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Abstract—Dementia is a clinical syndrome of cognitive deficits
that involves both memory and functional impairments. While
disruptions in cognition is a striking feature of dementia, it is
also closely coupled with changes in functional and behavioral
health of older adults. In this paper, we investigate the challenges
of improving the automatic assessment of dementia, by better
exploiting the emerging physiological sensors in conjunction with
ambient sensors in a real field environment with IRB approval.
We hypothesize that the cognitive health of older individuals
can be estimated by tracking their daily activities and mental
arousal states. We employ signal processing on wearable sensor
data streams (e.g., Electrodermal Activity (EDA), Photoplethys-
mogram (PPG), accelerometer (ACC)) and machine learning al-
gorithms to assess cognitive impairments and its correlation with
functional health decline. To validate our approach, we quantify
the score of machine learning, survey and observation based
Activities of Daily Living (ADLs) and signal processing based
mental arousal state, respectively for functional and behavioral
health measures among 17 older adults living in a continuing
care retirement community in Baltimore. We compare clinically
observed scores with technology guided automated scores using
both machine learning and statistical techniques.

Keywords—activity recognition, cognitive analysis, pervasive
computing, signal processing

I. INTRODUCTION

Dementia in the older adult population is one of the biggest
global public health and social care challenges. In United
states, approximately 5.4 million people of all ages have
dementia, whereas 5.2 million are 65 and older. This number
will continue to rise as the percentage of the older population
increases. Nearly 13 percent of those aged 65+ and almost
50 percent of the 85+ population has dementia [1]. However,
dementia is one of the most expensive diseases in developed
countries, and its prevalence is expected to double within
the next 20 years [2]. Although clinical and diagnostic tests
have become more precise in identifying dementia, studies
have shown that there is a high degree of underrecognition.
Those studies have shown that in more than 50 percent of
the cases, it is the family members who serve as the source
of primary recognition and not the general practice health
care providers [7]. Consequently, early detection and automatic
disease prediction with high accuracy is needed, as early
recognition and treatment may positively impact the course of
the disease, the well-being and safety of the individuals and
may attenuate dementia’s economic impact on society. The use
of technology in developing systems that promote older adults’
independence and aging-in-place has been well received by

many caregivers, clinicians, older adults, and family members
[3], [14]. The maturing ubiquitous computing technologies
enable extraordinary improvement of early detection of demen-
tia in aging population [3]. Though cognitive impairment has
significant correlations with everyday task performance [3],
[14], we argue that combining mental arousal state with task
will significantly improve the dementia prediction. Continuous
mental arousal and activity quality monitoring help people
better understand their mental and functional behavioral pat-
terns and provide health care providers with more reliable data
for interventions. Prior studies on mental arousal and activity
monitoring were focused on observational monitoring systems
in a laboratory environment where participants generally rested
in a sedentary position [22]. In this study, we aim to monitor
mental arousal and functional activities in participants’ natural
living environments, free from any artificial laboratory setup,
engagement in a new environment or outer interventions.

With recent advances in wearable biosensing technologies,
it is now feasible to develop systems that automatically monitor
not only outwardly observable behaviors, but also inward
physiological states of older adults, which may also serve
as a physiological marker for their impairment status. Such
technologies may not only help characterize qualitative aspects
of older adult’s functional ability but may potentially also assist
with the early identification and quantification of dementia
symptoms. A number of physiological markers are extensively
used for continuous arousal measurement including galvanic
skin response (GSR), heart beat patterns, blood pressure (BP),
and respiration activity etc [6], [22]. There are also a multitude
of physical changes such as increased heart rate, quickened
reflexes, face pattern changes (eyebrow, nose, cheeks etc.),
exhilaration of breathing rate [5]. Ubiquitous availability of
miniaturized wireless devices capable of monitoring these
physiological markers and physical changes helps people to
closely track changes in their vital signs in order to detect
and better manage any cognitive and functional health decline.
However, measuring physiological signals during everyday
activity is more difficult than in a rigorous laboratory environ-
ment. The physiological responses caused by mental arousal
can be masked by variations due to physical activity aiding in
the continuous monitoring of mental stress level [8].

In this paper, we rely on leveraging physiological sensors
and smart home technologies to identify older adults who
may have been clinically assessed for cognitive impairment
by well established survey tools. In particular, we monitor
the physiological signals (such as electrodermal activity) and



activities of daily living (ADLs) performances of 17 older
adults (6 with dementia, 3 with mild cognitive impairment,
and 8 without cognitive impairment) during a scripted activity
sessions. In addition, we employ a mixture of supervised and
unsupervised machine learning approaches to automatically
differentiate older adults with cognitive impairment (severe or
mild) versus healthy (normal). Unlike the previous researches
[3], [14], we focus on a field study rather than an artificial
lab study, setting up smart home system in each participant’s
living environment to collect naturalistic physiological and
activity data. We also build a low-cost plug-n-play smart home
PogoPlug [35] system to deploy in a continuing care retirement
community across multiple units.

