
 

Far East Journal of Mathematical Sciences (FJMS) 
© 2015 Pushpa Publishing House, Allahabad, India 
Published Online: March 2015 
http://dx.doi.org/10.17654/FJMSMar2015_757_800 
Volume 96, Number 6, 2015, Pages 757-800 ISSN: 0972-0871   

Received: December 16, 2014;  Accepted: February 17, 2015 
2010 Mathematics Subject Classification: 60H05, 60H15, 60H20, 35R09. 
Keywords and phrases: stochastic integrodifferential equation, fractional Brownian motion, 
delay equation. 
The second author was supported by a Goucher College Summer Research Grant. 

Communicated by K. K. Azad 

ABSTRACT STOCHASTIC INTEGRODIFFERENTIAL 
DELAY EQUATIONS DRIVEN BY FRACTIONAL 

BROWNIAN MOTION 

Mark A. McKibben and Micah Webster 

Department of Mathematics 
West Chester University 
25 University Avenue 
West Chester, PA, 19383, U. S. A. 
e-mail: mmckibben@wcupa.edu 

Department of Mathematics and Computer Science 
Goucher College 
1021 Dulaney Valley Road 
Baltimore, MD, 21286, U. S. A. 
e-mail: micah.webster@goucher.edu 

Abstract 

We investigate a class of abstract delay stochastic integrodifferential 
delay equations driven by a fractional Brownian motion (fBm) 
dependent upon a family of probability measures in a separable Hilbert 
space. We establish the existence and uniqueness of a mild solution 
and various convergence and approximation results. Finally, the 
analysis of two examples with numerical experiments is presented to 
provide numerical evidence of weak convergence. 
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1. Introduction 

In this paper, we will initiate an investigation of a class of abstract         
delay integrodifferential stochastic evolution equations driven by fractional 
Brownian motion (fBm) of the general form 
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 (1.1) 

in a real separable Hilbert space H. (By the probability distribution of ( ),tx  

we mean ( ) ( ) ( ){ }( ),,: AA ∈ωΩ∈ω=µ txPt  for each ( ),HB∈A  where 

( )HB  stands for the Borel class on H.) Here, A is a linear (possibly 

unbounded) operator which generates a strongly continuous semigroup 
( ){ }0: ≥ttS  on H; ( )st,K  is a bounded linear operator on H; [ ]Tfi ,0:  

( ) ( ) ( ( )HiHHCr 22 2,1
λλ

℘=→℘××  denotes a particular subset of 

probability measures on )H  are given mappings; [ ] ( )HKTg ,,0: L→  is a 

bounded, strongly measurable mapping (where  K is a real separable Hilbert 

space and ( )HK ,L  denotes the space of Hilbert-Schmidt operators from K 

into H with norm ( ) ),, HKL⋅  { ( ) }0: ≥ttBH  is a K-valued fBm with 

Hurst parameter ;1,2
1






∈H  and ( ) ( )rCLt ;2 Ω∈φ  is an 0F -measurable 

random variable independent of HB  with almost sure continuous paths. (See 
Section 2 for notation and spaces.) 

Stochastic partial functional differential equations with finite delay arise 
naturally in the mathematical modeling of phenomena in the natural sciences 
(see [23, 33, 36]) and have received a significant amount of attention. It has 
been shown that some applications, such as communication networks and 
certain financial models, exhibit a self-similarity property in the sense that 
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the processes ( ){ }Tttx ≤≤α 0:  and { ( ) }Tttx ≤≤α 0:H  have the same 

law (see [4, 6]). Indeed, while the case when 21=H  generates a standard 

Brownian motion, concrete data from a variety of applications have exhibited 
other values of ,H  and it seems that this difference enters in a non-negligible 

way in the mathematical modeling of this phenomena. In fact, since ( )tBH   

is not a semimartingale unless ,21=H  the standard stochastic calculus 

involving the Itó integral cannot be used in the analysis of related stochastic 
evolution equations. There are numerous papers devoted to the formulation 
of stochastic calculus for fBm [13, 24, 28] and differential/evolution 
equations driven by fBm [2, 14, 16, 26]. We provide an outline of only the 
necessary concomitant technical details concerning the construction of the 
stochastic integral driven by an fBm in Section 2. 

Often, a more accurate model of such phenomena can be formulated by 
allowing the nonlinear perturbations to depend on the probability law of the 
state process at time t. A prototypical example in the finite-dimensional 
setting would be an interacting M-particle system in which (1.1) describes 
the dynamics of the particles Mxx ...,,1  moving in the space H in which       

the probability measure ( )tµ  is taken to be the empirical measure ( ) =µ tM  

( ) ( )∑ = δM
k txkM 1 ,1  where ( )txkδ  denotes the Dirac measure. Researchers 

have investigated related models concerning diffusion processes in the  
finite-dimensional case [11, 12, 27]. The infinite dimensional version of  
such models in a Hilbert space setting has only recently been examined      
[1, 20]. The motivation of the present work lies primarily in formulating an  
extension of the work in [1, 8, 15, 19] to a more general class of abstract 
integrodifferential stochastic evolution equations with finite delay, now 
driven by fBm. Since dynamical systems with memory can lead to such 
random integrodifferential equations (cf. [4, 9, 18, 25]), the present 
investigation is warranted. 

The following is the outline of the paper. First, we make precise the 
necessary notation and function spaces, and gather certain preliminary results 
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in Section 2. We then formulate the main results concerning the existence 
and uniqueness of mild solutions to (1.1) in Section 3. Next, considering       
the Yosida approximations of (1.1), two convergence results are established 
in Section 4, while Section 5 is devoted to a discussion of two concrete 
examples (a generalized stochastic heat equation and a Sobolev-type 
stochastic equation). Lastly, in Section 6, we propose a numerical scheme to 
approximate solutions to a special case of (1.1) and illustrate approximate 
solutions to the examples described in Section 5. 

2. Preliminaries 

For details on fBm, stochastic analysis, and abstract differential 
equations, we refer the reader to [2, 3, 5, 10, 22, 30] and the references 
therein. Throughout this paper, K is a real separable Hilbert space with      
norm K⋅  and inner product K⋅⋅,  equipped with a complete orthonormal 

basis { }....,2,1=| je j  Also, ( )P,, FΩ  is a complete probability space. For 

brevity, we suppress the dependence of all random variables on ω throughout 
the manuscript. 

We begin by making precise the definition of a K-valued fBm and related 
stochastic integral used in this manuscript. The approach we use coincides 

with the one formulated and analyzed in [2, 24]. Let { ( ) }∞=≥| 10 jj ttBH  be         

a sequence of independent, one-dimensional fBms with Hurst parameter 
( )1,21∈H  such that for all ...,,2,1=j  the following hold: 

(1) ( ) ,00 =H
jB  

(2) [ ( ) ( )] ,22
jjj stsBtBE ν−=− HHH  

(3) [ ( )] ,01 2 >ν= jjBE H  

(4) ∑∞
= ∞<ν1 .j j  
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In such as case, ( )∑ ∑∞
=

∞
= ∞<ν=1 1

22 ,j j jKjj tetBE HH  so that the 

following definition is meaningful. 

Definition 2.1. For every ,0≥t  ( ) ( )∑∞
== 1j jj etBtB HH  is a K-valued 

fBm, where the convergence is understood in the mean-square sense. 

It has been shown in [2, 16] that the covariance operator of { ( ) :tBH  

}0≥t  is a positive nuclear operator Q such that 

( ) [ ]∑
∞

=

−−+ν=
1

222 .2
1,

j
j stststtrQ HHH  

Next, we outline the discussion leading to the definition of the stochastic 

integral associated with { ( ) }0: ≥ttBH  for bounded, strongly measurable 

functions, as presented in [2, 16]. To begin, assume that [ ] ( )HKTg ,,0: L→  

is a simple function, that is, there exists { } R⊂= nigi ...,,1:  such that 

( ) ,, 1 iii tttgtg ≤≤∀= −  (2.1) 

where Ttttt nn =<<<<= −1100 "  and ( ) .max ,1 Lg HKini =≤≤ L  

Definition 2.2. The H-valued stochastic integral ( ) ( )∫
T

tdBtg
0

H  is 

defined by 

( ) ( ) ( ) ( )∫ ∑ ∫
∞

=






=

T

j

T
jj tdBetgtdBtg

0
1

0
HH  

[ ( ) ( )]∑ ∑
∞

=

∞

=
− 










−=

1 1
1 .

j i
ijijji tBtBeg HH  (2.2) 
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As argued in [2], this integral is well defined since 

( ) ( ) ∑∫
∞

=

∞<ν≤
1

22
2

0
,

j
j

H

T
TLtdBtgE HH  (2.3) 

where the expectation, E, is defined by ( ) ( )∫Ω ω= .dPyyE  

Since the set of simple functions is dense in the space of bounded, 
strongly measurable ( )HK ,L -valued functions, a standard density argument 

can be used to extend Definition 2.2 to the case of a general bounded, 
strongly measurable integrand. Furthermore, the sequence of random 

variables ( ) ( )






 ∈∫

T
jj jtdBetg

0
: NH  are mutually independent, Gaussian 

variables. Therefore, (2.3) yields that the series in (2.2) is an H-valued 
Gaussian process. (See [14] for a more general result.) 

