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Abstract

In the rat, neurochemical, behavioral, and anatomical investigations suggest that medial prefrontal cortical input modulates the activity
of the basal ganglia. To understand how prefrontal dysfunction might alter striatal-accumbens function, in situ hybridization histochem-
istry with S35-labeled oligonucleotide probes was used to assess changes in striatal-accumbens gene expression following bilateral

Ž .excitotoxic ibotenic acid IA lesions of the rat medial prefrontal cortex. Quantitative densitometry was used to measure changes in
Ž . Ž . Ž .mRNA levels for preproenkephalin A ENK , D1 dopamine receptor, protachykinin SubP , glutamic acid decarboxylase GAD65 , and

D2 dopamine receptor. No differences were found between sham and lesion groups for ENK, D1, SubP, or GAD65 mRNA levels in the
Ž .striatum or nucleus accumbens NAC . D2 receptor mRNA levels were, however, significantly higher in the dorsomedial striatum and in

the core area of the NAC of the lesioned rats. Although the functional significance of increased D2 mRNA is unclear, these findings
demonstrate that glutamate mPFC projections modulate gene expression in relatively regionally-localized subcortical neuronal popula-
tions. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Comparatively little is known about the changes in gene
expression induced by disruptions of corticalrstriatal inter-
connections. Using the rat, the present study explores the

Ž .role of the medial prefrontal cortex mPFC in the modula-
tion of gene expression in the striatum and nucleus accum-

Ž .bens NAC . The mPFC innervates both the striatum and
the NAC in a topographically specific manner
w x2,3,5,21,41,50,70 . In the rat, the mPFC, defined by its
connection to the mediodorsal nucleus of the thalamus,
innervates the dorsal aspect of the striatum while the
ventral striatum is innervated by prelimbic and infralimbic

w xfrontal regions 3,5,10,41,70 . Flouro-gold injections into
both the shell and core regions of the NAC produce

w xextensive retrograde neuronal labeling in the mPFC 5 .
Thus, alterations in mPFC activity could alter gene expres-
sion in the striatum and NAC directly. Additionally, the
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mPFC directly modulates mesencephalic dopamine neu-
Ž .rons in the substantia nigra pars compacta SN and ventral

Ž .tegmental area VTA , which in turn send projections to
w xboth the striatum and NAC 14,33,52,73 . Although direct

projections from the mPFC to the SN and VTA are
considerably less numerous than mPFC projections to the

w xstriatum 52 , prefrontal cortex modulates striatal dopamine
release through projections directly onto mesencephalic
dopamine cell groups, rather than at the terminal level

w xwithin the striatum 33 . In all cases, the mPFC output
w xcomes from glutamatergic pyramidal neurons 25 .

Disrupting prefrontal projections to the striatum-accu-
mbens complex may induce both motor and cognitive

w xdeficits 26,64 . The modulatory role of the mPFC on
motor activity has been examined in a number of behav-
io r a l a n d n e u r o c h e m ic a l in v e s t ig a t io n s
w x1,4,7,12,13,15,16,25,27–29,31,35–37,53,57,59–62 . Be-
haviorally, transient increases in spontaneous and am-
phetamine-induced locomotion have been observed in rats

w xwith excitotoxic lesions of the mPFC 28 . Hyperactivity in
lesioned rats also has been observed under novel, open

0006-8993r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved.
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w x Ž .field testing procedures 4 . Ibotenic acid IA lesions of
the mPFC elevate dopamine and its metabolites in the
striatum and NAC of rats exposed to mild subchronic

w xstress 27 , while DA, homovanillic acid, and 3, 4-dihy-
Ž .droxyphenylacetic acid DOPAC levels transiently in-

crease in the anterior portion of the striatum in mPFC
w xlesioned animals 28 . Rats with 6-hydroxydopamine le-

sions of the mPFC show elevated DOPAC levels in the
w xNAC following footshock 15,16 . These findings suggest

that the mPFC inhibits stress-induced motor responses
w xsubserved by subcortical motor pathways 7,16 .

