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1. Introduction
In this paper, we will initiate an investigation of a class of abstract

delay integrodifferential stochastic evolution equations driven by fractional
Brownian motion (fBm) of the general form

dx(t) = {Ax(r) + fi(t, x;, W)+ J; K(t, s) f>(s, x, p(s))ds}dt

+g(t)dB™ (), 0<t<T, (1.1)
x(t) =9¢(t), -r<t<0,
w(z) = probability distribution of x(¢)

in a real separable Hilbert space H. (By the probability distribution of x(¢),
we mean u(t)(A) = P({o € Q: x(z, ) € A}), for each A € B(H), where
B(H) stands for the Borel class on H.) Here, 4 is a linear (possibly

unbounded) operator which generates a strongly continuous semigroup
{S(¢): t 2 0} on H; K(t, s) is a bounded linear operator on H; f; : [0, T]
xCp X2 (H)> H((i=12) ((gokz (H) denotes a particular subset of

probability measures on /) are given mappings; g : [0, T] — £(K, H) is a
bounded, strongly measurable mapping (where K is a real separable Hilbert

space and £(K, H) denotes the space of Hilbert-Schmidt operators from K

into A with norm |- "2(1{ 1)) (BM™(r): t >0} is a K-valued fBm with
Hurst parameter H € (%, 1); and ¢(t) € I2(Q; C,) is an F,-measurable

random variable independent of B with almost sure continuous paths. (See

Section 2 for notation and spaces.)

Stochastic partial functional differential equations with finite delay arise
naturally in the mathematical modeling of phenomena in the natural sciences
(see [23, 33, 36]) and have received a significant amount of attention. It has
been shown that some applications, such as communication networks and

certain financial models, exhibit a self-similarity property in the sense that
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the processes {x(ar):0<¢<T} and {a"*x(¢): 0 <t < T} have the same
law (see [4, 6]). Indeed, while the case when H = 1/2 generates a standard

Brownian motion, concrete data from a variety of applications have exhibited
other values of H, and it seems that this difference enters in a non-negligible

way in the mathematical modeling of this phenomena. In fact, since B (¢)
is not a semimartingale unless H =1/2, the standard stochastic calculus

involving the It6 integral cannot be used in the analysis of related stochastic
evolution equations. There are numerous papers devoted to the formulation
of stochastic calculus for fBm [13, 24, 28] and differential/evolution
equations driven by fBm [2, 14, 16, 26]. We provide an outline of only the
necessary concomitant technical details concerning the construction of the
stochastic integral driven by an fBm in Section 2.

Often, a more accurate model of such phenomena can be formulated by
allowing the nonlinear perturbations to depend on the probability law of the
state process at time t. A prototypical example in the finite-dimensional
setting would be an interacting M-particle system in which (1.1) describes

the dynamics of the particles xj, ..., x); moving in the space H in which

the probability measure p(z) is taken to be the empirical measure p,,(7) =

(/M )th/[:ﬁxk(t)’ where 3, (;) denotes the Dirac measure. Researchers

have investigated related models concerning diffusion processes in the
finite-dimensional case [11, 12, 27]. The infinite dimensional version of
such models in a Hilbert space setting has only recently been examined
[1, 20]. The motivation of the present work lies primarily in formulating an
extension of the work in [1, 8, 15, 19] to a more general class of abstract
integrodifferential stochastic evolution equations with finite delay, now
driven by fBm. Since dynamical systems with memory can lead to such
random integrodifferential equations (cf. [4, 9, 18, 25]), the present
investigation is warranted.

The following is the outline of the paper. First, we make precise the

necessary notation and function spaces, and gather certain preliminary results
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in Section 2. We then formulate the main results concerning the existence
and uniqueness of mild solutions to (1.1) in Section 3. Next, considering
the Yosida approximations of (1.1), two convergence results are established
in Section 4, while Section 5 is devoted to a discussion of two concrete
examples (a generalized stochastic heat equation and a Sobolev-type
stochastic equation). Lastly, in Section 6, we propose a numerical scheme to
approximate solutions to a special case of (1.1) and illustrate approximate
solutions to the examples described in Section 5.

2. Preliminaries

For details on fBm, stochastic analysis, and abstract differential
equations, we refer the reader to [2, 3, 5, 10, 22, 30] and the references
therein. Throughout this paper, K is a real separable Hilbert space with

norm |[|- |, and inner product (-, -) , equipped with a complete orthonormal
basis {e ili=12, ..}. Also, (Q, §, P) is a complete probability space. For

brevity, we suppress the dependence of all random variables on ® throughout

the manuscript.

We begin by making precise the definition of a K-valued fBm and related

stochastic integral used in this manuscript. The approach we use coincides

with the one formulated and analyzed in [2, 24]. Let {B;-{(t)|t > 0}353:l be

a sequence of independent, one-dimensional fBms with Hurst parameter
H e (1/2, 1) such that for all j =1, 2, ..., the following hold:

(1) B}f(0) =0,
@ EBI0) - B )P =1 - sy,

3) EBF()F =v; >0,

(4) z;‘;lvj < o,
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In such as case, Z;OZIE” B}'[(t)ej ||%< =N Z;):l v; <, so that the

following definition is meaningful.

Definition 2.1. For every ¢ > 0, B’'(t) = ZC;:I B}i(t)ej is a K-valued

fBm, where the convergence is understood in the mean-square sense.

It has been shown in [2, 16] that the covariance operator of {B!(¢):

¢t > 0} is a positive nuclear operator Q such that
1 o0
2H 2H 2H
trQ(t,s)zEZvj[t +s57 = t-s "]
j=1

Next, we outline the discussion leading to the definition of the stochastic
integral associated with {BH (¢) : t > 0} for bounded, strongly measurable
functions, as presented in [2, 16]. To begin, assume that g : [0, T ] — L&(K, H)

is a simple function, that is, there exists {g; : i = 1, ..., n} = R such that
g(t) =g, V4 <t<y, (2.1)

where 0 =1y <t; <---<t, 1 <t, =T and maxj<;<,| g "£(K m =L

T
Definition 2.2. The H-valued stochastic integral -[0 2()dB™(t) is

defined by

[ swas™ = ;ﬁ;[ [ gtoream? (z)j

- Z[Z giej (B (1) - B;'_l(ti—l)]} (2.2)

j=1\i=1
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As argued in [2], this integral is well defined since

T 2 *

EH I . g)aB™ ()| <1 v, <, (2.3)
H P
j=1

where the expectation, E, is defined by E(y) = IQ y(w)dP.

Since the set of simple functions is dense in the space of bounded,

strongly measurable £(K, H ) -valued functions, a standard density argument

can be used to extend Definition 2.2 to the case of a general bounded,

strongly measurable integrand. Furthermore, the sequence of random

T . .
variables {IO g(t)e de;{ (t):je N} are mutually independent, Gaussian
variables. Therefore, (2.3) yields that the series in (2.2) is an H-valued
Gaussian process. (See [14] for a more general result.)

