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ABSTRACT

Title of Dissertation: Convexification and Deconvexification for Training Artificial

Neural Networks

Yichuan Gui, Degree of Philosophy, 2016

Dissertation directed by: Dr. James Ting-Ho Lo, Professor
Department of Mathematics and Statistics

Dr. Konstantinos Kalpakis, Associate Professor
Department of Computer Science and
Electrical Engineering

The purpose of this dissertation research is to overcome a fundamental problem in the

theory and application of artificial neural networks (ANNs). The problem, called the local

minimum problem in training ANNs, has plagued the ANN community since the middle

of 1980s.

ANNs trained with backpropagation are extensively utilized to solve various tasks in

artificial intelligence fields for decades. The computing power of ANNs is derived through

its particularly distributed structure together with the capability to learn and to generalize.

However, application and further development of ANNs have been impeded by the local

minimum problem and attracted much attention for a very long time.

A primary difficulty of solving the local minimum problem lies in the intrinsic non-

convexity of training criteria of ANNs, which usually contain a large number of non-global

local minima in their weight spaces. Although an enormous amount of solutions have

been developed to optimize the free parameters of the objective function for consistently

achieving a better optimum, these methods or algorithms are unable to solve the local

minimum problem essentially with the intricate presence of the non-convex function.



To alleviate the fundamental difficulty of the local minimum problem in training

ANNs, this dissertation proposes a series of methodologies by applying convexification and

deconvexification to avoid non-global local minima and achieve global or near-global min-

ima with satisfactory optimization and generalization performances. These methodologies

are developed based on a normalized risk-averting error (NRAE) criterion. The use of this

criterion removes the practical difficulty of computational overflow and ill-initialization ex-

isted in a risk-averting error criterion, which was the predecessor of the NRAE criterion and

has benefits to effectively handle non-global local minima by convexifying the non-convex

error space. With employing a proper convexification and deconvexification strategy, it is

also uncovered that the NRAE criterion has the advantage in handling high-dimensional

non-convex optimization of deep neural networks, which typically suffer from difficulties

such like local minima, saddle points, large flat regions, etc. existed in the non-convex error

spaces.

In this dissertation, the effectiveness of proposed methods based on the NRAE crite-

rion is first evaluated in training multilayer perceptrons (MLPs) for function approximation

tasks, demonstrating the optimization advantage in avoiding or alleviating the local min-

imum problem compared to the training with the standard mean squared error criterion.

Moreover, the NRAE-based training methods that are applied to train convolutional neural

networks and deep MLPs for recognizing handwritten digits in the MNIST dataset present

better optimization and generalization results than many benchmark performances, which

were achieved by integrating different non-convex training criteria and deep learning ap-

proaches. At last, to enhance the generalization of the ANN trained by the NRAE-based

method, a statistical pruning method that prunes redundant connections of ANN is im-

plemented and experimented for further improving the generalization ability of the ANN

trained by the NRAE criterion.
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Chapter 1

INTRODUCTION

1.1 Motivation

Artificial neural networks (ANNs) trained with backpropagation are commonly used

to solve various tasks, such as signal processing, function approximation, classification,

and pattern recognition, for decades. The computing power of ANN is derived through

its highly distributed structure together with the capability to learn and thus to generalize.

However, trying to improve and expand the development of ANNs has been limited funda-

mentally by the well-known local minimum problem, which has attracted much attention

since its occurrence in training ANNs for a very long time.

The main difficulty of solving the local minimum problem arises from training criteria

of ANNs, which are generally chosen as non-convex functions. These objective functions

cause the presence of many distinct non-global local minima in the model parameter (e.g.

weight) space, where an optimization method performs local search. If optimal regions

of the model parameter space are unable to reach through employing a non-convex train-

ing criterion, performances of the ANN are restricted and expectations of the satisfactory

performance cannot be consistently guaranteed, even with applying proper optimization

methods or a large number of training trials.

As the development of deep neural networks (DNNs), many deep learning methods

1
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illustrate significant advantages compared to its competitors of shallow learning through

extracting better high-level features from data. Meanwhile, DNNs are able to represent

high-level abstractions in data using both efficient learning algorithms and effective ANNs

with deep network architectures, with achieving superior generalization capabilities in

solving many challengeable AI-related tasks. Although deep learning employs compli-

cated networks and intricate algorithms with heuristic techniques to minimize non-convex

training criteria for impressive performances, the high-dimensional non-convex optimiza-

tion has not been well treated by deep learning fundamentally. The training of DNNs is

still affected by the use of high-dimensional non-convex training criteria, which hinders

the proper learning of local representations of information with the distribution of criti-

cal points (i.e. maximum, minima, and saddle points). In fact, without transferring the

non-convex optimization to a convex problem, many difficulties of training DNNs with the

non-convex error criteria, such as local minima, saddle points, and large flat regions existed

in the training error space, can hardly be solved fundamentally.

Although tremendous efforts have been made to overcome the local minimum prob-

lem in training ANNs, most methods, algorithms and techniques are generally developed to

reduce the training error against a non-convex objective function by optimizing its free pa-

rameters. A new type of the convexification method based on the risk-averting error (RAE)

criterion, which has the robustness to expand the error space of the objective function from

non-convex to strictly convex thus avoiding the non-global local minimum, was well proven

in theory and numerically experimented in training multilayer perceptrons. However, the

RAE criterion suffers from the difficulty of its exponential magnitude and computational

overflow in practical implementations, which restrict the development of using the RAE

criterion to properly solve the local minimum problem in real applications.

This dissertation research is motivated by the theoretical essence of the RAE criterion

and is dedicated to developing new methodologies for solving the difficulty of applying
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the RAE criterion in practical perspectives, with alleviating the local minimum problem in

training multilayer perceptrons (MLPs) and providing outstanding training performances.

Inspired by the convexification purpose, it provides an effective approach to solve the high-

dimensional non-convex optimization in training convolutional neural networks (CNNs)

and deep MLPs for the satisfactory optimization and generalization performances.

1.2 Thesis Statement

This dissertation proposes a series of methodologies with applying convexification

and deconvexification based on the normalized risk-averting error criterion to avoid or alle-

viate non-global local minima in training MLPs, while achieving the global or near-global

minima with superior training errors. Moreover, this dissertation also provide an effec-

tive approach based on the convexification and deconvexification methodology to solve the

high-dimensional non-convex optimization in training CNNs and deep MLPs, with mini-

mizing training errors and maximizing generalization capabilities.

1.3 Contributions

Main contributions of this dissertation are describes as follows:

• Provided an approach based on the NRAE criterion with applying convexification

and deconvexification to alleviate the fundamental difficulty of the local minimum

problem in training MLPs.

• Eliminated many difficulties such as the computational overflow and the ill-initialization

problem of the training method based on the risk-averting error criterion, which was

the predecessor of the NRAE criterion.
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• Developed a collection of NRAE-based methodologies to train MLPs in approximat-

ing functions with the superior optimization capabilities than those produced with

the standard mean squared error (MSE) criterion.

• Developed an approach based on convexification and deconvexification to efficiently

train neural networks with deep architectures, such as CNNs and deep MLPs, on

recognizing handwritten digits of the MNIST dataset with better optimization and

generalization performances than many benchmark results.

• Implemented a statistical neural network pruning method based on the hypothesis

testing to improve the generalization of ANNs.

1.4 Dissertation Outline

The organization of this dissertation is described as follows. Chapter 2 introduces the

background and related works of this dissertation research. Chapter 3 describes the theoret-

ical foundation of the NRAE criterion and demonstrates conceptual experiments in apply-

ing the criterion to train MLPs. Chapter 4 presents the convexification methodology and

evaluates two training methods in approximating functions and recognizing handwritten

digits. In addition, a stagnant difficulty that limits the practical application of the convex-

ification methodology is completely discussed. Chapter 5 demonstrates and evaluates the

deconvexification methodology to resolve the stagnant problem in training MLPs for func-

tion approximation and data classification. Chapter 6 focuses on developing and evaluating

an enhanced NRAE-based training method to train DNNs for achieving satisfactory perfor-

mances on both optimization and generalization. Chapter 7 introduces a statistical neural

network pruning approach to further improve the generalization of the NRAE-based meth-

ods in training ANNs. Chapter 8 summarizes the dissertation and outlines future works.



Chapter 2

BACKGROUND AND RELATED WORK

2.1 Local Minimum Problem in Training Artificial Neural Networks

A local minimum of a function is mathematically defined as the least value that the

function takes at a point within a given neighborhood and it need not be (but may be)

a global minimum of the function (e.g. Fig. 2.1). Although an optimization applied to a

function commonly demands a global minimum, the greedy local search method often leads

to a local minimum but not necessarily a global minimum in the solution space, which is

referred as a local minimum problem.

The local minimum problem has impeded the development and the application of

artificial neural networks (ANNs) trained with backpropagation (BP) [91] and has attracted

much attention since its identification for decades [1, 7, 26, 37, 38, 80, 86, 87, 117]. It

affects the performance of BP with the presence of local minima in addition to global

minima for training ANNs. In general, since it is difficult to determine the numbers of

local and global minima and BP is basically a hill-climbing technique [38], the training

of ANNs has the risk of being trapped in a local minimum where every small change in

trainable weights affects the objective function. It is obviously undesirable to complete

the training process at a non-global local minimum, which is the local minimum with a

non-zero and large value comparing to the global minimum with a zero value.

5
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Global Minimum 

Local Minima 

FIG. 2.1. The error space plot of a two-dimensional function with a global minimum and
certain local minima.

To efficiently and effectively solve the local minimum problem or reduce the chance of

getting trapped at the local minimum in training ANNs, many strategies have been explored

in the literature and three classical categories of solutions are discussed in the following

sections.

2.1.1 Heuristic Solution

As a heuristic solution to solve the local minimum problem, a simply and widely used

technique is to train the ANN more than once with choosing initial weights from different

regions of the weight space, and then find the best solution from those training sessions by

trial and error [50]. However, a great number of trials need to be performed in this case,

while the chance of finding the global minimum cannot be guaranteed.

In addition, more effective heuristics in training ANNs have been explored to avoid

the local minimum problem and have been summarized in [64], such as shuffling training
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examples in the stochastic learning, normalizing the inputs by applying the mean cancella-

tion and the covariance equalization, selecting target outputs in the range of the activation

function, using the symmetric activation function, initializing the weights for each training

node based on the certain distribution with the mean zero and the standard deviation related

to the number of connections feeding into the node, adaptively choosing learning rates with

momentum. Most of these practical tricks can greatly improve the chances of escaping the

local minimum and decreasing the convergence time in training ANNs. However, none of

these heuristics guarantees that the training of ANNs consistently achieves a good solution

that is located at the global or near-global minimum.

The heuristic strategy was an important type of solutions to avoid the local minimum

problem back to the early research of ANNs, and it is still an effective approach to be ap-

plied for achieving good performances in the modern research of ANNs. By performing

a great number of trials with using different heuristics to train ANNs, the success rate of

finding an optimal result in statistical could significantly increases. However, heuristic so-

lutions do not focus on handling the problem brought by the non-convex objective function

in training ANNs, thus the local minimum problem is hardly to be solved fundamentally

by the heuristic solutions.

2.1.2 Optimization Solution

Generally, gradient-based optimization methods, such as conjugate gradient [39],

Broyden-Fletcher-Goldfarb-Shanno (BFGS) [13, 30, 33, 102], and Levenberg Marquardt

[83], are commonly considered having advantages in avoiding local minima compared to

gradient descent (GD) in training ANNs with BP. However, it has been pointed out that

training even a 3-node network is NP-complete when all hidden nodes compute the discrete

linear threshold function [10], and training a 3-node sigmoid network with zero threshold

on the output node is NP-hard [104]. As a consequence, it implied that BP is generally
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not an efficient algorithm unless P = NP at least. Therefore, existing algorithms, including

both the first and second order optimization methods, cannot guarantee to achieve the op-

timal solution in polynomial time for training ANNs with the use of BP. More important,

many gradient-based optimization methods are mainly designed for batch training, which

is an inefficient training mode especially when the training dataset is large [115]. Most of

these methods are only able to work on small architectures of ANNs [65].

Many non-gradient based optimization methods, such as genetic algorithm [80, 81],

simulated annealing (SA) [15, 56], and ant colony optimization [21, 25], are focus on

achieving good approximations to the global optimum of a given function in a large search

space without being trapped into local minima. In these methods, SA has been generally

applied to effectively find the optimal solution in training ANNs. The SA method simulates

an annealing procedure in metallurgy through heating a metal above its melting point and

then cooling slowly until it solidifies into a perfect crystalline structure, corresponding to a

procedure of training the ANN for finding a global minimum of the objective function. The

SA algorithm uses a probability P
↵

to denote a system state ↵ of the energy function E
↵

(i.e. objective function) at a certain computational temperature t. Then, it leads the system

to reach different states ↵ guided by different probabilities P
↵

until the system reaches a

state ↵⇤ with the lowest energy E
↵

⇤ , which is considered as the global minimum of E
↵

.

When performing the SA, the global minimum is theoretically guaranteed to be reached

with a high probability. However, the cooling schedule, which is an approach of decreasing

the computational temperature t, is hard to control for achieving an efficient training. If t

is reduced too fast, the SA approach may prematurely converge on a local minimum; if t is

reduced too slow, the convergence time of the SA algorithm is dreadfully long. Although

many improvement methods have been proposed to accelerate the SA method, such as

Cauchy annealing [109], simulated re-annealing [49], generalized SA [111], and the SA

with known global value [79], the general convergence speed of SA to achieve the global
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minimum is still significantly slow in practical applications, even with performing reliable

cooling schedules [26].

2.1.3 Convexification Solution

Although significant efforts of the heuristic and optimization solutions have been

made to alleviate or avoid the local minimum in training ANNs, those methods or tech-

niques are generally derived for reducing the training error against a non-convex objective

by optimizing its free parameters (i.e. trainable weights in ANNs). If the non-convex ob-

jective function is not transformed to a convex function in a proper way, any region of the

weight space that is unable to be visited by the training method could possibly contain the

global or near-global minimum. More important, if the objective function is non-convex

and the region of the weight space in the domain of this function is not visited by the train-

ing method, the optimization result obtained by such a training method cannot be claimed

as a global or near-global minimum, because the objective function may have its global or

near-global minimum only inside the region which is not visited by the training method.

This is a fundamental difficulty for solving local minimum problem in training ANNs.

To overcome this fundamental difficulty, a convexification approach, which is applied

to convexify the error space of the non-convex function for the global optimization, has

been studied as a solution of the local minimum problem for decades. Two well-known

convexification methods are the graduated nonconvexity method [8] and the Liu-Floudas

convexification method [71, 116]. However, these methods are difficult to be applied for

training ANNs with the capability to handle a large number of data and parameters in rea-

sonable computation time. For example, the Liu-Floudas convexification method is able to

convexify a twice continuously differentiable non-convex function with adding a quadratic

term, but determining the weight ↵ of the added quadratic term for the convexification

involves massive computation when the number of parameters to be optimized is large.
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A new type of the convexification method based on a risk-averting error (RAE) crite-

rion has been proposed in [78] as

(2.1) J
�

(w) :=
KX

k=1

e
⇣
�kyk� ˆ

f(xk,w)k2
⌘

Here, (x
k

, y
k

) is a set of input/output samples used in training the ANN for k = 1, ..., K,

ˆf (x
k

, w) is the output of the ANN with a weight vector w 2 RN according to input x
k

,

and � is called the risk-sensitivity index. The use of the RAE criterion was motivated by

emphasizing the large individual deviations
���y

k

� ˆf (x
k

, w)
���
2

of the mean squared error

(MSE) criterion

(2.2) Q(w) :=
1

K

KX

k=1

���y
k

� ˆf (x
k

, w)
���
2

in an exponential manner with the adaptation of �, thereby avoiding such large individual

deviations and achieving robust performances.

A convexification theorem has been proven in [78], and it is restated as the following:

Theorem 1 (RAE Convexity). Given the risk-averting error criterion J
�

(w), which is

twice continuously differentiable, the Jacobian and Hessian matrix of J
�

(w) can be de-

fined as D
K

(w) :=

h
@

ˆ

f(xk,w)

@wki

i

K⇥N

and H
J

(w) :=

h
@

2
J�(w)

@wi@wj

i

N⇥N

respectively. A se-

quence of sets P :=

�
w 2 RN |H

J

(w) > 0

 
is monotone increasing as � increases, and

a set I :=

�
w 2 RN | rank(D

K

(w)) < min(K,N)

 
is the intersection of solution sets

of L(K,N) algebraic equations defined by setting the L(K,N)-th submatrices of D
K

(w)

equal to zero. As � increases to1, the convexity region of J
�

(w) in the sequence of sets P

expands monotonically to the entire weight or parameter space except a subregion in the

complement set ([
�>0

P )

c, which is contained in the intersection I .

Remark. As the number K of training samples increases, the number L(K,N) of solution
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sets increases rapidly, and the intersection I of these solution sets shrinks monotonically.

Theorem 1 demonstrates that the convexity region of J
�

(w) is able to be expanded as �

increases, and the corresponding error space of J
�

(w) can be well stretched to strictly con-

vex with enough training samples when �!1. In another word, this theorem guarantees

that choosing a larger � and having more training samples can provide a wider convex-

ity region of J
�

(w) in respect to the entire error space. Furthermore, because J
�

(w) is a

monotonically increasing function of Q(w), both criteria share the same local and global

optima. As increasing of � from zero to infinity, the convexity region of J
�

(w) is able to

be gradually expanded and its corresponding error space can be strictly convexified when �

approaches infinity, thereby raising a chance to avoid the local minima and thus achieve a

global minimum. Therefore, the local minimum problem in training ANNs with the MSE

criterion can be alleviated by the convexification of the error space of MSE on the RAE cri-

terion. Experimental results in [72, 73] have demonstrated that the multilayer perceptrons

(MLPs) trained with the RAE criterion consistently outperform the MLPs trained with the

MSE criterion in approximating functions that have local minima in their error spaces, in-

dicating that the RAE criterion provides a good approach to significantly avoid many local

minima in training MLPs.