A number of studies demonstrate that changes in ENK,
SubP, and dynorphin mRNA levels often parallel changes
in dopamine-mediated activity in cells found in the stria-

w xtum and NAC 54 . These changes were observed in
striatopallidal and striatonigral neurons following chronic
haloperidol treatment in a rodent model of tardive dyskine-

w xsia 17 , and after 6-hydroxydopamine lesions of the ni-
grostriatal dopamine system in conjunction with apomor-

w xphine treatments 22,23 . In both the striatum and NAC,
GABA-containing type II spiny neurons can be divided
into those that express primarily D1 or D2 mRNA; more-
over, D1 expressing neurons co-express substance P and
dynorphin while D2 cells co-express enkephalin mRNA
w x23 . D1 expressing neurons are part of the striatonigral or
direct pathway, while D2 expressing neurons are thought
to participate in the striatopallidal or indirect pathway.

Therefore, we hypothesized that the mPFC may modu-
late subcortical gene expression in the basal ganglia either
secondarily through synapses upon dopamine neurons in
the midbrain andror dopamine terminals within the stria-
tum, or possibly directly through synapses upon striatal
neuronal elements. It is likely that the mPFC modulates
striatal-accumbens gene expression in a regionally specific
manner than reflects anatomical connectivity. In so far as
alterations in the production of mRNA reflect changes in
the functional activity of neurons in a particular structure
w x17 , in situ hybridization histochemistry semi-quantita-
tively assesses the modulation of neuronal populations by
mPFC input into the striatum-accumbens complex. Pycock

w xet al. 60 demonstrated that damage to the mPFC pro-
duced an increased density of striatal-accumbens dopamine

w xreceptors, while Flores et al. 19 found similar changes in
D2 mRNA expression. Accordingly, we hypothesize that
mPFC lesions should have their primary effect upon D2
mRNA expression within the striatum-accumbens com-
plex.

2. Materials and methods

2.1. Surgery

Ž .Male Sprague–Dawley rats Zivic Miller Labs. , ini-
tially weighing 220–240 g, were maintained under a

Ž .12:12-h lightrdark cycle lights on 0700–1900 with food

and water freely available. Fourteen rats received vehicle
Ž . Ž .infusions sham and 15 rats received IA lesion . Surgery

w xwas performed as previously described 23,33 . Briefly,
Ž .after induction of anesthesia Equithesin 3 mlrkg , rats

Žwere randomly assigned to receive vehicle artificial cere-
. Ž .brospinal fluid, pHs7.4 or IA Sigma, St. Louis, MO

Ž .10 mgrml injections at a rate of 0.2 mlrmin bilaterally
Ž .into the mPFC 5 mgr0.5 ml at AP q3.2 mm, ML "0.7

mm, VD y3.9 mm relative to bregma. The cannulae
remained in place for 3 min after the infusion. After the
operation, the rats were transferred to their home cages and
allowed to recover. Eight lesion and 6 sham animals were
sacrificed 2 weeks after the operation, while 7 lesion and 8
sham animals were sacrificed 6 weeks after surgery. The
extent and location of the lesion was verified in thionin-
stained sections obtained from the frontal portions of the
brains, and five experimental animals were subsequently
excluded from the study because of incomplete or poorly

w xplaced lesions. As described previously 27,35 , the lesion
encompassed the following cortical areas: cingulate cortex
Ž . Ž . Ž .1 Cg1 , cingulate cortex 3 Cg3 , infralimbic cortex IL ,

Ž .and a medial part of the frontal cortex Fr2 in the ante-
Ž .rior–posterior extension 3.2–2.7 mm relative to bregma ,

w xaccording to Paxinos and Watson 58 . Fig. 1 shows the
extent of the lesion along the anterior–posterior dimension.
The lesions largely spared the more posterior aspects of
the mPFC and did not extend into the underlying white
matter.

