.667 as an example of a
single supercell (second column of Table III). As seen from
Table III (second column), the VMC time associated with op-
timizing the Jastrow parameters of the smallest WS structure
is much lower due to the fact that the WS structure only has
16 atoms (while the other supercell has 36 atoms).

To report total cost savings for all of the calculations per-
formed in this paper, we give the VMC and DMC time needed
to achieve the extrapolated results (using x = 0.333 as an ex-
ample, see third column of Table III). We also report the com-
putational time to achieve the extrapolated results for the four
considered structures (Janus, x = 0.5, x = 0.333, and x = 0.667)
to get an estimate of the cost savings for constructing the en-
ergy hull diagram (see Fig. 4). Since the DMC extrapolated
results using the WS-Jastrow only requires one VMC opti-
mization simulation (extra VMC calculations are avoided), the
VMC time for the extrapolation is the same as the single su-
percell (third column of Table III). The substantial savings of
constructing the hull diagram (at the VMC level) is indicated
in the fourth column of Table III, where the VMC computa-
tional time of using WS-Jastrows is two orders of magnitude
smaller than using self-Jastrows.

From Table III, we observe that using either the self-

Jastrows or the WS-Jastrow does not change the DMC compu-
tational time significantly, which means that Jastrow-sharing

does not increase cost at the DMC level in our case. Specifi-
cally, each set of Jastrow parameters are of comparable quality
and do not increase the uncertainty or amount of DMC steps
needed to reach the target uncertainty for each calculation. It
is clear from this cost analysis that by sharing Jastrow param-
eters, it is possible to achieve substantial savings by reducing
the VMC computational time. The cost of VMC calculations
is often disregarded when compared to DMC cost, but in our
work we observe that when self-Jastrows are used, VMC ac-
counts for roughly 1/4 (on average) of the total cost. Therefore
by using the WS-Jastrow approach, the high-throughput QMC
calculations of alloy systems can be significantly less costly.

IV. CONCLUSION

We have outlined a high-throughput procedure to calcu-
late the energy hull diagram for an alloy system using QMC
methods. This involves optimizing the Jastrow parameters of
the alloy with the smallest WS radius, and using these opti-
mized parameters for all of the other subsequent structures.
We tested the validity of this Jastrow-sharing procedure on
monolayer GaSxSe1−x by swapping the Jastrow parameters of
structures with different stoichiometries and tabulated the Jas-
trow sensitivities. Finally, we quantified the substantial com-
putational cost savings obtained from avoiding extra VMC
optimization simulations. We hope this method can be im-
plemented for other systems where the Jastrow sensitivities
of the subsequent pseudopotentials are low, which can aid in
future accurate and high-throughput studies for alloys.

SUPPLEMENTARY MATERIAL

See the supplementary information for additional details
and convergence tests of DFT and DMC calculations, conver-
gence criteria for the SQS and Cluster Expansion, DFT and
DMC details about the optimal geometries of each structure,
testing of Jastrow-sharing at the VMC level, and details about
finite-size extrapolation.
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DFT and DMC convergence testing and additional de-

tails

Table S1: To quantify the conversion of pseudopotentials, the calculated ionization potential
and electron affinity for Ga, Se and S atoms calculated with the converted plane wave format
BFD potentials (using PBE) are given. The experimental values are also given as a reference.

Method Ionization Potential (eV) Electron Affinity (eV)

PBE (BFD) Ga: 5.89,1 Se: 9.44,1 S: 10.14 Ga: 0.32,1 Se: 2.15,1 S: 2.20
Exp Ga: 6.00,2 Se: 9.75,2 S: 10.362 Ga: 0.30,3 Se: 2.02,4 S: 2.085

In order to convert these Gaussian potentials to plane wave format, we used the ppcon-

vert6 tool implemented in QMCPACK. We converted these Gaussian potentials to plane

wave format and validated this conversion by calculating the ionization potential (IP) and

1
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Figure S1: The total energy per formula unit of 2D GaS as a function of plane wave cutoff
energy for the BFD pseudopotentials converted to plane wave format (calculated with PBE).
The results show a converged value of 160 Ry.
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Figure S2: The total energy per formula unit of 2D GaS as a function of k-point grid for the
BFD pseudopotentials converted to plane wave format (calculated with PBE). The results
show a converged k-point grid of 6x6x1.
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electron affinity (EA) at the DFT level. We used the p local channel for these BFD poten-

tials. For our DFT benchmarking calculations in VASP, we used standard PBE PAW (as

opposed to the hard or soft versions) potentials from version 5.4.4.