Research Challenges:

e Physiological markers can be easily affected by physical
activities and movements. For example, one physiological
marker of arousal detection is increased heart rate which
can also be noticed for walking or running state than sitting
state. Additionally, heart rate can be higher during eating
activity than resting although both of the complex activities
are composed of postural event (sitting). Therefore using heart
rate alone as an indicator to detect mental arousal may lead
to misclassification. However, the subjects may demonstrate
different types of arousal responses against the same complex
activities based on their current arousal level, personality,
age and mental disorders. Thus, designing signal processing
and machine learning algorithms capable of tackling above
challenges in the real environment are of utmost importance for
validating the technology-based assessment being comparable
or outperforming the observation-based clinical assessment.

e One of the major functional performance measures is
activity duration, though that can be highly affected by the
cognitive and physical ability of individuals. For example,
a physically fit older adult with dementia may take less
time to make sandwiches than older adults without dementia
who has impaired physical ability obfuscating the automated
assessment methodologies.

e Instrumenting and deploying sensor-based smart home
systems at each participant’s natural living environment war-
rants for assembling a flexible set of hardware and software
interfaces to ease the system configuration, setup, and network
discovery processes. This implementation requires flexible
networking protocol setup that works in any secured network
and remote monitoring facilities. However, the sensor system
placed in the residences of volunteers needs to meet several
specific physiological signals and activity monitoring needs.
While their basic function is to collect and communicate sensor
telemetry related to occupant’s activity, we must confirm that
the devices are reliable with potential for re-deployment as
well as appear unintimidating to the participants. Motivated
by these shortcomings, we propose to develop an autonomous
functional and behavioral health assessment framework suited
for the older adults in their everyday living environment.

Our research attempts to answer the following research
questions:

e What advances in signal processing and machine learn-
ing techniques are required for automated longitudinal health
assessment of older adults with dementia combining both
physiological signals and activity performance measures?

o Is there any mutual statistical correlation between func-
tional and cognitive health of older adults? If so what are the
critical roles of survey-based (such as Barthel [34] and IADL
scale [19], Zung anxiety [18]) observation-based (observation
of the scripted activities and the SLUMS [23] to directly
measures their cognitive performance) and technology guided
assessment methodologies and their inter-relationships?

Key Contributions: The main contributions of our work
are summarized below.

e We demonstrated how a signal processing approach
augmented with machine learning techniques can be employed
to discriminate older adults with dementia and mild cognitive
impairment from their cognitively healthy counterparts using
predefined measures associated with subjects’ activity perfor-
mances and physiological signals (such as EDA and PPG based
mental arousal features).

e We depicted the group correlations between cognitively
healthy and impaired older adults and articulated the effec-
tiveness of technology, survey and observation-based cognitive
and functional health assessment methodologies and their
mutual co-relations, benefits and disadvantages in a clinical
experimental setting.

e We collected 17 older adults data in a continuing care
retirement community center in Baltimore city over a 5 months
study time in contrast to a majority of the existing work where
data have been obtained by carrying out the activities in a
laboratory setting or smart home on-campus that might not
have necessarily reflected the real cognitive and functional
health status and performance of the subjects. We also design
an integrated hardware and software interfaces of a low-
cost plug-n-play smart home system [35] with commercially
available off-the-shelf sensor devices [20] and a wearable smart
wristband (Empatica E4 with EDA, PPG and ACC sensors
on board) [41]. All of the relevant devices, the integrated
smart home system and study methodologies were approved
by a University Institutional Review panel and appropriate
consent and assent procedures were followed prior to enrolling
participants in the study.

II. BACKGROUND ON PHYSIOLOGICAL SIGNALS

The autonomic nervous system (ANS) restrains the body’s
major physiological activities including the heart rate, gland
secretion, blood pressure, and respiration. The ANS is divided
into sympathetic (SNS) and parasympathetic (PNS) branches.
The SNS actuates the body’s resources for action under arousal
conditions. On the contrary, PNS attenuates the body and helps
preserve the body regaining the steady state [8].

Arousal Relation with EDA and HR: Electrodermal
activity (EDA) is the property of the human body that causes
continuous variation in the electrical characteristics of the skin.
The traditional theory of EDA holds that skin resistance varies
with the state of sweat glands in the skin. Sweating is con-
trolled by the sympathetic nervous system (SNS) [9] and skin
conductance is an indication of psychological or physiological
arousal. If SNS is highly aroused, then sweat gland activity
also increases, which in turn increases skin conductance. In
this way, skin conductance can be a measure of emotional and
sympathetic responses. More recent research and additional



phenomena (resistance, potential, impedance, and admittance)
suggest that more thorough investigation is needed, and thus
research continues into finding the source and significance of
EDA [10]. On the other hand, SNS activation increases heart
rate whereas PNS activation decreases it [11]. During the last
few decades, researchers have also used Heart rate variability
(HRV) to measure mental stress [11]. This important parameter
provides a window through which the heart’s ability to respond
to normal regulatory impulses can be observed. HRV measures
are calculated from the tachogram, also called RR interval time
series. These data are derived from the ECG signal by defining
the distance between two consecutive R-peaks. The variance in
time between two consecutive R-peaks reflects the status of the
ANS, since HRV is regulated by the sympathovagal balance.
RR interval decreases while a person is in a high stress or
arousal situation.

Cognitive impairment with arousal: Though memory
loss is the primary symptom of dementia, it can highly affect
the arousal pattern of the individuals during daily activities.
There are three types of arousal [5]. (i) Cognitive arousal
is associated with thinking and stimulation while exploring
and learning things, such as listening to instructions from the
instructor, (ii) Affective arousal is associated with emotional
sensation, such as anger, joy, scare, excitement etc., and
(iii) Physical arousal is associated with bodily activation while
the person is engaged with different daily activities. Persons
with dementia have a wide range of arousal responses based
on the task they perform in their everyday environment. While
persons with Alzheimer’s disease (AD) may result in higher
arousal than older adults without dementia in performing daily
activities, behavioral variant frontotemporal dementia (bvFTD)
may reflect emotional blunting with reduced arousal even less
than normal older adults [4]. Persons with mild cognitive im-
pairment (MCI) reflect different arousal in different situations.
However, insight and awareness about the task difficulty is one
of the major reasons for physical arousal. Recent studies have
shown that social engagement and the awareness of harder
tasks can highly affect mental arousal [36]. People who are
aware of harder tasks and successfully complete these tasks
with their intellectuals show high arousal (physical arousal) in
comparison to people who experience difficulty with the tasks
but are not explicitly aware of their challenges. This important
finding can be an indicator for dementia symptom analysis for
older adults.