2.2. Slide preparation

Immediately following decapitation, the rat brains were
removed, frozen in dry ice, and refrigerated at y808C.
Tissue was then sectioned on a cryostat at 20-mm intervals
and thaw-mounted onto gelatin-coated and twice-subbed
glass slides. Slides were collected by placing four consecu-

Žtive coronal sections on two consecutive slides 2 sec-
.tionsrslide , discarding 10 sections, and then repeating

this process through the striatum-accumbens complex. Ten
slides, with 2 consecutive sectionsrslide, per rat were kept
for in situ hybridization, and one slide preceding and one
immediately following the series were retained for histo-
logical purposes in order to match coronal sections be-
tween and within the two groups. The coronal sections
from the midstriatum most closely correspond to Plate 12

Žin the Paxinos and Watson atlas qAP 1.45 relative to
. w xbregma 58 . After mounting, the slides were dried and

stored at y808C.

2.3. In situ hybridization histochemistry

Briefly, in situ hybridization was performed as follows
w x81 : Slides were thawed at room temperature for 10 min,
fixed in 4% formaldehyderphosphate-buffered saline for 5
min, treated with 0.25% acetic anhydride in 0.1 M tri-
ethanolamine HCl for 10 min, and delipidated in a series
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Fig. 1. Representation of the extent of the lesion in rat mPFC along the anterior–posterior dimension. In general, the lesions were more anterior, sparing some of the more posterior aspects, and did not
infringe upon the underlying white matter.
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of solutions with increasing concentrations of ethanol and
Ž . Žchloroform. Hybridization buffer 25 mlrsection 50%

Ž .formamide, 600 mM NaCl, 80 mM Tris–HCl pH 8.0 , 4
mM EDTA, 0.1% sodium pyrophosphate, 0.2% sodium
dodecyl sulfate, 0.2 mgrml sodium heparin, 100 mM

.dithiothreitol, 10% dextran sulfate containing approxi-
mately 5=105 d.p.m. of an oligonucleotide probe, labeled

Žusing terminal deoxynucleotidyl transferase Boehringer
. 35Mannheim, Mannheim, Germany and alpha S -dATP

Ž .New England Nuclear, Boston, MA, 1000 CirmM , com-
plementary to the mRNA of interest, was pipetted onto
each slide.

Antisense oligonucleotide probes were targeted against
w xbases 829–877 for D1 receptor mRNA 49 , 28–75 for D2

w xreceptor mRNA 6,48 , 388–435 of rat preproenkephalin A
w x w xmRNA 79 , 1298–1345 for GAD65 mRNA 71 , and

those encoding the first 16 amino acids of exon 3 of the rat
w xSubP precursor mRNA for Substance P 80 .

After covering with parafilm, the slides were incubated
overnight at 378C. The following day, the parafilm was
removed, and the slides were washed in a series of 1=SSC
at 608C, followed by washes at room temperature. After
rinsing with water and ethanol, the slides were air-dried.
After drying, the slides and appropriate 14C standards
Ž .American Radiochemicals, St. Louis, MO were apposed
to Kodak X-Omatic film, which was exposed for 14–42

days, developed, and scanned into a Macintosh computer
for subsequent quantitative densitometry.

Measurement values for the different brain regions were
interpolated along the standard curve generated by the 14C
standards. Quantitative densitometry was performed on a
Macintosh Quadra 950AV computer using the NIH Image

Žprogram developed by Wayne Rasband at the US Na-
tional Institutes of Health and available from the Internet
by anonymous FTP from zippy.nimh.nih.gov or on floppy
disk from the National Technical Information Service,

.Springfield, Virginia, Part No. PB95-500195GEI . As
shown in Fig. 2, the striatum was divided into dorsal,
dorsomedial, dorsolateral, ventromedial, and ventrolateral
regions, and the NAC was divided into core and shell

w xregions in accordance with previous in situ studies 20,22 .

2.4. Statistics

Separate MANOVAs were performed for each neu-
ropeptide and dopamine receptor subtype mRNA using
lesion status and time after surgery as main effects and
anatomical region as a within subjects factor. In order to
control for multiple comparisons, post-hoc Bonferroni t-

Ž .tests were used Statview 4.0, Abacus Concepts, 1992 .
Criterion for statistical significance after Bonferroni cor-
rection was set at PF0.01 for ENK, D1 dopamine recep-

Fig. 2. Histographic representation of the levels of D2 mRNA in sham vs. lesioned rats across the subregions of the striatal complex, expressed as mCirg
fresh tissue"S.E.M. A lesion effect was seen only for D2 mRNA expression in the dorsomedial striatum and core of the nucleus accumbens.
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tor, SubP, and GAD65 mRNA levels. Results were desig-
nated at trend level between 0.01 and 0.05. For D2
dopamine receptor mRNA levels, criterion for statistical
significance was set at PF0.05, as there was an a priori
hypothesis that lesion status would increase D2 receptor
mRNA levels.