Throughout the rest of the manuscript, |-| denotes |-|,, BL(H)

represents the space of all bounded linear operators on H, and 1? (Q; H)

stands for the space of all H-valued random variables y for which E| y |

< o0,

The following spaces of measures coincide with those used in [1]; we
recall them here for convenience. First, B(H) stands for the Borel class on
H and @(H) represents the space of all probability measures defined on
B(H) equipped with the weak convergence topology. Let A(x) =1+ | x|
Define the space

€ = {(p : H — H | is continuous and

lollg = sup L2, gy T0C)Z 0] oo},
xeH 7\4 (x) x;tyeH ”‘x_y"
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and for p > 1, let

SO;J’ (H) = {m : H — R|m is a signed measure on H such that

Il = [ 32l m|(@) < oo},

where |m|=m" +m~, m=m" —m is the Jordan decomposition of .
Then we can define the space (., (H) = 50;2 N g(H) equipped with the

metric p given by
o1 v2) = sup| [ 9 (1 = v2) @) ol < 1]

It is known that (gokz (H), p) is a complete metric space. The space of
all continuous (., (H')-valued functions defined on [r, T'], denoted ‘612 =

‘5&2 ([-r, T, (507? (H), p)), is complete when equipped with the metric

Dr(vi,va) = sup p(vi(1), va(1)),  Wvi, vy € €.
tel-r,T]

Next, let » > 0. We can associate to any continuous, g§;-adapted, H-
valued stochastic process z(¢): Q — H another C,. -valued stochastic process
z;: Q — C, by setting z,(s)=z(t+s), for all >0 and —r <s<0,
where we denote by C,. = C([r, 0], H) the space of all continuous functions

from [r, 0] into H, equipped with the sup norm given by

1
[zl =( sup [z(0)[*)2, (2.4)

—-r<0<0
Subsequently, we can define the space

Xro={zeC(-r,T}] I2(Q; H))|z is T, -adapted and | z ”XT , < o}, (2.5)
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which is a Banach space when equipped with the norm

1

2 —

z = sup (E| z |- )z.
21y, = sup (2l I,

In addition to the familiar Young, Holder and Minkowski inequalities,
m
the inequality of the form (Z?:] aij < m"_IZ:’zla,-m , where q; is a

nonnegative constant (i =1, 2, ..., n) and m, n € N, will be used to establish

various estimates. Finally, the following integral inequality (see [29]) plays
an important role in the proofs of certain results.

Lemma 2.3. Let u, V), ¥, and Y5 be nonnegative continuous functions

defined in RY and uy be a nonnegative constant. If

u(t) <ugy + J; W (s)u(s)ds + J; ‘Pl(s)“.os lI’z(r)u(r)drjds

" I ; ‘PI(S)U; ‘1’2(1')( j (: ‘1’3(9)u(9)d9Jerds

forall t € RT, then

u(t) < u0[1 ; j; {qfl(s)exp[ [ O \Pl(r)drj

y (1 ; j Os ¥, (ﬂ:)exp( j OT [W,(6) + \P3(e)]dej drj} ds}

forall t € R.

We conclude this section with some comments regarding probability
measures. The probability measure P induced by an H-valued random

variable X, denoted Py, is defined by Po X' :B(H)— [0, 1]. A sequence
P, < 9(H) is said to be weakly convergent to P if IQ fap, > IQ fdpP, for

every bounded, continuous function f : H — R; in such case, we write



Stochastic Integrodifferential Delay Equations Driven by fBm 765

w
B, > P. Next, a family B, is tight if for each & >0, there exists a
compact set K. such that P,(K.)>1-¢, for all n € N. Bergstrom (see

[3]) established the equivalence of tightness and relative compactness of a
family of probability measures. Consequently, the Arzela-Ascoli theorem can
be used to establish tightness.

Definition 2.4. Let P e p(H) and 0<# <ty <-- <t <T. Define

k
Tty - CULTEH) > H® by 1y 40 (X) = (X(1), X(82), e X ().

The probability measures induced by Ty, are the finite-dimensional

1, ..t

joint distributions of P.
Proposition 2.5 (See [22]). If a sequence {X,} of H-valued random

variables converges weakly to an H-valued random variable X in I*(Q; H),

then the sequence of finite-dimensional joint distributions corresponding to

{PXn } converges weakly to the finite-dimensional joint distribution of Py.

The next theorem, in conjunction with Proposition 2.5, is the main tool in
establishing a convergence result in Section 4.

Theorem 2.6. Let {P,} < o(H). If the sequence of finite-dimensional
Jjoint distributions corresponding to {P,} converges weakly to the finite-

dimensional joint distribution of P and {P,} is relatively compact, then

P, —> P.

n
3. Existence and Uniqueness Results

We begin by establishing existence and uniqueness of mild solutions to
(1.1). We impose the following conditions on (1.1), which are assumed
throughout the manuscript unless otherwise specified:

(A1) A4 is the infinitesimal generator of a Cjy-semigroup {S(¢) : # > 0} on
H such that || S(¢) g o7y < M exp(az), forall 0 <t <T, for some M > 1
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and a > 0;

(A2) f; 1[0, T]x C, x 9,2 (H) > H (i =1, 2) satisfies

@ [ fi(t % w(@0) < Mp[U+] x e+ (@) 2],

(b)
" fi(t’ Xts “(t)) - " fi(t7 Yt V(t)) ” < Mfl [" Xt =Wt "Cr + p(“(t)a V(I))]a

globally on [0, T]x C, x 9,2 (H), for some positive constants M and
M x

(A3) {K(t, s):t, s €[0, T]} =« BL(H) are such that || K(z, s) ”SBQ(H) <
My, forall ¢, s € [0, T], for some positive constant My:;

(A4) g : [0, T] —> £(K, H) is a bounded, strongly measurable mapping;

(AS) {B"(¢) : t > 0} is a K-valued fBm;

(A6) ¢(t) e I*(Q; C,) is an F, -measurable random variable independent
of B™ with almost sure continuous paths.

We write Mg = maxg<,<7| S(?) ”%E(H)’ which is finite by (A1). A mild
solution to (1.1) is defined as follows.

Definition 3.1. A continuous stochastic process x :[-r, T]—> H is a
mild solution of (1.1) if

(1) x(¢) is §,-adapted, for each —r <t < T,
T

2) .[0 | x(s)|*ds < oo, almost surely [P],

3)

X(0) = SOH0)+ [ (= 5) s, % n(s))ds
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* J.Ot S(e - S)_[(: K(s, ©) fo(t, x;, u(t))drds

t
+ j | St §)g(s)dB™(s), 0 < t < T, almost surely [P, (3.1)

4) x(¢) = &(t), —r < ¢ <0, almost surely [P].
The following technical properties involving the stochastic integral
t H . .
-[0 S(t —s)g(s)dB"* (s), under assumptions (A1), (A4) and (A5), are used in
the proofs of the main results in this paper.