Nevertheless, choosing a proper � to perform the training with the RAE criterion has

been troubled in practice. It is known that the expansion magnitude of the convexity region

of J
�

(w) is depended on the value of �. Although a larger initial � can lead the error space

of J
�

(w) to be more convexified in achieving an optimal solution without non-global local

minima, how large � should be applied to initialize the training actually varies in different

tasks. An adaptive method based on the RAE criterion in training MLPs proposed a solution

to choose initial values of � in different function approximation tasks [72]. However, it has

limitations of choosing � only at small values where �  100, because the computation

of the exponential with any � > 100 in Eq. (2.1) could easily incur a register overflow in
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computer. A following work in [78] proposed a centering and bounding method to solve

the computational issue. That method successfully extended the selecting range of � into

a scale larger than 100, but still smaller than some significantly large values, such as � =

10

10. It is worth pointing out that, to handle complex training tasks, the convexity region

of J
�

(w) needs to be extremely expanded for achieving the strictly convex under a very

large � like 10

10 without any register overflow in computer. Therefore, a principal work

of this dissertation focuses on developing new methodologies derived from the theoretical

essence of the RAE criterion with overcoming numerical difficulties in practice to alleviate

the local minimum problem in training ANNs.

2.2 Learning with Deep Architectures

The influence of training deep architectures has become increasingly extensive and

significant in machine learning since it appeared in 2006. In general terms, deep architec-

tures are defined by the composition of multiple layers of nonlinear processing units where

each unit contains trainable parameters. Machine learning with deep architectures, which

is often referred to as deep learning, is based on the supervised or unsupervised learning of

multiple levels of features or representations of the data in each layer, while higher level

features are derived from lower level features to form a hierarchical representation. Par-

ticularly, features produced by lower layers represent the low-level informations that are

combined to form high-level features in next layer, and this layer-wise approach repeats to

produce higher level features until the final result from the last layer is generalized.

Deep learning is often contrasted with shallow learning by the number of parameter-

ized transformations that a signal encounters as it propagates from the input layer to the

output layer, where a parameterized transformation is a processing unit that has trainable

parameters [100]. ANNs with multiple hidden layers of units between the input and output
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layers are often called deep neural networks (DNNs). A credit assignment path (CAP),

which is defined as a chain of transformations from input to output, has been applied to

describe potentially causal connections between input and output and may vary in length

[100], thereby to distinguish between deep learning and shallow learning. For example, a

DNN has the depth of CAPs defined as the number of hidden layers plus one (the param-

eterized output layer), but a training model with the shallow architecture only consists of

one layer of parameterized nonlinear units thus has CAP = 1. Although it is not generally

agreed upon threshold of the depth of CAPs dividing shallow learning from deep learning,

most researchers agree that deep learning has multiple nonlinear layers with CAP > 2 and

consider CAP > 10 to be very deep learning [100].

Deep learning methods focus on learning feature hierarchies from various kinds of

deep architectures, primary including DNNs [2, 3, 20, 60, 61, 88, 97, 112, 113] and other

graphical models with many levels of hidden variables [40, 43]. Theoretical results in [2, 5]

suggest that the deep architecture has a wide representation of functions in a more compact

form than the shallow architecture, thus can learn the kind of complicated functions that

represents high-level abstractions. Meanwhile, it implies that if a compact function repre-

sented by the deep architecture needs to be represented by the shallow architecture, a great

number of representable components is required. This property alleviates the restriction on

the representation capability of functions in learning machines with shallow architectures.

Numerous experimental evidences illustrate significant advantages of deep learning com-

pared to its competitors of shallow learning, while deep learning methods easily match or

beat shallow learning methods and become the state-of-the-art in solving many AI-related

tasks, such as computer vision [2, 64, 68, 82, 85, 88], natural language processing [20, 114],

robotics [35], and information retrieval [96, 99].

Although successful demonstrations of the potential of deep learning methods were

achieved in spite of the serious challenge of training models with many layers of adaptive
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parameters, fundamental difficulties brought by the highly non-convex objective function

with the potential of many distinct local minima in the model parameter space still exists

in training DNNs. However, there were some arguments corresponding to the local mini-

mum problem in training DNNs. It is pointed out in [27] that not all local minima provide

equivalent generalization capabilities, and that for deep architectures, the standard training

methods based on random initialization tend to guide the parameters into regions of the pa-

rameters space with the poor generalization. In this case, poor non-global local minima can

bring worse performances on both the training and test dataset. On the other hand, a recent

work in [22] argued that more profound difficulty of training DNNs is originated from the

rapid diffusion of saddle points but not local minima, though such saddle points are located

between high plateaus in the training error space and illusory express as the presence of

local minima. Moreover, another recent work in [17] illustrated that most local minima

are equivalent in providing similar performances on a test dataset, and the probability of

finding a poor non-global local minimum is non-zero for small networks and reduces ex-

ponentially with the network size. This work also implied that the global minimum on the

training dataset may not be worth exploring in practice because of overfitting. In these re-

cent arguments, poor non-global local minima seems not to be a serious problem in training

DNNs [61].

Nevertheless, we stress that, although many deep learning methods make great ef-

forts to achieve the best performance by using a wide array of training techniques together

with practical heuristics, training DNNs is essentially a high-dimensional non-convex opti-

mization problem. Without an effective optimization solution, many difficulties of training

non-convex error criteria, including local minima, saddle points, and large flat regions ex-

isted in the training error space, can hardly be solved fundamentally. On the contrary, with

the proper convexification and deconvexification methodology, the non-convex optimiza-

tion problem can be transformed to a convex optimization problem, while the difficulties
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with the non-convex error criteria can be alleviated or solved by its convexification.

A significant intention of this dissertation is to provide a novel perspective based on the

convexification solution of the non-convex optimization to resolve the difficulty of training

DNNs associated with high-dimensional non-convex error criteria. In the following sec-

tions, we briefly review the background of some well-known deep learning models, such as

convolutional neural networks (CNNs), stacked autoencoders (SAEs), deep belief networks

(DBNs), and deep Boltzmann machines (DBMs).

2.2.1 Convolutional Neural Networks

From Hubel and Wiesel’s classic work on the cat’s primary visual cortex [47, 48], it

was found that the visual cortex in living organisms contains a complex arrangement of

cells. These cells are sensitive to small sub-regions of the visual field, called a receptive

field, while the sub-regions are spread to cover the entire visual field. Moreover, these

cells act as local filters over the input space and are proper to extract the strong spatially

local correlation presented in natural images. Based on that fact, two basic cell types have

been identified: simple cells respond maximally to specific edge-like patterns within their

receptive field, and complex cells have larger receptive fields and are locally invariant to

the exact position of the pattern. Inspired by this significant breakthrough in biology, the

first such model to be simulated on a computer was proposed in the early 1980’s and called

Neocognitron [31, 32], which employed a layer-wise, unsupervised competitive learning

algorithm as the filter banks and a separately-trained supervised linear classifier as the

output layer.

An outstanding innovation and improvement of Fukushima’s work was the develop-

ment of CNN [62–64] in the 1990’s. CNN simplifies the architecture of Neocognitron and

applies BP to train the entire network in a supervised manner. Particularly, CNNs are hier-

archical neural networks that adopt convolutional and pooling layers to simulate functions
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of the simple and complex cells in the multi-stage Hubel-Wiesel architecture, which extract

local features at a high resolution and combine them into more complex features at lower

resolutions. The loss of spatial information during the resolution conversion is compen-

sated by an increasing number of feature maps in the higher layers. Therefore, a typical

CNN is composed of several convolutional and pooling layers followed by a classification

module, and this network design was widely considered as a successful DNN architecture

in handling many computer vision tasks [64].

The success of CNN is benefited by the combination and alternation of its convolution

and pooling layers, which capture the spatial topology and have rich feature representation

of the input information with small number of trainable weights. It reduces the landscape

complexity of the training criterion in weight space, and leads the optimization method

to a good solution much easier. As the development of the deep learning methods, many

variants of CNN were explored in the image classification literature. One important dis-

cover in [105] described a simplified CNN, which applied a data augmentation with elastic

distortions and a combination of convolutional and pooling layers. This simplified CNN

did not require complex training heuristics, such as momentum, weight decay, structure-

dependent learning rates, and extra padding around the inputs and pooling layers, to finely

tune the overall architecture. The result was a very simple yet general architecture, which

can yield state-of-the-art performance for visual document analysis. However, without ef-

ficient computing resources and methods, if the number of layers in CNNs becomes larger

and larger, it would be extremely expensive to train those intricate networks and make them

perform well on complex image classification problems. With the rise of high-efficiency

computing on graphics processing units (GPUs), training large CNNs has become possi-

ble. Several literatures in [3, 43, 52, 88] explored many practical approaches to effectively

train DNNs. Soon after that, a series of GPU-based techniques were implemented and re-

fined to enhance the training of large CNNs in handling complex image classification tasks
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FIG. 2.2. Architecture of LeNet-5 for handwritten digits recognition on the MNIST dataset.
LeNet-5 is composed of 8 layers, including 1 input layer as the data input, 3 convolutional
layers (C1, C3, and C5), 2 pooling layers (S2 and S4), 1 fully connected layer (F6), and
1 output layer as the classifier. The dimension of the data input for LeNet-5 is 32⇥32,
which is extended by adding zero background pixels to the original 28⇥28 MNIST dataset.
Each layer after the input comprises several feature maps that are represented as “number
of feature maps@size of each feature map” in the figure. For example, “6FMs@28x28”
in the C1 layer means that this layer contains 6 feature maps and the size of each feature
map is 28⇥28. In each convolutional and pooling layer, the size of the convolutional filter
banks is fixed as 5⇥5 and the pooling region is always 2⇥2, respectively.

within days instead of months [18, 19]. Those techniques significantly improved upon

the best performance in the literature for multiple image datasets, including the MNIST

dataset [64], the CIFAR10 dataset [57], the NORB dataset [67], and the notable ImageNet

challenge [24, 93].

In this dissertation research, a significant experiment of training the DNN focuses on

a well-known CNN architecture called LeNet-5 [64] that is shown in Fig. 2.2, while we

introduce some basic concepts of LeNet-5 as follows. LeNet-5 is composed of several

layers where the input and output of each layer are sets of arrays called feature maps. The

input feature map of each layer is an array that could have different dimensions based

on different input types, e.g., each feature map could be a one-dimensional array for an
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audio input, or a two-dimensional array for an image input, or a three-dimensional array

for a video input. The output feature map of each layer contains several particular features

extracted at all locations from the input. For a classification problem, layers of convolution

and pooling are considered as a trainable feature extractor, and a trainable classifier in the

form of fully connected layers will be added to the feature extractor to build an overall

classifier.

Convolutional Layer A convolutional layer is employed to extract local features

from feature maps of the previous layer and to construct new feature maps by performing

convolution operations with filter banks, then putting through the activation function. The

output feature map of each layer keeps several numbers of filter banks. The filter bank con-

tains trainable weights and is generally represented by a 2-dimensional array. The number

of filter banks for each feature map is chosen the same as the number of feature maps of the

previous layer, thus one output feature map of each layer extracts one pattern of features

from all input feature maps of each layer based on a set of particular filter banks. For each

convolutional layer, if there are I
m

input feature maps, then there will be J
m

output feature

maps and I
m

⇥ J
m

filter banks. Generally, J
m

� I
m

, where m = 1, ...,M and M is the

number of convolutional layers. The computation of the convolutional layer is defined as

(2.3) cl
j

= '

0

@
FjX

i=1

kl

ij

⇤ cl�1

i

+ bl
j

1

A

where i = 1, ..., I
m

and j = 1, ..., J
m

. Here, l denotes the current layer with the input

layer designated to be the first layer and the output layer designated to be the L-th layer in

the network, and F
j

represents a selection of input feature maps for the computation of the

j-th output feature map. Eq. (2.3) performs a 2-dimensional discrete convolution operation

(denoted by ⇤ in the equation) between the trainable weights kl

ij

and the input feature map
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cl�1

i

, then adds a trainable bias bl
j

to the result and passes it through an activation function

' (·) to get the output feature map cl
j

.

It is worth noticing that, if cl
j

and cl
j+1

are computed by using the same cl�1

i

, then

the filter banks associated with the computation of cl
j

and cl
j+1

should be different, where

the filter banks are kl

ij

and kl

i(j+1)

respectively. It shows that each filter bank detects a

particular feature at every locations on the input feature map, thus all trainable weights in

the filter bank are shared to detect the same feature at all locations on the input feature

map. This is an important property of the convolutional layer to reduce the number of free

parameters, thereby reducing the capacity of the network together with the gap between

the training error and the test error. Moreover, one output feature map is only associated

with a certain number of particular filter banks, so different output feature maps are able to

extract different types of local features from all input feature maps through different sets of

filter banks. This is another significant feature of the convolutional layer, indicating that if

the input feature map has any shifts or distortions, the output feature map will be changed

by the same amount, otherwise it will be maintained unchanged.

Pooling Layer A pooling layer is generally applied after the convolutional layer to

reduce the spatial resolution of the new generated feature maps from the previous layer by

producing down-sampled version of input feature maps to the current layer. Each output

feature map in the pooling layer does not associate with any filter bank, but has a trainable

weight that treats each input feature map correspondingly. For each pooling layer, if there

are J
n

input feature maps, then there will be exactly J
n

output feature maps and J
n

trainable

weights, where n = 1, ..., N and N is the number of pooling layers. The computation of

the pooling layer is defined as

(2.4) pl
j

= '
�
wl

j

· d
�
pl�1

j

�
+ bl

j

�
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where j = 1, ..., J
n

and d (·) represents a down-sampling function.

The pooling layer performs the down-sampling operation to the input feature map

pl�1

j

, multiplies the result by a trainable weight wl

j

, then adds a trainable bias bl
j

to the re-

sult and passes it through an activation function ' (·) to get the output feature map pl
j

. The

down-sampling operation considers a certain neighborhood (e.g., a 2 ⇥ 2 neighborhood)

in each input feature map and calculate the average or the maximum value of the neigh-

borhood (i.e., perform the average pooling or the max pooling to the neighborhood), then

it strides a step larger than 1 but smaller than or equal to the neighborhood over the entire

feature map. Therefore, it assures that each pooling layer produces a reduced-resolution

output feature map, which is robust to small variations in the location of features of the

input feature map. More recent CNNs do not apply any activation function after the max

pooling, and they do not add a trainable weight and bias in the max pooling. Thus, unlike

the average pooling, the max pooling function is commonly defined as

(2.5) pl
j

= d
max

�
pl�1

j

�
.

Backpropagation on LeNet-5 All layers of LeNet-5 are trained with BP. For error

propagation and weight adaptation in convolutional and fully-connected layers, the im-

plementation of BP follows the standard procedure. However, errors after pooling layers

have to be propagated through the certain pooling layer by calculating the error with re-

spect to each unit incoming to that pooling layer. The particular implementation of the

error propagation in the pooling layer depends on different choices of the pooling function.

For example, if the average pooling is applied, the BP could uniformly distribute the error

through a pooling unit to all of its input units in the previous layer. If the max pooling is

selected, the BP would propagate the error to the input unit that is chosen as the maximum

of all in the previous layer.
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2.2.2 Stacked Autoencoders

An autoencoder, also called autoassociator, or Diabolo network [12, 42, 51, 91, 101],

is a feedforward neural network that is very similar to the multilayer perceptron with an

input layer, an output layer and one or more hidden layers connecting them. Unlike the

multilayer perceptron, the idea of the autoencoder is to encode the input x into some rep-

resentation r(x) so that the input can be reconstructed from that representation, thus the

autoencoder can be trained in an unsupervised manner to reconstruct its own inputs as

outputs instead of being trained to predict some target values y given inputs x. The tar-

get output of the autoencoder is the autoencoder input itself, and the output layer of the

autoencoder always has the same number of nodes as the input layer.

Autoencoders can be stacked to build a network with deep architectures, where each

level of the network is associated with an autoencoder that can be trained separately. As

an example, a typical stacked autoencoder for classification is trained as shown in Fig. 2.3.

Experimental results in [3] illustrate that stacked nonlinear autoencoders with more hidden

units than inputs trained by stochastic gradient descent are able to yield useful encoding

representations, where the representations taken by a network as the input result in a low

classification error. Furthermore, in order to force the hidden layer to discover more robust

features and prevent it from simply learning the identity, the autoencoder can be trained

to reconstruct the input from a corrupted version of it. In stacked denoising autoencoders

[112, 113], the partially corrupted output is cleaned (i.e., denoised) with a specific approach

to good representations, where a good representation is one that can be obtained robustly

from a corrupted input and that will be useful for recovering the corresponding clean input.

Moreover, the denoising autoencoder is a stochastic version of the autoencoder, where the

stochastic corruption process randomly sets some of the inputs (as many as half of them) to

zero [112, 113]. Hence the denoising autoencoder is trying to predict the corrupted values
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1ĥ

Input 
(Hidden Layer 1) 

Hidden Layer 2 Output 

h2
1 

h3
1 

h4
1 

1
2ĥ
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FIG. 2.3. A stacked autoencoder with the 6-4-3-3 architecture for classification. Fig. 2.3(a):
the autoencoder is trained as a sparse autoencoder on the raw input x to learn the primary
features h1. Fig. 2.3(b): the autoencoder is trained as another sparse autoencoder on the
primary features h1 to learn the second features h2. Fig. 2.3(c): the classifier is trained to
map the second features h2 to the classification labels y. Fig. 2.3(d): the stacked autoen-
coder is formed with two hidden layers and a final classifier to be fine-tuned as a supervised
classification model.
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from the uncorrupted values, for randomly selected subsets of missing patterns. Once

stacked denoising autoencoders are trained, the output is used as the input to a learning

model for the supervised fine-tuning.

2.2.3 Deep Belief Networks

DBNs are probabilistic generative models that are composed of multiple layers of

hidden units or feature detectors. A typical DBN has two top layers with undirected and

symmetric connections between them to form an associative memory, and has lower layers

received top-down directed connections from the layer above, where the units in the bot-

tom layer represent the data [43]. A DBN is often applied for pre-training a DNN, where

the data for training such a network is limited and poorly initialized weights can make sig-

nificant impacts on the performance of the final result. The pre-trained weights obtained

from the DBN are employed as the initial weights of the DNN and are located in a region

of the weight space that is closer to the optimal weights as compared to the random ini-

tialization. Then, these weights can be further fine-tuned by BP or other discriminative

algorithms. This achieves for both improved modeling capability and faster convergence

of the fine-tuning phase [59].