3. Results

The patterns of mRNA expression for the neuropeptides
and dopamine receptor subtypes included in this study

w xwere similar to previous reports 8,9,20,38,39,43–46 . Fig.
2 shows regional variations of D2 receptor subtype gene
expression across the striatum-accumbens complex in sham

and lesion animals at two different time-points. D2 recep-
tor mRNA levels showed a dorsal–ventral gradient, high-
est in the dorsal and dorsolateral striatum and lowest in the
NAC. In contrast, D1 receptor mRNA levels were rela-
tively homogenous. SubP mRNA levels were heteroge-
neous, highest in the dorsolateral striatum and NAC shell,
and lowest in the NAC core. GAD65 mRNA levels were
highest in the NAC and lowest in the dorsal regions of the
striatum. ENK mRNA levels also showed an inverse gradi-
ent, highest in the NAC core and shell and ventrolateral
striatum, and lower more dorsally.

As Table 1 indicates, IA lesions of the mPFC produced
an elevation in striatal D2 dopamine receptor mRNA, but
did not appear to alter striatal or NAC levels of SubP,
GAD65, ENK, or D1 dopamine receptor mRNA. A signifi-

Table 1
Relative distribution of mRNA expression for enkephalin, substance P, D2 receptors, GAD65, and D1 receptors in the striatal complex of normal and
lesioned rats

Sham Lesion

Two weeks Six weeks Two weeks Six weeks

Dopamine receptor subtype 2 mRNA
Dorsomedial STR 0.0549"0.0037 0.0491"0.0032 0.0628"0.0067) 0.0668"0.0087)

Dorsal STR 0.0714"0.0036 0.0544"0.0047 0.0668"0.0089 0.0796"0.0097
Dorsolateral STR 0.0692"0.0057 0.0554"0.0055 0.0736"0.0099 0.0712"0.0075
Ventrolateral STR 0.0719"0.0045 0.0541"0.0037 0.0681"0.0081 0.0693"0.0079
NAC core 0.0475"0.0023 0.0434"0.0022 0.0596"0.0072) 0.0528"0.0042)

NAC shell 0.0464"0.0036 0.0452"0.0024 0.0514"0.0056 0.0489"0.0062

Dopamine receptor subtype 1 mRNA
Dorsomedial STR 0.0785"0.0043 0.0746"0.0039 0.0792"0.0028 0.0728"0.0060
Dorsal STR 0.0828"0.0048 0.0822"0.0047 0.0823"0.0051 0.0798"0.0083
Dorsolateral STR 0.0850"0.0068 0.0772"0.0053 0.0833"0.0100 0.0870"0.0029
Ventrolateral STR 0.0857"0.0059 0.0812"0.0062 0.0752"0.0100 0.0903"0.0019
NAC core 0.0678"0.0065 0.0677"0.0061 0.0685"0.0067 0.0758"0.0072
NAC shell 0.0850"0.0067 0.0906"0.0066 0.0783"0.0048 0.1025"0.0075

Enkephalin mRNA
Dorsomedial STR 0.3601"0.0258 0.3034"0.0199 0.3091"0.0223 0.3202"0.0279
Dorsal STR 0.4102"0.0307 0.3703"0.0240 0.3870"0.0297 0.3335"0.0384
Dorsolateral STR 0.4150"0.0242 0.3722"0.0225 0.3915"0.0381 0.3673"0.0466
Ventrolateral STR 0.5240"0.0363 0.4783"0.0330 0.4538"0.0571 0.3931"0.0557
NAC core 0.4334"0.0356 0.4277"0.0278 0.4366"0.0397 0.4667"0.0456
NAC shell 0.4930"0.0359 0.5432"0.0497 0.4871"0.0390 0.4780"0.0127