Lemma 3.2. Assume (A1), (A4) and (AS). Then, forall 0 <t < T,

2
(1) EH I(;S(t - s)g(s)dBH(s) < Ctz;il v,

2

(ii) lim,_, EH [ é [S(t+ h —s)— S(t — 5)]g(s)dB (s)|| =0,

where C, is a positive constant depending on t, {S(¢t): t > 0}, L (cf. (2.1)),
and {vj . j € N} is defined as in the discussion leading to Definition 2.1.

Proof. Property (i) can be established as in Lemma 6 in [2]. To verify
property (ii), let 0 < ¢ < T and observe that

p 2
E jo [S(t + - s) = S(t — 5)]a(s)dB™(s)

2

-5 | ; [S(t + h - 5) = S(t - s)]g(s)e;dB(s)

Jj=1

2
<28 Y[ 0’ [S(t+ h — 5) — S( - 5)]g(s)e,dB(s) (3.2)
j=1
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2
s t
H
28] D [ IS0+ =)= (- 9e()eds](5)] . 3
Jj=m+1
The strong continuity of S(-), together with (A4), guarantees that (3.2)

goes to zero as £ — 0. To argue (3.3) goes to zero, we must first assume g is

simple as defined in (2.1). Arguing as in [2] yields the estimate

2
< Cci* My, (3.4)

EH I; [S(t + h = 5) = S(¢ - 5)]g(s)e;dB] (s) Jo

where C; is defined as in part (i) of this lemma. Using (3.4) in (3.3) yields

2

Y| 0’ [S(t+ h — ) - S(t - 5))g(s)e,;dB(s)

j=m+1

a0
<ty vi<m (3.5)

j=m+l

Therefore, (3.3) goes to zero as m — . As such, property (ii) holds for a
simple function g. It is not difficult to extend the argument using density

to a general bounded, strongly measurable function g. This completes the
proof. O
The first result is as follows.

Theorem 3.3. If (A1)-(A6) hold, then (1.1) has a unique mild solution
x € X7 o with corresponding probability law n e 6512, provided that

o + 0y <1, where oy, a, are positive constants independent of T (see

(3.18)).
Proof. Let p € ‘5&2 be fixed and define the solution map ® : X7 , —

X2 by



Stochastic Integrodifferential Delay Equations Driven by fBm 769

(@)1= 560+ [ 50 =) (s, 0 15
+ J; S(f - S)J(: IC(S, ‘C)fz(‘c’ Xg» H(T))d’tds

| ; S(t — s)g(s)dB™ (5)

3
= S(O9(0)+ D IF(e), 0<t<T,
i=1

(®x)(t) = d(z), -r<t<0. (3.6)

To see that @ is well defined, we first verify the L?(Q; H)-continuity
of ® on [0, T']. Let x € X7, 0<# <T, and | /| be sufficiently small

(so that all terms are well defined). Observe that

E|| (@x) (1 + h) = (©x) (1) [

3
<8 E| (S + B~ SO P + S E 17w+ m - 17 0) P | 3.)

i=1

Since the semigroup property enables us to write

E|(S( +h) - S(17))(0)) |
= E|| (S(h) (S(5)(0)) — S(1)(0)) |2, (3.8)

the strong continuity of S(-) implies that the right-hand side of (3.8) goes to

0as | 2| — 0. Next, using the Holder inequality along with (A2) yields

[1+h 2
EH L S(t + h =) fi(s, xg, p(s))ds
1

<At PR x By ¢ s OB G9)

H<s<ty+h
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which tends to 0 as | 2| — 0. Also,

2

B 11500 = 11565 =) 5. 3. o)

< 78] [ 1150 - 1500 - )i, o) P |

=7 : |[S(r) = 118(; = ) Rseany ED fis, xp n(s)) Pds,  (3.10)

and subsequently, using

2 _ 77 2
[ fiGss xs wGD 7 < M glt+f[xflp 5 + sup [fuls) [, ] <o
0<s<T

and [ () |lgg(sy < Mg, for all £, we can invoke dominated convergence
theorem in order to use the strong continuity of S(-) to conclude the middle

term of (3.10) goes to 0 as || —> 0. Since E| If(y +h) - I{(1) |* is
dominated by a sum of constant multiples of the right-sides of (3.9)-(3.10),

we conclude it goes to O as | /2| — 0.

As is the argument for E|| I{'(t; + h) — I{ (1) ||2, (A2)-(A3) imply

t1+h s 2
E j (e +h—s) j | Kl DA e, p(x))dds
h
IV 21,2 2
< 2(M ;MM h)* (37 + 3hty + h°)
x[1+] x ||§(T ,+ sup [ (s) ||i2], (3.11)

f SSStl+h

which tends to 0 as | 2| — 0. Also,

2

EH j(:l [S(h) = 1]S(t; — s)jos K(s, 1) fi(, xe, n(x))deds

|

< TE[J.;1 H [S(h) - I]S(# - s)_[: K(s, 7) f1(z, x¢, w(r))drds
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<T fotl (INOEFINCGER) ||2%£(H)s{ j 0 E|| K(s, 1) fi(x, x¢, n(t)) ||2dr}ds,

(3.12)

for which dominated convergence theorem applies by (A2)-(A3), and thus
the strong continuity of S(-) concludes the middle term of (3.12) goes to 0 as

|h| — 0. Since E|| I5(f + 1) — 15(11) ||2 is dominated by a sum of constant

multiples of the right-sides of (3.11)-(3.12), we conclude it goes to 0 as
|h|— 0.

It remains to show
E| 154+ h) - 13(0) | - 0
as | h| — 0. Observe that
E| 15 (4 + h) - I3 (1) |?

n+ s
=E J'Ol hs(t1 +h —5)g(s)dBT(s) - J‘O’I S(ty — 5)g(s)dB™ (s)

151 +h H
- E j St +h — 5)g(s)e;dBT(s)
h

| 2
+ [S(t; + h - 5) = S(t; — s)]g(s)dB" (s)

2

O an+h
<2E ZLI S(ty +h— 5)g(s)e;dBT(s)
j=1 1

2
+ ZE‘

j ;1 [S(e, + h — 5)— S(ty — 5)]g(s)dB™ (s) (3.13)
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where that

2
s t1+h H
th S(ty +h — ) g(s)e;dBT(s)
j=1

2
= Zjoh Su)g(ty + h—u)e;dBI(t +h—u)]| . (3.14)
Jj=1

Using the property E[B;i (s)- B}_{(t)]2 =|t—s |2ij with s =# + h
and ¢ =1 enables us to conclude the right-side of (3.14) goes to O as
|| — 0. By Lemma 3.2(ii) and (3.14), the right-side of (3.13) goes to 0 as

|h| = 0, and therefore, we have shown E|I3(f; + h)— I5()[* = 0 as
| h| — 0. Consequently, we can conclude from (3.7) that @ is 12(Q; H)-
continuous on [0, 7.