A DBN can be efficiently trained in an unsupervised, layer-by-layer manner where

the layers are typically made of restricted Boltzmann machines (RBMs) [43]. An RBM is

an undirected, generative energy-based model with an input layer and single hidden layer.

Connections in the RBM only exist between the visible units of the input layer and the

hidden units of the hidden layer, where visible-visible or hidden-hidden connections do

not exist. The training method for RBMs was initially proposed in [44] and is known

as contrastive divergence, which provides an approximation to the maximum likelihood

method that would ideally be applied for learning the weights of the RBM [29, 45, 110].

Once an RBM is trained, another RBM can be stacked on the top of it to create a multilayer
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h1 
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v 

FIG. 2.4. A deep belief network with a set of visible units v and three hidden layers of units
h1, h2, h3. The top two layers form a restricted Boltzmann machine, and the remaining
layers form a sigmoid belief network with directed and top-down connections.

network. For each stacking RBM, the input visible layer is initialized to a training vector

and values of the input units in the previously trained RBM layers are assigned using the

current weights and biases, while the final layer of the previously trained layers is used as

input to the new RBM. The new RBM is then trained with the procedure above, and then

this whole process can be repeated until some desired stopping criterion is met [5]. An

example of DBN [95] is shown in Fig. 2.4.

DBNs are learned as one layer at a time by considering the values of the trainable

weights that are inferred from the data in one layer as the data for training the next layer.

This efficiently greedy layer-wise learning can be combined with other learning procedures

that fine-tune all trainable weights to improve the generative or discriminative performance
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of the entire network. Discriminative fine-tuning can be performed by adding a final layer

of weights that represent the desired outputs and error derivatives of BP. It is mentioned in

[40] that, when networks with many hidden layers are applied to highly structured input

data such as images, BP works much better if the feature detectors in the hidden layers are

initialized by learning a DBN that models the structure in the input data.

2.2.4 Deep Boltzmann Machines

A DBM is an undirected probabilistic graphical model (i.e., a type of Markov random

field) with multiple layers of hidden random variables. It is a network of symmetrically

coupled stochastic binary units, comprising a set of visible units and a series of layers of

hidden units where all connections between layers are undirected. Like RBMs, there is

no connection between the units of the same layer in DBMs. Because the DBM has undi-

rected links, symmetric interactions are defined by certain model parameters to represent

the visible-hidden and hidden-hidden connections, and these parameters can be easily set

to convert a DBM to an RBM [41]. An example of DBM [98] is shown in Fig. 2.5.

DBMs have several advantages compared to other successful deep learning models

[2, 95, 97]. Like DBNs, DBMs benefit from the ability of learning complex and abstract

internal representations of the input based on the representations built by a large supply of

unlabeled data and the overall fine-tuning with a limited number of labeled data. Unlike

DBNs and CNNs, DBMs apply the training and inference procedure in both bottom-up and

top-down fashions, providing effective approaches to distinguish the high-level represen-

tations of the ambiguous from complex input structures. More importantly, parameters of

all layers in DBMs can be optimized jointly by following the approximate gradient of a

variational lower-bound on the likelihood function, which greatly facilitates the learning of

DBMs as better generative models. However, DBMs have a crucial drawback which re-

stricts the performance with the use of the complicated architecture [98]. The approximate
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FIG. 2.5. A deep Boltzmann machine with a set of visible units v 2 {0, 1} and three hidden
layers of binary units h1, h2, h3 2 {0, 1}. All connections between layers are undirected
but with no connections between the units of the same layer. Here, W 1,W 2,W 3 are model
parameters that represent symmetric connections.

inference based on the mean-field approach in DBMs is around 25 to 50 times slower than

a single bottom-up pass in DBNs, which makes the joint optimization of DBM parame-

ters impractical for large datasets and limits the use of DBMs for extracting useful feature

representations.



Chapter 3

NORMALIZED RISK-AVERTING ERROR CRITERION

In this chapter, we introduce the normalized risk-averting error (NRAE) as a novel

training criterion, which was derived from the RAE criterion, to overcome the local mini-

mum problem in training MLPs. We first present the theoretical foundation of the NRAE

criterion, and then we provide the analytical results of feasibility of the NRAE criterion via

presenting its bounded computation and robust convexity region. At last, we conceptually

demonstrate the effectiveness of the NRAE criterion for avoiding non-global local minima

in training MLPs with small data fitting examples.

3.1 Theoretical Foundation

The standard MSE criterion for training an MLP to fit a set of input/output samples

(x
k

, y
k

) for k = 1, ..., K is given in Eq. (2.2) as

Q(w) :=
1

K

KX

k=1

���y
k

� ˆf (x
k

, w)
���
2

The set of input/output samples (x
k

, y
k

) is assumed to satisfy the equation y
k

= f (x
k

)+⇠
k

,

where f is an unknown or known function, and ⇠
k

represents the random noise or zero. An

optimal weight vector w⇤ for the best fit of the MLP to the set of input/output samples is

27
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determined by minimizing Q (w) with the variation of w, where w 2 RN . Determining w

for the MLP to match the input/output samples as closely as possible is called training the

MLP on the training data, i.e., the set of input/output samples.

The NRAE criterion [74] is defined as

(3.1) C
�

(w) :=
1

�
ln


1

K
J
�

(w)

�

where J
�

(w) is the RAE criterion defined in Eq. (2.1) as

J
�

(w) :=
KX

k=1

e
⇣
�kyk� ˆ

f(xk,w)k2
⌘

as defined in Eq. (2.1). To demonstrate the practical feasibility of C
�

(w) in applying as a

training criterion, we discuss two principle properties in the following sections.

3.1.1 Bounded Computation

The convexification theorem in [78] states that the convexity region of J
�

(w) can be

expanded monotonically to the entire weight space as � increases to infinity, while such

expansion can help the RAE training transform the non-convex error space to convex for

escaping from poor local minima. It has been confirmed in [72] that the poor local minima

can be effectively avoided by selecting small � values to expand the convexity region of

J
�

(w) in approximating small-sized functions. However, many real-world training tasks

have very large datasets in general, while the training error space for the large-size dataset

can be extremely complex. In this case, the computation of J
�

(w) is not bounded, if a

sufficiently large � is required to expand the convexity region of J
�

(w) to a tremendously

great level. Because the evaluation of the exponential function e
⇣
�kyk� ˆ

f(xk,w)k2
⌘

in J
�

(w)

can easily cause register overflow in computer when � is numerically chosen very large.
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In order to employ C
�

(w) as a training criterion, all computations in the NRAE train-

ing should be bounded without causing any arithmetic overflow. In this section, we demon-

strate that C
�

(w) together with its gradient

(3.2) rC
�

(w) :=


@C

�

(w)

@w
i

�

1⇥N

and Hessian matrix (simply called as Hessian)

(3.3) H
C

(w) :=


@2C

�

(w)

@w
i

@w
j

�

N⇥N

can be safely calculated without any arithmetic overflow in evaluating the exponential func-

tion e
⇣
�kyk� ˆ

f(xk,w)k2
⌘

, where i, j = 1, ..., N and N is the total number of trainable weights

in the network.

To present the bounded computation of C
�

(w), let

ŷ
k

(w) := ˆf (x
k

, w)

"
k

(w) := y
k

� ŷ
k

(w)
(3.4)

For a weight vector w, let a set

(3.5) S (w) = argmax

k2{1,...,K}
k"

k

(w)k2

which may contain more than one elements if a tie exists, and

(3.6) M = min

m

{m |m 2 S (w)}

which is the smallest index among all values in the set S (w). Note that the number |S (w)|
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of elements in S (w) may be larger than one. It follows that k"
k

(w)k2  k"
M

(w)k2. Let

(3.7) ⌘
k

(w) := e�(k"k(w)k2�k"M (w)k2
)

where 0 < ⌘
k

(w)  1 and 0 <
P

K

k=1

⌘
k

(w)  K. Then, the NRAE criterion C
�

(w) in

Eq. (3.1) can be rewritten as

C
�

(w) =
1

�
ln

✓
1

K
J
�

(w)

◆

=

1

�
ln

 
1

K

KX

k=1

e�k"k(w)k2
!

=

1

�
ln

 
1

K
e�k"M (w)k2

KX

k=1

⌘
k

(w)

!

=

1

�
ln

1

K
+ k"

M

(w)k2 + 1

�
ln

 
KX

k=1

⌘
k

(w)

!

(3.8)

where

C
�

(w)  1

�
ln

1

K
+ k"

M

(w)k2 + 1

�
lnK  k"

M

(w)k2

It indicates that C
�

(w) is bounded by the term k"
M

(w)k2, which is independent of �, and

no computational overflow occurs when � >> 1.

Consider the first-order derivative of C
�

(w)

@C
�

(w)

@w
i

=

1

�J
�

(w)

@J
�

(w)

@w
i

=

1

�J
�

(w)

"
�2�

KX

k=1

e�k"k(w)k2"T
k

(w)
@ŷ

k

(w)

@w
i

#

=

�2�e�k"M (w)k2PK

k=1

⌘
k

(w) "T
k

(w) @ŷk(w)

@wi

�e�k"M (w)k2PK

k=1

⌘
k

(w)

=

�2
P

K

k=1

⌘
k

(w) "T
k

(w) @ŷk(w)

@wiP
K

k=1

⌘
k

(w)

(3.9)
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where

KX

k=1

⌘
k

(w)  K

�����

KX

k=1

⌘
k

(w) "T
k

(w)
@ŷ

k

(w)

@w
i

����� 
KX

k=1

����"
T

k

(w)
@ŷ

k

(w)

@w
i

����

The computation of @ŷk(w)

@wi
is performed by BP. Hence, both the numerator and denominator

of Eq. (3.9) are bounded without computational overflow when � >> 1.

Consider the second order derivative of C
�

(w)

(3.10)
@2C

�

(w)

@w
i

@w
j

=

1

�J
�

(w)

@2J
�

(w)

@w
i

@w
j

� 1

�J2

�

(w)

@J
�

(w)

@w
i

@J
�

(w)

@w
j

It has been shown in [78] that

(3.11)
@2J

�

(w)

@w
i

@w
j

= 2�
KX

k=1

e�k"k(w)k2 {2�A
kij

(w) + B
kij

(w)� C
kij

(w)}

where

A
kij

(w) := "T
k

(w)
@ŷ

k

(w)

@w
i

@ŷT
k

(w)

@w
j

"
k

(w)

B
kij

(w) :=
@ŷT

k

(w)

@w
i

@ŷ
k

(w)

@w
j

C
kij

(w) := "T
k

(w)
@2ŷ

k

(w)

@w
i

@w
j

(3.12)

are all N ⇥N matrices. It follows that

(3.13)
1

�J
�

(w)

@2J
�

(w)

@w
i

@w
j

=

2

P
K

k=1

⌘
k

(w) {2�A
kij

(w) + B
kij

(w)� C
kij

(w)}
P

K

k=1

⌘
k

(w)
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Recalling in [78] that

(3.14)
@J

�

(w)

@w
i

= �2�
KX

k=1

e�k"k(w)k2"T
k

(w)
@ŷ

k

(w)

@w
i

we obtain

1

�J2

�

(w)

@J
�

(w)

@w
i

@J
�

(w)

@w
j

=

4�
⇣P

K

k=1

⌘
k

(w) "T
k

(w) @ŷk(w)

@wi

⌘

P
K

k=1

⌘
k

(w)

·

⇣P
K

k=1

⌘
k

(w) "T
k

(w) @ŷk(w)

@wj

⌘

P
K

k=1

⌘
k

(w)

(3.15)

Notice that 0 < ⌘
k

(w)  1. Hence, Eq. (3.10) is bounded without any computational

overflow when � >> 1.

3.1.2 Convexification Property

Since the logarithm function is monotonically increasing, C
�

(w) is a strictly monotone

function of J
�

(w). Accordingly, the convexity region of C
�

(w) that contains the convexity

region of J
�

(w) expands in the same way as the convexity region of J
�

(w) stretches as �

increases, if the convexity of J
�

(w) is maintained as Theorem 1 states. It indicates that if

the convexity region of J
�

(w) does not have non-global local minima in nearly the entire

weight space for a sufficiently large �, the non-global local minima will not appear in the

convexity region of C
�

(w) that contains the said convexity region of J
�

(w). Therefore,

C
�

(w) shares the same local and global optima with J
�

(w). We summarize the above

discussion as the following theorem:

Theorem 2 (NRAE Convexity). Given a weight or parameter space w 2 RN , if D
K

(w)

is full rank, 9⇤ 2 R+ such that H
J

(w) > 0 when � > ⇤ to maintain the convexity of the

risk-averting error J
�

(w), then the normalized risk-averting error C
�

(w) shares the same
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local and global optima with J
�

(w).

It is appropriate to note that, since C
�

(w) is a concave function of J
�

(w), the convex-

ity region of C
�

(w) does not expand as � increases. It implies that C
�

(w) is not able to

be convexified like J
�

(w) as � increases. However, if a global or near-global minimum is

achieved when the convexity region of J
�

(w) is significantly expanded to the entire weight

space as � approaches infinity, the values of
���y

k

� ˆf (x
k

, w)
���
2

for k = 1, ..., K in Eq. (2.2),

Eq. (2.1), and Eq. (3.1) are all very small and close to zero. In this case, the training errors

of C
�

(w) and Q (w) according to the global or near-global minimum are very close to zero,

implying that C
�

(w) shares the same global or near-global minimum with Q (w).

If a global or near-global minimum is unavailable when the convexity region of J
�

(w)

is expanded to the entire weight space as � increases, the NRAE criterion is still expected

to perform as good as the MSE criterion when the convexity region of C
�

(w) is shrunk as

� decreases to zero. It can be proven by rewriting (3.8) when � approaches zero as

lim

�!0

C
�

(w) = lim

�!0

1

�
ln

 
1

K

KX

k=1

e�k"k(w)k2
!

= lim

�!0

1

�
ln

 
1 +

1

K

KX

k=1

� k"
k

(w)k2 +O(�2

)

!

= lim

�!0

1

�

 
1

K

KX

k=1

� k"
k

(w)k2 +O(�2

)

!

=

1

K

KX

k=1

k"
k

(w)k2

= Q (w)

(3.16)
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where Taylor series expansions of exponential and logarithm functions

ex = 1 + x+

x2

2!

+ · · ·

ln(1 + x) = x� x2

2

+

x3

3

� · · ·
(3.17)

are applied. Obviously, the NRAE criterion in (3.16) acts the same as the MSE criterion.

Overall, the computationally bounded NRAE criterion preserves the capability of

avoiding the non-global local minimum when the convexity region of J
�

(w) expands as

� increases to infinity, while achieving the same global or near-global minimum with the

MSE criterion as � decreases to zero. Therefore, a convexification or deconvexification

procedure can be applied to alternate the convexity region of C
�

(w) by increasing or de-

creasing � as it ranges from 0 to 1, thus leading to a global or near-global minimum of

both the NRAE and the MSE criteria.

3.2 Evaluating the NRAE Criterion

For conceptually demonstrating the capability of NRAE as a training criterion, we

employ two small data fitting examples to evaluate the NRAE criterion in training MLPs.

Our primary goal here is to find out whether the NRAE training is able to avoid or allevi-

ate non-global local minima through the convexification procedure with achieving a much

better performance than the MSE training. More systematically experimental evaluation of

the NRAE criterion will be given in next chapter.

3.2.1 Experimental Settings

To efficiently develop our experiments, the standard training of MLP is performed

with the aid of several practical techniques, which have been suggested in [38, 65] and list

as the following items. We stress that most techniques here are applied not only for the
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evaluation of the NRAE criterion in this section, but also for all experiments performed in

this dissertation unless particular experimental settings are stated.

1. The activation function in each training node of MLP is chosen as the hyperbolic

tangent function '(v) = atanh(bv), where a = 1.7159 and b = 2

3

. With the setting,

'(v) satisfies '(1) = 1 and '(�1) = �1. In addition, the second order derivative of

'(v) can attain its maximum value at v = 1. The activation function can efficiently

avoid the node saturation in training MLPs, and it has all benefits of the sigmoid

function with satisfying the condition '(�v) = �'(v).

2. All input and output defined in the training dataset are normalized into [�1, 1] for

keeping the mean value of training samples closing to zero. Such a normalization of

the training dataset can efficiently avoid the ”zigzagging” searching of the optimal

weights on the training error space.

3. The weights of MLP are initialized by randomly selecting from a uniform distribution

between �2.4/F
i

and 2.4/F
i

, where F
i

is the fan-in (i.e., the number of inputs that

can be connected to a node) of the i-th node. This initialization maintains the initial

standard deviation of the weighted sums of each training node in the same range

over all nodes, and keeps these nodes working on the normal operating region of the

activation function. Otherwise, too large initial weights will drive hidden nodes into

saturation, and too small initial weights will cause BP to work on a very flat area

around the origin of the training error space.

4. The derivatives of MLP are computed by the standard BP. The weights of MLP are

updated by BFGS in data fitting or function approximation tasks, and are updated

by GD in classification tasks. The convergence of a training session is considered if

the improvement of training errors according to the MSE values is less than 10

�10 in



36

1,000 consecutive training epochs.

3.2.2 Learning XOR

The exclusive-OR (XOR) problem has been widely explored with the training diffi-

culty of the presence of local minima and has been thoroughly discussed in many literatures

[9, 11, 46, 70, 92, 106–108]. As a classic training problem, it has been commonly applied

to demonstrate the capability of the MLP in handling the problem that is not linearly sep-

arable against the single-layer perceptron. In this section, we adopt the XOR problem to

illustrate the effectiveness of the NRAE training compared to the MSE training in avoid-

ing non-global local minima, and reveal how the convexification works on alternating the

non-convex training error space.