Throughout the rest of the manuscript, ⋅  denotes ( )HH BL,⋅  

represents the space of all bounded linear operators on H, and ( )HL ;2 Ω  

stands for the space of all H-valued random variables y for which 2yE  

.∞<  

The following spaces of measures coincide with those used in [1]; we 
recall them here for convenience. First, ( )HB  stands for the Borel class on 

H and ( )H℘  represents the space of all probability measures defined on 

( )HB  equipped with the weak convergence topology. Let ( ) .1 xx +=λ  

Define the space 





ϕ|→ϕ= andcontinuousis: HHC  

( )
( )

( ) ( ) ,supsup 2




∞<
−
ϕ−ϕ

+
λ

ϕ
=ϕ

∈≠∈ yx
yx

x
x

HyxHx
C  
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and for ,1≥p  let 

( )


 |→=℘

λ
thatsuchonmeasuresignedais: HmHmHs

p R  

 ( ) ( ) ,


∞<λ= ∫λ H

p dxmxm p  

where ,−+ += mmm  −+ −= mmm  is the Jordan decomposition of m. 

Then we can define the space ( ) ( )HH s ℘℘=℘
λλ
∩22  equipped with the 

metric ρ given by 

( ) ( ) ( ) ( ) .1:sup, 2121






 ≤ϕν−νϕ=ννρ ∫H

dxx C  

It is known that ( ( ) )ρ℘
λ

,2 H  is a complete metric space. The space of 

all continuous ( )H2λ
℘ -valued functions defined on [ ],, Tr  denoted =

λ2C  

([ ] ( ( ) )),,;, 22 ρ℘−
λλ

HTrC  is complete when equipped with the metric 

( )
[ ]

( ) ( )( ) .,,,sup, 22121
,

21 λ−∈
∈νν∀ννρ=νν CttD

Trt
T  

Next, let .0>r  We can associate to any continuous, tF -adapted, H-

valued stochastic process ( ) Htz →Ω:  another rC -valued stochastic process 

rt Cz →Ω:  by setting ( ) ( ),stzszt +=  for all 0≥t  and ,0≤≤− sr  

where we denote by [ ]( )HrCCr ;0,=  the space of all continuous functions 

from [ ]0,r  into H, equipped with the sup norm given by 

( ( ) ) .sup 2
12

0
θ=

≤θ≤−
t

r
C zz

r
 (2.4) 

Subsequently, we can define the space 

 { ([ ] ( )) zHLTrCzXT |Ω−∈= ;;, 2
2,  is tF -adapted and },

2,
∞<

TXz  (2.5) 
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which is a Banach space when equipped with the norm 

( ) .sup 2
12

02, rT Ct
Tt

X zEz
≤≤

=  

In addition to the familiar Young, Hölder and Minkowski inequalities, 

the inequality of the form ∑∑ =
−

= ≤




 n

i
m
i

n
mn

i i ama 1
1

1 ,  where ia  is a 

nonnegative constant ( )ni ...,,2,1=  and ,, N∈nm  will be used to establish 

various estimates. Finally, the following integral inequality (see [29]) plays 
an important role in the proofs of certain results. 

Lemma 2.3. Let u, ,1Ψ  2Ψ  and 3Ψ  be nonnegative continuous functions 

defined in +R  and 0u  be a nonnegative constant. If 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ 





 τττΨΨ+Ψ+≤

t t s
dsdusdssusutu

0 0 0 2110  

( ) ( ) ( ) ( )∫ ∫ ∫ 





 τ






 θθθΨτΨΨ+

τt s
dsddus

0 0 0 321  

for all ,+∈ Rt  then 

( ) ( ) ( )












 ττΨΨ+≤ ∫ ∫

t s
dsutu

0 0 110 exp1  

( ) ( ) ( )[ ] 











 τ






 θθΨ+θΨτΨ+× ∫ ∫

τ
dsdd

s

0 0 322 exp1  

for all .R∈t  

We conclude this section with some comments regarding probability 
measures. The probability measure P induced by an H-valued random 

variable X, denoted ,XP  is defined by ( ) [ ].1,0:1 →− HXP BD  A sequence 

( )HPn ℘⊂  is said to be weakly convergent to P if ∫ ∫Ω Ω
→ ,fdPfdPn  for 

every bounded, continuous function ;: R→Hf  in such case, we write 
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.PP
w

n →  Next, a family nP  is tight if for each ,0>ε  there exists a     

compact set εK  such that ( ) ,1 ε−≥εKPn  for all .N∈n  Bergström (see 

[3]) established the equivalence of tightness and relative compactness of a 
family of probability measures. Consequently, the Arzelà-Ascoli theorem can 
be used to establish tightness. 

Definition 2.4. Let ( )HP ℘∈  and .0 21 Tttt k ≤<<<≤ "  Define 

[ ]( ) k
ttt HHTCk →π ;,0:...,,, 21  by ( ) ( ( ) ( ) ( ))....,,, 21...,,, 21 kttt tXtXtXXk =π  

The probability measures induced by kttt ...,,, 21π  are the finite-dimensional 

joint distributions of P. 

Proposition 2.5 (See [22]). If a sequence { }nX  of H-valued random 

variables converges weakly to an H-valued random variable X in ( ),;2 HL Ω  

then the sequence of finite-dimensional joint distributions corresponding to 
{ }nXP  converges weakly to the finite-dimensional joint distribution of .XP  

The next theorem, in conjunction with Proposition 2.5, is the main tool in 
establishing a convergence result in Section 4. 

Theorem 2.6. Let { } ( ).HPn ℘⊂  If the sequence of finite-dimensional 

joint distributions corresponding to { }nP  converges weakly to the finite-

dimensional joint distribution of P and { }nP  is relatively compact, then 

.PP
w

n →  

3. Existence and Uniqueness Results 

We begin by establishing existence and uniqueness of mild solutions to 
(1.1). We impose the following conditions on (1.1), which are assumed 
throughout the manuscript unless otherwise specified: 

(A1) A is the infinitesimal generator of a 0C -semigroup ( ){ }0: ≥ttS  on 

H such that ( ) ( ) ( ),exp tMtS H α≤BL  for all ,0 Tt ≤≤  for some 1≥M  
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and ;0>α  

(A2) [ ] ( ) ( )2,1,0: 2 =→℘××
λ

iHHCTf ri  satisfies 

(a) ( )( ) [ ( ) ],1,, 2λµ++≤µ txMtxtf
ri Ctfti  

(b) 

( )( ) ( )( ) [ ( ) ( )( )],,,,,, ttyxMtytftxtf
ri Cttftiti νµρ+−≤ν−µ  

globally on [ ] ( ),,0 2 HCT r λ
℘××  for some positive constants ifM  and 

;ifM  

(A3) ( ) [ ]{ } ( )HTstst BL⊂∈ ,0,:,K  are such that ( ) ( ) ≤Hst BL,K  

,KM  for all [ ],,0, Tst ∈  for some positive constant ;KM  

(A4) [ ] ( )HKTg ,,0: L→  is a bounded, strongly measurable mapping; 

(A5) { ( ) }0: ≥ttBH  is a K-valued fBm; 

(A6) ( ) ( )rCLt ;2 Ω∈φ  is an 0F -measurable random variable independent 

of HB  with almost sure continuous paths. 

We write ( ) ( ),max0 HTtS tSM BL≤≤=  which is finite by (A1). A mild 

solution to (1.1) is defined as follows. 