Substance P mRNA
Dorsomedial STR 0.0547"0.0050 0.0378"0.0018 0.0562"0.0037 0.0519"0.0062
Dorsal STR 0.0880"0.0017 0.0770"0.0069 0.0825"0.0040 0.0845"0.0098
Dorsolateral STR 0.1000"0.0026 0.0829"0.0068 0.1003"0.0090 0.1063"0.0105
Ventrolateral STR 0.0933"0.0067 0.0794"0.0063 0.0900"0.0089 0.0900"0.0108
NAC core 0.0475"0.0064 0.0443"0.0044 0.0540"0.0080 0.0653"0.0165
NAC shell 0.0863"0.0045 0.0751"0.0054 0.0880"0.0105 0.0945"0.0153

GAD65 mRNA
Dorsomedial STR 0.0183"0.0023 0.0244"0.0024 0.0210"0.0016 0.0226"0.0043
Dorsal STR 0.0194"0.0016 0.0211"0.0018 0.0207"0.0021 0.0237"0.0041
Dorsolateral STR 0.0194"0.0014 0.0228"0.0024 0.0220"0.0021 0.0253"0.0044
Ventrolateral STR 0.0240"0.0024 0.0273"0.0028 0.0238"0.0025 0.0291"0.0050
NAC core 0.0326"0.0019 0.0342"0.0025 0.0363"0.0025 0.0350"0.0048
NAC shell 0.0390"0.0012 0.0424"0.0016 0.0423"0.0043 0.0415"0.0062

Measurements were made in the dorsomedial, dorsal, dorsolateral, and ventrolateral striatum, and core and shell of the nucleus accumbens. A lesion effect
was seen only for D2 mRNA expression in the dorsomedial striatum and core of the nucleus accumbens.
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cant main effect for lesion status was found for D2 recep-
Žtor mRNA levels in the striatum-accumbens complex Fs

.3.29; dfs1, 14; PF0.03 . In particular, D2 receptor
mRNA alterations were found in both the dorsomedial

Ž .aspect of the striatum PF0.014 as well as in the core of
Ž .the NAC PF0.0098 .

4. Discussion

The main finding of this study is a higher level of D2
dopamine receptor mRNA expression in the dorsomedial
striatum and NAC core in IA mPFC young adult lesioned
rats. This finding in part confirms and extends the report of

w xFlores et al. 19 , which noted an increase in D2 receptor
mRNA in the dorsomedial striatum at age 60 days follow-
ing PFC lesions at age 7 days, although their lesion site
was more dorsal. These authors also noted a lesion-in-
duced increase in D2 receptor mRNA in the shell of the
NAC at age 60 days, whereas we found changes in the
core. Differential placement of the lesion might account
for this discrepancy between the two studies. The NAC
core receives a dense projection from the anterior cingulate

w xcortex 5 . Our lesion damaged cortical regions F2, CG1,
Ž w x.CG3, and IL as per Ref. 58 , whereas the lesion of

w xFlores et al. 19 only damaged F2. In addition, as our
lesions were large, they may have had a differential impact
upon the function of midbrain dopaminergic input to the
striatal complex compared to the lesion of Flores et al.
w x19 . Our findings are also in agreement with the work of

w xPycock et al. 60 , who found an increased density of
D2-like receptors in the striatum and nucleus accumbens
of rats that had received medial prefrontal injections of
6-hydroxydopamine.

Despite region specific increases in striatal D2 receptor
mRNA, there were no changes in ENK mRNA, which is
co-localized with D2 receptor mRNA in a subset of striatal

w xtype II spiny neurons 22 . While this finding is counter-in-
tuitive, it does suggest that there may be independent
regulation of D2 receptor and ENK mRNA expression at
the subcellular level. No changes were found in SubP,
GAD65, or D1 receptor mRNA, suggesting that the mPFC
exerts its primary modulatory effect on neurons in the

Ž .striatopallidal indirect pathway. Moreover, the disruption
appears to affect D2 mRNA levels in regions of the
striatum-accumbens complex that are known to receive
considerable glutamatergic input from the mPFC.