In the ATAT code, what is known as the Cluster Expansion (CE) formalism is per-

formed.7 In CE, the first-principles formation energies from the SQS structures are used as

a training set to calculate fitted energies. CE can be used to validate the training set size

of the SQS alloy and even predict the energetics of structures outside of the training set.

When the fitted and calculated energies match within a convergence criteria known as the

cross validation score, which is designed to estimate the error made in predicting the fitted

energy of a structure and is analogous to the root mean square error, we know that we have

considered enough random structures in our training set and can verify our predictions. In

our CE calculations, we allowed the minimum cross validation score to be lower than 25 meV

(thermal energy fluctuations at room temperature).7 We achieved a smaller cross validation

value after 60 simulations of alloys at varying concentrations.

Table S2: The calculated (using various methods) and experimental lattice constants of 2D
GaS and GaSe. It is important to note that the DMC lattice constant of GaSe is 3.75(1) Å
when LDA and SCAN wavefunctions are used, and 3.74(2) Å when PBE wavefunctions are
used.1

Functional GaSe GaS

a (Å) a (Å)
PBE 3.814 3.637

PBE-D2 3.745 3.581
PBE-D3 3.803 3.625
SCAN 3.761 3.599

SCAN+rvv10 3.754 3.589
DMC 3.75(1)1 3.549(3)

3.74(2)1

Experiment 3.7558 3.5878

3.749

The testing of our Jastrow sharing procedure at the VMC and DMC level is tabulated

in Table S3, where we show the energy difference (in meV/f.u.). At the VMC level (first

and second quadrant of Table S3), we observe a higher energy difference (up to 306 meV)

3
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of 0.01 Ha−1 was used in the calculation of cohesive energy.
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Figure S4: The formation energy per formula unit as a function of S concentration of 2D
GaSxSe1−x alloys created by the SQS method. Each data point represents a different alloyed
structure and the structure is optimized and energy is calculated with the PBE, PBE-D2,
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of each structure.
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Figure S5: The total energy per formula unit of 2D hexagonal GaS (16 atom cell) calculated
with DMC using starting wavefunctions from PBE versus the isotropically scaled lattice
constant (in the x and y direction). The dotted line represents the fitted curve and the
minimum point and respective error bar is marked on the curve (with the value given in the
figure inset). The experimental lattice constant from reference8 is also given in the inset for
comparison.
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Figure S6: The total energy per formula unit of 2D hexagonal Janus GaS0.5Se0.5 (16 atom
cell) calculated with DMC using starting wavefunctions from PBE versus the isotropically
scaled lattice constant (in the x and y direction). The dotted line represents the fitted curve
and the minimum point and respective error bar is marked on the curve (with the value
given in the figure inset). Geometric structure is depicted in Fig. 1 a).
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Figure S7: The total energy per formula unit of 2D tetragonal GaS0.5Se0.5 (16 atom cell)
calculated with DMC using starting wavefunctions from PBE versus the isotropically scaled
lattice constants (in the x direction y directions respectively in each plot). The dotted lines
represent the fitted curves and the minimum points and respective error bars are marked on
the curves (with the value given in each of the figure insets). Geometric structure is depicted
in Fig. 1 b).
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Figure S8: The total energy per formula unit of 2D hexagonal GaS0.333Se0.667 (12 atom cell)
calculated with DMC using starting wavefunctions from PBE versus the isotropically scaled
lattice constant (in the x and y direction). The dotted line represents the fitted curve and
the minimum point and respective error bar is marked on the curve (with the value given in
the figure inset). Geometric structure is depicted in Fig. 1 c).
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Figure S9: The total energy per formula unit of 2D hexagonal GaS0.667Se0.333 (12 atom cell)
calculated with DMC using starting wavefunctions from PBE versus the isotropically scaled
lattice constant (in the x and y direction). The dotted line represents the fitted curve and
the minimum point and respective error bar is marked on the curve (with the value given in
the figure inset). Geometric structure is depicted in Fig. 1 d).
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Table S3: The differences (in meV/f.u.) between total energies (VMC and DMC) calculated
with self-Jastrows and shared-Jastrows including up to two-body and up to three-body terms
with the associated error bars in parenthesis. The rows represent which Jastrows are used
and the columns represent each alloyed structure for which the VMC and DMC energies are
calculated.