Definition 3.1. A continuous stochastic process [ ] HTrx →− ,:  is a 

mild solution of (1.1) if 

(1) ( )tx  is tF -adapted, for each ,Ttr ≤≤−  

(2) ( )∫ ∞<
T

dssx
0

2 ,  almost surely [ ],P  

(3) 

( ) ( ) ( ) ( ) ( )( )∫ µ−+φ=
t

s dssxsfstStStx
0 1 ,,0  
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( ) ( ) ( )( )∫ ∫ ττµττ−+ τ
t t

dsdxfsstS
0 0 2 ,,,K  

( ) ( ) ( ) [ ]∫ ≤≤−+
t

PTtsdBsgstS
0

,surelyalmost,0,H  (3.1) 

(4) ( ) ( ) ,0, ≤≤−φ= trttx  almost surely [ ].P  

The following technical properties involving the stochastic integral 

( ) ( ) ( )∫ −
t

sdBsgstS
0

,H  under assumptions (A1), (A4) and (A5), are used in 

the proofs of the main results in this paper. 

Lemma 3.2. Assume (A1), (A4) and (A5). Then, for all ,0 Tt ≤≤  

 (i) ( ) ( ) ( ) ∑∫
∞
= ν≤− 1

2

0
,j jt

t
CsdBsgstSE H  

(ii) ( ) ( )[ ] ( ) ( ) ,0lim
2

00 =−−−+∫→
t

h sdBsgstSshtSE H  

where tC  is a positive constant depending on ( ){ } LttSt ,0:, ≥  (cf. (2.1)), 

and { }N∈ν jj :  is defined as in the discussion leading to Definition 2.1. 

Proof. Property (i) can be established as in Lemma 6 in [2]. To verify 
property (ii), let Tt ≤≤0  and observe that 

( ) ( )[ ] ( ) ( )
2

0∫ −−−+
t

sdBsgstSshtSE H  

( ) ( )[ ] ( ) ( )
2

1
0∑∫

∞

=

−−−+=
j

t
jj sdBesgstSshtSE H  

( ) ( )[ ] ( ) ( )
2

1
0

2 ∑∫
=

−−−+≤
m

j

t
jj sdBesgstSshtSE H  (3.2) 
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( ) ( )[ ] ( ) ( ) .2

2

1
0∑ ∫

∞

+=

−−−++
mj

t
jj sdBesgstSshtSE H  (3.3) 

The strong continuity of ( ),⋅S  together with (A4), guarantees that (3.2) 

goes to zero as .0→h  To argue (3.3) goes to zero, we must first assume g is 
simple as defined in (2.1). Arguing as in [2] yields the estimate 

( ) ( )[ ] ( ) ( ) ,2
2

0 jt
t

jj tCsdBesgstSshtSE ν≤−−−+∫ HH  (3.4) 

where tC  is defined as in part (i) of this lemma. Using (3.4) in (3.3) yields 

( ) ( )[ ] ( ) ( )
2

1
0∑ ∫

∞

+=

−−−+
mj

t
jj sdBesgstSshtSE H  

∑
∞

+=

∞<ν≤
1

2 .
mj

jttC H  (3.5) 

Therefore, (3.3) goes to zero as .∞→m  As such, property (ii) holds for a 
simple function g. It is not difficult to extend the argument using density           
to a general bounded, strongly measurable function g. This completes the  

proof. 
 

The first result is as follows. 

Theorem 3.3. If (A1)-(A6) hold, then (1.1) has a unique mild solution 

2,TXx ∈  with corresponding probability law ,2λ
∈µ C  provided that 

,121 <α+α  where ,1α  2α  are positive constants independent of T (see 

(3.18)). 

Proof. Let 2λ
∈µ C  be fixed and define the solution map →Φ 2,: TX  

2,TX  by 
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( ) ( ) ( ) ( ) ( ) ( )( )∫ µ−+φ=Φ
t

s dssxsfstStStx
0 1 ,,0  

( ) ( ) ( )( )∫ ∫ ττµττ−+ τ
t s

dsdxfsstS
0 0 2 ,,,K  

( ) ( ) ( )∫ −+
t

sdBsgstS
0

H  

( ) ( ) ( )∑
=

≤≤+φ=
3

1
,0,0

i

x
i TttItS  

( ) ( ) ( ) .0, ≤≤−φ=Φ trttx  (3.6) 

To see that Φ  is well defined, we first verify the ( )HL ;2 Ω -continuity 

of Φ  on [ ].,0 T  Let ,2,TXx ∈  ,0 1 Tt <<  and h  be sufficiently small 

(so that all terms are well defined). Observe that 

( ) ( ) ( ) ( ) 2
11 txhtxE Φ−+Φ  

( ) ( )( ) ( )( ) ( ) ( ) .08
3

1

2
11

2
11












−++φ−+≤ ∑

=i

x
i

x
i tIhtIEtShtSE  (3.7) 

Since the semigroup property enables us to write 

( ) ( )( ) ( )( ) 2
11 0φ−+ tShtSE  

 ( ) ( ) ( )( ) ( ) ( )( ) ,00 2
11 φ−φ= tStShSE  (3.8) 

the strong continuity of ( )⋅S  implies that the right-hand side of (3.8) goes to 

0 as .0→h  Next, using the Hölder inequality along with (A2) yields 

( ) ( )( )
2

11
1

1
,,∫

+
µ−+

ht

t s dssxsfshtSE  

 ( ) [ ( ) ],sup14 22222
2

11
2,1 λ+≤≤

µ++≤ sxhMM
htst

Xsf T
 (3.9) 
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which tends to 0 as .0→h  Also, 

( )[ ] ( ) ( )( )
2

0 11
1 ,,∫ µ−−
t

s dssxsfstSIhSE  

( )[ ] ( ) ( )( ) 





 µ−−≤ ∫

1

0
2

11 ,,
t

s dssxsfstSIhSTE  

( )[ ] ( ) ( ) ( )( )∫ µ−−=
1

0
2

1
2

1 ,,,
t

sH dssxsfEstSIhST BL  (3.10) 

and subsequently, using 

( )( ) [ ( ) ] ∞<µ++≤µ
λ≤≤

2

0
2,

2
1 21 sup1,, sxMsxsf

Ts
Tfs  

and ( ) ( ) ,SH MtS ≤BL  for all t, we can invoke dominated convergence 

theorem in order to use the strong continuity of ( )⋅S  to conclude the middle 

term of (3.10) goes to 0 as .0→h  Since ( ) ( ) 2
1111 tIhtIE xx −+  is 

dominated by a sum of constant multiples of the right-sides of (3.9)-(3.10), 
we conclude it goes to 0 as .0→h  

As is the argument for ( ) ( ) ,2
1111 tIhtIE xx −+  (A2)-(A3) imply 

( ) ( ) ( )( )
2

0 11
1

1
,,,∫ ∫

+
τ ττµττ−+

ht

t

s
dsdxfsshtSE K  

( ) ( )2
1

2
1

2 332 1 hhtthMMM sf ++≤ K  

[ ( ) ],sup1 22
2

11
2, λ+≤≤

µ++× sx
htst

XT
 (3.11) 

which tends to 0 as .0→h  Also, 

( )[ ] ( ) ( ) ( )( )
2

0 0 11
1 ,,,∫ ∫ ττµττ−− τ
t s

dsdxfsstSIhSE K  

( )[ ] ( ) ( ) ( )( ) 









ττµττ−−≤ ∫ ∫ τ

1

0

2

0 11 ,,,
t s

dsdxfsstSIhSTE K  
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( )[ ] ( ) ( ) ( ) ( )( )∫ ∫ 





 ττµττ−−≤ τ

1

0 0
2

1
2

1 ,,,,
t s

H dsdxfsEsstSIhST KBL  

 (3.12) 

for which dominated convergence theorem applies by (A2)-(A3), and thus 
the strong continuity of ( )⋅S  concludes the middle term of (3.12) goes to 0 as 

.0→h  Since ( ) ( ) 2
1212 tIhtIE xx −+  is dominated by a sum of constant 

multiples of the right-sides of (3.11)-(3.12), we conclude it goes to 0 as 
.0→h  

It remains to show 

( ) ( ) 02
1313 →−+ tIhtIE xx  

as .0→h  Observe that 

( ) ( ) 2
1313 tIhtIE xx −+  

( ) ( ) ( ) ( ) ( ) ( )
2

0 0 11
1 1
∫ ∫

+
−−−+=

ht t
sdBsgstSsdBsgshtSE HH  

( ) ( ) ( )∫
+

−+=
ht

t jj sdBesgshtSE
1

1
1

H  

( ) ( )[ ] ( ) ( )
2

0 11
1
∫ −−−++

t
sdBsgstSshtS H  

( ) ( ) ( )
2

1
1

1

1
2 ∑∫

∞

=

+
−+≤

j

ht

t jj sdBesgshtSE H  

( ) ( )[ ] ( ) ( )
2

0 11
12 ∫ −−−++
t

sdBsgstSshtSE H  (3.13) 
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where that 

( ) ( ) ( )
2

1
1

1

1
∑∫
∞

=

+
−+

j

ht

t jj sdBesgshtS H  

 ( ) ( ) ( ) .