The increased D2 mRNA expression in the striatum-ac-
cumbens complex may be secondary to lesion-induced
alterations in mesencephalic dopamine input to the stria-
tum–NAC. Tract-tracing and electrochemical studies have
demonstrated that the mPFC projects directly onto mesen-
cephalic dopamine cell groups which, in turn, give rise to

w xprojections to the striatum-accumbens complex 52,55,73 .
Recent microdialysis studies suggest that dopamine release
in the rat basal ganglia is tonically modulated by the

mPFC projections to mesencephalic dopamine cell groups
w x33,73 . Lastly, studies utilizing intrastriatal injections of

Ž .haloperidol and D y AP5 support the notion that there are
separate sites of action for the effects of dopamine and

w xglutamate in the basal ganglia 78 . Therefore, the ob-
Ž .served changes in D2 mRNA may be the result of: 1

alterations in the function of mesencephalic neurons that
innervate the striatum and accumbens and that are directly

Ž .modulated by the mPFC; 2 a direct loss of mPFC gluta-
Ž .matergic input into the striatum-accumbens complex; 3 a

combination of alterations in both the mono- and disynap-
tic projections from the mPFC to the basal ganglia.

Behavioral and neurochemical studies provide evidence
that glutamate input from the mPFC has effects on

w xdopamine activity in the basal ganglia 11,24,47,51,72,74 .
Glutamate antagonists block the cataleptic effects of

w xhaloperidol, a potent D2 antagonist 51 . Dopamine
turnover in the striatum is altered by noncompetitive

w xNMDA antagonists 47,72 . The NAC is another zone of
dopamine–glutamate interactions. In the NAC, these inter-
actions appear in part to be mediated by non-NMDA
receptors. AMPA injected in the NAC can reduce the
prepulse inhibition in rats, which is blocked by haloperidol

w xadministration or 6-OHDA lesions of the NAC 74 . Elec-
tron microscopy studies suggest that glutamate can directly
modulate dopamine release via NMDA glutamate recep-

w xtors on dopamine axons in the NAC 24 . Since both the
striatum and NAC are sites of glutamate–dopamine inter-
actions, destruction of mPFC glutamatergic projections
could alter dopamine receptor gene expression in circum-
scribed subregions of the basal ganglia.

While we did not measure D2 receptor protein density
following IA-mediated mPFC lesions, other studies of this
issue have yielded variable results. In contrast to the
increased D2-like receptor density noted by Flores et al.
w x w x19 , Jaskiw et al. 30 did not find any changes following
adult mPFC lesions almost identical to those in this study.

w x w xUnlike Flores et al. 19 , Jaskiw et al. 30 used whole
striatal-accumbens homogenates, which may have ob-
scured regional changes within the basal ganglia. In addi-
tion, differences in lesion location and extent might ex-
plain the discrepancy in findings between the two studies.
Another study found increased striatal dopamine receptor
binding following cortical infarctions caused by bilateral

w xligation of the middle cerebral artery 12 , but, due to
different lesion boundaries, this study is not comparable to

w x w xthose by Flores et al. 19 or Jaskiw et al. 30 . No mRNA
assays were performed in those rats that received these
cortical infarctions.

The subcellular localization of striatal D2 receptors
might explain how a prefrontal lesion could produce in-
creased D2 receptor mRNA without a corresponding in-
crease in receptor protein. An up-regulation of striatal D2
mRNA levels could lead to an increase in D2 receptor
density on cell bodies and dendrites within the striatal
complex. However, measurements of actual receptor den-
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sity in this region might be unchanged due to a loss of
presynaptically located D2 receptors on prefrontal axon
terminals. There is evidence that presynaptic D2 receptors

w xare located on the mPFC efferents 18,40,63 , which pre-
sumably would be destroyed by the lesion. However, there
is some dispute about the localization of D2 receptors on

w xcortico-striatal axons 40 . Lastly, protein transport may
obscure the relationship between mRNA expression and

w xreceptor density in a given brain region 38,39 .
ŽA number of methodological issues e.g., assay sensitiv-