Cognitive impairment with activity performance: The
effects of cognitive ability on daily activity performance have
been studied by prior researchers [14], [16]. They showed
that cognitive impairment highly reduced the daily activity
performances and this activity performance can be computed
as an indicator of cognitive ability status of older adults. The
activity performances refer to completeness of task, sequential
task ability, interruption avoidance capabilities etc.

Relying on the above insights, we designed ambient and
wearable technology assisted computational methodologies
and contrasted them with existing clinically-driven survey and
observation-based assessment tools to continuously monitor
physical and mental changes over functional and behavioral
activities of older adults to help them aging-in-place.

III. RELATED WORKS

A smart home is a evolving computing environment where
multimodal sensor technologies are deployed and overlayed
with a variety of computational techniques to reason about
and control the physical home setting. The sensor events
are normally being generated while participants perform their
daily activities. Prior research has demonstrated that smart
home is an ideal environment for providing automated health
monitoring and assessment to the aging population. Pavel et
al. [16] showed that change in mobility patterns are related to
change in cognitive ability. Lee [15] designed an embedded
sensing system to increase awareness of functional abilities in
the older population. These techniques help map a sequence
of readings from a particular sensor modality to a label
indicating the activity that is being performed. In our deploy-
ment, we built a minimally non-invasive easy-to-install smart
home system consisting of ambient infrared motion detectors
and wearable wristworn sensors (accelerometer, electrodermal
activity, photoplethysmography and skin temperature) to gather
information about inhabitants’ complex activities, such as
sandwich making, sweeping, tooth brushing, eating etc., in
conjunction with physiological signals such as stress, anxiety,
depression and heart rate [21].

Several approaches have been proposed recently to recog-
nize mental arousal level; some of them are based on physi-
ological signals such as blood pressure [22], heart rate [22],
heart rate variability (HRV) [24], skin conductance, cortisol
[27], pupil diameter [31]. Activity of sympathetic and para-
sympathetic nervous system can be monitored through blood
pressure, heart rate and HRV [22]. Hernandez [26] articu-
lated the inverse relationship between self-ratings of perceived
emotional stress and high frequency component (0.15-0.5 Hz)
of HRV. Skin conductance has been considered as another
biomarker for stress detection, where eccrine sweat activity
that is controlled by only sympathetic nervous activity is
measured. [26] discriminated stressful and non-stressful calls
at the call center environment using skin conductance features
[26]. Setz et al. automatically classified skin conductance
responses from cognitive load and stress with accuracy higher
than 80% [32]. They also attempted to classify the same two
conditions using seating pressure data and obtained over 70%
accuracy [33]. Autosense proposed wearable sensor suite for
inferring onset causality and consequences of stress in the field
study [29].

Nowadays there are many wearable devices being instru-
mented including smart wristwatch, smart phones, smart shoes
and biometric sensors to measure physiological and behavioral
signals from the users living in their own environment. Even
accelerometer sensors have been used for continuous arousal
monitoring though they are commonly used for recognizing
ambulatory movements (e.g., walking, running, sitting, climb-
ing, and falling). In this paper, we combine daily activities
task quality with physiological markers to predict fine-grained
stress/anxiety features for different groups of older individuals.
Though activity recognition based task quality measurement
and correlating with cognitive impairment assessment has
been a evolving research problem [3], [14], no prior works
explored the cognitive and functional health assessment by
combining the task quality and physiological markers. Our
proposed framework is inspired by Kumar et al. [28] who
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Fig. 1.

presented a continuous stress assessment gold standard in
mobile environment. We hypothesize that cognitive ability of
older adults (normal, mild cognitive impairment, Alzheimer’s
disease) may affect the physiological markers and arousal acti-
vation amplitude along with their daily activity performances.
We postulate an unsupervised machine learning approach in
scoring daily activity performances and signal processing algo-
rithms on EDA and PPG signal to extract arousal features. We
quantify the correlations between clinically observed measures
and automated computed features through statistical analysis
and machine learning predictions.

IV. OVERALL ARCHITECTURE AND STUDY PROCEDURE

Fig. 1 illustrates the overall architectural view of our
proposed framework. The entire framework is comprised of
three component modules: (i) sensing, (ii) sensor processing,
and (iii) analysis. The sensing module consists of clinical
assessment and sensing signals from ambient and wearable
sensors. Sensor processing module is comprised of three
major sub-modules: a) clinical assessment feature extraction;
b) ambient sensor feature extraction; and c¢) wearable sensor
feature extraction (ACC, EDA and PPG). Analysis module
is comprised of machine learning score prediction of daily
activity performances, quantification of statistical correlation,
and automatic assessment analysis sub-modules. Next we
discuss the smart home system setup followed by the inclusion
criteria of participants and details of our study procedure that
we designed to collect data from older adults in a retirement
community center.