2

1
0 11∑∫

∞

=

−+−+=
j

h
jj uhtdBeuhtguS H  (3.14) 

Using the property [ ( ) ( )] jjj sttBsBE ν−=− HHH 22  with hts += 1  

and 1tt =  enables us to conclude the right-side of (3.14) goes to 0 as 

.0→h  By Lemma 3.2(ii) and (3.14), the right-side of (3.13) goes to 0 as 

,0→h  and therefore, we have shown ( ) ( ) 02
1313 →−+ tIhtIE  as 

.0→h  Consequently, we can conclude from (3.7) that Φ  is ( )HL ;2 Ω -

continuous on [ ].,0 T  

Next, to see that ( ) ,2,2, TT XX ⊂Φ  let 2,TXx ∈  and [ ].,0 Tt ∈  Since 

( ),;2
rCL Ω∈φ  it follows that 

 { ( ) ( ) } .0:sup 2

0
∞<≤θ+≤−θ+Φ

≤θ≤−
trtxE

r
 (3.15) 

For all 0≤θ≤r  for which ,0>θ+t  standard computations involving 

the Hölder inequality, (A1)-(A5), and Lemma 3.2(i) yield the following 
estimates: 

( ( ) ( ) ) ,0sup 222

0 rCs
r

MtSE φ≤φθ+
≤θ≤−

 

( ( ) ) ( ) [ ( ) ],sup14sup 2

0

222
1

0
22,1 λ≤θ≤≤θ≤−

θµ++≤θ+
T

Xfs
x

r T
xMTMtIE  

( ( ) ) ( ) [ ( ) ],sup14sup 2

0

222
2

0
22,2 λ≤θ≤≤θ≤−

θµ++≤θ+
T

Xfs
x

r T
xMMTMtIE K  



Stochastic Integrodifferential Delay Equations Driven by fBm 773 

( ( ) ) ( ) ∑
∞

=≤θ≤−
ν≤θ+

1

222
3

0
.sup

j
js

x

r
TLMtIE H  

Using these estimates and (3.6), we conclude that 

{ ( ) ( ) } .0:sup 2

0
∞<≤θ+≤θ+Φ

≤θ≤−
TttxE

r
 (3.16) 

Thus, (3.15) and (3.16) imply that ( ) ,2 ∞<Φ
rCtxE  for all [ ],,0 Tt ∈  so 

that .2,TXx ∈Φ  Since the tF -measurability of ( ) ( )txΦ  is easily verified, 

we conclude that Φ  is well defined. 

Next, we show that Φ  has a unique fixed point. For any ,, 2,TXyx ∈  

(3.6) implies that 

( ) ( ) ( ) ( ) .sup4
3

1

2

0

2






















θ+−θ+≤Φ−Φ ∑

=≤θ≤− i

y
i

x
i

r
Ctt tItIEyxE

r
 

Standard computations yield 

( ) ( ) ( )
 +θ−≤Φ−Φ ∫ θθ

t
fCfsCtt MMTdyxEMTMyxE

rr 0
22222

21
4 K  

.0,
0 0

2 TtddyxE
t

Cr
≤≤

θτ−× ∫ ∫
θ

ττ  (3.17) 

To prove that NΦ  is a strict contraction, for some N, we proceed in two 

cases. First, if ,1≤T  then ,12 ≤T  so that we can continue (3.17) to obtain 

( ) ( ) 2
rCtt yxE Φ−Φ  

 ∫ ∫ ∫
θ

ττθθ θτ−α+θ−α≤
t t

CC ddyxEdyxE
rr0 0 0

2
2

2
1 ,  (3.18) 

where 22
1 1

4 fs MM=α  and ( )22 24 KMMM fs=α  are independent of T. 
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Inductively, it can be shown that for each ,1≥n  that is 1, +−α njn  is the 

( )1+− nj th term of the quantity ( ) ,21
nα+α  then 

( ) ( ) ,!
2

2

1,
2

2,Tr X

n

nj

j
njnCtt yxj

tyxE −












α≤Φ−Φ ∑

=
+−  

and subsequently, after taking the supremum over [ ],,0 T  

( ) ( ) 2
2,TXtt yx Φ−Φ  

 .!
22

2

1, 2,2, TT XnX

n

nj

j
njn yxzyxj

T −=−












α≤ ∑

=
+−  (3.19) 

Clearly, 01, →α +−njn  as ,∞→n  for all ,1→j  and ∑ = +−αn
nj njn

2
1,  

,1≤  for all ,1≥n  since 121 <α+α  by assumption. Since ( )!lim jT j
j ∞→  

,0=  for all T, it follows from [21, Theorem 4, p. 74] that 0→nz  as 

.∞→n  Thus, there is an N∈N  such that ,1<Nz  thereby showing NΦ  is 

a strict contraction (cf. (3.19)). Now suppose ,1>T  so that 12 >T  and 
continuing (3.17) yields 

( ) ( ) 2
rCtt yxE Φ−Φ  

,0,
0 0 0

2
2

2
1

2 TtddyxEdyxET
t t

CC rr
≤≤



 θτ−α+θ−α≤ ∫ ∫ ∫

θ
ττθθ  

so that reasoning as above leads to 

( ) ( ) .222
2,2, TT XnXtt yxTzyx −≤Φ−Φ  

Therefore, we can deduce that there is an N∈∗N  such that ,1 2Tz
N

<∗  

again showing 
∗

ΦN  is a strict contraction. Thus, for a given 2λ
∈µ C  and 
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,0>T  Φ  has a unique fixed point .2,TXx ∈µ  Since ( ) ( ) ( )ttx φ=Φ µ  by 

(3.6), for ,0≤≤− tr  we conclude the µx  is a mild solution of (1.1). 

To complete the proof, we must show that µ is the probability law of .µx  

Toward this end, let ( ) { ( ( )) [ ]}Trttxx ,: ∈= µµ LL  represent the probability 

law of µx  and define the map 22:
λλ

→Ψ CC  by ( ) ( ).µ=µΦ xL  It is not 

difficult to see that ( ( )) ( ),2 Htx
λµ ℘∈L  for all [ ]Trt ,∈  since 2,TXx ∈µ  

and ( ).;2
rCL Ω∈φ  Now, to verify the continuity of the map ( ( )),txt µ→ L  

first let 0≤≤ cr  and take 0>h  small enough to ensure that hcr +≤  

.0≤  For all such c, 

( ) ( ) ( ) ( ) 022 →φ−+φ=−+ µµ chcEcxhcxE  as 0→h  (3.20) 

by assumption. Next, for ,0 Tc ≤≤  note that for sufficiently small ,0>h  

( ) ( ) 2cxhcxE µµ −+  

( ) ( )( ) ( ) ( ) ( ) .08
3

1

22












−++φ−+≤ ∑

=

µµ

i

x
i

x
i cIhcIEcShcSE  (3.21) 

An argument similar to the one used to verify the continuity of Φ  can be 
used to then deduce from (3.20)-(3.21) that 

( ) ( ) .,0lim 2
0

TcrcxhcxE
h

≤≤−∀→−+ µµ
→

 

Consequently, since for all [ ]Trc ,−∈  and ,2λ
∈ϕ C  it is the case that 

( ) ( ( ( )) ( ( ))) ( )∫ µµ −+ϕ
H

dxcxhcxx LL  

[ ( ( )) ( ( ))]∫Ω µµ ωωϕ−ω+ϕ= dcxhcx ;;  
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[ ( ( )) ( ( ))]cxhcxE µµ ϕ−+ϕ=  

( ( )) ( ( )) ,cxhcxE µµ ϕ−+ϕϕ≤ C  

and so we conclude that 

( ( ( )) ( ( )))cxhcx µµ +ρ LL ,  

( ) ( ( ( )) ( ( ))) ( )∫ →−+ϕ= µµ
≤ϕ H

dxcxhcxx 0sup
1

LL

C

 as ,0→h  (3.22) 

for any [ ]., Trc −∈  Hence, ( ( ))txt µL6  is a continuous map, so that 

( ) .2λµ ∈ CL x  This shows that Ψ  is well-defined. 