The training dataset of the XOR problem often consists of four samples: (-1,-1,-1),

(-1,1,1), (1,-1,1) and (1,1,-1). The first two values in each training sample compose a

input vector x
k

, and the last value in each training sample is the output value y
k

, where

k = 1, 2, 3, 4. The objective of the XOR task is to find the proper weights through training

the MLP to minimize the error between the actual output ŷ
k

of the MLP and the target

output y
k

defined by the training dataset. As presented in Fig. 3.1, a 2-2-1 MLP, which

contains two input nodes, one hidden layer with two hidden nodes, and one output node,

is selected to perform the training of XOR with using the minimum number of trainable

weights of the MLP.

In our experiments, we perform two different MLP training sessions using the same

initial weights, where one session applies the MSE criterion and the other one applies the

NRAE criterion with � = 0.5. The initial weights of the MLP are randomly selected

from [�15, 15] rather than [�2.4/F
i

, 2.4/F
i

]. We employ this particular selection of ini-

tial weights because the XOR problem is easily to escape from local minima in the MSE

training if the initial weights are selected from [�2.4/F
i

, 2.4/F
i

] (i.e., close to the range of



37

x1 

x2 

y 

b1
1 

b2
1 

b1
2 w11

1 

w22
1 

w12
1 

w21
1 

w11
2 

w12
2 

FIG. 3.1. A 2-2-1 MLP applied to learn the XOR function.

[-1,1]). In fact, it has been pointed out in [9, 46] that the XOR problem has the difficulty of

avoiding local minima especially when the initial weights are very small (e.g., in the range

of [-0.25,0.25]) or very large (e.g., in the range of [-5,5]). With selecting the initial weights

from a larger range, we can test whether the NRAE training is able to avoid the non-global

local minimum, which can be difficult for the MSE training to escape from.

From the two training sessions, we obtain two optimal weight vectors w⇤
MSE and w⇤

NRAE

corresponding to the MSE training and the NRAE training until the convergence, respec-

tively. After that, we randomly choose two weights w1

MSE and w2

MSE from w⇤
MSE and set them

as variables to change in the range of [�15, 15]. Then, we draw a contour map for the MSE

criterion Q(w) as the function of w1

MSE and w2

MSE. Because both the MSE training and the

NRAE training are performed under the same MLP architecture with the same number of

trainable weights, we employ w1

NRAE and w2

NRAE as variables to draw another contour map
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for the NRAE criterion C
�

(w), where w1

NRAE and w2

NRAE are the corresponding weights

chosen with the same indices of w1

MSE and w2

MSE as applied in the MSE training. These

contour maps are shown in Fig. 3.2.

Fig. 3.2(a) demonstrates that the MSE training leads the searching path of the optimal

weight vector to a poor non-global local minimum, which training error is plotted as the

light blue color and located in the right bottom of the contour map. In addition, it is ob-

served that the mentioned searching path in the MSE training is blocked by a continuous

plateau plotted with the cyan color for reaching the global minimum. However, as illus-

trated in Fig. 3.2(b), both the light blue non-global local minimum and the cyan plateau

located in the MSE training are expanded and merged together by the convexification in

applying the NRAE criterion. An optimal searching path, which leads the NRAE training

travel from a poor non-global local minimum to a global minimum, is created in the NRAE

training.

In order to evaluate the NRAE training in more test cases, we repeat the experiments

of the MSE and the NRAE training in 100 times with randomly selecting 100 different

sets of initial weights from [�15, 15]. Our experimental results indicate that only 27 out of

100 MSE training sessions can successfully escape from local minima and reach the global

minimum, but all 100 NRAE training sessions consistently achieve global minima with the

training errors closed to 10

�10. Therefore, the NRAE training confirms the effectiveness of

the convexification methodology and demonstrates the tremendous superiority comparing

to the MSE training in avoiding the local minimum problem.

3.2.3 Approximating One-notch Function

To further test the capability of the NRAE training in avoiding the non-global local

minimum, we employ a one-notch function, which is designed to have the non-global local
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FIG. 3.2. Contour maps for the MSE and the NRAE criteria as functions of two selected
weights in training XOR. Different colors indicate different training errors shown in the
color bar of each contour map. Exact number in each contour line denotes the MSE value
of the training error. The red dot indicates the position of initial weight vector and the
green cross indicates the location of the global minimum in the tested XOR problem. The
red dash line shows the searching path of the optimal weight vector in the training.
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minimum, to test the NRAE criterion. The one-notch function is defined as

(3.18) y = f(x) =

(
1 if x 2 [1, 2] [ [2.1, 3.1]

0 otherwise

where x 2 X = [0, 4.1].

We evaluate three training models to approximate the one-notch function. They are

separately defined as: an MLP trained by the MSE criterion, an MLP trained by the NRAE

criterion, and a support vector machine (SVM) with the radial basis function (RBF) kernel.

We evaluate whether the NRAE training is able to avoid the non-global local minimum

existed in the one-notch function and approximate the function better than the MSE training

with the use of the same MLP. Meanwhile, we test whether the NRAE training can achieve

a better result than the SVM, which is commonly considered as one of the most famous

and powerful learning models in solving regression and classification tasks [6]. At last, we

evaluate if the NRAE training is able to tolerate data noises, and illustrate how well the

noises can be generalized by the NRAE training compared to both the MSE and the SVM

training.

To perform our experiments, we generate the training data of the one-notch function

as follows. For the training data, input values x
k

are selected by randomly sampling 2,000

different numbers from a uniform distribution on X , and corresponding output values y
k

are computed by Eq. (3.18). Then, a training dataset with 2,000 (x
k

, y
k

) samples is ob-

tained. In addition, we need the validation data for inducing and testing generalization

capabilities of well-trained models. For the validation data, input values x
k

are selected by

randomly sampling 1,000 different numbers from a uniform distribution on X , and corre-

sponding output values y
k

are also computed by Eq. (3.18). Then, a validation dataset with

1000 (x
k

, y
k

) samples is obtained. Here, the training and the validation datasets are inde-

pendent and non-overlapping. To test the noise tolerance, we generate new noisy dataset
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through adding noises to the target outputs y
k

of the original 2,000 training samples and

1,000 validation samples. The level of added noises is specified by the signal-to-noise ratio

(SNR), which is 10 times the natural logarithm of the ratio of the sum of squares of the

target outputs O and the sum of squares of the noises E. Here, we use the Gaussian white

noises with setting SNR as 10 log

10

2

2

= 6dB. The target one-notch functions with and

without noises are presented in Figure 3.3(a) and Figure 3.3(b), respectively.

Two 1-4-1 MLPs started with the same initial weights are chosen to train the one-

notch function separately by using the MSE and the NRAE criterion. For the noiseless

data, it is noted in Fig. 3.3(c) and Fig. 3.3(e) that the approximated function trained by the

NRAE criterion with � = 3.5 successfully find the small notch defined in the target one-

notch function. This approximation result is better than the function trained by the MSE

criterion. Although the MSE training can be improved by carefully selecting proper initial

weights at the beginning of the training, it costs an excessive amount of time to make these

selections. Actually, based on our experiments, the MSE training sessions with adopting

different initial weights never outperform a single NRAE training session at all. One rea-

son is that the proper initial weights for the MSE training cannot fundamentally eliminate

or avoid poor non-global local minima in the error space of the one-notch function, while

these initial weights only provide proper starting points for the local-searching method to

travel on the error space. If one or more non-global local minima appear on the searching

path, the MSE training is stuck into these local minima. However, the NRAE training does

not encounter this difficulty, because poor non-global local minima are able to be avoided

or alleviated if a proper � is chosen as well as the convexity region is sufficiently expanded.

Therefore, not like the MSE training, there is no need to consider the initial weights se-

lection in the NRAE training, because the multiple trials of different initial weights can

be avoided by choosing the proper � value in the NRAE training. For example, one of

our tests shows that choosing different initial weights from the range of [�100, 100] or the
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range of [�0.01, 0.01] can be completely handled by the NRAE training with reasonable �

values. All training sessions with those initial weights provide similar one-notch function

approximation results, which virtually appear the same as Fig. 3.3(e).

Another two 1-4-1 MLPs trained with the same initial weights are applied to approxi-

mate the one-notch function with measurement noises. Training results with approximated

functions compared to the target functions are shown in Fig. 3.3(d) and Fig. 3.3(f). It is

observed that the MSE training fits the most target data with a moderate noise level, but

it merely fits the few target data of the pre-designed notch. On the other hand, the NRAE

training with � = 6.5 almost approximates all target data with a little fitting of noises un-

der the same amount of measurement noises as the MSE training applied. Especially, the

NRAE training fits the target data of the pre-designed notch well. This experiment illus-

trates that the NRAE training with a proper � can provide a certain level of noise tolerance

to approximate function with using the MLP.

The SVM is chosen to compare with the MLPs trained by the MSE or the NRAE

criterion for the function approximation. We perform the SVM training with the regression

learning option provided in SVMlight tool [53] to approximate the one-notch function with

noiseless or noisy data. Our experimental results are shown in Fig. 3.3(g) and Fig. 3.3(h).

The kernel function in the SVM training is RBF, which is denoted as e(��ka�bk2) with � =

100. It is noticed that such a large value of � in the SVM training leads the approximated

function to have a very large order, thus it is unable to fit the target one-notch function

very well because of the severely overfitting. In fact, when we choose a smaller � = 10,

the RBF kernel significantly reduces the overfitting and makes the approximated function

more smooth, but the pre-designed notch in the target function is also neglected by the

SVM training. Moreover, when we select a very large � = 500, the RBF kernel makes

the approximating results even worse, because a much higher order of the approximated

function greatly intensifies the overfitting in the SVM training. Based on our experiments,
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� = 100 provides the best function approximation result over all of the SVM training trials.

The one-notch function approximation results demonstrate that the SVM training is able to

provide a better result than the MSE training with the 1-4-1 MLP, because the approximated

function with a high order obtained by the SVM training has more expression capability to

the one-notch function than the MLP trained by the MSE criterion. However, both the MSE

and the SVM training do not have effective approaches to avoid or alleviate the non-global

local minimum located in the one-notch function. Therefore, they can hardly provide a

well-fitted one-notch function as what the NRAE training achieves.
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(h) SVM Training with Noises (� = 100)

FIG. 3.3. Target functions and fitting plots for approximating the one-notch function. Num-
bers on horizontal and vertical axes in each subfigure represent the input and output of the
function. Red dots denote target training data, and blue dash lines are approximated func-
tion plots. The figures on the left side describe the trained results with the noiseless data,
and the figures on the right side present the results trained with the SNR=6dB noisy data.
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3.3 Summary

The NRAE criterion, which is derived from the RAE criterion, is developed to over-

come the local minimum problem in training ANNs. Since the convexity region of NRAE

that contains the convexity region of RAE expands in the same way as the convexity region

of RAE stretches as � increases, and the NRAE does not grow exponentially like the way

of RAE does as � increases as well, the NRAE criterion can be applied under large values

of � to greatly expand the convexity region for avoiding the non-global local minimum

without any computational overflow. Therefore, comparing to the MSE and RAE criteria,

the NRAE criterion is better suited for overcoming the local minimum problem in training

ANNs.

The effectiveness of the NRAE criterion in avoiding the non-global local minimum

is conceptually evaluated by training MLPs on two small data fitting examples: the XOR

problem and the one-notch function. Experimental results demonstrate significant advan-

tages of the NRAE criterion compared to the standard MSE criterion in training MLPs to

reach the global minimum, illustrating the feasibility of the NRAE criterion for solving

small learning tasks with non-global local minima.



Chapter 4

CONVEXIFICATION METHODOLOGY

To systematically demonstrate the practical performance of the NRAE criterion in

solving real-world tasks rather than small data fitting examples, this chapter presents the

evaluation of the NRAE criterion using the NRAE training and the NRAE-MSE training

methods, which are developed mainly according to the convexification procedure in NRAE.

Both methods are tested on function approximation and handwritten digit recognition tasks,

illustrating the effectiveness of the NRAE criterion in avoiding non-global local minima

with applicable ranges of �. In addition, we study a tricky but significant difficulty called

the stagnant problem in training MLPs with the NRAE criterion, and we present concrete

experimental evidences to confirm conjectures and provide solutions for that conundrum.

4.1 NRAE Training Method

As we discussed in Chapter 3, since the convexity region of C
�

(w) that contains

the convexity region of J
�

(w) expands in the same way as the convexity region of J
�

(w)

stretches as � increases, a straightforward convexification methodology based on the NRAE

criterion is to apply lim

�!1 C
�

(w) as an error criterion. However, lim
�!1 C

�

(w) is dis-

continuous thus cannot effectively be used as the training criterion. This motivates the

NRAE training method [74], which uses C
�

(w) at a very large � instead of the standard

46
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MSE criterion Q(w) throughout the training until a desired training error is achieved. The

NRAE training method is described in Algorithm 1.

Algorithm 1 NRAE Training Method
Require: Initialize the weight vector w randomly, set a desired training error �, and select

� >> 1;
1: while C

�

(w) � � do
2: for i = 1 to N do
3: Evaluate the first-order derivative of C

�

(w) with respect to w
i

as
@C�(w)

@wi
 

�2

PK
k=1 ⌘k(w)"

T
k (w)

@ŷk(w)
@wiPK

k=1 ⌘k(w)

;

4: Update w
i

to w⇤
i

using @C�(w)

@wi
;

5: end for
6: Set w  w⇤;
7: end while
8: return The optimal weight vector w⇤.

4.2 NRAE-MSE Training Method

Although the NRAE training method can be performed all the way until the best train-

ing error is reached, finding the optimal weight vector with the use of C
�

(w) needs more

computational efforts than using Q (w). If the convexity region of C
�

(w) can be greatly

expanded at a very large �, then it would be a great chance to avoid or alleviate the non-

global local minimum existed in the error space of both C
�

(w) and Q (w), because they

share the same local and global minima. In this case, the training criterion can be switched

from C
�

(w) to Q (w) after the NRAE training is performed for a reasonable number of

iterations. If a global or nearly global minimum is reached in the training excursion with

the MSE criterion, the training is considered successful and stopped. Otherwise, the NRAE

training resumes from the weight vector that the MSE excursion started with and continues

for another reasonable number of iterations to be followed by another excursion with the
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MSE criterion. In short, this approach comprises a sequence of cycles, where each cycle

consists of an NRAE training followed by an MSE recursion. This new approach to use the

NRAE criterion is called the NRAE-MSE training method [76].

The NRAE-MSE training method is described in Algorithm 2. Here, the weight vec-

tors computed in the NRAE training and the MSE excursion are denoted as wC(i) and

wQ(j), where i = 1, ..., LNRAE and j = 1, ..., LMSE, respectively. The NRAE-MSE training

method mainly repeats the following two steps:

1. The NRAE training: starting with a weight vector w, apply C
�

(w) with the selected

� to perform the training for LNRAE iterations. Each iteration starts with the current

weight vector wC(i) and produces a new weight vector, which is stored as the weight

vector wC(i + 1) to replace the preceding one for the next iteration until the last

iteration is ended with a weight vector wC(LNRAE).

2. The MSE excursion: starting with a weight vector wC(LNRAE), apply Q (w) to per-

form the training for LMSE iterations. In the process of the last iterations, if Q (w) is

less than or equal to a desired training error, or if a validation data shows that an over-

fitting of the training data occurs, stop the entire NRAE-MSE training. Otherwise,

complete performing the last iterations, store the current weight vector as wQ(LMSE),

and return to the step 1.

It is worth noticing that, although the NRAE-MSE training method switches between

using NRAE and using MSE, the latter is only an excursion, but not a detour, from the

former. Because the MSE excursion does not disturb the path of the NRAE training, the

two steps in the NRAE-MSE training method are able to be implemented separately with

reasonable number of interactions controlled by LNRAE and LMSE. Therefore, applying a

parallel computing technique will significantly speedup the NRAE-MSE training method

in practice.
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Algorithm 2 NRAE-MSE Training Method
Require: Initialize the weight vector w randomly, choose LN and LM, set a desired training

error �, and select � >> 1;
1: while Q(w) > � or the overfitting is not detected do
2: Set wC(1) w;
3: for i = 1 to LNRAE � 1 do {Step 1: the NRAE training}
4: Evaluate the first-order derivative of C

�

(wC(i));
5: Update wC(i) to wC(i+ 1);
6: end for
7: Set wQ(1) wC(LNRAE);
8: for j = 1 to LMSE � 1 do {Step 2: the MSE excursion}
9: Evaluate the first-order derivative of Q(wQ(j));

10: Update wQ(j) to wQ(j + 1);
11: end for
12: Set w⇤  wQ(LMSE) and w  w⇤;
13: end while
14: return The optimal weight vector w⇤.

4.3 Experimental Evaluation

In this section, the NRAE training and the NRAE-MSE training methods are evalu-

ated by four function approximation examples and one handwritten digit recognition task,

demonstrating the effectiveness of the proposed convexification methodology based on the

NRAE criterion.

4.3.1 Function Approximation

Experimental Design Four target functions are designed for their MSEs to have

non-global local minima in our experiments, which are intended to test the capability of

the NRAE-based training methods in avoiding the non-global local minimum. To approxi-

mate a target function, 10 different sets of initial weights of MLP with a certain architecture

are randomly chosen. Starting with such a set of initial weights, one standard MSE train-

ing, one NRAE training and one NRAE-MSE training session are performed. These three
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training sessions for one and the same set of initial weights are called a training group.

The corresponding two values of Q(w) of the MLP resulting from the two NRAE-based

training methods are recorded for comparing to the Q(w) of the MLP resulting from the

standard MSE training.

In order to test the capability of the NRAE-MSE training to tolerate noises in the train-

ing data, 10 additional training groups are composed for those four function approximation

examples with adding noises to the target outputs in the training data. Here, we keep using

Gaussian white noises with setting SNR as 10 log
10

2

2

= 6dB. The same training strategies

as applied for noiseless data are adopted for noisy data in each function approximation ex-

ample. In addition, we use the validation data to test generalization capabilities in all the

MSE and NRAE-MSE training sessions with noisy data. The size of the validation data is

one half of the noisy training data, and the validation data is randomly selected from the

target function with no overlapping to the training data.