A. Smart Home Setup

We developed a real testbed smart home system consisting
of customized Cloud Engine PogoPlug Mobile [35] base
server, 10 wireless sensor tag (WST) sensors [20] (7 object
sensors and 3 PIR sensors), one Ethernet tag manager, one
router and one Empatica E4 wrist band (EDA, ACC and PPG
sensors). PogoPlug base server is placed in a corner of living
room with a continuous power supply which is associated
with Ethernet tag manager and a router. 3 binary PIR sensors
are placed in three different rooms (kitchen, livingroom and
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bedroom) and 7 binary object sensors (closet door, entry door,
telephone, broom, laundry basket, trash can and trash box).
We set the sensor sensitivity at 55% (best choice tested on
trial and error basis) thus slightest vibration on the associated
sensor of the object fires without any false alarm. We use three
IP cameras in the appropriate positions to collect the ground
truth data. Empatica E4 is a multi-sensor wristband capable
of measuring different vitals with different fixed sampling
frequency. The Photoplethysmography (PPG) sensor measures
the Heart Rate and Inter-Beat-Intervals at a 32Hz frequency.
Skin conductance is measured using the Electrodermal activity
(EDA) sensor at 4Hz frequency. Body temperature is given by
an optical thermometer and a triaxial accelerometer gives the 3
dimensional accelerometer data at a 32Hz sampling rate. The
sensor values are saved in its internal memory. Ethernet Tag
Manager is a low cost Ethernet hub that helps create a bridge
between cloud and all wireless sensor tags. Fig. 2 shows our
Pogoplug smart home system prototype.

Fig. 2. Pogoplug smart home system devices: (1) Empatica E4 Wristband, (2)
Wireless Sensor Tag Passive Infrared Sensor, (3) Wireless Sensor Tag Object
Sensor, (4) Ethernet Tag Manager, (5) Cloud Engine Pogoplug Mobile

B. Inclusion Criteria

Recruitment of participants and data collection occur
within one continuing care retirement community in Balti-
more City which is supportive of this project and includes
independent living and assisted living residents. Older adults
are eligible to participate in this study if they are 65 years
of age or older (100% of the retirement community meet this



TABLE 1. FUNCTIONAL ACTIVITIES

(Index) Description

(1) telephone calling and (2) receiving, (3) sweeping, (4) preparing sandwich,
(5) taking out the trash, (6) folding clothes, (7) combing hair, (8) washing hands,
(9) brushing teeth, (10) putting on a jacket/sweater and (11) shoes, (12) answering

the door, and (13) writing a check.

requirement), speak English, and live in independent living or
assisted living at the continuing care retirement community at
the time of recruitment. Residents are excluded from the study
if they live with another person to avoid multi-inhabitant smart
home activity recognition. There are no group assignment
and all study participants are exposed to the same study
procedures. A research evaluator administers the Evaluation
to Sign Consent (ESC), which helps determine the resident’s
ability to consent participation in the study. Residents who
are willing to participate in the study, but are unable to pass
the ESC are asked to sign an assent form and evaluator
then proceeds to the Legally Authorized Representative to
potentially obtain consent on behalf of the resident. Table I
shows 13 functional activities that we used in this study.

C. Demographics, Observation & Survey Data Collection

Following resident consent, the clinical research evaluator
collects the following data: demographic and descriptive data
(age, gender, race, ethnicity, marital status, date of admission
to continuing care retirement community, independent living
or assisted living setting, education, medical commodities, and
prescribed medication). The clinical evaluator has performed
two types of clinical assessment; observation or performance
based and survey based assessment. For observation based
assessment, the resident’s cognition is assessed using the Saint
Louis University Mental Status (SLUMS) scale [23]. For
survey based assessment the following self-report surveys are
completed. Functional health assessment are done using Yale
Physical Activity Survey [19], Lawton Instrumental Activities
of Daily Living, and Barthel Index of Activities of Daily Living
[34]. Cognitive health assessment are done based on Geriatric
Depression Rating scale [17] and Zung Self-Rating Anxiety
scale [18]. All of these survey instruments are widely used
and well validated in geriatric research to assess psychometric
properties of cognitive and functional health of older adults.

V. QUANTIFICATION OF PERFORMANCE SCORE

In this section, we discuss the activity and physiological
sensor data feature extraction and mapping steps to enumerate
the performance measure score that help create the ground for
comparing later the technology guided assessment with the
clinical evaluation. To characterize both the qualitative and
quantitative performance score, we start with four different
feature groups ranging from both functional and behavioral
health measures as listed below. (a) Observation based activity
features, (b) Technology guided automated activity features,
(c) Electrodermal activity features, and (d) Heart rate variabil-
ity features.

A. Observation Based Activity Features

We design a complex activity set comprises of mul-
tiple subtasks which are involved with task concurrency,

TABLE II. MICRO STEPS OF A COMPLEX ACTIVITY NAMELY Preparing
Sandwich. EACH MICRO STEP IS INVOLVED WITH HAND GESTURE AS WELL
AS OBJECT AND/OR AMBIENT SENSOR FIRINGS

Plausible
Seq. Switch

Seq. | Activity

Use napkins to clean hands

o | =

Retrieves a plate, cup, utensil

[ el

Retrieves bread from kitchen cupboard

Cuts sandwich in half diagonally

Taking out jam/jelly/butter
Use jam/jelly/butter
Pours drink

=2 T B IR = R e}
o |T|o | alo

Eat sandwich

i Drink water

j Puts napkins in trash

interleaving and interruption. Participants are instructed to
perform the scripted activities as listed in Table I while
the evaluator observed the aforementioned functional activity
performance measures (interleave, interruption, completion,
repetition). Each incorrect attempt of performance measure
costs one point. For example, ‘preparing sandwich’ activity
consists of 10 subtasks as shown in Table II. Some of the
sequences can be swapped without having any negative cost on
the performance scores. For example, a sequence of subtasks
{a,b,c,d,e, f,...,j} scores same as {a,c,b,d,e, f,...,j} as
‘b’ and ‘c’ can be swapped without incurring any cost to per-
formance scores. If we consider, one of the subtasks remains
incomplete (1 point), two subtasks face interruptions (2 points),
one task is interleaved by one irrelevant task (1 point) and two
tasks are performed twice each (2 points), then the final activity
performance score is 6 (1+2+1+2). A higher score reflects
lower performance of functional activities. The evaluator also
observed the duration of each subtask, capability of doing that
particular task and denial of completing. However, taking rest
in-between the two tasks does not cost any performance score.