Lastly, we show that Ψ  has a unique fixed point in .2λ
C  Let 2,

λ
∈νµ C  

and let ,µx  νx  be the corresponding mild solutions of (1.1). Standard 

computations produce 

( ) ( ) 2
tt xxE νµ −  

( ) ( )∫ θ−≤ θνθµ
t

C dxxEC
r0

2
1  

( ) ( ) ( )∫ ∫
θ

νµ ≤≤νµ+θτ−+
t

TCtt TtDCddxxEC
r0 0

2
3

2
2 ,0,,  

where 

( ) ,16 2
1 1fS MMTC =  

( ) ,16 2
2 2 KfS MMTMC =  

.2
213 TCTCC +=  

Hence, applying Lemma 2.3 and then taking the supremum over [ ]T,0  

yields 
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 ( ),,22
2,

νµζ≤− νµ TTX Dxx
T

 (3.23) 

where ( ) ( )( )[ ] ( )( ).exp1exp1 21213 TTTCCTCCCT ++++=ζ  We can 

choose T small enough so that ;1<ζT  denote such a T by .∗T  Since 

( ( ( )) ( ( ))) ( ) ( ) ,,, TtrtuxtxEtxtx n ≤≤−∀−≤ρ µνµ LL  

we have 

( ) ( ) ( ) ( )( )
[ ]

( ) ( ) 2

,

22 sup
2

txtxED
TrtT νµ

−∈
−≤νΨ−µΨ=νΨ−µΨ

∗
∗

λ
C  

( )νµζ<−= ∗∗νµ ,22
2, TTX Dxx

T
 

by (3.23), so that Ψ  is a strict contraction on ([ ] ( ( ) )).,;, 22 ρ℘−
λ

∗
λ

HTrC  

Thus, (1.1) has a unique mild solution on [ ]∗T,0  with probability distribution 

([ ] ( ( ) )).,;, 22 ρ℘−∈µ
λ

∗
λ

HTrC  

Due to continuity, this process can be repeated finitely many times to extend 
the solution to the entire interval [ ],,0 T  thereby completing the proof. 
 

4. Convergence Results 

For each ,1≥n  consider the Yosida approximation of (1.1) given by 

( ) ( ) ( ) ( ( ) ( ))

( ) ( ) ( ( ) ( ))

( ) ( ) ( )
( ) ( ) ( )
( ) ( )
















=µ
≤≤−φ=

≤≤+





µ+





µ+=

∫

,ofondistributiyprobabilit
,0,;

,0,;

,,;,

,;

0 2

1

txt
trtAnnRtx

TttdBtgAnnR

dtdssxsfAnnRstK

txtfAnnRtAxtdx

nn

n

t
sn

tnnn

H
 (4.1) 

where ( ) ( ) 1; −−= nAIAnR  is the resolvent operator of A. Assuming 21, ff  
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and K are such that the assumptions of Theorem 3.3, one can invoke the same 
theorem to deduce that (4.1) has a unique mild solution 2,Tn Xx ∈  with 

probability law .2λ
∈µ Cn  The following convergence results holds. 

Theorem 4.1. Let x denote the unique mild solution of (1.1) as 
guaranteed by Theorem 3.3. Then the sequence of mild solutions of (4.1) 
converges to x in 2,TX  as .∞→n  

Proof. Observe that 

( ) ( ) 2θ+−θ+ txtxE n  

( ) ( )( ) ( )



φ−θ+≤ 20;8 IAnnRtS  

( ) ( ( ) ( )) ( )( )∫
θ+

µ−µ+
t

snsns dssxsfsxsfAnnRETM
0

2
11

2 ,,,,;  

( )2TMM s K+  

( ) ( ( ) ( )) ( )( )∫ ∫
θ+

ττ ττµτ−τµτ×
t s

nn dsdxfxfAnnRE
0 0

2
22 ,,,,;  

( ) ( )[ ] ( ) ( )





−−θ++ ∫

θ+ 2

0
;

t
sdBsgIAnnRstSE H  

( ) ( )( ) ( ) ( ) .0;8
6

4

2












θ++φ−θ+= ∑

=i
i tIIAnnRtS  (4.2) 

Standard computations lead to 

( ) [ ( )( ) ( ( ) ( ))∫
θ+

µ−≤θ+
t

nsns sxsfIAnnRETMtI
0

2
1

2
4 ,,;  

( ( ) ) ( ) ( )( )] ,,2 222
1

dsssxxEM nCssnf r
µµρ+−+  (4.3) 
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for all .0 Tt ≤≤  Furthermore, the triangle inequality and (A2) imply 

( )( ) ( ( ) ( ))∫
θ+

µ−
t

nsn dssxsfIAnnRE
0

2
1 ,,;  

( ) ( )[ ( ( )∫ −−≤
t

CssnfH r
xxEMIAnnR

0
222

1
2;2 BL  

( ) ( )( ) ( ( )( ) ))] .0,,,, 2
1

2 TtdssxsfEss sn ≤≤µ+µµρ+  (4.4) 

The boundedness ( ( )( ) )2
1 ,, sxsfE s µ  independent of n, together with 

the strong convergence of ( )AnnR ;  to the zero operator, allows us to infer 

that the right-side of (4.4) goes to 0 as .∞→n  Similar computations lead to 

( )θ+tI5  

( ) ( )( ) ( ( ) ( ))∫ ∫
θ+

τ
 τµτ−≤

t s
nns xfIAnnRETMM

0 0
2

2
2 ,,;2 K  

( ( ) ) ( ) ( )( ) ,,2 222
2

τ
τµτµρ+−+ ττ dsdxxEM nCnf r

 (4.5) 

for all ,0 Tt ≤≤  and using Lemma 3.2(i) yields 

( ) ( ) ( ).;sup 2

10
6 H

j
jt

Tt
IAnnRCtI BL−













ν≤θ+ ∑

∞

=≤≤
 (4.6) 

Using (4.3)-(4.6) in (4.2) gives rise to an inequality of the form 

( ) 2
rCttn xxE −  

( ) ( )∫ ∫ ∫ τ−β+−β+β≤ ττ
t t s

nCssnn dsdxxEdsxxE
r0 0 0

23221 ,  (4.7) 

where 1
nβ  is a constant multiple of ( ) ( )HIAnnR BL−;  and ( )3,2=β ii  

are independent of n, yet depend explicitly on ,ifM  ,KM  SM  and T 
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( ).2,1=i  By Lemma 2.3 and taking the supremum of (4.7) over [ ]T,0  

yields 

[ ( ) ( ( ))],exp1exp1 33221
2,

TTTTxx nXn T
ββ+ββ+β≤−  for all .1≥n  (4.8) 

Since the right-side of (4.8) goes to 0 as ,∞→n  we have the conclusion. 
 

Corollary 4.2. The sequence of probability laws nµ  corresponding to 

the mild solutions nx  of (4.1) converges in 2λ
C  to the probability law µ 

corresponding to the mild solution x of (1.1) as .∞→n  

Proof. This follows from the fact that 

( ) ( ) ( )( ) ( ) ( ) 2

0

2

0

2 sup,sup, txtxEttD n
Tt

n
Tt

nT −≤µµρ=µµ
≤≤≤≤

 

0
2,
→−≤

TXn xx  as .∞→n  (4.9) 

Remark 4.3. We observe for later purposes that Corollary 4.2 implies 
that 

( ) .supsup 2
2 ∞<µ
λ≤≤−∈

sn
Tsrn N

 

Theorem 4.4. In addition to the assumptions of Theorem 4.1, if ∈φ  

( ),,4
rCL Ω  then 

 x
w

x PP n →  as .∞→n  (4.10) 

Proof. We will show that { }∞=1nxnP  is relatively compact by using the 

Arzelà-Ascoli. Throughout the proof, iC  will denote a suitable positive 

constant. First, we show that { }nx  is uniformly bounded in ,2,TX  that is, 

( ) .supsup 2

0
∞<

≤≤∈ rCtn
Ttn

xE
N
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For ( ],,0 Tt ∈  the mild solution of nx  is given by the variation of 

parameters formula 

( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ))∫ µ−+φ=
t

nsnn dssxsfAnnRstSAnnRtStx
0 1 ,,;0;  

( ) ( ) ( ) ( ( ) ( ))∫ ∫ ττµττ−+ τ
t s

nn dsdxfAnnRsstS
0 0 2 ,,;,K  

( ) ( ) ( ) ( )∫ −+
t

sdBsgAnnRstS
0

; H  

( ) ( ) ( ) ( )∑
=

+φ=
9

7
,0;

i
i tIAnnRtS  (4.11) 

and when ,0≤≤− tr  the mild solution is given by ( ) ( ) ( ).; tAnnRtxn φ=  

Let [ ].,0 Tt ∈  For all 0≤θ≤−r  for which ,0≤θ+t  we have 

{ ( ) }0:supsup 2

0
≤θ+≤−θ+

≤≤∈
trtxE n

Ttn N
 

{ ( ) ( ) } ,0:;supsup 2

0
∞<≤θ+≤−θ+φ=

≤≤∈
trtAnnRE

Ttn N
 (4.12) 

since ( )AnnR ;  is contractive, for all n. Next, let 0≤θ≤−r  be such that 

.0 Tt ≤θ+≤  We consider each of the four terms in (4.11) separately. First, 

 ( ) ( ) ( ) ( ) .00; 222
rr CSC MAnnRtSE φ≤φθ+  (4.13) 