In each of the sessions with the MSE or the NRAE training method, the maximum

number of training epochs is set to 10

6. The NRAE-MSE training method is considered as

comprising a sequence of cycles, where each cycle consists of an NRAE training followed

by an MSE recursion. Hence, in the NRAE-MSE training method, we set LNRAE = 1⇥ 10

4

and LMSE = 1 ⇥ 10

4, while the maximum number of cycles is set to 50. As a result, the

maximum number of training epochs including those in the NRAE training and the MSE

recursion is 106, which is equal to the number of epochs in the MSE training as well as the

NRAE training.

We present our experimental results for seven large � values as 106, 107, 108, 109, 1010

and 10

11. For every function approximation example, each � value is used to perform ten

training groups with different sets of initial weights, where each training group contains

one NRAE training session and one NRAE-MSE training session using the same set of

initial weights for the given �. Since we have 4 function approximation examples, 10 sets
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of initial weights, 7 values of �, and 2 datasets with or without noises, we totally perform

4⇥ 10⇥ 7⇥ 1 = 280 trials for the NRAE training method, 4⇥ 10⇥ 7⇥ 2 = 560 trials for

the NRAE-MSE training method, and 4⇥ 10⇥ 2 = 80 trials for the MSE training method.

Target functions used in function approximation examples are presented in Fig. 4.1.

Definitions of target functions with the training and validation data, and MLP architectures

for the experiments are described as the following. These settings of function approxima-

tion examples are always maintained the same as our descriptions in this section for all

experiments once these functions are applied.

Three-notch A function with three notches is defined by

(4.1) y = f(x) =

8
>>>><

>>>>:

0 if x 2 [0, 1.0] [ [2.2, 2.3] [ [3.5, 4.5]

0.25 if x 2 [2.8, 3.0]

0.5 if x 2 [1.5, 1.7]

1 otherwise

where x 2 X = [0, 4.5]. For the training data, input values x
k

are selected by ran-

domly sampling 2,000 different numbers from a uniform distribution on X , and cor-

responding output values y
k

are computed by Eq. (4.1). Then, a training dataset with

2,000 (x
k

, y
k

) samples is obtained. For the validation data, input values x
k

are selected

by randomly sampling 1,000 different numbers from a uniform distribution on X , and

corresponding output values y
k

are computed by Eq. (4.1). Then, a validation dataset

with 1,000 (x
k

, y
k

) samples is obtained. Here, the training dataset and the validation

dataset are independently selected without any overlapping. MLPs with the 1-16-1

architecture are applied to all the training sessions for noiseless or noisy data.

Fine Features A smooth function with two fine features as spikes is defined by

(4.2) y = f(x) = g

✓
x,

1

6

,
1

2

,
1

6

◆
+ g

✓
x,

1

64

,
1

4

,
1

128

◆
+ g

✓
x,

1

64

,
11

20

,
1

128

◆
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where x 2 X = [0, 1] and g is defined as

(4.3) g (x,↵, µ, �) =
↵p
2⇡�

cos

✓
(x� µ)⇡

�

◆
exp

✓
�(x� µ)2

2�2

◆

For the training data, input values x
k

are selected by randomly sampling 2,000 dif-

ferent numbers from a uniform distribution on X , and corresponding output values

y
k

are computed by Eq. (4.2). Then, a training dataset with 2,000 (x
k

, y
k

) samples is

obtained. For the validation data, input values x
k

are selected by randomly sampling

1,000 different numbers from a uniform distribution on X , and corresponding output

values y
k

are computed by Eq. (4.2). Then, a validation dataset with 1,000 (x
k

, y
k

)

samples is obtained. Here, the training dataset and the validation dataset are inde-

pendently selected without any overlapping. MLPs with the 1-15-1 architecture are

applied to all the training sessions for noiseless or noisy data.

Under-sampled Segments A smooth function with two under-sampled segments is de-

fined by

(4.4) y = f(x) = g

✓
x,

1

5

,
1

4

,
1

12

◆
+ g

✓
x,

1

5

,
3

4

,
1

12

◆
+ g

✓
x,

1

64

,
5

4

,
1

12

◆

where x 2 X = [0, 1.5] and g is defined in Eq. (4.3). For the training data, input

values x
k

are collected by using 50 grid points from a uniform grid on [0, 0.5], 50 grid

points from a uniform grid on [1.0, 1.5], and 2,000 grid points from a uniform grid on

(0.5, 1.0). Corresponding output values y
k

are computed by Eq. (4.4). These values

form a training dataset with 2,100 (x
k

, y
k

) input/output samples. For the validation

data, input values x
k

are collected by using 25 grid points from a uniform grid on

[0, 0.5], 25 grid points from a uniform grid on [1.0, 1.5], and 1,000 grid points from a

uniform grid on (0.5, 1.0). Corresponding output values y
k

are computed by Eq. (4.4).
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These values form a validation dataset with 1,050 (x
k

, y
k

) input/output samples. Here,

the training dataset and the validation dataset are independently selected without any

overlapping. MLPs with the 1-12-1 architecture are applied to all the training sessions

for noiseless or noisy data.

Under-sampled Square A function existed in the three-dimensional space, which has

a letter ‘L’ shape and an under-sampled square raised from a plane, is defined on

[0, 6]⇥ [0, 6] by

(4.5) z = f(x, y) =

8
>>>><

>>>>:

1 if x 2 [1.0, 5.5] and y 2 [1.0, 2.0]

1 if x 2 [1.0, 2.0] and y 2 [2.0, 5.5]

1 if x 2 [3.0, 5.5] and y 2 [3.0, 5.5]

0 otherwise

In the training data, input values x
k

and y
k

are the 289 grid points from the uniform

grid on (2.5, 6]⇥(2.5, 6] and 2,522 grid points from the uniform grid on [0, 6]⇥[0, 6]�

(2.5, 6] ⇥ (2.5, 6]. Corresponding output values z
k

are computed by Eq. (4.5). These

values form a training dataset with 2,811 (x
k

, y
k

) samples. In the validation data,

input values x
k

and y
k

are the 144 grid points from the uniform grid on (2.5, 6] ⇥

(2.5, 6] and 1,261 grid points from the uniform grid on [0, 6] ⇥ [0, 6] � (2.5, 6] ⇥

(2.5, 6]. Corresponding output values z
k

are computed by Eq. (4.5). These values

form a validation dataset with 1,405 (x
k

, y
k

) samples. Here, the training dataset and

the validation dataset are independently selected without any overlapping. MLPs with

the 2-9-3-1 architecture are applied to all the training sessions for noiseless or noisy

data.
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FIG. 4.1. Target functions of four function approximation examples with designed non-
global local minima. Numbers on horizontal and vertical axes in each subfigure represent
the input and output of the function, respectively. From Fig. 4.1(a) to Fig. 4.1(c), red dots
denote to the target training data. In Fig. 4.1(d), different colors (blue or red) are used to
distinguish different output values (0 or 1) of the function on vertical axes.
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Results and Discussion (Part I) In this section, we choose the three-notch func-

tion approximation with noiseless data as an example to demonstrate performances of the

NRAE-based training methods over all selected sets of initial weights and � values. Exper-

imental results we obtained are presented as follows:

1. Learning curves of the NRAE training sessions as comparing to those of the MSE

training sessions are presented in Fig. 4.2. It illustrates that the NRAE training

method with a sufficiently large � greatly outperforms the MSE training method and

actually reaches a global or near global minimum, because the approximation error

is nearly zero. Since the three-notch target function is designed to have non-global

local minima, the observed learning curves in Fig. 4.2 indicate that training with the

NRAE criterion under a sufficiently large � has the capability to avoid the non-global

local minimum, while training with the MSE criterion does not. Note that the MSE

training quickly falls into a non-global local minimum with an MSE about 6⇥ 10

�2

from the beginning to around 10,000 training epochs, while the NRAE training at

each value of � outperforms the MSE training after a certain number of training

epochs, moving rather quickly toward a global or near global minimum where the

MSE is in the range from 10

�5 to 10

�9.

2. In our experimental trials, some training sessions with the NRAE criterion fails

to reach a global or near global minimum. Table 4.1 presents all test results

of the NRAE and NRAE-MSE training method with different values of � under

different sets of initial weights. It shows that in several training sessions when

� = 10

6, 107, 1010 and 10

11, the NRAE training is unable to perform better than

the MSE training. The reason can be concluded as the following: the smaller � is,

the more non-global local minima exist; the larger � is, the greater convexity region

with non-global local minima expands; when � increases to an extremely large mag-
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nitude, the error space of C
�

(w) may become “flat”, which slows down the NRAE

training session thus affecting the performance in achieving the global or near-global

minimum. More details related to this observation will be systematically discussed

in the last section of this chapter.

3. We stress that the NRAE-MSE training consistently outperforms the MSE training

in all trials with different sets of initial weights and with all tested values of �. It

indicates that the NRAE-MSE training method, which switches the training crite-

rion between NRAE and MSE, is a significant improvement over the NRAE train-

ing method. In fact, the NRAE-MSE training method can be applied to replace the

NRAE training method in many practical situations, with maintaining at least the

same performance as the NRAE training method.

4. It is noticed that the training errors of NRAE-MSE for the same � are distinct for

different sets of initial weights as shown in Table 4.1. To explain that, three remarks

are concluded as follows. First, there are many global minima located in “attraction

basins” of different error spaces on C
�

(w), while the NRAE-MSE training stops

whenever a satisfactory MSE is reached or the MSE for the validation data starts to

indicate overfitting. Therefore, the training sessions starting from different sets of ini-

tial weights travel through different paths toward different global minima and may be

stopped at distinct points with different training errors. Second, it has been proven

in Theorem 2 that the convexity region of C
�

(w) in the error space with no non-

global local minimum expands as � increases, thereby avoiding the non-global local

minimum. However, reaching the exactly global minimum is not theoretically guar-

anteed. At last, the observation might show that the NRAE-MSE training method is

only able to reach a near global minimum. However, because the achieved training

errors of NRAE-MSE for the same � are all virtually zero, it is more likely that the
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differences among them reflect numerical sensitivity of the algorithm.

5. Without the MSE excursions involved, the NRAE-MSE training is simply an NRAE

training, thus the performance of the NRAE-MSE training is at least as good as the

NRAE training. As we discussed above, the training sessions starting from different

sets of initial weights may be stopped at different points of global minima with dif-

ferent numbers of training epochs. In Table 4.1, some NRAE-MSE training errors

are larger than the corresponding NRAE training errors, because the total number

of epochs of the NRAE training in the NRAE-MSE training method is chosen as

10

4, which is smaller than the total number of training epochs 106 completed by the

NRAE training method in our experiments. Nevertheless, with the same number of

NRAE training epochs, the NRAE-MSE training errors are still lower than their cor-

responding MSE training errors for all randomly selected sets of initial weights and

all tested values of �.
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Table 4.1. MSEs of the three-notch function approximation with noiseless data achieved
by the MSE, the NRAE, and the NRAE-MSE training methods. The MSE training results
are shown as a baseline. The best performances achieved by the NRAE training method
are highlighted by underlines, while the best performances achieved by the NRAE-MSE
training method are highlighted in bold.

Three-notch Set of Initial Weights

Function Approximation 1 2 3 4 5 6 7 8 9 10

MSE 1.05⇥ 10

�1

1.94⇥ 10

�2

1.11⇥ 10

�4

1.35⇥ 10

�2

1.46⇥ 10

�1

1.01⇥ 10

�1

7.54⇥ 10

�4

5.42⇥ 10

�3

5.41⇥ 10

�3

8.97⇥ 10

�2

� = 10

6
NRAE 7.14⇥ 10

�8

8.04⇥ 10

�2

4.55⇥ 10

�2

8.36⇥ 10

�7

9.25⇥ 10

�1

8.25⇥ 10

�3

9.36⇥ 10

�8

7.16⇥ 10

�8

1.43⇥ 10

�2

5.23⇥ 10

�9

NRAE-MSE 1.47⇥ 10

�5

3.68⇥ 10

�4

1.99⇥ 10

�5

3.25⇥ 10

�4

2.54⇥ 10

�4

1.62⇥ 10

�4

1.24⇥ 10

�4

9.27⇥ 10

�5

6.83⇥ 10

�4

4.85⇥ 10

�4

� = 10

7
NRAE 4.25⇥ 10

�8

2.86⇥ 10

�2

3.86⇥ 10

�2

9.14⇥ 10

�4

8.04⇥ 10

�7

4.27⇥ 10

�2

8.01⇥ 10

�9

9.02⇥ 10

�8

9.72⇥ 10

�3

7.08⇥ 10

�7

NRAE-MSE 1.35⇥ 10

�5

1.57⇥ 10

�5

1.58⇥ 10

�5

2.48⇥ 10

�5

2.06⇥ 10

�4

1.54⇥ 10

�5

7.96⇥ 10

�5

5.05⇥ 10

�5

2.75⇥ 10

�4

3.99⇥ 10

�4

� = 10

8
NRAE 4.73⇥ 10

�9

8.48⇥ 10

�8

1.95⇥ 10

�8

1.53⇥ 10

�7

9.54⇥ 10

�7

7.64⇥ 10

�7

5.26⇥ 10

�7

2.89⇥ 10

�8

1.74⇥ 10

�7

6.54⇥ 10

�7

NRAE-MSE 4.75⇥ 10

�6

5.99⇥ 10

�8

9.00⇥ 10

�9

7.57⇥ 10

�7

5.56⇥ 10

�7

1.69⇥ 10

�6

7.29⇥ 10

�8

2.26⇥ 10

�8

6.74⇥ 10

�8

9.54⇥ 10

�6

� = 10

9
NRAE 3.52⇥ 10

�8

8.79⇥ 10

�9

4.64⇥ 10

�7

7.23⇥ 10

�7

5.54⇥ 10

�8

8.66⇥ 10

�7

8.80⇥ 10

�9

4.52⇥ 10

�9

7.37⇥ 10

�8

9.36⇥ 10

�7

NRAE-MSE 1.86⇥ 10

�7

6.66⇥ 10

�8

1.34⇥ 10

�10

4.83⇥ 10

�8

4.46⇥ 10

�7

4.63⇥ 10

�7 1.63⇥ 10�8
9.35⇥ 10

�9

4.05⇥ 10

�8

1.35⇥ 10

�7

� = 10

10
NRAE 8.43⇥ 10

�8

1.88⇥ 10

�2

8.78⇥ 10

�3

3.65⇥ 10

�6

1.17⇥ 10

�6

3.76⇥ 10

�5

2.01⇥ 10

�3

7.94⇥ 10

�5

5.68⇥ 10

�7

1.94⇥ 10

�6

NRAE-MSE 7.33⇥ 10

�8 1.96⇥ 10�8
9.34⇥ 10

�11

1.24⇥ 10

�8

7.53⇥ 10

�8

2.63⇥ 10

�7

1.74⇥ 10

�8

4.23⇥ 10

�9

1.72⇥ 10

�8 3.78⇥ 10�8

� = 10

11
NRAE 2.00⇥ 10

�6

6.07⇥ 10

�6

1.87⇥ 10

�3

2.16⇥ 10

�4

3.53⇥ 10

�5

9.85⇥ 10

�2

2.02⇥ 10

�5

4.39⇥ 10

�5

1.28⇥ 10

�5

1.27⇥ 10

�7

NRAE-MSE 2.57⇥ 10�8
2.16⇥ 10

�8 5.50⇥ 10�11 7.24⇥ 10�9 2.54⇥ 10�8 1.12⇥ 10�7
3.24⇥ 10

�8 3.21⇥ 10�9 9.63⇥ 10�9
7.78⇥ 10

�8
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FIG. 4.2. Learning curves of the three-notch function approximation achieved by the MSE
and NRAE training. In Fig. 4.2(a), red dash lines represent the MSE training. In Fig. 4.2(b)
- Fig. 4.2(g), blue solid lines represent the NRAE training and red dash lines are the cor-
responding curves respect to MSE values. Numbers on horizontal axes are numbers of
training epochs. Numbers on vertical axes are values of training errors which are converted
to the logarithmic numbers with respect to base 10. All training sessions are converged at
the end of the shown curves.
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Results and Discussion (Part II) In this section, we choose � = 10

6 for all the

function approximation examples to compare the NRAE-MSE training method to the stan-

dard MSE training method over all randomly selected sets of initial weights with noiseless

or noisy data. Experimental results we obtained are presented as follows:

1. In Fig. 4.3, the NRAE-MSE training captures all the significant features and under-

sampled segments of the target functions in our experiments with noiseless or noisy

data, but the MSE training misses all the fine features and under-sampled segments of

those target functions. Furthermore, the results obtained from the noisy data indicate

that the NRAE-MSE training method is able to deal with a high level of noises in the

training data. In spite of the noise, the MLP resulting from the NRAE-MSE training

still captures the fine features and under-sampled segments of the target functions

and maintains a high generalization level at the same time.

2. Fig. 4.4 demonstrates that the MLPs obtained by the NRAE-MSE training method

outperform all their corresponding MLPs obtained by the MSE training method,

without regarding to different selections of initial weights for both the noiseless and

noisy data. It indicates that the performance of the NRAE-MSE training method

is less sensitive to the selection of initial weights comparing to the MSE training

method, while multiple trials for selecting the best resultant MLP is unnecessary in

the NRAE-MSE training.

3. Some results shown in Fig. 4.4 imply that the noise added to the training data can

help the MSE training method in approximating functions. We explain this obser-

vation over here using the function approximation of the under-sampled square as

an example. In training with the noiseless data, the target value y
k

on the under-

sampled square is 1. If the platform on the under-sampled square is missing in

the MLP under training, the sum squared error over the under-sampled square is
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P

289

k=1

���y
k

� ˆf (x
k

, w)
���
2

=
P

289

k=1

k1� 0k2 = 289 in the noiseless training. Note that

289 is the number of grid points on the under-sampled square. On the other hand,

in training with the noisy data, the new target value y
k

on the under-sampled square

is 1 + "
i

. Hence, the SSE over the under-sampled square is
P

289

k=1

���y
k

� ˆf (x
k

, w)
���
2

=
P

289

k=1

k1 + "
i

� 0k2 t 289E
⇥
k1 + "

i

k2
⇤
, where E denotes the expected value. It

can be proven that if "
i

are drawn from independent identically distributed normal

distributions N (0, �), the greater the standard deviation �, the greater the difference

E
⇥
k1 + "

i

k2
⇤
� 1. When � is large enough, 289E

⇥
k1 + "

i

k2
⇤

is sufficiently large

with a high probability to compensate for the lack of samples on the square and pull

the MLP under training from 0 over the under-sampled square toward 1. The plat-

form over the square is then “found” by and incorporated into the MLP, thus the

performance of the MLP trained by the MSE method is improved.