B. Technology Guided Automated Activity Features

We consider ambient and wearable accelerometer sensors
readings combined with machine learning approach for mea-
suring automatic activity performance score. Prior researches
[3], [14] proposed a sequence of ambient motion sensor
streams as complex activity components. We consider an
additional wearable wrist band with in-built accelerometer
sensor to detect hand gesture augmenting with the ambient
sensor readings to help recognize complex activities.

(1) Accelerometer Feature Extraction: To extract accelerom-
eter feature, we apply a high-pass filter with a cut-off frequency
of 4Hz, splitting each time series data stream into a set of non-
overlapping windows of feature vector through a trial and error
method. We use 57 statistical features that have uniaxial (mean,
percentiles, signal power, log energy, standard deviation, peak
intensity etc.) and biaxial (correlation coefficient feature, lag
one autocorrelation etc.) statistical properties. We apply cor-
relation feature selection algorithm [42] on the computed 57
features to select 12 best features for classification of hand
gesture.

(2) Hand Gesture Classification: We hypothesize that every
functional activity consists of a sequence of hand gestures un-
like just the locomotive motion classification [3], [14]. To build
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Fig. 3. Hand gesture dictionary of 18 gestures with their axis of direction

a gesture dictionary, we collect 18 hand gestures (standard
hand gesture dictionary stated in [37]) from 5 participants over
an hour of session each. We extract the accelerometer features,
train a Support Vector Machine based SMO algorithm [25],
and test with a 10-fold cross validation. We apply the gesture
dictionary based prediction algorithm on the accelerometer
sensor extracted features from 17 older adults to recognize
the complex activities. Fig. 3 shows 18 hand gesture symbols
with their corresponding axis notation.

(3) Supervised Scoring: Initially, we formulate the automated
scoring problem as a supervised machine learning problem
in which machine learning algorithms learn a function that
maps <hand gesture, ambient sensor> feature set to the direct
observation scores. We use bagging [12] ensemble method to
learn the mapping function and support vector machine (SVM)
with sequential machine optimization [25] as base classifier.
The bagging improves performance of an ensemble learning
algorithm by training the base classifiers on randomly-sampled
data from the training set. The learner averages individual
numeric predictions to combine the base classifier predictions
and generates an output for each data point that corresponds
to the highest-probability label.

(4) Unsupervised Scoring: We derive unsupervised scores us-
ing a dimensionality reduction (Principal Component Analysis)
technique by reducing high dimensional dataset to one with a
lower dimension [30]. We use this to reduce the feature set
to a single numeric score. Finally, min-max normalization is
applied on reduced features that provides us a uniform range
of the variables using the following equation:

x; — min(x)

ey

-~ maz(z) — min(z)

h

where © = {z1,...,x,} and 2; is i'" normalized data.

VI. PHYSIOLOGICAL SIGNAL PROCESSING FOR
BEHAVIORAL HEALTH

We discuss how physiological sensor data can be processed
using signal processing techniques to extract the relevant
features in presence of users inherent movements and motion
artifacts. We carefully choose the specific features which we
can define as direct effects of mental arousal.

A. Electrodermal Feature Extraction

Electrodermal activity also known as skin conductance
measurement over time includes two components. (i) Skin
conductance Base Level (SBL), which changes slowly over
time (tonic changes) and indicates the general activation of

TABLE III. CONTINUOUS DECOMPOSITION ANALYSIS FEATURES

CDA Description
nSCR Number of significant SCRs within response window (wrw)
Latency Response latency of first significant SCR wrw
AmpSum Sum of SCR-amplitudes of significant SCRs wrw
SCR Average phasic driver wrw
ISCR Area (i.e. time integral) of phasic driver wrw
PhasicMax Maximum value of phasic activity wrw
Tonic Mean tonic activity wrw
TABLE IV. DISCRETE DECOMPOSITION ANALYSIS FEATURES
DDA Description
nSCR Number of significant SCRs within response window (wrw)
Latency Response latency of first significant SCR wrw
AmpSum | Sum of SCR-amplitudes of significant SCRs wrw
AreaSum | Sum of SCR-area of significant SCRs wrw
Tonic Mean tonic activity wrw

the sympathetic nervous system, (ii) Skin Conductance Re-
sponses (SCRs), changes that last for shorter periods (phasic
changes). SCRs indicate the activation of the somatic nervous
system (SNS) but also reflect responses to events that are
new, unexpected, relevant, and/or aversive. Using EDA data
to measure arousal in a continuous stimulus setting requires
three steps in data processing and analysis. First step is
pre-processing which involves data cleaning, filtering, down-
sampling, cutting, smoothing, artifact correction and decom-
position of the signal into its tonic and phasic components.
The SBL is typically approximated by frequency filtering,
statistical modeling or simple linear interpolation between the
skin conductance measures that are not overlaid by responses.
The second step is parameterization, which involves deciding
which parameter of the EDA data to measure/calculate. For a
phasic parameter, this process includes massive abstraction of
the phasic signal component, for example, counting responses.
The third step is the correlation of the extracted data with the
stimulus. We used Ledalab [40] toolbox for EDA data pre-
processing and extracting features. We employed butterworth
low-pass filter, hanning smoothing with window size 4 and
manual movement artifact correction. We decomposed EDA
data into its tonic and phasic components using Continuous
Decomposition Analysis (CDA) and Discrete Decomposition
Analysis (DDA) as discussed below.