Standard computations, taking into account (A1), (A2), and Remark 4.3, lead 
to 

 ( ) ( ) ( ) 



 +≤θ+ ∫

θ+t
CsnfSC dsxETCMMTtIE

rr 0
2

1
22

7 12  (4.14) 

for some positive 1C  independent of n. Similarly, there exists 02 >C  

independent of n such that 
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( ) ( ) ( ) .2
0 0

2
2

222
8 1 



 τ+≤θ+ ∫ ∫

θ+
τ

t s
CnfSC dsdxECTMMTMtIE

rr K  

 (4.15) 

Using Lemma 3.2(i) and the contractivity of ( ),; AnnR  there exists a 

positive constant 3C  independent of n such that 

 ( ) .3
2

9 CtIE ≤θ+  (4.16) 

Combining (4.13)-(4.16) with (4.11), there exist positive constants ,4C  

65, CC  independent of n such that 

( ) ( ) ( )∫ ∫ ∫ τ++≤ τ
t t s

CnCsnCtn dsdxECdsxECCxE
rrr 0 0 0

2
6

2
54

2 ,  

which by Lemma 2.3 shows the uniform boundedness of { }nx  in .2,TX  

Next, we establish equicontinuity by showing for every N∈n  and ≤−r  

Tts ≤≤  as ,0→− st  we have 

( ) ( ) ,04 →− sxtxE nn  independent of n. 

If ,0≤≤≤− tsr  note that 

( ) ( ) ( ) ( ) ( )[ ] 0; 44 →φ−φ=− stAnnREsxtxE nn  

independent of n, since ( )rCL ,4 Ω∈φ  and ( )AnnR ;  is contractive, for all 

n. Now consider .0 Tts ≤≤≤  Since ( ){ }0: ≤ttS  is a semigroup, 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )





 φτ≤φ− ∫

t

s
AnnARSEAnnRsStSE 0;0; 4  

( ) ( ) ,0 4444 stEMM AS −φ≤  (4.17) 
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where ( ) ( ).; HA AnnARM BL=  Also, 

( ) ( ) 4
77 sItIE −  

( ) ( )[ ] ( ) ( ( ) ( ))

 ττµττ−−τ−≤ ∫ τ

s
nn dxfAnnRsStSE

0 1 ,,;  

( ) ( ) ( ( ) ( ))
4

1 ,,; 

ττµττ−+ ∫ τ

t

s nn dxfAnnRtS  

( ) ( ) ( ( ) ( ))

 ττµτ≤ ∫ ∫

τ−

τ− τ
s t

s nn dudxfAnnARuSE
0 1 ,,;  

[ ( ) ]( )
4

0
2

2,1 sup1 



−µ+++ λ

≤≤
sttxMM n

Tt
XfS T

 

[ ( ) ]( )



−µ++≤ λ

≤≤
sttxMTMME n

Tt
XfAS T

2
2,1

0
sup1  

[ ( ) ]( )
4

0
2

2,1 sup1 



−µ+++ λ

≤≤
sttxMM n

Tt
XfS T

 

( ) ,4
7 stC −=  (4.18) 

where 7C  is independent of n by Remark 4.3. Similarly, 

 ( ) ( ) ( ) .4
8

4
88 stCsItIE −≤−  (4.19) 

Clearly, (4.17)-(4.18) tends to zero as .0→− st  It remains to show 

( ) ( ) 04
99 →− sItIE  

as .0→− st  Observe that 

( ) ( ) 4
99 sItIE −  

( ) ( )[ ] ( ) ( ) ( )




τττ−−τ−≤ ∫

4

0
;4

s
dBgAnnRsStSE H  
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( ) ( ) ( ) ( ) .;
4






ττ−+ ∫

t

s
dBgAnnRttSE H  (4.20) 

Since ( ) ( ),HtS BL∈  for all 0≥t  and ( )AnnR ;  is contractive, the 

stochastic integrals in (4.20) are Gaussian processes. Therefore, we can use 
the moment formula for a Gaussian process along with the estimates 
established in Theorem 3.3 (see (3.13), (3.14), and Lemma 3.2) to conclude 
that the right-side of (4.20) goes to zero as .0→− st  Thus, the estimates 

(4.17)-(4.20) then yield the equicontinuity of { }.nx  Therefore, we conclude 

the family { }∞=1nxnP  is relatively compact by Arzelà-Ascoli, and therefore 

tight. Hence, by Proposition 2.5, the finite-dimensional joint distribution of 

nxP  converges weakly to ,xP  and so by Theorem 2.6, .x
w

x PP n →  
 

5. Examples 

Example 5.1. Let D  be a bounded domain in NR  with smooth 
boundary .D∂  Consider the following initial-boundary value problem: 

 

( ) ( ) ( )( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( )
( ) ( )















≤≤−ξ=
×=

×+

∂
µ+


 −+∆=∂

∫

,0ona.e.,,
,,0ona.e.0,

,,0ona.e.,

,,,,

,,,,,

2 2

1

trztztx
Tztx

TtdBztg

tdyztyztF

zrtxztFztxztx

L

z

D

D

D
H

 (5.1) 

where [ ] ,,0: R→×DTx  [ ] ,,0:1 RR→××DTF  [ ] ( )DD 2
2 ,0: LTF ××  

( ),2 DL→  ( ) ( ( ),, 2
2 DLt
λ

℘∈⋅µ  [ ] ( ( )),,,0: 2 DD LTg RL→×  and { ( )tBH  

}Tt ≤≤0:  is a real fBm. We impose the following conditions: 

(A7) 1F  satisfies the Carathéodory conditions (i.e., measurable in ( )zt,  

and continuous in the third variable) such that 
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(1) ( ) [ ],1,, 11 zMzytF F +≤  for all ,0 Tt ≤≤  ,D∈y  R∈z  and 

some ,01 >FM  

(2) ( ) ( ) ,,,,, 212111 1 zzMzytFzytF F −≤−  for all ,0 Tt ≤≤  ,D∈y  

R∈21, zz  and some ;01 >FM  

(A8) 2F  satisfies the Carathéodory conditions and 

(1) ( ) ( ) [ ( )],1,, 2222 DD LFL zMzytF +≤  for all ,,0 D∈≤≤ yTt  

( )D2Lz ∈  and some ,02 >FM  

(2) ( ) ( ) ( )DD 22
2 :,, LLytF →⋅  is in ,C  for each ;,0 D∈≤≤ yTt  

(A9) [ ] ( ( )),,,0: 2 DD LTg RL→×  is a bounded, strongly measurable 

function; 

(A10) ξ  is an 0F -measurable random variable independent of HB  with 

almost surely continuous paths. 

We have the following theorem. 

Theorem 5.2. Assume that (A7)-(A10) hold. If ,14 22
1
<fS MTM  then (5.1) 

has a unique mild solution 2,TXx ∈  with probability law { ( ) tt ≤⋅µ 0:,  

}.T≤  

Proof. Let ( )D2LH =  and .NK R=  Define the operator 

 ( ) ( ) ( ) ( ).,,, 1
0

2 DD HHxtxtAx z ∩∈⋅∆=⋅  (5.2) 

It is known that A generates a strongly continuous semigroup ( ){ }0: ≥ttS  

on ( )D2L  (see [30]), so that (A1) is satisfied. Define the maps [ ]×Tf ,0:1  

( ) ,2 HHH →℘×
λ

 [ ] ( )HKTg ,,0: L→  and [ ] ,,0: R××φ DT  respectively, 

by 
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( )( ) ( ) ( )( ) ( ) ( ) ( )
( )

,,,,,,,,, 2 211 ∫ µ+−=µ
DLt dyztyztFzrtxztFztxtf  (5.3) 

( ) ( ) ( ),, ztgztg =  (5.4) 

( ) ( ) ( )., ztzt ξ=φ  (5.5) 

Further, identifying ,021 == fK  we see that (5.1) can be written in the 

abstract form of (1.1). Clearly, (A3)-(A6) are satisfied. We now show that 1f  

(given by (5.3)) satisfies (A2). To this end, observe that from (A7)(1), 

( )( ) ( ) ( )[ ] 2
1

1 ,1,,, 12 



 θ+≤⋅θ⋅ ∫DD dzzxMxtF tFLt  

[ ( ( )
( )