Next, to see that ®(X7 ;) € X7 5, let x € X7, and ¢ € [0, T]. Since

¢ e I2(Q; C,), it follows that

sup {E|(Dx)(t+0)|? :—r <1 +6 <0} <on. (3.15)
-r<0<0
For all » <0 <0 for which ¢+ 6 > 0, standard computations involving

the Holder inequality, (A1)-(AS5), and Lemma 3.2(i) yield the following
estimates:

E( sup | S(z+0)9(0)[*) < M2 ¢ ||2c,’

-r<06<0

E( sup | (1 +0) ") <4TM Mg YlL+] x5, , + sup | “(9)||i2]’
’ 0<06<T

-r<0<0

E( sup | If(t+e)||2)g4(TMSMf2M,C)2[1+||x||§(T2+ sgp ||u(9)||i2],
© 0<0<T

—-r<0<0
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0
E( sup [ (e +0) ) < (MLPT Y v
—I’SGSO ]:1

Using these estimates and (3.6), we conclude that

sup {E|(®x)(t+0)|?:0<r+0<T}< o0 (3.16)

-r<6<0

Thus, (3.15) and (3.16) imply that E| (®x), |5 < oo, for all ¢ € [0, T], so

that ®x € X7 ,. Since the §,-measurability of (®x)(¢) is easily verified,

we conclude that @ is well defined.

Next, we show that @ has a unique fixed point. For any x, y € X7 »,

(3.6) implies that
2 : 2
E| (@x), = (®y), [¢, < 45{ sup [le [(t+0)-1)(t+0)] J]
—VSGSO i=1
Standard computations yield
[ (@), — (@), |2 < 4702 M2 [ E|lxg — o |2 0+ T(M ;M P
I ( x)t (y)z ”Cr— 1Al I xo y@"cr +T( bH K)

te0
x IOJO E|lx; — ye |7 drde}, 0<t<T. (3.17)

To prove that oV is a strict contraction, for some N, we proceed in two

cases. First, if 7 <1, then T 2 < 1, so that we can continue (3.17) to obtain

E|| (@x), - (@), [,

t te0
<o Blxg -0 g do+ o[ [ Elve -y lg,dedo,  (3.18)

where oy = 4M SZMJZ,1 and oy = 4M MM IC)2 are independent of T.
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Inductively, it can be shown that for each n > 1, that is a, ;_,, is the

i — n + 1)th term of the quantity (o; + o )", then
(J q y (o 2

2n i
2 ¢’ 2
E|| (®x); = (Dy), "cr < Zan,j—n-i-l I |x-» ”XT,z’
Jj=n

and subsequently, after taking the supremum over [0, T],
2
| (@x), — (@), "XT,z

2n i
T/ 2 2
<| 0 jona ¥ I x=yly, , =al>x=ylx, . @19
Jj=n

. 2
Clearly, o, ;_,41 > 0 as n—> o, for all j—1, and z]’in Oy, jon+l
<1, forall n > 1, since oy + a, <1 by assumption. Since 1imj_>oo(Tj/j!)
=0, for all 7, it follows from [21, Theorem 4, p. 74] that z, - 0 as

n — . Thus, thereisan N € N such that z), < 1, thereby showing oV is

a strict contraction (cf. (3.19)). Now suppose T > 1, so that T 251 and
continuing (3.17) yields

E|| (@x), - (@), [z,

t te0
< Tz[ocl J  Elxg = v [, do + azjo _[O R dtde}, 0<t<T,
so that reasoning as above leads to

2 2 2
| @)~ @), [, , <20yl

Therefore, we can deduce that there is an N* € N such that Z <1 / T 2,

*

again showing @V s a strict contraction. Thus, for a given p € ‘%2 and
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T >0, @ has a unique fixed point x,, € X7 5. Since (Px,)(t) = ¢(t) by

(3.6), for —r <t <0, we conclude the x,, is a mild solution of (1.1).

i
To complete the proof, we must show that p is the probability law of x,,.
Toward this end, let £(x,) = {&(x,(¢)) : € [r, T]} represent the probability

law of x

, and define the map ¥ : ﬁz - ‘5;3 by @(u) = £(x,). It is not

difficult to see that £(x, (1)) € 9,2 (H), forall ¢ € [r, T] since x, € X7 5

and ¢ € I?(Q; C,). Now, to verify the continuity of the map ¢ — & (x,(0)),

first let » < ¢ <0 and take | 4| > 0 small enough to ensure that » < ¢ + &

< 0. For all such c,
E| xy(c+h) = x,(0) | = E|¢(c + h) = ¢c)[* > 0as h >0 (3.20)
by assumption. Next, for 0 < ¢ < T, note that for sufficiently small | /| > 0,
E]| x,(c + 1) = x,(0) |

3
<8 E| (S(c + h) = S()0) > + D E| ;¥ (e + )= [;* () P |. (3.21)
i=1

An argument similar to the one used to verify the continuity of ® can be
used to then deduce from (3.20)-(3.21) that

lim E| x,(c + &) = x,(c) >0, V-r<c<T.
h—0

Consequently, since for all ¢ € [-r, T] and ¢ € (ﬁz , it is the case that

], 90 (e ) - L) )

| ] otoate + i o) - s o)
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= | E[o(x, (¢ + h)) = o(x, ()] |

<[ @l Ell o(x,(c + A1) = 0(x,(c))

and so we conclude that

p(L (x, (e + 1)), ZL(x(c)))

= H Tp 1 o(x) (L (xy(c + 1) = L(x,(c))(dx) = 0 as h > 0, (3.22)
¢ llg=

for any ¢ e[-r, T]. Hence, ¢ Z(x,(¢)) is a continuous map, so that

L(x,) e ‘5&2. This shows that ¥ is well-defined.

Lastly, we show that ¥ has a unique fixed point in %’33. Let u, v e %’;3

and let x,, x, be the corresponding mild solutions of (1.1). Standard

H)

computations produce

Bl (%), - (xy), I
<G Bl (o - () 12, @0

LG, j ; j 09 Bl (), = (), [ dud0 + C3DF(u, v), 0<1<T,
where
Cy = 16T(MgM [ ),
Cy = 16(TMgM 1, My ),

C3 = CIT + C2T2.