(1) Continuous Decomposition Analysis (CDA): This
method helps extract the phasic (driver) information underlying
the EDA signal, and aims at retrieving the signal characteristics
of the underlying sudomotor nerve activity (SNA). EDA data
is deconvolved by the general response shape which results in
a large increase of temporal precision and then data is being
decomposed into continuous phasic and tonic components [38].
This helps compute the several standard features of phasic
EDA. We tracked the related events as our pre-labeled activities
and extracted 7 time-domain features from CDA as shown in
Table III. We used standard deviation, mean and variances on
these features over the complex activity classification. Fig. 4(a)
shows different decomposition steps of CDA method of a
single activity episode.

(2) Discrete Decomposition Analysis (DDA): This method
decomposes EDA data into distinct phasic components and
a tonic component by means of Nonnegative Deconvolution.
The method helps capture and explore all intra-individual de-
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viations of the general response shape and compute a detailed
full model of all components in the entire data set [39]. This
method is particularly suited for physiological models of the
SCR. We extracted 5 features from DDA as shown in Table IV
for each activity event and extracted statistical mean, variance
and standard deviation on these over the activity session.
Fig. 4(b) shows different decomposition steps of DDA method
of a single activity episode. The decomposition results in the
extraction of distinct response components and thus allows
for an unbiased quantification of Skin Conductance Response
(SCR) characteristics (e.g., SCR amplitude). We extracted total
12 x 3 = 36 features from decomposition that are subject to
be proportional to mental arousal [38], [39].

B. Heart Rate Variability Feature Extraction

We obtained instant heart rate (HR) from the Empatica
E4 wristband provided API which uses a pulse oximeter
sensor photoplethysmographic (PPG). PPG is used mainly
for measuring the oxygen saturation in the blood and blood
volume changes in skin. The Empatica E4 API provides Heart
Rate Variability (HRV) i.e., inter-bean interval (IBI) which
removes the wrong beats caused by motion artifacts resulting
a lot of missing IBI values. However, analysis of real time
arousal monitoring needs continuous IBI values for each time
stamp. To tackle this we used real time correction method
of heart inter-beat intervals [43]. We applied two types of
feature extraction method on the corrected heart rate (HR)
measure. (i) Time-domain method: This is the simplest method
to perform since it can be applied straight to the series of
successive RR interval values; (ii) Frequency-domain method:
a power spectrum density (PSD) estimate is calculated for
the RR interval series. The regular PSD estimators implicitly
assume equidistant sampling and thus, the RR interval series
is converted to equidistantly sampled series by interpolation
methods prior to PSD estimation. In this work, we used a cubic
spline interpolation method. The HRV spectrum is calculated
with FFT based Welch’s periodogram method and with the
Autoregression (AR) method [13]. In the Welch’s periodogram
method the HRV sample is divided into overlapping segments.
The spectrum is then obtained by averaging the spectra of
these segments. This method decreases the variance of the FFT

2 4 6 — Driver error (dev/discr) = 0.758, 0.2)
Nonnegative deconvolu Remainder error (devidiscr) = 0.989, 12.5)
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TABLE V. TIME-DOMAIN HEART RATE VARIABILITY FEATURES
Feature | Description
RR Mean RR intervals
SDNN Standard deviation of RR intervals
SDSD Std of successive RR interval differences
RMSSD | Root mean square of successive differences
NNS50 #successive intervals differing more than 50 ms
pNNS50 relative amount of NN50
HRVTI Total number of RR intervals/height of the histogram
TINN Width of RR histogram through triangular interpolation
TABLE VI. FREQUENCY-DOMAIN HEART RATE VARIABILITY
FEATURES
Feature Description

Peak frequency VLEF, LF, and HF band peak frequencies
Absolute powers of VLF, LF, and HF bands
Relative powers of VLF, LF, and HF bands

Powers of LF and HF bands in normalized units

Absolute power

Relative power

Normalized power
LF/HF

Ratio between LF and HF band powers

spectrum. The generalized frequency bands in case of short-
term HRV recordings are the very low frequency (VLF, 00.04
Hz), low frequency (LF, 0.040.15 Hz), and high frequency (HF,
0.150.4 Hz). The frequency-domain measures extracted from
the PSD estimate for each frequency band include absolute
and relative powers of VLF, LF, and HF bands, LF and HF
band powers in normalized units, the LF/HF power ratio, and
peak frequencies for each band. In the case of FFT spectrum,
absolute power values for each frequency band are obtained
by simply integrating the spectrum over the band limits. In
the case of AR spectrum, on the other hand, if factorization
is enabled distinct spectral components emerge for each fre-
quency band with a proper selection of the model order and the
absolute power values are obtained directly as the powers of
these components. If factorization is disabled the AR spectrum
powers are calculated as for the FFT spectrum. Table V and
Table VI show calculated time-domain and frequency-domain
features of HRV spectrum which are subject to be inversely
proportional to mental arousal.



VII. EXPERIMENTAL PROCEDURE

We have recruited 17 participants for this study consists of
15 females and 2 males (similar to overall gender distribution
of the retirement community: 85% female and 15% male) with
age range from 77-93 (mean 85.5, std 3.92) from the par-
ticipating continuing care retirement community in Baltimore
City through the appropriate institutional IRB approval. The
experimental setup are discussed below.