]2
12

21 ,2
D

D
LtF xmM ⋅θ+≤  

[ ( ) ]2
12

rCtF xmM +≤ D  

[ ],1 2
1 rCtF xM +≤ ∗  (5.6) 

for all Tt ≤≤0  and ,rt Cx ∈  where 

 
( ) ( )

( ) ( )





≤

>
=∗

.1if,

,1if,2 1
1

DD

DD

mm

mmM
M F

F  (5.7) 

(Here,  m denotes the Lebesgue measure in ).NR  Also, from (A7)(2), we 

obtain that 

( )( ) ( )( ) ( ) ( ) ( ) 2
1

2
11 ,,,,,,,, 12 



 θ−θ≤⋅θ⋅−⋅θ⋅ ∫DD zyzxMytFxtF ttFLtt  

,1 rCttF yxM −=  (5.8) 

for all Tt ≤≤0  and ., rtt Cyx ∈  Next, using (A8)(1) together with Hölder 
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inequality, we observe that 

( ) ( ) ( )
( ) ( )DD 22 ,,,2

LL
dytytF∫ ⋅µ⋅  

( ) ( ) ( )
( )

2
1

2

22 ,,,















 µ= ∫ ∫D D

dzdyztyztF
L

 

( )
( )

( ) ( )
( )

2
1

2
22 2 ,,, 



 µ≤ ∫ ∫D D DL L

dzdyztyztF  

( ( ) ) ( )
( ) ( )

( )

2
1

2
2 222 ,1 



 µ+≤ ∫ ∫D D DDL LLF dzdyztyM  

( ) ( ) 22 λµ≤ tmM F D  

 ( )( ( ) ) ( ).,0,1 222 HTttmM F λλ ℘∈µ≤≤∀µ+≤ D  (5.9) 

Also, invoking (A8)(2) enables us to see that for all ( ),, 2 H
λ

℘∈νµ  

( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( )DD D 22 2 ,,,,,, 22

LL L
dytytFdytytF∫ ∫ ⋅ν⋅−⋅µ⋅  

( ) ( ) ( )( ) ( )
( )∫ ⋅ν−⋅µ⋅=
D2 ,,,,2L

dyttytF  

( ) ( )( ) ( )D2, Ltt νµρ≤  

( ) ( ) ( )( ) .0,, Ttttm ≤≤∀νµρ≤ D  (5.10) 

Combining (5.6) and (5.9), we see that 1f  satisfies (A2)(a) with 

{ ( ) },,max2 121 FMmMM Ff
∗= D  

and combining (5.7) and (5.10), we see that 1f  satisfies (A2)(b) with 

{ ( )}.,max 11 DmMM Ff =  
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Thus, we can invoke Theorem 3.3 to conclude that (5.1) has a unique mild 
solution 2,TXx ∈  with probability law ( ){ }.0: Ttt ≤≤µ  
 

Example 5.3. Consider the following initial-boundary value problem of 
Sobolev type: 

( ) ( )( )

( ) ( )( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )














≤≤−ξ=
−×=

−×+

∂





 µ+−+β=

∂α−∂

∫ −

,0ona.e.,,
,1,1,0ona.e.0,

,1,1,0ona.e.,

,,,,,,,

,,

1,1 21 2

trztztx
Tztx

TtdBztg

tdyztyztFzrtxztFztx

tztxztx

Lzz

zz

H  

 (5.11) 

where [ ] ( ) ,1,1,0: R→−×Tx  [ ] ( ) RR →×−× 1,1,0:1 TF  and :2F  

[ ] ( ) ( ) ( )1,11,11,1,0 22 −→−×−× LLT  satisfy (A7) and (A8), ( ) ∈⋅µ ,t  

( ( )),1,12
2 −℘
λ

L  [ ] ( ) ( ( ))1,1,1,1,0: 2 −→−× LTg RL  is a bounded, strongly 

measurable mapping, { ( ) }TttB ≤≤0:H  is a real fBm, and ,α  β  are real, 

positive constants. We have the following theorem. 

Theorem 5.4. Under the above assumptions, (5.11) has a unique mild 

solution ,2,TXx ∈  provided that .14 2
1
<fTM  

Proof. Define ( ),1,12 −= LH  ,R=K  and define the operators ( )ADA :  

HH →⊂  and ( ) ,: HHBDB →⊂  respectively, by 

 ( ) ( ) ( ) ( ) ( )⋅α−⋅=⋅⋅β−=⋅ ,,,,,, txtxtBxtxtAx zzzz  (5.12) 

with domains 

( ) ( )BDAD =  

{ ( ) ,continuousabsolutelyare,:1,12
zxxLx −∈=  



Stochastic Integrodifferential Delay Equations Driven by fBm 789 

( ) ( ) ( ) }.011,1,12 ==−−∈ xxLxzz  (5.13) 

Define ,1f  K, and φ  as in the previous example (with  ( )1,12 −L  in place 

of ( )).2 DL  Then (5.11) can be written in the abstract form 

( ) ( ) ( ( )) ( ) ( ) ( ),,0,,, 1
1

1 TttBtgdttvBtfdttvABtdv t ∈+µ+−= −− H  

( ) ( ) .0,0 ≤≤−φ= trtBv  (5.14) 

It is known that B is a bijective operator possessing a continuous inverse   

and that 1−−AB  is a bounded linear operator on ( )1,12 −L  which generates         

a strongly continuous semigroup ( ){ }0: ≥ttS  on ( )1,12 −L  satisfying (A1) 

with 1=sM  (see [30]). Furthermore, 1f  can be shown to satisfy (A2)         

as in Example 5.1. Consequently, we can invoke Theorem 3.3 (assuming  

)14 2
1
<fTM  to conclude (5.14) has a unique mild solution .2,TXv ∈  

Consequently, vBx 1−=  is the corresponding mild solution of (5.11). 
 

6. Numerical Experiments 

Consider the interacting stochastic particle system 

 

( ) ( ) ( ) ( ( ))

( ) ( ) ( ( ))

( ) ( )
( ) ( )














≤≤−φ=
≤≤+








 ++


 ++=

∫ ∑
∑

=−

=−

0,
,0,

,1,,

,1,

,
0 1

2
2

2
1

1
1
2

1
1

trttX
TttdBtg

dtdstXtFMXtFst

tXtFMXtFtAXtdX

i

i

t M
j

ji
rt

M
j

ji
rt

ii

H

K  (6.1) 

for Mi ...,,2,1=  and where ( ) ( )tBtB M,1, ...,, HH  are independent fBms. 

Following the approaches given in [32, 31, 35, 6, 7], we have made the 
ansatz that the empirical measure, 
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( ) ( )∑
=

δ=µ
M

j
tXM jMt

1
,1  

approximates ( )tµ  in order to relate (1.1) to (6.1). Furthermore, we assumed 

that 1f  and 2f  from (1.1) are of the form 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )∫ µ+=µ
D2 ,,,, 21 L

i
t

i
ti dyztzytFzxtFztxtf  

( )( )zrtxztF i ,,,1 −=  

( ) ( ) ( )
( )∫ =µ+
D2 ,2,1,,,,2L

i idyztyztF  (6.2) 

where ,1
iF  iF2  are such that if  satisfies (A2). 

We are not claiming solutions to (6.1) converge to solutions of (1.1) as  
M tends to infinity. This property is commonly referred to as propagation of 
chaos and originates with Kac’s Markovian models of gas dynamics [17]. 
Propagation of chaos has been studied for systems similar to (1.1) [32, 31, 
35, 6, 7], but those results applied to stochastic differential equations or 
equations driven by Brownian motion. To the authors’ knowledge, there is 
no analogous result for an SPDE similar to (1.1). Since we are not providing 
such a result to relate (1.1) to (6.1), the examples that follow are meant only 
to illustrate solution trajectories of (6.1). 