4. In Fig. 4.4(d), the MLP trained by the MSE method with the noisy data outperforms

the MLP trained by the NRAE-MSE method with the noiseless data except the 5th

and 6th set of initial weights. As we exemplified above, adding noises can help the

MSE training method to find the platform over the under-sampled square. Therefore,

in the MSE excursions of the NRAE-MSE training method, the MLP achieved on

the noiseless data is inferior to the MLP produced by the MSE training method with

the noisy data. This explains why the MLP trained by the MSE method with the

noisy data can outperform the MLP trained by the NRAE-MSE method with the

noiseless data. In addition, it also explains why the MLP trained by the NRAE-MSE

method with the noisy data outperforms the MLP trained by the same method with

the noiseless data.
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FIG. 4.3. Fitting plots of four function approximation examples achieved by the MSE and
NRAE-MSE training. For each example, the MSE and NRAE-MSE training method use
the same set of initial weights. All NRAE-MSE training sessions presented here are per-
formed with � = 10

6. Numbers on horizontal and vertical axes in each subfigure represent
the input and output of the function, respectively. In Fig. 4.3(a) - Fig. 4.3(l), red dots de-
note target training samples, and blue dash lines are MLP approximated function plots. In
Fig. 4.3(m) - Fig. 4.3(p), only MLP approximated function plots are shown by using blue
and red colors to distinguish different output values of the functions on vertical axes.
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FIG. 4.4. Training errors of 10 sets of initial weights for four function approximation ex-
amples achieved by the MSE and NRAE-MSE training. All NRAE-MSE training sessions
presented here are performed with � = 10

6. Colors and symbols denote different training
methods of the MSE (red square) and the NRAE-MSE (blue triangle). Solid and dash lines
represent different training sessions with noiseless and noisy data, respectively. In order to
clearly show differences between MSE values obtained by the MSE and NRAE-MSE train-
ing, actual numbers in all vertical axes are converted to logarithmic numbers with respect
to base 10.
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4.3.2 Handwritten Digit Recognition

To test the capability of the NRAE criterion in training a large MLP with a real-

world dataset, the NRAE-MSE training method is applied to train the MLP for recognizing

handwritten digits with the MNIST dataset [64]. The MNIST dataset is commonly used as

a benchmark to compare performances of different classifiers, including many MLP-based

classifiers. The MNIST dataset contains 60,000 training samples and 10,000 test samples

of handwritten digits. Each sample has 784 features which are obtained from a 28 ⇥ 28

black and white image. Each feature value is the anti-aliasing normalized gray level of the

corresponding pixel in an image.

In our experiments, we test both the transformed and the original MNIST dataset. For

the transformed MNIST dataset, we use the principle component analysis (PCA) to reduce

the dimension of the original image from 784 to 40 (principle components), and then apply

both the standard MSE training method and the NRAE-MSE training method to train a

2-layer MLP with the architecture of 40-300-10. Each of the ten output nodes is associated

with one of the ten numerals, i.e., 1, 2, ..., 9, and 0. For the original MNIST dataset, we

perform experiments on a 2-layer MLP with the architecture of 784-300-10. For training

the MLPs, trainable weights are randomly selected from a uniform distribution between

�2.4/F
i

and 2.4/F
i

, where F
i

is the fan-in of the i-th node as we defined before. We

initialized the weights in a small range close to 0 rather than [�1, 1], because we do not

want the initial weights to be too large to saturate the hidden nodes of MLP, especially

when the MLP architecture is chosen very large. All experiments apply 50,000 out of

60,000 training samples to train the MLP and employ the early-stopping rule to detect the

overfitting with the left 10,000 training samples as the validation data during the training.

Once the overfitting is detected, the training stops and the trained MLP is tested by 10,000

test samples.
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For training the MLP, the target value of the output node is 1 if the input is the correct

digit associated with the node, and is �1 otherwise. After the MLP is trained, the digit

associated with the output node, which has the highest value among the ten output nodes,

is selected as the result of recognizing the input image. The classification accuracy of the

trained MLP is calculated by the percentage of images that are correctly recognized in the

test dataset, and the test error rate is defined as 100% minus the classification accuracy of

the trained MLP. For all training sessions performed with the MNIST dataset, we set the

global learning rate and the momentum term of GD equal to 0.001 and 0.5, respectively.

In all the NRAE-MSE training sessions, we set LNRAE = 500 for the NRAE training and

LMSE = 500 for the MSE excursion. The maximum number of iterations of the NRAE-

MSE training is limited to 10. Therefore, the maximum number of NRAE-MSE training

epochs including both the NRAE training sessions and the MSE excursions is 10

4. We

set � = 10

3, 104, 105 and 10

6 to see the effect of different values of � on the NRAE-MSE

training.

Ten different sets of initial weights for each � are employed in our experiments. Table

4.2 presents the best classification results obtained by the NRAE-MSE training method

among all testing sessions as well as some benchmark results. The total number of epochs

of the NRAE-MSE training in all of our experiments is less than 2,000. The experimental

results demonstrate that the MLP classifier trained by the NRAE-MSE method has a better

generalization capability than many benchmark classifiers on the MNIST dataset with or

without the PCA applied. It is worth noting that, the benchmark results presented in Table

4.2 were achieved by the most basic classifiers, such as the linear classifier, the quadratic

classifier, the K-nearest-neighbors classifier, and the 2-layer MLP classifier, but they do

not represent the best reported benchmark results obtained on the MNIST dataset. They

are only used to demonstrate that the NRAE-MSE training method has the generalization

ability that is better than the basic classifiers, while such the ability is comparable to the
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Table 4.2. Test error rates achieved by basic classifiers on the original and transformed
MNIST dataset. The best performances of the NRAE-MSE training method are achieved
when � = 10

6 and are highlighted in bold.

MNIST Dataset Training Method Test Error Rate (%)

Original

Linear classifier [64] 12.00
K-nearest-neighbors + Euclidean L2 [64] 5.00
784-300-10 MLP + MSE [64] 4.70
784-300-10 MLP + NRAE-MSE (this dissertation) 4.58

Transformed

Linear classifier + deskewing [64] 8.40
40-300-10 MLP + MSE + PCA (this dissertation) 3.84
Quadratic classifier + PCA [64] 3.30
40-300-10 MLP + NRAE-MSE + PCA (this dissertation) 2.79

MSE training method.

It is also observed that the NRAE-MSE training method consistently achieves a lower

test error rate comparing to the MSE training method under the same experimental settings.

It confirms that the NRAE-MSE training method has no difficulty in scaling up for a com-

plex real-world task, where such the method has the ability to avoid the non-global local

minimum and maintain a high level of generalization as well. In addition, we stress that

the NRAE-MSE training can provide satisfactory generalization results with using random

sets of initial weights, thus requiring no multiple trials on initial weights.

4.4 Stagnant Problem

4.4.1 Background

Based on Theorem 2, an intuitive method to maximumly use the potential of the

NRAE criterion in training MLPs is to choose an extremely large � to significantly ex-

pand the convexity region of RAE that is contained in the convexity region of NRAE, thus
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providing the best chance to the local search method for avoiding the non-global local min-

imum and achieving a global or near-global minimum in theory. Accordingly, we wonder

whether � is able to be chosen as a very large value in the NRAE criterion for providing the

best capability of the convexification in avoiding the non-global local minimum, especially

when the training task involves a complex and non-convex error space that needs to be

significantly convexified in practice. This idea motivates us to explore the NRAE criterion

under the tremendous expansion of the convexity region of RAE and evaluate the NRAE

training with large � values.

However, some previously experimental results presented in Table 4.1 indicate that,

applying extremely large � values could affect the NRAE training somehow, thus imped-

ing the training to converge on a global or near-global minimum normally. To further

confirm this observation in a simple and elegant way, we perform the NRAE training with

a very large � = 10

20 to train the XOR problem using the same training samples and the

same MLP architecture as described in Chapter 3. We choose 10 different sets of initial

weights to start 10 training sessions, while training results from those sessions are shown

in Fig. 4.5(a). It is observed that 6 out of 10 training sessions converge on the global min-

imum with the training errors around 10

�10, but the other 4 out of 10 training sessions

cannot converge and stuck with the training errors closed to 1.0.

Therefore, it is confirmed that applying a significantly large � can impedes the perfor-

mance of the NRAE training, and we name this specific phenomenon existed in the NRAE

training as a stagnant problem. In this section, we study the stagnant problem in the NRAE

training with the XOR example and explore a feasible remedy to overcome it.
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4.4.2 Theoretical Analysis

To uncover the theoretical reason of the stagnant problem in applying the NRAE cri-

terion with large � values to train MLPs, let us first review Eq. (3.8) for �!1 as

lim

�!1
C

�

(w) = lim

�!1

1

�
ln

 
1

K
e�k"M (w)k2

KX
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k
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�!1

1

�
ln

 
1

K

KX

k=1

⌘
k

(w)

!
+ k"

M

(w)k2

= k"
M

(w)k2

(4.6)

It implies that if � is numerically chosen as a very large value (e.g. � = 10

20), the NRAE

criterion is close to the minimax criterion, while C
�

(w) is close to k"
M

(w)k2. Generally,

in training the MLP with the minimax criterion, i.e., the NRAE criterion under a very large

�, k"
M

(w)k2 will be frequently changed by cycling different M defined in Eq. (3.6) for

all k = 1, ..., K, and C
�

(w) will be gradually minimized as k"
M

(w)k2 decreases until a

global or near-global minimum is achieved.

However, the solution of minimax generally tends to be an equilibrium rather an op-

timum. If the minimax criterion produces an equilibrium solution where M only covers

K 0 but not K training samples where K 0 < K, then k"
M

(w)k2 will be computed merely

according to K 0 repeated values of M , and the entire MLP will be used to approximate

the number of training samples decided by K 0 instead of K. In this case, the MLP could

be redundant for such an approximation. Because the MLP is chosen to learn K training

samples but it actually approximate K 0 training samples only, some trainable weights in

the MLP will tend to become as similar as possible to each other, while some weights will

be led to cancel effects of others during the training. As a consequence, the redundancy

existed in trainable weights of the MLP causes linear dependencies of rows or columns in

Jacobian D
K

(w), which is defined in Theorem 1, thereby generating the rank deficiency of



73

D
K

(w). Recall that a rank deficiency of Jacobian occurs when the number of linearly inde-

pendent columns or rows in Jacobian is less than min(K,N), where K is the total number

of training samples and N is the total number of trainable weights in the MLP.

According to Theorem 2, the NRAE criterion shares the same local and global optima

with the RAE criterion only if the convexity of RAE is maintained, which requires the

full rank of D
K

(w). If such a rank condition cannot be satisfied, the NRAE training may

still be impeded by the non-global local minima, because the convexity of RAE cannot be

maintained even through the convexity region of RAE is expected to be greatly expanded

by a large �. In other words, without the full rank of D
K

(w), the RAE criterion could

yield a solution that exists in the complement set ([
�>0

P )

c, which is contained in the

intersection I as defined in Theorem 1; as a result, the convexity region of RAE cannot be

expanded monotonically as � increases, thus it cannot be close to strictly convex even a

very large � is applied. Therefore, both the RAE and the NRAE criteria lose the benefit of

the convexification in avoiding the non-global local minimum and have the risks of entering

poor non-global local minima caused by the rank deficiency of D
K

(w).

Moreover, experimental evidences described in [94] pointed out that many training

problems of MLPs are intrinsically ill conditioned, where Jacobian in those training prob-

lems are rank deficient. Any rank deficiency of Jacobian can cause BP to obtain only partial

information of the possible search directions, potentially leading to non-global local min-

ima with a slow convergence. Presumably, the stagnant problem is highly related to the

rank deficiency of D
K

(w) in the NRAE training with large � values. The four NRAE train-

ing sessions, which fail to reach the global minimum of the XOR problem with � = 10

20,

are possibly stuck on non-global local minima caused by the rank deficiency of D
K

(w). In

other words, the rank deficiency of Jacobian could affect the ability of the NRAE training

with large � values in training MLPs for avoiding non-global local minima.

To verify our conjectures, we implement a rank detection method based on Gaussian
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elimination (also known as row reduction in linear algebra) to monitor the rank of D
K

(w)

and check whether the rank deficiency of Jacobian is occurred or not during the NRAE

training. Because the rank of a matrix is equal to the number of pivots, i.e., the left-most

non-zero entry of a row, in row echelon form of that matrix, our rank detection method

applies a basic idea in linear algebra to calculate the rank of Jacobian in training MLPs

as the following: compute D
K

(w) at first, then apply the Gaussian elimination to get a

row echelon form of D
K

(w), and finally calculate the rank of D
K

(w) by counting the

number of pivots in the row echelon form. With the rank detection method, we evaluate

rank conditions of the ten NRAE training sessions with � = 10

20 on the XOR problem and

presented the results in Fig. 4.5(b).

Because the XOR problem has 4 training samples and we apply the 2-2-1 MLP with

9 trainable weights to perform the NRAE training, it is obviously that K = 4 and N = 9,

thus min(K,N) = 4. Experimental results in Fig. 4.5 illustrate that: for the NRAE training

session that achieves the global minimum around the training error of 10

�10, D
K

(w) is

always under a full rank condition where the rank of D
K

(w) equals to 4; for the NRAE

training session that is stuck on non-global local minima with the training error close to

1.0, D
K

(w) has a rank deficiency where the rank of D
K

(w) is less than 4. It is a concrete

evidence to confirm that the rank deficiency of D
K

(w) actually causes the stagnant problem

and further results in the failure of the NRAE training with � = 10

20 for achieving the

global minimum of the XOR problem.

4.4.3 Experimental Study

To experimentally confirm our theoretical conjectures, we study the ten NRAE train-

ing sessions with � = 10

20 performed on the XOR problem and evaluate corresponding

experimental results under different circumstances in this section.
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FIG. 4.5. Training errors and rank conditions of ten NRAE training sessions with � =

10

20 for the XOR problem. Results are recorded corresponding to the convergence of the
training sessions with 10 different sets of initial weights. Each blue dot represents the
successfully converged training session, and each red cross indicates the training result
involving the stagnant problem.

Failure NRAE Training We first study the four failure NRAE training results per-

formed on the XOR problem, which use the 4th, 6th, 7th, and 9th set of initial weights as

shown in Fig. 4.5. Here, we only discuss one result trained by the 4th set of initial weights

with full details as the example.

For the mentioned NRAE training session on the XOR problem, we record the evolu-

tion of k"
k

(w)k2 for k = 1, 2, 3, 4 with respect to the number of training epochs and the

index of training samples separately as illustrated in Fig. 4.6. From the figure, we observe

that the NRAE training merely focuses on approximating the training sample with k = 3

at the first 10 training epochs, thus dropping k"
3

(w)k2 from the initial value near 3.0 down

to a small value between 1.0 and 1.5. Meanwhile, the values of k"
k

(w)k2 for k = 1, 2, 4

increase with different magnitudes from their initial values. It indicates that all trainable

weights in the MLP are completely employed to fit the 3rd training sample at the beginning

of the training, and such a fitting does not affect k"
k

(w)k2 too much for k = 1, 2, 4. Thus,
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FIG. 4.6. Evolution of k"
k

(w)k2 in the NRAE training of the XOR problem using the 4th
set of initial weights. Fig. 4.6(a) presents learning curves of k"

k

(w)k2 for k = 1, 2, 3, 4
with respect to the number of training epochs. Fig. 4.6(b) indicates each value of k"

k

(w)k2
corresponding to the index of training samples. Different colors represent different indices
of XOR training samples in both figures.
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the redundancy in the MLP appears, and it leads to the rank deficiency of D
K

(w) at this

moment. As a result, the NRAE training leads the searching path of the global minimum

to enter the attraction basin of a non-global local minimum caused by the rank deficiency

of Jacobian.

After that, although the MLP tries to resolve the rank deficiency through cycling the

training samples with k = 2, 3, 4, it only brings minor fluctuations for fitting those training

samples and gradually reduces k"
k

(w)k2 for k = 2, 3, 4 down to 1.0. In this case, the

NRAE training is unable to get away from the attraction basin of the mentioned non-global

local minimum, and it leads to a continuous raising of k"
1

(w)k2 because of the redundancy

of weights. At last, the whole training is converged and stuck on the non-global local

minimum with a training error close to 1.0.

For the other failure NRAE training results trained by the 6th, the 7th, and the 9th set

of initial weights, we perform the same analysis as we demonstrated for the 4th set of initial

weights. We find out those failure NRAE training sessions always approximate the single

XOR training sample at the beginning of the training, thus generating the rank deficiency

of D
K

(w) and trapping the NRAE training into the non-global local minimum with the

training error close to 1.0.

Success NRAE Training Comparing to the failure NRAE training results, we eval-

uate the six success NRAE training results, which use the 1st, 2nd, 3rd, 5th, 8th, and 10th

set of initial weights as shown in Fig. 4.5. Here, we only discuss one result trained by the

1st set of initial weights with full details as the example.