A. Methodology

A study team member at the participating continuing care
retirement community helped in recruiting participants who
reside in the facility and meet the study eligibility criteria.
Informed consent or assent is obtained from the participants in
accordance with IRB procedures and a study visit is scheduled
for data collection. During the study visit, a trained gerontol-
ogy graduate student evaluator helps participants to fill out the
validated surveys. Participants are given an Empatica E4 to
wear on their dominant hand, and concurrently another trained
Information Systems graduate student have the PogoPlug smart
home setup in their own living environment. The participants
are instructed to perform the scripted activities with the pres-
ence of only the evaluator. Another project member remotely
monitors the sensor readings, videos and system failure sta-
tus. Evaluator computes the activity performance score (i.e.,
completion of the task, duration, and sequencing) and all the
surveys as discussed previously. The entire session varies from
1 to 2 hours of time depending on an individual participant’s
physical and cognitive ability to perform activities.

B. Ground Truth Annotation

The recorded videos are used to annotate ground truth
of activities. Two graduate students are engaged to annotate
the activities, and the ambient sensor firings whereas the
activity performances are computed by the evaluator. Two
more graduate students are engaged to validate the annotations.
The recorded videos are stored in a secured UMBC server and
immediately destroyed in accordance with the IRB protocol.

VIII. EVALUATION

We evaluate our proposed multimodal functional and be-
havioral health assessment framework consisting of wearable
and ambient sensors to help achieve the automated assessment
of task quality, cognitive measures and their underpinning
inter-correlations and statistical significance with well estab-
lished clinical-driven survey and observation based assessment
tools and techniques. We divide our participants pool into
several groups based on the clinical assessment score as shown
in Table VII. The feature subsets used in the experimentation
for observation and survey based clinical assessments and tech-
nology guided physiological (behavioral) and activity (func-
tional) initiated health assessments are depicted in Table IX. To
analyze correlations, we used Pearson correlation coefficients
with significance on p < 0.05.

*p < 0.05 with Bonferroni correction for 17 samples
**p < 0.005 with Bonferroni correction for 17 samples
T Not Significant

TABLE VIIL

PARTICIPANT GROUPS TABLE VIIL GROUP CORRELATIONS
Description Count Groups INT EDA HRV
No Cognitive 8 NCL MCI | 0.638* | -0.334T | 0.494F
Impairment (NCI) CI
Mild-Cognitive 3 NCI, MCI 0.4497 0.51* -0.51%*
Impairment (MCI) MCL CI | 04697 | -053% | 0464
Cognitively 6 NCL CI | 04847 | -0.58% 0.69*
Impaired (CI)
TABLE IX. FEATURE SUBSETS
Feature Description
Observation Activity Ability (AA), Sequencing (SEQ), Interruptions (INT),
Duration (DU)
Survey SLUMS Score (S-Score), ZUNG Score (Z-Score), IADL Score
(I-Score), Yale Score (YPAS), Barthel Score (B-Score),
GDS Score (G-Score)
Physio: EDA CDA (7 features), DDA (5 features)
Physio: HRV Time Domain (TD) 8 features, Frequency Domain (FD) 5 features
Activity: Machine | Supervised (AA, SEQ, INT), Unsupervised (AA, SEQ, INT)
Learning
TABLE X. INDIVIDUAL FEATURE CORRELATIONS
YPAS AA B-score I-score
SEQ | 0.553* | 0.962#* | 02027 | 04757
EDA | 02257 | 0349 | -0.519% | -0.53*

A. Observation-based Feature Correlations

No significant correlations are noted in case of physiologi-
cal health (i.e., anxiety and depression) assessment in the three
groups (NCI, MCI, and CI) of dementia patients, but the cogni-
tively impaired (CI) group shows a significant correlation with
INT score (coefficient 0.638%) (Table VIII). This depicts that
as the dementia status gets worse, the participants’ functional
activities are interrupted more frequently in comparison to NCI
participants. Older adults experiencing frequent interruptions
while performing everyday activities delineate the fact that they
are less aware of the task properties. On the contrary, it can be
postulated that the NCI individuals are remained aware of the
task they perform. The awareness degrades as their dementia
status goes worse, MCI to CI, which posits significant degrada-
tion in the task interruption performance. However, significant
correlations are noted respectively between SEQ score and
YPAS (0.553*%), SEQ score and AA (0.962**) (Table X).
These correlations demonstrate that the task sequencing ability
depends on the participants’ functional abilities to perform
a specific task. Fig. 5(d) presents a scatter plot of bivariate
correlations between different dementia groups (NCI, MCI and
CI) with observation-based interruption scores along the fitting
line.

B. Electrodermal Feature Correlations

We extracted 7 CDA and 5 DDA features from EDA
signals. EDA signal helps measure the intensity and amplitude
of arousal while the daily activities are being performed. If
the group correlations between the independent EDA features
variables and dependent Dementia group variables (NCI, MCI,
CI) positively correlates, that means, individual group’s arousal
state increases as dementia intensity increases. If it negatively
correlates, then arousal decreases as dementia intensity in-
creases. For dementia group segmentation, we first consider
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correlations

NCI and MCI, and note that they are highly correlated with
EDA features (0.51*) which means MCI individuals aroused
more than NCI individuals while performing activities. Con-
sidering NCI and CI, we observe that they are negatively cor-
related (-0.58*) which means CI individuals show less arousal
than NCI. While considering MCI and CI, we note that they
are negatively correlated with EDA features (-0.53*) which
means MCI groups show more arousal than CI individuals. We
also note that B-Score and I-Score are negatively correlated
with EDA features (-0.519* and -0.53*) which means the
most functional active individuals show more arousal while
performing activities (Table VIII).