For each { },...,,1 Mi ∈  the mild solutions to (6.1) are given by 

( ) ( ) ( ) ( ) ( ) ( ( ))∫ ∑ τ













ττ+ττ−+φ=

=
−τ

t M

j

ji
r

i dXFMXFtStStX
0

1

1
2

1
1 ,1,0  

( ) ( ) ( ) ( ( ))∫ ∫ ∑
τ

=
− τ














+ττ−+

t M

j

ji
rs dsdsXsFMXsFstS

0 0
1

2
2

2
1 ,1,,K  
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( ) ( ) ( ) ,0,
0

,∫ ≤≤τττ−+
t i TtdBgtS H   

( ) ( ) .0, ≤≤−φ= trttX i  (6.3) 

In practice, the ( ) s’tX i  cannot be computed explicitly and will be 

approximated by a discrete-time process ,i
tkX ∆  where t∆  is a discretization 

step of the time interval [ ].,0 T  To this end, let 0>∆t  and N∈rT cc ,  be 

such that tcT T∆=  and .tcr r∆=  The discrete times are denoted by 

,tktk ∆=  with { }....,,2,1 Tck ∈  Evaluating (6.3) at the discrete time 1+kt  

and using the semigroup property yields 

( ) ( ) ( )k
i

k
i tXtStX ∆=+1  

( ) ( ) ( ( ))∫ ∑+












ττ+ττ−+

=
−τ+

1

1

1
2

1
11 ,1,

k

k

t

t

M

j

ji
rk XFMXFtS  

( ) ( ) ( ( )) τ




















+τ+ ∫ ∑

τ

=
− ddssXsFMXsFs

M

j

ji
rs0

1

2
2

2
1 ,1,,K  

 ( ) ( ) ,,







ττ+ idBg H   

( ) ( ) ,0, ≤≤−φ= trttX i  (6.4) 

for each { }....,,1 Mi ∈  To obtain a viable simulation procedure, we use an 

Euler scheme on (6.4) to produce the following algorithm for the discrete-

time process :
1

i
tk

X
+

 

( ) ( ) ( ( ))






∆











+∆+∆= ∑

=
−+

ttXtFMXtkFXtSX
M

j
k

j
k

i
rt

i
t

i
t kkk

1

1
2

1
1 ,1,

1
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( ) ( ) ( ( ))∑ ∑
−

= =
−∆ ∆∆












∆∆+∆∆+

1

0 1

2
2

2
1 ,1,,

k

l

M

j

ji
rtlk tttlXtlFMXtlFtltK  

( )[ ( ) ( )] { },1...,,1,0,,
1

, −∈






−+ + Tk
i

k
i

k cktBtBtg HH  

( ) { }....,,0, r
i

tl cltlX ∈∆−φ=∆−  (6.5) 

Thus, we approximate ( )kM tµ  by the empirical measure 

( ) ∑
=

δ=µ
M

j
XkM j

kt
Mt

1
.1  

We present results of numerical experiments corresponding to Examples 
5.1 and 5.3. Our objective is to illustrate solutions and provide numerical 
evidence for weak convergence of (6.5) to (6.4) with respect to decreasing 
the time step size. We perform the numerical simulations using MATLAB 

and the compute fractional Brownian motion increments, ( ),ktdBH  using the 

MATLAB function wfbm.m. We denote the length of the synthesized 
fractional Brownian motion using wfbm.m by .TN  

In the next two examples, we fix ,1,6.0 == TH  and ( ),1−=∆ TNTt  

where .100=TN  The various approximation errors at 1=T  are defined as 

follows: 

( ) ( ) ( ) ,1 2211 DD LL XXE EE −=  

( ) ( ),1 212 DLXXE EE −=  

( ) ( ) ( )( ) ( ) ,1 2213 DD LL XXE ϕ−ϕ= EE  

( ) ( )( ) ( ),1 214 DLXXE ϕ−ϕ= EE  (6.6) 

where ( ) 4uu =ϕ  and E denotes the expectation of the M samples. 
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Example 6.1. In Example 5.1, we considered 

 

( ) ( ) ( )( )

( ) ( ) ( )
( )

( ) ( ) ( )
( ) ( )
( ) ( )















≤≤−ξ=
×=

×+

∂
µ+


 −+∆=∂

∫

0ona.e.,,
,,0ona.e.0,

,,0ona.e.,

,,,

,,,,,

2 2

1

trztztx
Tztx

TtdBztg

tdyztyztF

zrtxztFztxztx

H
L

z

D

D

D  (6.7) 

and used Theorem 3.3 to conclude that (6.7) has a unique solution. In this 
example, we illustrate approximate solutions to the corresponding interacting 
stochastic particle system of (6.7) for ( ).1,1−=D  We perform numerical 

experiments on two cases of (6.1) with A, ( ),tg  and ( )tφ  as defined in (5.2), 

(5.4), and (5.5), respectively. Case 1 assumes 

( ) ( ) ( ) ( ) trytFytFyytFeytF y ∆===== − 10,,0,,,,, 2
2

2
1

1
2

1
1  

and 

( ) ( ) ( ) ( )[ ] .,2
1 240 yeytgezt ttz −+− ==φ  

Case 2 is the same as Case 1 except for ( ) yeytF −=,2
1  and 

( ) [ ] ( ) [ ].12
2cos 1 yktytg SS
+

= −  

The sine transform on ( ) ,,1,1 S−  is given by 

[ ] ( ) ( ) ( )∫− ∈




 +π=

1

1
,,12sin ZS kdzzkzyky  

and 1−S  denotes the its inverse. 

Since it is not practical to calculate the solution to (6.1), we use            
the explicit Euler method defined in (6.5) to approximate the solution. We 
employ spectral methods to approximate ( )tS ∆  using zN  interior nodes       
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of ( ).1,1−  We omit the details of spectral methods and decompositions and 

refer an interested reader to [34]. In order to compute the errors given in 

(6.6), we define the exact solution as the solution to (6.5) for ,29=zN  

4tt ∆=∆  and .1000=M  

Figures 1 and 2 contain the results of our numerical simulation for 

,27=zN  100=M  and decreasing time steps: ,t∆  ,2t∆  .4t∆  Figures 

1(a) and 2(a) illustrate the evolution in time of 10 randomly selected sample 
paths at .0=z  Figures 1(b) and 2(b) contain the surface plot of the mean 
solution to each of the cases. Lastly, Figures 1(c) and 2(c) provide some 
numerical evidence for weak convergence as the size of the time step tends to 
zero. 

 

(a) Sample trajectories at 0=z              (b) Surface plot of mean solution 

 

(c) log(error) vs. ( )t∆log  

Figure 1. Example 6.1, Case 1. 
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(a) Sample trajectories at 0=z              (b) Surface plot of mean solution 

 
(c) log(error) vs. ( )t∆log  

Figure 2. Example 6.1, Case 2. 

Example 6.2. In Example 5.3, we introduced the following initial-
boundary value problem of Sobolev type: 

 

( ) ( )( )

( ) ( )( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

















≤≤−ξ=
−×=

−×+

∂

µ+



 −+β=

∂α−∂

∫ −

.0ona.e.,,
,1,1,0ona.e.0,

,1,1,0ona.e.,

,,,

,,,,

,,

1,1 2

1

2

trztztx
Tztz

TtdBztg

tdyztyztF

zrtxztFztx

tztxztx

H
L

zz

zz

 (6.8) 

Theorem 3.3 was used to conclude that (6.8) has a unique solution.        
In this example, we illustrate solutions to the corresponding interacting 
stochastic particle system of (6.8). We perform numerical experiments on 
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two cases of (6.1) with A, ( )tg  and ( )tφ  as defined as in Theorem 5.4. Case 

1 assumes 

( ) ( ) ( ) ( ) trytFytFyytFeytF y ∆===== − 10,,0,,,,, 2
2

2
1

1
2

1
1  

and 

( ) ( ) ( ) ( ) [ ] ( ) [ ].12
2cos,2

1 140 2
yktytgezt tz SS

+
==φ −+−  

Case 2 is the same as Case 1 except for ( ) ( )ytytF π= cos,2
1  and 

( ) ( ) ( ) ( ).sinsin ztzt π=φ  

Furthermore, both cases use 25.0=α  and .1=β  As in Example 5.1, we 

use spectral methods to approximate ( )tS ∆  and define the exact solution in 

the same manner. 

 
(a) Sample trajectories at 0=z               (b) Surface plot of mean solution 

 

(c) log(error) vs. ( )t∆log  

Figure 3. Example 6.2, Case 1. 
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(a) Sample trajectories at 0=z                (b) Surface plot of mean solution 

 

(c) log(error) vs. ( )t∆log  

Figure 4. Example 6.2, Case 2. 

Figures 3 and 4 contain the results of our numerical simulations for 

,27=zN  100=M  and decreasing time steps: ,t∆  ,2t∆  .4t∆  Figures 3(a) 

and 4(a) illustrate the evolution in time of 10 randomly selected sample paths 
at .0=z  Figures 3(b) and 4(b) contain the surface plot of the mean solution 
to each of the cases. Lastly, Figures 3(c) and 4(c) provide some numerical 
evidence for weak convergence as the size of the time step tends to zero. 
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