For the mentioned NRAE training session on the XOR problem, we record the evo-

lution of k"
k

(w)k2 for k = 1, 2, 3, 4 with respect to the number of training epochs and

the index of training samples separately as illustrated in Fig. 4.7. In contrast to the fail-

ure NRAE training results, the success NRAE training session approximates the training
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FIG. 4.7. Evolution of k"
k

(w)k2 in the NRAE training of the XOR problem using the 1st
set of initial weights. Fig. 4.7(a) presents learning curves of k"

k

(w)k2 for k = 1, 2, 3, 4
with respect to the number of training epochs. Fig. 4.7(b) indicates each value of k"

k

(w)k2
corresponding to the index of training samples. Different colors represent different indices
of XOR training samples in both figures.
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samples with k = 2, 3 for almost 50 epochs at the beginning of the training. It reduces

the training error by frequently switching between k"
2

(w)k2 and k"
3

(w)k2. After that, the

MLP completely cycles through all training samples and gradually decreases k"
k

(w)k2 for

k = 1, 2, 3, 4 to a global minimum close to 0. Since the MLP does not focus on fitting a

particular training sample, no rank deficiency of D
K

(w) appears, and the NRAE training

successfully reaches the global minimum of the XOR problem. Based on our experiments,

this phenomenon also explains other success NRAE training sessions.

Redundancy of MLP Weights Because the MLP applied to train the XOR problem

has the 2-2-1 architecture including 9 free parameters composed by 6 trainable weights and

3 trainable biases, we analyze all NRAE training results through observing and comparing

the exact values of these weights. In Table 4.3, we list all trained MLP weights with the

same notations as presented in Fig. 3.1 after the convergence of the NRAE training sessions

trained by 10 different sets of initial weights. Evidently, the redundancy of MLP weights

caused by the rank deficiency of D
K

(w) can always be observed in the failure NRAE

training sessions. For example, with the use of the 4th set of initial weights, w1

11

and

w1

12

have the similar absolute value with different signs. In this case, if the input training

samples are two values with the same sign, such like (1, 1) or (�1,�1), w1

11

and w1

12

cancel

the effect with each other. Because of a very small b1
1

, it leads the result of the hidden node

connected with w1

11

and w1

12

close to 0, thus the mentioned node together with its connected

weights becomes redundant to the MLP. For another example, with the use of the 6th set

of initial weights, the values of w2

11

and w2

12

are close to each other and very small. If the

two hidden nodes provide the similar inputs with different signs to pass w2

11

and w2

12

, then

the calculation in the output node cancels the effect of these weights, which can also be

considered as a redundancy.
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Table 4.3. Values of trained MLP weights of ten NRAE training sessions after the
convergence in the XOR problem. The failure NRAE training results are highlighted in

bold.

Set of Trainable Weights of the 2-2-1 MLP

Initial Weights w1

11

w1

12

w1

21

w1

22

w2

11

w2

12

b1
1

b1
2

b2
1

1 �1.2720 1.3793 1.2069 �1.3021 1.2412 1.2436 �1.0429 �0.8859 1.4049

2 0.9629 1.0303 1.5613 1.7371 1.3954 �1.3196 3.7516 �1.5977 �1.3597

3 1.4614 �1.5513 �1.0982 1.1491 �1.2361 �1.2707 1.3453 0.6333 1.3821

4 �0.0012 0.0012 �0.00011 0.00011 �0.0000058 0.000015 �0.00045 �0.0019 �0.0069

5 �1.3226 1.3195 1.2243 �1.2216 �1.2186 �1.2296 1.0805 0.9117 1.4351

6 �0.4612 �0.8291 �0.6689 0.1961 0.0000068 0.0000067 �0.1286 0.1703 0.0000069

7 0.0293 �0.2114 0.1211 �0.1967 0.0000086 0.0000086 �0.0567 0.5802 �0.0000087

8 �1.3167 1.4431 1.1837 �1.2846 1.2488 1.2578 �1.0965 �0.8014 1.3816

9 �0.0016 �0.0017 0.00084 �0.00084 �0.000039 �0.000014 0.0022 0.000087 �0.0069

10 �1.3813 1.3920 1.2097 �1.2181 �1.1832 �1.2005 1.1755 0.8750 1.4109

Training Error on the Non-global Local Minimum In our experiments on the

XOR problem, it is observed that all failure NRAE training sessions are always stuck on

the non-global local minimum with the training error close to 1.0. An intuitive explanation

is concluded by reviewing the trained MLP weights shown in Table 4.3. For each failure

NRAE training session, because w2

11

, w2

12

, and b2
1

are very small, the MLP outputs ˆf (x
k

, w)

for k = 1, 2, 3, 4 with respect to the inputs x
k

are very small. Since the target outputs of the

XOR problem are either 1 or -1, the values of
���y

k

� ˆf (x
k

, w)
���
2

for k = 1, 2, 3, 4 are very

close to 1.0. Therefore, based on Eq. (3.1), the corresponding NRAE value is close to 1.0

when � = 10

20. However, it is unclear whether our experimental results represent a general

case of the non-global local minimum caused by the rank deficiency of D
K

(w) on the XOR
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problem. Fortunately, the XOR problem is so famous that the local minimum problem of

XOR has already been discussed and analyzed comprehensively in many literatures. In

[9, 108], experimental evidences indicate that if a local minimum of XOR is caused by

exactly learning 1 out of 4 training sample with the 2-2-1 MLP, the MLP output for that

training sample could be very small and close to 0. In this case, all partial derivatives with

respect to the weights connected to the output node are close to 0. As a result, BP only

propagates very small errors back to the hidden nodes where the small weights are unable

to be updated effectively. This discussion explains our observations of the failure NRAE

training results. Moreover, it further confirms that, if the NRAE training with a large �

tries to learn exactly one sample on the XOR problem, the rank deficiency of D
K

(w) will

always occur and the training session will be stuck on the non-global local minimum with

the training error close to 1.0.

4.4.4 Remedy

In order to solve the rank deficiency of Jacobian, a straightforward and effective way

is to perform the perturbation, which randomly perturbs the variables corresponding to

the linear dependent rows or columns in Jacobian until a full rank condition is satisfied.

Based on this method, if the stagnant problem is detected during the NRAE training, the

full rank condition of Jacobian can be restored by applying the perturbation to break linear

dependencies between rows or columns in D
K

(w).

For validating the effectiveness of the perturbation method, we perform experiments

with the same settings as the four failure NRAE training sessions on the XOR problem, and

we randomly perturb all biases and weights that are smaller than 0.01 into [�2.4/F
i

, 2.4/F
i

]

for each MLP during the NRAE training. After that, we keep training the MLP and repeat

the perturbation when the rank deficiency of D
K

(w) is detected until the NRAE training

converges on the global minimum. The reason of merely perturbing the small biases and
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weights of the MLP is that these small biases and weights in fitting the XOR are primarily

caused by the rank deficiency of D
K

(w) according to what we observed in Table 4.3.

Fig. 4.8 presents the result after applying the perturbation to the failure NRAE training

session with the 4th set of initial weights. It demonstrates that the perturbation breaks the

cycling of training samples in the failure NRAE training session, thus eliminating the rank

deficiency of D
K

(w) and leading the training to the global minimum. With applying the

perturbation method, further experiments illustrate that all failure NRAE training sessions

performed on the XOR problem are able to be improved by removing the rank deficiency

of D
K

(w), and the training errors of these failure sessions can be reduced from 1.0 to

10

�10, which are similar to the success NRAE training sessions as we observed in Fig. 4.7.

Therefore, our experimental results confirm that the stagnant problem is able to be resolved

in the NRAE training with the large initial � after the full rank condition of D
K

(w) is

restored by the perturbation. Meanwhile, these experiments also indicate that maintaining

the full rank condition of D
K

(w) in the NRAE training is significant to avoid the stagnant

problem.

However, the computational efficiency of the perturbation method can be restricted

if the training task is extremely complex, where a great number of training dataset (i.e.,

a large number of K) and a quite large MLP architecture (i.e., a large number of N ) are

required. Since the computational cost of D
K

(w) is directly proportional to the number of

both K and N , evaluating the rank condition of D
K

(w) in each training epoch and perform

the necessary perturbation to corresponding biases and weights could be tremendously ex-

pensive in computation. Therefore, it motives us to develop a more efficient and effective

solution to handle the stagnant problem, and it will be comprehensively discussed in next

chapter.
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FIG. 4.8. Evolution of k"
k

(w)k2 in the NRAE training of the XOR problem using the 4th
set of initial weights after a perturbation. This figure presents learning curves of k"

k

(w)k2
for k = 1, 2, 3, 4 with respect to the number of training epochs. The perturbation starts at
the 1,000th training epoch of the previously failure NRAE training.

4.5 Summary

Insights to the properties of the NRAE criterion are gained in approximating functions

by training MLPs with the NRAE training method at large values of �. It is found that if �

is chosen in a properly working range, the NRAE training is able to achieve a much better

performance than the standard MSE training in function approximation, where the tested

functions contain fine features or under-sampled segments that specially designed to create

undesirable non-global local minima of the MSE criterion. According to our experiments,

those pre-designed non-global local minima are very hard for a training method to escape

from, while most real-world tasks are not expected to be so “vicious”. However, the effec-

tiveness of the NRAE criterion in avoiding the non-global local minimum can be achieved

in our experiments.
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To perform the NRAE training with less computational costs, the NRAE-MSE training

method is developed. It trains with the NRAE criterion at a large �, but takes an excursion

to train with the MSE criterion from time to time. Whenever the NRAE training brings the

MLP weights within an “attraction basin” of a global or near-global minimum, the MSE

excursion leads the training error close to zero. The NRAE-MSE training method succeeds

every time in training MLPs over all trials with randomly selected sets of initial weights to

approximate functions. Furthermore, the NRAE-MSE training method is applied to train

the MLP for recognizing handwritten digits with the well-known MNIST dataset. The

method outperforms basic benchmark methods without multiple trials of different sets of

initial weights, indicating that the NRAE-MSE training can be scaled up to a complex

real-world problem with a fairly good performance.

Although an intuitive approach to properly use the NRAE criterion in training MLPs

is to apply the NRAE training method under a very large �, a stagnant problem caused

by the use of the large � in the NRAE training is found. Accordingly, it impedes the

applicability of the convexification methedology to avoid the non-global local minimum.

Theoretical and experimental studies reveal the essence of the stagnant problem, which is

connected to the notorious trouble of the rank deficiency of Jacobian in training MLPs.

Concrete evidences indicate that the stagnant problem can be effectively fixed if the full

rank condition of Jacobian in the NRAE training is maintained.



Chapter 5

DECONVEXIFICATION METHODOLOGY

According to the convexification methodology based on the NRAE criterion, the val-

ues of � employed in both the NRAE and NRAE-MSE training method are primarily eval-

uated in the range 106-1011. Presumably, for different training tasks with different datasets,

different � values are needed, thus selecting a fixed � is neither practical nor efficient to be

applied for performing various training tasks. Moreover, since the NRAE training has the

difficulty of the stagnant problem as � chooses very large, the best strategy to practically

use the convexification methodology to perform the training is to select a range of the appli-

cable � rather than adopt a fixed large �. Although the perturbation method can effectively

solve the stagnant problem in the NRAE training, it could be limited by the tremendously

computational cost if the number of the training dataset and the neural network architecture

are large.

In order to alleviate the trouble of finding a proper value of � and solve the stagnant

problem in applying the convexification methodology, we demonstrate the deconvexifica-

tion methodology in this chapter with proposing a new series of training methods based on

the gradual deconvexification (GDC). To present the advantage of GDC, we evaluate the

new training methods on the same function approximation and handwritten digit recogni-

tion tasks as being tested by the NRAE and the NRAE-MSE training methods.

85



86

5.1 Gradual Deconvexification

The essence of GDC [75] is to apply multiple NRAE training sessions with the con-

vexification and deconvexification phases, which are associated with different � values, to

gradually convexify the error space of NRAE for avoiding the non-global local minimum

during the training. GDC begins with the NRAE training under a very large initial � to

greatly expand the convexity region of RAE contained in the convexity region of NRAE.

Then, if the convexification under the current � is completed or the stagnant problem is de-

tected, a deconvexification is performed to reduce the current � to � ·DR with a deconvex-

ifing rate DR 2 (0, 1). Afterward, GDC continues and repeats the above convexification

and deconvexification phases if necessary until a satisfactory training error is achieved.

The training method with the use of GDC is described in Algorithm 3. In order to

decide when the deconvexification should be performed in GDC, we apply dprev and dnext

to keep recording the values of C
�

(w) before and after a preselected number of training

epochs TE. If �d = |dprev � dnext| is less than a threshold TS, GDC considers that the

convexification under the current � is completed or the stagnant problem is occurred at

the moment. In addition, if the deconvexification brings the value of � down to � < 1,

then according to Eq. (3.16), GDC will directly set � = 0 to perform the MSE training

for avoiding excessive deconvexification phases. Particularly, it is noticed that the overall

converging speed of GDC is controlled by TE, TS and DR, where the larger (or smaller)

values of TE, TS and DR lead to the slower (or faster) deconvexification in GDC. How-

ever, a drastic deconvexification in GDC could cause the rapidly shrinking of applicable

convexity regions of NRAE, which limits the effect of the NRAE criterion in alleviating

the non-global local minimum. Thus, it should be avoided if possible in practice.

With the use of the deconvexification in GDC, the error space of NRAE trans-

forms correspondingly as � decreases. As a consequence, the deconvexification prevents
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Algorithm 3 Gradual Deconvexification
Require: Initialize the weight vector w randomly, choose TE, TS and DR, set a desired

training error �, select � >> 1, and set ctn 1 and flag  0;
1: while C

�

(w) � � do
2: if ctn = 1 then
3: Let dprev  C

�

(w);
4: end if
5: Perform the NRAE training and update w to w⇤;
6: Set ctn ctn+ 1;
7: if ctn = TE then
8: Let dnext  C

�

(w) and set flag  1;
9: end if

10: if flag = 1 then
11: �d |dprev � dnext|;
12: Set ctn 1 and flag  0;
13: if �d  TS then
14: � � ·DR;
15: if � < 1 then
16: Set � 0;
17: end if
18: end if
19: end if
20: Set w  w⇤;
21: end while
22: return The optimal weight vector w⇤.

k"
M

(w)k2 to be locked on certain K 0 training samples repeatedly when � is very large, thus

avoiding the rank deficiency of D
K

(w). As long as the GDC parameters provide smooth

deconvexification procedures, the NRAE trainings can be performed in adequate convexity

regions as � gradually decreases, assuring that the GDC method consistently works well

without any stagnancy.
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5.2 NRAE Training in Pairwise Mode

In training the MLP with BP, the training method can be performed in either batch or

pairwise (also called ”on-line” or ”sequential”) mode. Batch training accumulates weight

changes over presentation of all training samples before applying an update to weights,

while pairwise training updates weights immediately after presentation of each training

sample. Some research works [28, 87] indicate that batch training is at least theoretically

superior to pairwise training, because batch training uses the true gradient, or follow the

true gradient more closely, to update weights in training MLPs. Some other literatures

[23, 37, 87] claim that batch training is as fast as or faster than pairwise training. However,

many advantages of pairwise training have been noticed and discussed in [4, 7, 38], while

several comprehensive summaries and comparisons between batch and pairwise training

in [65, 115] point out that batch training is almost always slower by orders of magnitude

than pairwise training especially in training with large datasets. Pairwise training is able

to safely use a large learning rate to achieve a reasonably good result with a significantly

fast convergence speed, but batch training can only follow the true gradient very well along

the error space when the learning rate is small enough to yield an optimal results. As the

size of the training dataset gets larger, the magnitude of accumulated weights changed in

batch training becomes larger too. In this case, batch training must use a small learning

rate to prevent weight oscillations across the weight space and avoid the risk of the node

saturation in MLPs. Accordingly, this learning manner lowers the convergence speed of

batch training. On the other hand, pairwise training applies weight changes as soon as they

are calculated, thus it can handle different sizes of training datasets without requiring a

small learning rate. Therefore, pairwise training is expected to improve the convergence

speed of NRAE-based training methods, thus leading these methods to handle large datasets

more efficiently.



89

In training an MLP on pairwise mode with K samples, a training epoch contains K

training iterations where each iteration takes one training sample to evaluate the gradient of

the training criterion. The NRAE criterion and its first-order derivative defined in Eq. (3.8)

and Eq. (3.9) are restated as follows:

C
�

(w) =
1

�
ln

1

K
+ k"

M

(w)k2 + 1

�
ln

"
KX

k=1

⌘
k

(w)

#

@C
�

(w)

@w
i

=

�2
P

K

k=1

⌘
k

(w) "T
k

(w) @ŷk(w)

@wiP
K

k=1

⌘
k

(w)

It is noticed that the computation of @C�(w)

@wi
can only be performed on batch mode, be-

cause the evaluations of both
P

K

k=1

⌘
k

(w) "T
k

(w) @ŷk(w)

@wi
and

P
K

k=1

⌘
k

(w) require to com-

pute summations with K training samples, while pairwise training cannot be performed by

taking only one training sample to compute @C�(w)

@wi
in a training iteration. Apparently, if the

number of training samples K is very large, the evaluation of @C�(w)

@wi
would be significantly

inefficient on batch mode.

For a weight vector w(k) according to the k-th training sample, a formula to compute
@C�(w

(k)
)

@wi
in pairwise mode can be described as

(5.1)
@C

�

(w(k)

)

@w
i

=

�2⌘
k

(w(k)

)"T
k

(w(k)

)

@ŷk(w
(k)

)

@wiP
K

j=1

⌘
j

(w(k)

)
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⌘
k

(w(k)

) = e
�

⇣
k"k(w(k)

)k2�k"M (w

(k)
)k2

⌘

KX

j=1

⌘
j

(w(k)

) =

KX

j=1

e
�

⇣
k"j(w(k)

)k2�k"M (w

(k)
)k2

⌘(5.2)

Thus, Eq. (5.1) can be applied to perform pairwise training with the NRAE criterion. How-
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ever, evaluating ⌘
k

(w(k)

) and
P

K

j=1

⌘
j

(w(k)

) in Eq. (5.2) could cost significantly computa-

tional time when K is very large. Because the computations in Eq. (5.2) have to decide

the largest M of "
k

(w(k)

) for k = 1, ..., K in K times per training iteration, leading to K2

evaluations of "
M

(w(k)

) in computing both ⌘
k

(w(k)

) and
P

K

j=1

⌘
j

(w(k)

) per training epoch.