ity, binding selectivity, differential signal quenching of
.isotopes in different areas of the brain make the receptor

density findings difficult to relate directly to in situ hy-
bridization studies. It is also important to note that in situ
hybridization studies semi-quantitatively measure relative
rather than absolute changes in gene expression. In situ
hybridization is also subject to concerns regarding sensitiv-
ity and binding selectivity although this study employed
probes that have been well-characterized in previous in
situ work in the basal ganglia. Finally, regional localiza-
tion of mRNA expression within adjacent subregions of
the striatal-accumbens complex could be contaminated by
scatter from the radioactively-labeled cells.

The absence of changes in D1, SubP, ENK, and GAD65
gene expression between lesion and sham groups suggests
that the striatum and NAC are selectively and subtly
altered by mPFC lesions. Drugs known to alter striatal
metabolic activity differentially alter gene expression in

w xthe striatum 23 . A behavioral pharmacology study indi-
cates that compounds binding to striatal dopamine recep-
tors differentially affect the expression of mRNA for
dopamine receptors and neuropeptides in the striatum-ac-

w xcumbens complex 17 . GAD65 mRNA has been used as
w xan indirect measure of GABA activity in the striatum 9 .

GABA is the primary output neurotransmitter of the stria-
tum and NAC. In the present study, D2 mRNA changes
were not coexistent with any other gene expression alter-
ations, so it is likely that mPFC lesions produce a subtle
effect on neuronal activity in the striatum and NAC. In
contrast, chronic haloperidol treatment produces substan-
tial changes in gene expression in the striatum and NAC,
reflecting its more dramatic and widespread effects on the

w xfunction of these structures 17 .
The rat striatum and NAC have structural and func-

tional homologies to their namesakes in the human brain
w xthat may be compromised in schizophrenia 34,64 . In

non-human primates, the NAC is the site of convergence
for projections arising from many structures, including the
amygdala and hippocampus, the entorhinal and anterior

w xcingulate cortices, and the ventral tegmental area 32 . The
striatum is another convergence zone for multiple cortical
inputs, and its dorsal aspect is especially susceptible to
alterations arising from traditional antipsychotic agents

w xthat bind to the D2 receptor. Weinberger 75,76 has
hypothesized that schizophrenia is a neurodevelopmental
connectivity disorder affecting temporo-limbic-prefrontal

Ž .cortical TLPFC activity. Within this TLPFC circuit, spe-
cial focus has been placed on both the NAC and striatum

w xas both are major convergence zones 77 . Increases in the
D2-like family of dopamine receptors have been observed

w xin the striata of schizophrenic patients in many 65–69 but
w xnot in all studies 42,61 . Alterations in the levels of

mRNA for the D2-like family of dopamine receptors might
be part of the primary or secondary neuropathological
changes underlying schizophrenia. D1 receptors appear to

w xbe unaffected in this disorder 56,65 . This study suggests
that an excitotoxic mPFC lesion may affect D2 mRNA
expression in the striatum-accumbens complex. Specula-
tively, abnormal striatal-accumbens D2 gene expression
might be a consequence of a more widely distributed
cortical miscommunication primary to the neuropathology
of schizophrenia.

5. Conclusion

The present study found a moderate increase in D2
receptor mRNA expression in both the dorsomedial aspect
of the striatum and the core of the NAC following bilateral
excitotoxic lesions of the rat mPFC. Regional patterns of
basal mRNA expression for ENK, SubP, D1 receptor, and
GAD65 were consistent with previous studies and did not
change in the lesion group. The changes in D2 receptor
mRNA demonstrate that the mPFC modulates subcortical
D2 receptor gene expression, with some regional speci-
ficity. The selective changes in D2 but not D1 receptor
mRNA levels suggest that the mPFC exerts a subtle modu-
latory action on striatopallidal neurons. The absence of
changes in ENK mRNA expression suggests that ENK can
be regulated independently from D2 receptor mRNA. This
study supports the notion that glutamate projections from
the mPFC in rats has an impact upon dopamine neurotrans-
mission within the striatum-accumbens complex.
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