Hence, applying Lemma 2.3 and then taking the supremum over [0, 7]

yields
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2 2
” x}l — Xy ||XT,2 < CTDT(“'a V)a (323)

where (7 = C3[1 + (C) + Cy)T exp((Cy + Co)T)|(1 + T exp(T)). We can

choose 7' small enough so that {; < 1; denote sucha I'by T *. Since
P(Lx (1), L0y (0) < B| 3y () = xu(t) |, ¥ -r <t <T,
we have

¥ - ¥, = DL (Y@ =¥ S swp Bl = xy(O)
te[-r,T%]

_ 2 2

= " Xp — Xy ”XT,z < CT*DT*(“’ v)
by (3.23), so that ¥ is a strict contraction on ‘5&2 (~r, T"}; (5012 (H), p))-
Thus, (1.1) has a unique mild solution on [0, 7*] with probability distribution

b e @a(lr Tk (9,2 (1), o).

Due to continuity, this process can be repeated finitely many times to extend

the solution to the entire interval [0, 7], thereby completing the proof. U

4. Convergence Results

For each n > 1, consider the Yosida approximation of (1.1) given by
5y 0= A5,0) 4 RO A1 500

+ [ K $)nRGs A) f2(5, (5,),0 () |

+nR(n; A)g(t)dB™ (1), 0<t<T,
x, () = nR(n; A)d(¢), -r<t<0,
W, (z) = probability distribution of x,,(¢),

(4.1)

where R(n; A) = (I — n4)"! is the resolvent operator of A. Assuming fi» o
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and K are such that the assumptions of Theorem 3.3, one can invoke the same

theorem to deduce that (4.1) has a unique mild solution x, € X7 , with

probability law p,, € ‘sz. The following convergence results holds.

Theorem 4.1. Let x denote the unique mild solution of (1.1) as
guaranteed by Theorem 3.3. Then the sequence of mild solutions of (4.1)

converges to xin Xr o as n — .
Proof. Observe that

E|| x,(t + 8) — x(t + 0) |*

< s{u S+ 0)(uR(r: )~ 1O
2 t+0 2
M27 o ElnRGrs A) fils. (00)e () = fils. x, (s)) [Pls
+(MSMICT)2
t+0 ps ) 2
x j . j Sl nR(n: 4) 125, () 1(0)) = fo( xe, w(0) [P dsde
]

6
- s{n S(t +0) (nR(nm; 4) = Do) P + Y 1;(¢ + e)]. (4.2)

i=4

+ EH I;+6S(t +0 - s5)[nR(n; A) - Ig(s)dB™(s)

Standard computations lead to

5, (1+0 2
Ig(e+0) < MIT[ T (E] (nRns A) = 1) s (5 10 (5)) |

F2ME(] (), = % [2,)+ P2 (1 (), ()]s, (43)
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for all 0 < ¢ < T. Furthermore, the triangle inequality and (A2) imply

j 0H9E|| (nR(n; A) = 1) fi(s, (%), 1y (5) [P dls

<2 nR(; A) =1 2M2 (E] (x,). - x, |2
0 ’ %Q(H) fl nls N C,,

07 (1 (9), () + E(| fi(s, x5 nl(s) [P)]ds, 0<e<T. (44)

The boundedness E(|| f1(s, xg, p(s)) ||2 ) independent of n, together with
the strong convergence of nR(n; A) to the zero operator, allows us to infer

that the right-side of (4.4) goes to 0 as n — o. Similar computations lead to

I5(t + 0)

< 200,Mc P17 [ Bl R )= 1125 (50)ce b (O P

+ 2M}2E(|| ()7 = X¢ ||2Cr )+ 02 (w, (2), u('c)):| dsdr, (4.5)

forall 0 <¢ < T, and using Lemma 3.2(i) yields

0

Ig(t +0) < [ sup CtZVJ}” nR(n; A)—1 ”SZB,Q(H)' (4.6)
0<L¢t<T le

Using (4.3)-(4.6) in (4.2) gives rise to an inequality of the form

2
Bl (), = [,
t tpes
< By + B2 B )y =5y I ds + B[ [ B (), - Paeds, @)

where Bl is a constant multiple of | nR(n; A)—1 "%S(H) and B’ (i =2, 3)

are independent of n, yet depend explicitly on M, My, Mg and T
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(i =1,2). By Lemma 2.3 and taking the supremum of (4.7) over [0, T]
yields

%, = xly, , < BLI1+ TB% exp(B2T) (1 + TB> exp(B>T))], forall n > 1. (4.8)

Since the right-side of (4.8) goes to 0 as n — o, we have the conclusion. [J

Corollary 4.2. The sequence of probability laws p, corresponding to
the mild solutions x, of (4.1) converges in ‘6;\2 to the probability law p
corresponding to the mild solution x of (1.1) as n — .

Proof. This follows from the fact that

2 2 2
Dr(py, 1) = sup p~(u,(2), (@) < sup E x, () - x(1) |
0<¢t<T 0<Lt<T

£||xn—x||XT,2 —0asn— oo (4.9)

Remark 4.3. We observe for later purposes that Corollary 4.2 implies
that

sup sup [, (5) [, <
neN —r<s<T

Theorem 4.4. In addition to the assumptions of Theorem 4.1, if ¢ €
L}Q, C,), then

w
P —>P. asn— o (4.10)

Proof. We will show that {Pxn }2021 is relatively compact by using the

Arzela-Ascoli. Throughout the proof, C; will denote a suitable positive

constant. First, we show that {x, } is uniformly bounded in X7 ,, that s,

sup sup E| (x,), ”2Cr < o,
neN 0<t<T
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For ¢t € (0, T], the mild solution of x, is given by the variation of

parameters formula

5,(1) = SnROE A)0) + [~ 5} 4) (s, (5, ()
v ; s -9 0 K(s, ©)aR(n; A) f(t, (). 1o (0))dieds

+ J'; S(t - s)nR(n; A)g(s)dB™(s)

9
= S(6)nR(n; A)$(0) + Y 1;(2), 4.11)

i=7
and when —r < ¢ < 0, the mild solution is given by x,,(¢) = nR(n; A)¢(z).

Let ¢t € [0, T]. Forall —» < 0 <0 for which 7 + 6 < 0, we have

sup sup {E]x,(t+0)|* :—r<t+0<0)
neN 0<¢<T

= sup sup {E|nR(nm; Aot +0) > : —r<1+0<0l <o,  (4.12)
neN 0<¢<T

since nR(n; A) is contractive, for all n. Next, let —» < 0 < 0 be such that

0 <t+ 0 < T. We consider each of the four terms in (4.11) separately. First,
2 2
E|| S(t + 0)nR(n; 4)9(0) [¢. < M3] $(0) [, - (4.13)

Standard computations, taking into account (A1), (A2), and Remark 4.3, lead
to

t+6
E| 10+ 0) |, <2T(MsM )2[Tc1 + j N CANF ds} (4.14)

for some positive C; independent of n. Similarly, there exists C, > 0

independent of » such that
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Bl L+ )2 < 2mmomert 2 720 + [ E 2 dsd
I 2z + )”Cr < ATM MM f,) 2t )0 ) (JEX "Cr SAT |-

(4.15)

Using Lemma 3.2(i) and the contractivity of nR(n; 4), there exists a

positive constant C3 independent of n such that

E| Io(t + 0)|* < C5. (4.16)

Combining (4.13)-(4.16) with (4.11), there exist positive constants Cy,

C5, Cg independent of # such that

2 ! 2 rrs 2
Bl () 6, < o+ Cs [ B o) 6, ds+ G [ [l () I, deds,

which by Lemma 2.3 shows the uniform boundedness of {x, } in X7 ;.