C. Heart Rate Feature Correlations

Mental arousal (stress, anxiety etc.) is possible reason to
decrease Heart Rate Variability features (increase of heart rate).
We extracted 8 time domain and 5 frequency domain heart
rate variability (HRV) features over the activity performance
period. Considering NCI and MCI groups, we note a significant
negative correlations (-0.51%) reflecting that MCI group may
have more arousal than NCI while performing functional activ-
ities. Similarly, considering NCI and CI groups of individuals,
we note a significant positive correlations (0.69%*) delineating
that CI group may have less arousal than NCI group (Ta-
ble VIII). Fig. 5(a), Fig. 5(b) and Fig. 5(c) represent the scatter
plots of unsupervised and supervised activity performances
scores (both sequencing and interruption score) correlations
with the observation-based scores along the fitting line.

D. Machine Learning Based Activity Performance Correlation

Automatic activity task quality performance estimation has
been investigated previously [14] which achieved sequencing
and interruption scores with 0.47* and 0.50* correlation coef-
ficients respectively for supervised task quality scoring. They
also achieved 0.57* correlation coefficient for unsupervised
task quality estimation. Prior research achieved significant per-
formance correlations with supervised and unsupervised task
quality estimation with observed scores considering a sequence
of motion sensor streams as components of each complex
activity. We additionally consider hand gesture streams along
with the motion and object sensor which helps improve the
prior correlations significantly.

For machine learning based classification, we first build
hand gesture dictionary with 18 gestures (Fig. 3) collecting
accelerometer sensor readings from 5 individuals. We then
extract accelerometer features, train and test using Random

Forest algorithm and finally 10-fold cross validation provides
us 83.5% hand gesture recognition accuracy (FP rate 5.1%,
Precision 91.5% and recall 83.5%). We then use the hand
gesture dictionary and ambient sensor readings, train Random
Forest algorithm, which provides us 91.8% (FP rate 3.5%,
Precision 95.7% and recall 91.8%) accuracy of high-level ac-
tivity recognition. We apply supervised activity scoring (SVM
classifier with SMO algorithm) method and find significant
correlations with observed activity performances (0.71%* and
0.81** for SEQ and INT scores respectively). We use dimen-
sionality reduction (PCA) on <hand gesture, ambient sensor>
feature maps to generate two dimensional feature values. We
find significant correlations with the unsupervised feature sets
with SEQ and INT scores (0.568* and 0.519* respectively).
We observe that our approach significantly improves the prior
proposed method [14].

IX. DISCUSSION

Mental arousal is a convoluted physiological response of
stress and task awareness observed during the performance
of everyday activities triggering the increase in EDA and
decreases in heart rate signals [36]. The older individuals with
increasing arousal suggests that their mental health may have
been dominated by stress as well as increasing awareness
of the task being performed. On the other hand, decreasing
arousal means they are less aware of the task difficulty, even
when they have been making mistakes. Our evaluations in the
retirement community suggest that persons with MCI show
higher arousal (increasing EDA and decreasing heart rate) than
cognitively intact (NCI) and cognitively impaired (CI) older
individuals. Mild cognitively impaired individuals go through
a transition period between normal and dementia. Though
the activity performances degrades due to their memory loss,
their awareness of the mistakes increases the arousal amplitude
(based on the heart rate and EDA signals) even more than the
NCI individuals. The possible reasons for their extreme stress
is that, MCI individuals face more difficulty in completing the
task, even if they are not committing any mistakes. Since they
are in a transition period, so they may have some symptoms
of dementia, such as forgetting the task sequences and thus
triggering many interruptions. As MCI individuals are not fully
cognitively impaired, they are still aware of their mistakes
which apparently increases their arousal state. Persons with
CI have more difficulty in performing activities in comparison
to persons with MCI and NCI though they may experience a
lower rise in mental arousal features. This may be explained in



part because persons with dementia (CI) are not aware of their
mistakes at all due to their cognitive health decline. Therefore,
less awareness of their mistakes makes them less aroused in
performing tasks of all types as attested in our correlation
analysis results.

X. CONCLUSION

Cognitive impairment status can significantly impact men-
tal arousal on everyday activities and as well as activity per-
formances. However, mental arousal can be considered as an
important feature of context awareness of daily activities. We
propose a hybrid approach combining both physiological and
functional health measures by incorporating heart rate, electro-
dermal activity and daily activity performance monitoring to
investigate how cognitive status impacts on these modalities
and helps advance the technology assisted automated health
assessment. Our hand gesture combined with ambient sensor
streams based methodology helps improves automatic complex
activity performances estimation significantly. Our study in
a real continuing care retirement community demonstrates
objective signs of stress with increased heart rate and galvanic
skin response in the individuals with MCI. The individuals
with dementia have trouble with some of the activities, but
have less insight and awareness into their deficits and so are
less stressed. The individuals without cognitive impairment are
able to do activities easily and then they have only the normal
stress response called physical arousal response. We believe
the findings in this work are promising and with our ongoing
effort on recruiting more participants may help strengthen all
the statistical analysis and conjectures. In future, we will apply
context aware recommender system that can be used to send
alert requesting to remove wrist band in bathroom activities,
recommending to wear it in normal activities, sending alarm
to caregivers in critical situation, fall/near fall detection and
emergency call opportunity only using gesture etc.
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