VMC-J3 Janus x = 0.5 x = 0.333 x = 0.667

Janus Jastrow 0 122(11) 120(13) 156(13)
x = 0.5 Jastrow 257(10) 0 33(15) 15(13)
x = 0.333 Jastrow 249(11) -10(10) 0 8(12)
x = 0.667 Jastrow 245(10) -15(11) -2(13) 0
x = 0.875 Jastrow 230(10) -47(10) -38(13) -28(12)

VMC-J2 Janus x = 0.5 x = 0.333 x = 0.667

Janus Jastrow 0 28(12) 38(13) 18(14)
x = 0.5 Jastrow 300(12) 0 27(16) -12(14)
x = 0.333 Jastrow 298(12) -10(12) 0 -2(13)
x = 0.667 Jastrow 306(12) 21(12) 29(13) 0
x = 0.875 Jastrow 256(12) -33(12) -22(13) -50(13)

DMC-J3 Janus x = 0.5 x = 0.333 x = 0.667

Janus Jastrow 0 -6(6) 2(6) 3(10)

x = 0.5 Jastrow 0(4) 0 4(7) 15(11)

x = 0.333 Jastrow -1(4) -2(4) 0 17(10)

x = 0.667 Jastrow -6(5) -10(6) -1(6) 0

x = 0.875 Jastrow -2(5) -15(7) -2(5) 9(9)
DMC-J2 Janus x = 0.5 x = 0.333 x = 0.667

Janus Jastrow 0 -3(7) -9(7) -6(7)
x = 0.5 Jastrow 3(4) 0 5(7) -9(8)
x = 0.333 Jastrow -7(5) 4(9) 0 6(9)
x = 0.667 Jastrow -9(7) -2(8) -2(6) 0
x = 0.875 Jastrow -8(4) -5(8) -2(6) -3(7)
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for the Janus structure using shared-Jastrows with two-body and three-body interaction

terms. In addition, when the Janus Jastrow parameters are used for the other subsequent

structures, the energy differences are on the order of ∼10 meV when two-body interactions

are included and on the order of ∼100 meV when three-body interactions are included. Due

to the fact that Janus GaS0.5Se0.5 has an atomic environment that is slightly different than

other 2D GaSxSe1−x structures, with one face of the material being entirely S and the other

being entirely Se, Jastrow sharing at the VMC level can result in a larger energy difference

between shared-Jastrows and self-Jastrows. A possible explanation for this is that the three-

body interactions can be longer range, with electrons of Ga interacting with just S and

electrons of Ga interacting with just Se on the respective surfaces (no electron mixing of S

and Se).

Due to this, we reoptimized the three-body Jastrow parameters with a larger cutoff radius

(3.5 Å) and used these for DMC calculations (see Table S4). We chose 3.5 Å because this

is the largest value of cutoff radius that can be used for this cell size (smaller than the

WS radius) and we expect to recover more three-body electron mixing interactions of S and

Se. Ultimately we observe a smaller energy difference at the DMC and VMC level for the

newly optimized set of three-body Jastrows with a larger cutoff radius. Although this has

improved the results for the Janus structure, we cannot reuse these Jastrow parameters for

the unit cells of the other alloys (x = 0.5, 0.333, 0.667), since the Jastrow cutoff for three-boy

interactions is larger than the WS cell of the remaining structures. However, these newly

optimized parameters could be effectively used in larger supercells.

For monolayer GaSe and GaS, the total energy was calculated at supercell sizes of 16,

24, 36, 48, 64 and 72 atoms. For Janus GaS0.5Se0.5, supercells of 16, 24, 36 and 64 atoms

were used. For GaS0.5Se0.5 supercells of 32, 48 and 64 were used and for the GaS0.333Se0.667

and GaS0.667Se0.333 structures, supercells of 24, 36, 48 and 72 atoms were used.
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Table S4: The differences (in meV/f.u.) between total energies (VMC and DMC) calculated
with self-Jastrows and shared-Jastrows up to three-body terms with the associated error
bars in parenthesis for the Janus structure (where Jastrows are optimized using two different
J3 cutoff radii). The rows represent which Jastrows are used and the columns represent two
different J3 cutoff radii used in the VMC and DMC calculations.

VMC-J3 Janus Janus

r
J3 = 2 Å r

J3 = 3.5 Å
Janus Jastrow - -
x = 0.5 Jastrow 257(10) 89(11)
x = 0.333 Jastrow 249(11) -98(11)
x = 0.667 Jastrow 245(10) -102(10)
x = 0.875 Jastrow 230(10) -116(10)

DMC-J3 Janus Janus

r
J3 = 2 Å r

J3 = 3.5 Å
Janus Jastrow - -
x = 0.5 Jastrow 0(4) 12(4)
x = 0.333 Jastrow -1(4) 11(4)
x = 0.667 Jastrow -6(5) 5(5)
x = 0.875 Jastrow -2(5) 9(5)
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