Next, we establish equicontinuity by showing for every n € N and —r <

s<t<Tast—s— 0, wehave
E|| x, (1) — x,(s) |* > 0, independent of 1.

If —r <5 <t <0, note that

E| x,(t) = x,(5) [ = E[ nR(n; A)[(t) - o(s)][* — 0

independent of n, since ¢ € L*(Q, C,) and nR(n; A) is contractive, for all

n. Now consider 0 < s < ¢ < T. Since {S(z) : # < 0} is a semigroup,
IS0~ SR AT < E [ S(emar: 40)

< MSMAE| 6(0)[*(t - 5)*,  (4.17)
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where M 4 = | nAR(n; A) | 0(z7)- Also,
E| 17(0) = 1) |

< E[I: [ [S(z — 1) = S(s — 1)]nR(n; A) fi(x, (x, ) 1 (1)) | dx
t 4
+ L | (2 = t)nR(n; A) fi(x, (x,). 1y (1)) ”de

< E(I:j:: | S(u)nAR(n; A) fi(z, (x,),> y(7)) |dudr
E— 4
+M§Mﬁh+”ﬂkT2+;wy”w0WﬁMr—@j
’ <t<

< E(MSMATM_fl [1+]xly, , + s I, (@) 210 = 5)
? <t<

4
+ MgM g 1+ x ”XT,z + supT | b, () 5212 = s)]

0<¢<

= Cy(t - 5), (4.18)

where C5 is independent of n by Remark 4.3. Similarly,
E| I5(0) = Is(s)[* < Gyt = 5)*. (4.19)
Clearly, (4.17)-(4.18) tends to zero as | £ — s | — 0. It remains to show
4
Bl 15(0)~ 15(0) [ - 0

as |t —s| — 0. Observe that

E| Io(t) — Io(s) [[*

< 4[EH J.(: [S(t =) — S(s — 1)]nR(n; 4)g(t)dB™ () ’
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. EH [ ’ S(t — )nR(n; A)g(x)dB™ (1)

4
}. (4.20)

Since S(¢) e BL(H), for all >0 and nR(n; A) is contractive, the

stochastic integrals in (4.20) are Gaussian processes. Therefore, we can use
the moment formula for a Gaussian process along with the estimates
established in Theorem 3.3 (see (3.13), (3.14), and Lemma 3.2) to conclude
that the right-side of (4.20) goes to zero as | ¢ — s | — 0. Thus, the estimates

(4.17)-(4.20) then yield the equicontinuity of {x, }. Therefore, we conclude
the family {Pxn };1'0:1 is relatively compact by Arzela-Ascoli, and therefore

tight. Hence, by Proposition 2.5, the finite-dimensional joint distribution of

w
P, converges weakly to P, and so by Theorem 2.6, P, — P O

Xn
5. Examples

Example 5.1. Let 2 be a bounded domain in RY  with smooth
boundary 02. Consider the following initial-boundary value problem:

ox(t, z) = [Azx(t, z2)+ F(t, z, x(t - r, 2))

[ gy P2 2 Pt ),

+ g(t, 2)dB"(¢) a.e. on (0, T)x 9,
x(t, z)=0a.e.on (0,7T)x 2,
x(t, z) = &(t, z) ae.on —r <t <0,

(5.1)

where x:[0,T]x2 >R, F:[0,T]x2xR >R, F,:[0,T]x2x1*(2)
- 1X(2), ult,") € 0,2 (1(2), g:[0,T]x2 - LR, 1*(2)), and {B"(1)
:0 <t < T} is areal fBm. We impose the following conditions:

(A7) F; satisfies the Carathéodory conditions (i.e., measurable in (7, z)

and continuous in the third variable) such that
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D) | A, y, z)|SA7F1[1+|z|], forall 0<¢t<T, ye9, zeR and
some M "> 0,

Q) |F(t, . z1) = Kt y, 22) | < MRl 21— 25|, forall 0<¢ < T, y € 9,

z1, z € R and some M > 0;
(A8) F, satisfies the Carathéodory conditions and
D) | A (2, v, 2) ||L2(9) < MFZ[I + ”Z"LZ(_@)], forall 0<¢t<T,ye2,

z € I*(2) and some 1\7}:2 > 0,
Q) B, y,-): I2(2) > [3(2) isin €, foreach 0< (< T, y e 9;

(A9) g : [0, T]x 2 — £(R, I>(2)), is a bounded, strongly measurable

function,;
(A10) & is an §-measurable random variable independent of B™ with
almost surely continuous paths.

We have the following theorem.

Theorem 5.2. Assume that (A7)-(A10) hold. If ATM §M r

has a unique mild solution x € Xy o with probability law {u(t,-): 0 <t

21 <1, then (5.1)

< T
Proof. Let H = I?(2) and K = R". Define the operator
Ax(t, ) = Ax(t, ), xe HX2)NHY (D). (5.2)

It is known that 4 generates a strongly continuous semigroup {S(¢): ¢ > 0}

on I?(9) (see [30]), so that (A1) is satisfied. Define the maps £ :10, T]x
ngokz(H) —H, g:[0,T]—> £(K, H) and ¢:[0, T]x 2 x R, respectively,

by
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St %, w(@)(2) = A, 2, x(t -7, 2)) + I Fy(t, z, y)ult, 2)(dy), (5.3)

*(2)
g()(2) = g, 2), (5.4)
0(2)(z) = &2, 2). (5.5)

Further, identifying K7 = f5 = 0, we see that (5.1) can be written in the
abstract form of (1.1). Clearly, (A3)-(A6) are satisfied. We now show that f;
(given by (5.3)) satisfies (A2). To this end, observe that from (A7)(1),

1
|6 0. D gy < M| [ 0+ |50, 2) et

< 2Mp [m(2 + | x,(6, ) IIEZ@)]z

<2MpWm(@) + | x |¢, ]
< MEN+] 5[z ] (5.6)
forall 0 <¢<T and x, € C,, where

M m(2), if m(2)> 1,
M}l:{ RVm(P). it m(2)> (5.7)

Nm(2), if m(2)<1.

(Here, m denotes the Lebesgue measure in RV .) Also, from (A7)(2), we

obtain that

1
i 500, ) i 0. Dz < M| [ 1500, 2)- 0,2

forall 0 <¢ < T and x,, y, € C,. Next, using (A8)(1) together with Holder
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inequality, we observe that

5, t, ) (d
[P CERTCRICE] P

1

| [, ]2 P2 2 20 z)(dy)fdzr

1
_ 2 .
T [ 27200 2 ) it 2|

IA

1
_ 5 3
S5 [ ] iy 11 120 g i 2) @00

< Mp,Nm(2)\[ u(0) [,2

< MpAm(@)(1+ J|p@) [,2), YO<t<T,ne P2(H). (59

Also, invoking (A8)(2) enables us to see that for all u, v € @, (H),

- ILz(@)FZ(t’ 5 ), ) = v, ) (dy)

Ja(o) P2l @)= [ 5 g Fole 1@,

< [p(u@), v() [ 2(a)
< m(D) p(u(z), v(2)), VO <t <T. (5.10)

Combining (5.6) and (5.9), we see that f; satisfies (A2)(a) with
Wi = 2 max{¥, (@), M°F},

and combining (5.7) and (5.10), we see that f; satisfies (A2)(b) with

A7f1 = max{M g, Vm(2)}.
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Thus, we can invoke Theorem 3.3 to conclude that (5.1) has a unique mild

solution x € X , with probability law {u(z) : 0 < ¢ < T}. O

Example 5.3. Consider the following initial-boundary value problem of
Sobolev type:

o(x(t, z) — ax_,(t, z))ot
_ [szz 2 Rz a2 [

+ g(t, 2)dB"(¢) a.e. on (0, T)x (-1, 1),
x(t, z) =0 a.e.on (0, T)x (-1, 1),
x(t, z) = &(t, z) a.e.on —r <t <0,

Fy(t, 2. y)ul, z)(dy)jar

(5.11)
where x:[0, T]x(-1,1) > R, F:[0,T]x(-,1)xR >R and F, :
[0, T]x (=1, 1) x I2(~1, 1) > I*(~1, 1) satisfy (A7) and (A8), pn(s,-)e
9,2 (L2(-1,1)), g:[0, T]x (-1, 1) > &(R, L*(~1, 1)) is a bounded, strongly
measurable mapping, {B’!(t): 0 < < T} is a real fBm, and «, P are real,
positive constants. We have the following theorem.

Theorem 5.4. Under the above assumptions, (5.11) has a unique mild

solution x € Xt 5, provided that 4TM21 <1.

fi

Proof. Define H = [2(-1,1), K =R, and define the operators A : D(A4)
c H — H and B : D(B) ¢ H — H, respectively, by

Ax(t’ ) = _szz(ta ')5 Bx(t’ ) = x(ta ) - O(‘xzz(ta ) (5.12)
with domains

D(A) = D(B)

={xe I? (-1, 1) : x, x, are absolutely continuous,
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x,, e I*(-1,1), x(-1) = x(1) = 0}. (5.13)
Define f}, K, and ¢ as in the previous example (with (-1, 1) in place
of I2(2)). Then (5.11) can be written in the abstract form
dv(t) = —ABW(1)dr + fi(t, B Y, w(t))dt + g(t) BT (1), t < (0, T),
w(0) = Bo(1), —r <1 < 0. (5.14)

It is known that B is a bijective operator possessing a continuous inverse
and that —4B~! is a bounded linear operator on I (=1, 1) which generates
a strongly continuous semigroup {S(¢): ¢ > 0} on L*(-1, 1) satisfying (A1)
with M =1 (see [30]). Furthermore, f; can be shown to satisfy (A2)

as in Example 5.1. Consequently, we can invoke Theorem 3.3 (assuming

4TM sz1 <1) to conclude (5.14) has a unique mild solution v e X720

Consequently, x = By is the corresponding mild solution of (5.11). O

6. Numerical Experiments

Consider the interacting stochastic particle system

(o) = | X0+ K X+ 3 A X 0)

o ;IC(t, s)[Flz(t, X+ S R A (t))}ds}dt 6.1

+ g(t)dB" (1), 0<t<T,
X(t)y=¢(t), -r<t<0

for i=1,2,.., M and where BH’I(t), ey BH’M(t) are independent fBms.

Following the approaches given in [32, 31, 35, 6, 7], we have made the

ansatz that the empirical measure,
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1 M
J:

approximates p(¢) in order to relate (1.1) to (6.1). Furthermore, we assumed

that f; and f, from (1.1) are of the form

it 3, w(0)(2) = F (6 %) (2) + J. E5 (1, y) (2)n() () (dy)

*(2)
= Fii(t, Z, X(t -r, Z))

* I 226 VM @) i =12, (62)

where Fli, in are such that f; satisfies (A2).

We are not claiming solutions to (6.1) converge to solutions of (1.1) as
M tends to infinity. This property is commonly referred to as propagation of
chaos and originates with Kac’s Markovian models of gas dynamics [17].
Propagation of chaos has been studied for systems similar to (1.1) [32, 31,
35, 6, 7], but those results applied to stochastic differential equations or
equations driven by Brownian motion. To the authors’ knowledge, there is
no analogous result for an SPDE similar to (1.1). Since we are not providing
such a result to relate (1.1) to (6.1), the examples that follow are meant only

to illustrate solution trajectories of (6.1).

For each i € {l, ..., M}, the mild solutions to (6.1) are given by

t . M .
X'(0)= 5000+ [ S| A xL)+ 37D B X/ (@) |dr
j=1

M
! T 2 i 1 2 '
+| Sl r)jo K(x, s)| F2(s, Xs_r)wlez (s, X/ (s)) |dsdx
J:



Stochastic Integrodifferential Delay Equations Driven by fBm 791

t .
+ J.O S(t—1)g(1)dB™i(x), 0<t<T,

X'(t)=o(t), -r<t<o. (6.3)

In practice, the X d (t)s cannot be computed explicitly and will be
approximated by a discrete-time process X }.(A,, where At is a discretization
step of the time interval [0, T']. To this end, let Az > 0 and c7, ¢, € N be
such that 7 = cpAt and r = c,At. The discrete times are denoted by
ty = kAt, with k € {1, 2, ..., ¢y }. Evaluating (6.3) at the discrete time #;
and using the semigroup property yields

X't 1) = S(AL) X (t.)

M
lk+1 1 i 1 1 i
[ S =0 A X+ 57 2 B X ()
f M p=

M
n jo K(z, s)| F2(s, X;_r)+ﬁZ‘;F2 (s, X7 (s)) |ds |dr
J:

+ g(t)dB™ (1),

X' () =o(r), -r<t<o, (6.4)

for each i € {l, ..., M}. To obtain a viable simulation procedure, we use an
Euler scheme on (6.4) to produce the following algorithm for the discrete-

time process X'
|

X! =S X

M
i 1 wi 1 1 v
" +| F (kA th_r)+MZF2(tk,X () |At

Ik
J=1
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k—1 M
+ ) Kty I60)| B (1AL, Xjag—y) + % D" FF (1A, X7 (Ia0) | Atat
1=0 j=1

+ g(tk)[BH’i([k+l)_BH’i(tk)] , ke {05 L. cr — 1}’

X'n = 0(=IAt), 1€/0, .., ¢} (6.5)

Thus, we approximate (7 ) by the empirical measure

Lo
P () = WZS)?]' :
j=1 %

We present results of numerical experiments corresponding to Examples
5.1 and 5.3. Our objective is to illustrate solutions and provide numerical
evidence for weak convergence of (6.5) to (6.4) with respect to decreasing
the time step size. We perform the numerical simulations using MATLAB

and the compute fractional Brownian motion increments, dBH(tk ), using the

MATLAB function wfbm.m. We denote the length of the synthesized

fractional Brownian motion using wfbm.m by Np.

In the next two examples, we fix H = 0.6, T =1, and At = T/(Np - 1),
where Ny =100. The various approximation errors at 7 = 1 are defined as

follows:
Ey = E| X, | 2(9) ~ Bl X[ 2(9) |-

Ey = | EX; ~EX(1) [ 2(9),

Ey = E| o(X) | 2(g) — El (X (1) 29

B

E4 =] Eg(X)) - Eo(X (1)) [ 2(g): (6.6)

where ¢(u) = u* and E denotes the expectation of the M samples.
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Example 6.1. In Example 5.1, we considered
ox(t, z) = [Azx(t, z2)+ K (¢, z, x(t — r, 2))

g P2l 2 P, 2) (a0

+ g(t, z)dB™ (t) a.e. on (0, T)x 2,
x(t,z)=0a.e.on (0, T)x 2,
x(t, z)=&(t, z) ae.on —r <t <0

(6.7)

and used Theorem 3.3 to conclude that (6.7) has a unique solution. In this
example, we illustrate approximate solutions to the corresponding interacting
stochastic particle system of (6.7) for 2 = (-1, 1). We perform numerical

experiments on two cases of (6.1) with 4, g(¢), and ¢(¢) as defined in (5.2),
(5.4), and (5.5), respectively. Case 1 assumes

1 — 1 2 2
)=l B y) =y, Fuy)=0=Fy), r=10A
and

00)(2) = 3 O b=y

Case 2 is the same as Case 1 except for Flz (¢, y)= e 171 and

g0y = cos()s™ 2SIy

The sine transform on (-1, 1), S, is given by
1 . (kn
S[y](k) = J. 1y(z) sm(T (z + I)sz, keZ,

and S™! denotes the its inverse.

Since it is not practical to calculate the solution to (6.1), we use
the explicit Euler method defined in (6.5) to approximate the solution. We

employ spectral methods to approximate S(Az) using N, interior nodes
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of (-1, 1). We omit the details of spectral methods and decompositions and
refer an interested reader to [34]. In order to compute the errors given in
(6.6), we define the exact solution as the solution to (6.5) for N, = 29,
At = At/4 and M = 1000.

Figures 1 and 2 contain the results of our numerical simulation for
N, =27, M =100 and decreasing time steps: Af, At/2, At/4. Figures
1(a) and 2(a) illustrate the evolution in time of 10 randomly selected sample
paths at z = 0. Figures 1(b) and 2(b) contain the surface plot of the mean
solution to each of the cases. Lastly, Figures 1(c) and 2(c) provide some
numerical evidence for weak convergence as the size of the time step tends to

Z€ro.

Plol of K118, seaga) Surtace plot of mean of X

(a) Sample trajectories at z = 0 (b) Surface plot of mean solution

(c) log(error) vs. log(At)
Figure 1. Example 6.1, Case 1.
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ok of XL, omega Sutace pist of mesn ol X

o1 82 @3 04 0§ B6 07 08 43
'

(a) Sample trajectories at z = 0 (b) Surface plot of mean solution
-23
—CE!
24 P ——E2
- E3
25 /. . — — 4
- ~
o '/', //'/
27 //‘ e
8 ,./'/
9 /,///"
sf o2 <
-3 /
32 =

(c) log(error) vs. log(At)
Figure 2. Example 6.1, Case 2.

Example 6.2. In Example 5.3, we introduced the following initial-
boundary value problem of Sobolev type:

o(x(t, z) — ax_,(t, z))ot
= (szz(t, z2)+ F(t, z, x(t — r, 2))

+ -[Lz(—l,l) (1, z, y)ult, Z)(dJ/)jaf (6.8)
+ g(t, 2)dB™ (¢) a.e. on (0, T)x (-1, 1),

z(¢, z) = 0 a.e.on (0, T) x (-1, 1),

x(t, z) = &(t, z) a.e.on —r <t <0.

Theorem 3.3 was used to conclude that (6.8) has a unique solution.
In this example, we illustrate solutions to the corresponding interacting
stochastic particle system of (6.8). We perform numerical experiments on
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two cases of (6.1) with 4, g(¢) and ¢(¢) as defined as in Theorem 5.4. Case

1 assumes

1 —| 1 2 2
B y)y=el?l, Bl yv)=y, Ft y)=0=Ft y), r=10At

and
§0)(2) = 3 O )l = cos()s™ 528D

Case 2 is the same as Case 1 except for F2(¢, y) = cos(nyt) and

&(2) (z) = sin(¢)sin(nz).
Furthermore, both cases use o = 0.25 and § = 1. As in Example 5.1, we
use spectral methods to approximate S(A¢) and define the exact solution in

the same manner.

Piol of XIL0,ome ga) Sutace plok of mesn of X

048
7~
° / //
[TH f
Vo f
“ %‘“ 7
%—M
(a) Sample trajectories at z = 0 (b) Surface plot of mean solution
25
o~ —El
e it
3 ///
/ el
18 // - -
e -
= e
-4 "/
J’/,/
45 -

(c) log(error) vs. log(At)
Figure 3. Example 6.2, Case 1.
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Surtace plol of mesn of &

Plok of X]1,0, ome ga)

(c) log(error) vs. log(At)

Figure 4. Example 6.2, Case 2.

Figures 3 and 4 contain the results of our numerical simulations for
N, =27, M =100 and decreasing time steps: Az, At/2, Ar/4. Figures 3(a)
and 4(a) illustrate the evolution in time of 10 randomly selected sample paths
at z = 0. Figures 3(b) and 4(b) contain the surface plot of the mean solution

to each of the cases. Lastly, Figures 3(c) and 4(c) provide some numerical

evidence for weak convergence as the size of the time step tends to zero.
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