In order to reduce the above evaluation cost in Eq. (5.2), we propose a method to

estimate the true gradient @C�(w
(k)

)

@wi
of the NRAE criterion in pairwise mode as

(5.3)
@C

�

(w(k)

)

@w
i

=

�2⌘
k

(w)"T
k

(w(k)

)

@ŷk(w
(k)

)

@wiP
K

k=1

⌘
k

(w)

where ⌘
k

(w) and
P

K

k=1

⌘
k

(w) are evaluated as same as in batch mode, providing the esti-

mations of ⌘
k

(w(k)

) and
P

K

j=1

⌘
j

(w(k)

) in Eq. (5.1). With such an approximation, ⌘
k

(w) is

only evaluated K times and
P

K

k=1

⌘
k

(w) is only evaluated once in Eq. (5.3) at the beginning

of each training epoch, where the computation of @C�(w
(k)

)

@wi
does not need to update ⌘

k

(w)

and
P

K

k=1

⌘
k

(w) anymore per training iteration. This method is applied as the pairwise

NRAE training method [34] and it is described in Algorithm 4. Since the GDC method

is composed of multiple NRAE training sessions, it can be performed in pairwise mode,

called the pairwise GDC method, with integrating all the NRAE training in GDC as pair-

wise mode.

5.3 Experimental Evaluation

As we described in Chapter 4, training MLPs with the MSE criterion to approximate

functions with fine features or under-sampled segments are known to have non-global local

minima. In this section, the same examples of approximating functions designed to have

non-global local minima as we tested before are applied to evaluate performances of the

GDC method in batch and pairwise mode for training MLPs. Furthermore, we apply the
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Algorithm 4 Pairwise NRAE Training Method
Require: Initialize the weight vector wn randomly, choose a desired training error �, select

� >> 1;
1: while C

�

(w) � � do
2: for k = 1 to K do
3: Evaluate k"

k

(w)k2 with respect to the weight vector w;
4: end for
5: Determine "

M

(w);
6: Set ⌘sum  0;
7: for k = 1 to K do
8: ⌘

k

(w) e�(k"k(w)k2�k"M (w)k2
);

9: ⌘sum  ⌘sum + ⌘
k

(w);
10: end for
11: Set w(1)  w;
12: for k = 1 to K � 1 do

13: @C�(w
(k)

)

@wi
 

�2⌘k(w)"

T
k (w

(k)
)

@ŷk(w(k))
@wi

⌘sum
;

14: Update w(k) to w(k+1) using @C�(w
(k)

)

@wi
;

15: end for
16: Set w⇤  w(K) and w  w⇤;
17: end while
18: return The optimal weight vector w⇤;

GDC method to train the MLP classifier for recognizing handwritten digits with the MNIST

dataset, with demonstrating the superior performance of the MLP classifier trained by the

pairwise GDC method comparing to many benchmark results.

5.3.1 Function Approximation

Gradual Deconvexification The four function approximation tasks defined in

Chapter 4 are applied to evaluate the performance of the GDC method in batch mode.

Ten different sets of initial weights of the MLP are randomly chosen to start 10 training

groups. In each group, a GDC training and a standard MSE training are performed on the

same set of initial weights. For all GDC training sessions, we compute their corresponding
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MSE values as training errors and compare them to the results of the MSE training. In all

GDC training sessions, we set � = 10

20 as the initial value, TE = 1, 000 as the maximum

training epochs to check the deviation �d = |dprev � dnext|, TS = 10

�10 as the threshold to

decide whether the deconvexification performs, and DR = 0.9 as the deconvexifing rate.

Experimental results in Fig. 5.1 demonstrate that GDC has the capability to capture

all significant features located on the target functions with avoiding non-global local min-

ima, indicating a better performance than the MSE training. Moreover, training results in

Fig. 5.2 present that all GDC training sessions with 10 different sets of initial weights lead

all trained MLPs to achieve satisfactory training errors, which are consistently lower than

the MSE training achieved. These observations are consistent with the experimental results

achieved by the NRAE and NRAE-MSE training method comparing to the MSE training.

Meanwhile, since GDC starts with a very large � and gradually reduces the value of �

until the training converges, it eliminates the requirement of finding an proper initial � in

performing the NRAE or the NRAE-MSE training. At last, all the GDC training sessions

for different function approximation tasks employ the same initial � as well as the same

settings of TE, TS, and DR, illustrating that these parameters in GDC are not sensitive to

our training tasks.

To compare performances between the GDC method and the MSE/NRAE/NRAE-

MSE training method, we apply GDC to perform the three-notch function approximation

with noiseless data under the same experimental settings as the MSE/NRAE/NRAE-MSE

training method performed in Chapter 4. The results presented in Table 5.1 indicate that

the best training errors over all experiments can be consistently achieved by the GDC

method over 10 different sets of initial weights without selecting different initial values

of �. Therefore, as a NRAE-based training method, GDC is confirmed to have satisfactory

performances better than both the NRAE and the NRAE-MSE training method in avoiding

the non-global local minimum and achieving the global or near-global minimum.
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FIG. 5.1. Fitting plots of four function approximation examples achieved by the MSE and
GDC training. Numbers on horizontal and vertical axes in each subfigure represent the
input and output of the function, respectively. In Fig. 5.1(a) - Fig. 5.1(f), red dots denote
target training samples, and blue dash lines are MLP approximated function plots. On
Fig. 5.1(g) and Fig. 5.1(h), only MLP approximated function plots are shown by using blue
and red colors to distinguish different function values on vertical axes.
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FIG. 5.2. Training errors of ten set of initial weights for four function approximation exam-
ples achieved by the MSE and GDC training. Solid lines with colors and symbols denote
different training methods of the MSE (red line with squares) and the GDC (blue line with
triangles). In order to clearly illustrate differences between MSE values obtained by the
MSE and GDC training, actual numbers in all vertical axes are converted to logarithmic
numbers with respect to base 10.
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Table 5.1. MSEs of the three-notch function approximation with noiseless data achieved
by the MSE, the NRAE, the NRAE-MSE, and the GDC training methods. The best per-
formances achieved by the NRAE training method are highlighted by underlines, while the
best performances achieved by the NRAE-MSE training method are highlighted in bold.
The best performances achieved by the GDC method are highlighted by underlines in bold.

Three-notch Set of Initial Weights

Function Approximation 1 2 3 4 5 6 7 8 9 10

MSE 1.05⇥ 10

�1

1.94⇥ 10

�2

1.11⇥ 10

�4

1.35⇥ 10

�2

1.46⇥ 10

�1

1.01⇥ 10

�1

7.54⇥ 10

�4

5.42⇥ 10

�3

5.41⇥ 10

�3

8.97⇥ 10

�2

� = 10

6
NRAE 7.14⇥ 10

�8

8.04⇥ 10

�2

4.55⇥ 10

�2

8.36⇥ 10

�7

9.25⇥ 10

�1

8.25⇥ 10

�3

9.36⇥ 10

�8

7.16⇥ 10

�8

1.43⇥ 10

�2

5.23⇥ 10

�9

NRAE-MSE 1.47⇥ 10

�5

3.68⇥ 10

�4

1.99⇥ 10

�5

3.25⇥ 10

�4

2.54⇥ 10

�4

1.62⇥ 10

�4

1.24⇥ 10

�4

9.27⇥ 10

�5

6.83⇥ 10

�4

4.85⇥ 10

�4

� = 10

7
NRAE 4.25⇥ 10

�8

2.86⇥ 10

�2

3.86⇥ 10

�2

9.14⇥ 10

�4

8.04⇥ 10

�7

4.27⇥ 10

�2

8.01⇥ 10

�9

9.02⇥ 10

�8

9.72⇥ 10

�3

7.08⇥ 10

�7

NRAE-MSE 1.35⇥ 10

�5

1.57⇥ 10

�5

1.58⇥ 10

�5

2.48⇥ 10

�5

2.06⇥ 10

�4

1.54⇥ 10

�5

7.96⇥ 10

�5

5.05⇥ 10

�5

2.75⇥ 10

�4

3.99⇥ 10

�4

� = 10

8
NRAE 4.73⇥ 10

�9

8.48⇥ 10

�8

1.95⇥ 10

�8

1.53⇥ 10

�7

9.54⇥ 10

�7

7.64⇥ 10

�7

5.26⇥ 10

�7

2.89⇥ 10

�8

1.74⇥ 10

�7

6.54⇥ 10

�7

NRAE-MSE 4.75⇥ 10

�6

5.99⇥ 10

�8

9.00⇥ 10

�9

7.57⇥ 10

�7

5.56⇥ 10

�7

1.69⇥ 10

�6

7.29⇥ 10

�8

2.26⇥ 10

�8

6.74⇥ 10

�8

9.54⇥ 10

�6

� = 10

9
NRAE 3.52⇥ 10

�8

8.79⇥ 10

�9

4.64⇥ 10

�7

7.23⇥ 10

�7

5.54⇥ 10

�8

8.66⇥ 10

�7

8.80⇥ 10

�9

4.52⇥ 10

�9

7.37⇥ 10

�8

9.36⇥ 10

�7

NRAE-MSE 1.86⇥ 10

�7

6.66⇥ 10

�8

1.34⇥ 10

�10

4.83⇥ 10

�8

4.46⇥ 10

�7

4.63⇥ 10

�7 1.63⇥ 10�8
9.35⇥ 10

�9

4.05⇥ 10

�8

1.35⇥ 10

�7

� = 10

10
NRAE 8.43⇥ 10

�8

1.88⇥ 10

�2

8.78⇥ 10

�3

3.65⇥ 10

�6

1.17⇥ 10

�6

3.76⇥ 10

�5

2.01⇥ 10

�3

7.94⇥ 10

�5

5.68⇥ 10

�7

1.94⇥ 10

�6

NRAE-MSE 7.33⇥ 10

�8 1.96⇥ 10�8
9.34⇥ 10

�11

1.24⇥ 10

�8

7.53⇥ 10

�8

2.63⇥ 10

�7

1.74⇥ 10

�8

4.23⇥ 10

�9

1.72⇥ 10

�8 3.78⇥ 10�8

� = 10

11
NRAE 2.00⇥ 10

�6

6.07⇥ 10

�6

1.87⇥ 10

�3

2.16⇥ 10

�4

3.53⇥ 10

�5

9.85⇥ 10

�2

2.02⇥ 10

�5

4.39⇥ 10

�5

1.28⇥ 10

�5

1.27⇥ 10

�7

NRAE-MSE 2.57⇥ 10�8
2.16⇥ 10

�8 5.50⇥ 10�11 7.24⇥ 10�9 2.54⇥ 10�8 1.12⇥ 10�7
3.24⇥ 10

�8 3.21⇥ 10�9 9.63⇥ 10�9
7.78⇥ 10

�8

GDC 3.85⇥ 10�10 8.74⇥ 10�9 1.45⇥ 10�11 5.27⇥ 10�9 2.27⇥ 10�10 1.28⇥ 10�9 5.92⇥ 10�9 2.11⇥ 10�9 8.19⇥ 10�9 3.46⇥ 10�9

Pairwise Gradual Deconvexification In order to explore the effectiveness of pair-

wise training comparing to batch training in improving the convergence of training MLPs,

we apply the four function approximation examples as same as we adopted in Chapter 4

to evaluate the performance of methods as the pairwise GDC training, the GDC training,

the least mean square (LMS) training, and the MSE training. Accordingly, the pairwise

GDC and the LMS training are performed in pairwise mode, while the GDC and the MSE

training are performed in batch mode.

For each function approximation example, 10 different sets of initial weights of the

MLP are randomly chosen. Starting with each set of initial weights, one pairwise GDC
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training, one GDC training, one LMS training, and one MSE training are performed. These

training sessions for the same set of initial weights are considered as a training group. The

corresponding value of MSE of the MLP is recorded as the training error for each session

after the training is converged, and we collect the mean and standard deviation of training

errors among 10 training groups for each type of the training methods. In addition, we

consider the time in seconds as the training cost of each session, and we compute the mean

of training costs among 10 training groups as the average training cost for each type of the

training methods. Notice that the training time of each session is always recorded after the

corresponding training is converged.

For all training sessions performed on function approximation examples, we apply

GD rather than BFGS for batching training with setting the learning rate and the momen-

tum term equal to 0.001 and 0.5, and we employ stochastic gradient descent (SGD) for

pairwise training with setting the learning rate and the momentum term equal to 0.01 and

0.5, respectively. For the GDC method, we set � = 10

20, TE = 1, 000, TS = 10

�10, and

DR = 0.9.

Fig. 5.3 illustrates the means and standard deviations of training errors achieved by

the tested training methods in function approximation examples. The results demonstrate

that both the pairwise GDC and the GDC training methods consistently achieve satisfactory

average training errors and standard deviations lower than the LMS and the MSE training

methods. It confirms that the GDC method has the ability to achieve training results better

than the LMS and the MSE methods with avoiding non-global local minima in training

MLPs. Furthermore, the pairwise GDC training reaches the same level of average training

errors as the GDC training, implying that the pairwise GDC training method is capable to

be applied to effectively solve function approximation tasks as same as the GDC training

method.

In Fig. 5.4, it presents average training costs of the tested training methods in func-
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FIG. 5.3. Values of mean and standard deviation of training errors for four function ap-
proximation examples achieved by the pairwise GDC, the GDC, the LMS, and the MSE
training methods. Blue and red bars in each subfigure represent values of mean and stan-
dard deviation of training errors that are collected among 10 different training sessions,
respectively. The corresponding value of MSE of the MLP is collected as the training error
for each session after the training is converged. Vertical axes in each subfigure apply the
logarithmic scale with the base 10.
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FIG. 5.4. Average training time of four function approximation examples achieved by the
pairwise GDC, the GDC, the LMS, and the MSE training methods. Bars in blue denote the
GDC training results, while other bars in red represent the MSE training results. Particu-
larly, bars surrounding by dash lines represent pairwise training. Numbers on the vertical
axis shows the average training time in seconds for different training methods.

tion approximation examples. Experimental results demonstrate that the pairwise GDC

training reduces nearly 42%, 56%, 16%, and 11% average training costs comparing to the

GDC training in approximating the three-notch, fine features, under-sampled segments,

and under-sampled square functions, respectively. In addition, it is observed in Fig. 5.4

that the LMS (or the MSE) training take less computational time than the pairwise GDC

(or the GDC) training. The reason is that the objective function and the gradient of the MSE

criterion can be evaluated with less computational costs than the evaluation of the NRAE

criterion in both batch and pairwise modes. However, training errors achieved with the use

of the LMS (or the MSE) criterion never outperform the results obtained by the pairwise

GDC (or the GDC) training over all of our experiments.
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5.3.2 Handwritten Digit Recognition

To test the capability of GDC in training a large MLP on a real-world task, the pairwise

GDC method is used to train the MLP for recognizing handwritten digits with the MNIST

dataset. In our experiments, we evaluate the MNIST dataset on a 2-layer MLP with the

architecture of 784-300-10. Ten different sets of initial weights are used to perform 10

training sessions. In each training session, 60,000 training samples are applied to train the

MLP. After the corresponding training is converged, 10,000 test samples are employed to

test the trained MLP with providing the test error rate for each testing session. For the

pairwise GDC method, we set � = 10

4, TE = 10, TS = 10

�5, and DR = 0.9. For all the

pairwise NRAE training in GDC, we set the global learning rate and the momentum term

of SGD equal to 0.0001 and 0.5, respectively. For all the LMS training sessions in GDC

when � < 1, we apply the learning rate decay to decrease the global learning rate by 50%

of the original value in every 20 training epochs.

Table 5.2 presents test error rates of the MNIST dataset obtained by different MLP

classifiers. Major advantages of the pairwise GDC method in training the MLP classifier

are described in following:

1. Experimental results in Table 5.2 show that the MLP classifier trained by the pairwise

GDC method has the lowest test error rate than many benchmark MLP classifiers.

Based on our experiments, the MLP classifiers trained by the pairwise GDC method

consistently achieve low test error rates over all testing sessions with the same set-

tings of MLPs. The test error rates achieved in 10 testing sessions are separately

as 2.61%, 2.67%, 2.70%, 2.73%, 2.88%, 2.71%, 2.68%, 2.65%, 2.74%, and 2.69%.

It indicates that the pairwise GDC training method has the ability to provide satis-

factory generalization results with different sets of initial weights, thus requiring no

multiple selections of initial weights for the training. It is appropriate to note that the
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pairwise GDC method also provides the test error rate lower than the best test error

rate achieved by the NRAE-MSE training presented in Table 4.2.

2. For three benchmark MLP classifiers listed in Table 5.2, one has 1000 hidden nodes

as the 784-1000-10 MLP, and the other two are built by 3-layer MLPs that are 784-

300-100-10 and 784-500-150-10 respectively. However, the MLP classifier trained

by the pairwise GDC method merely uses 300 hidden nodes on the 784-300-10 MLP.

It demonstrates that the pairwise GDC method has the ability to avoid non-global

local minima and maintain a high level of generalization without applying the larger

MLP architecture comparing to the listed benchmark MLP classifiers.

3. Two benchmark results using the 784-300-10 and the 784-1000-10 MLPs are

achieved with image distortions to increase the size of the original training dataset.

This technique improves test error rates of the two benchmark MLP classifiers, but

the results obtained by those MLP classifiers are still worse than the test error rate of

the MLP classifier trained by the pairwise GDC method without image distortions. It

indicates that the MLP classifier is able to be trained effectively by the pairwise GDC

method in achieving low test error rate. In fact, through applying image distortions,

the pairwise GDC method is expected to lead the MLP classifier to achieve a lower

test error rate than the result of the MLP classifier trained without aiding of image

distortions.

4. A GDC training in batch mode with the same experimental settings as the pairwise

GDC training is also tested with the MNIST dataset in our experiments. Because the

GDC training converges extremely slow comparing to the pairwise GDC training,

we have not obtained any converged GDC training sessions with satisfactory perfor-

mances better than the pairwise GDC training. Thus, no related result of the GDC

training is shown in Table 5.2. In our experiments, the best test error rate achieved
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Table 5.2. Test error rates achieved by MLP classifiers on the MNIST dataset. The best
test error rate achieved by the pairwise GDC method is highlighted in bold.

Training Method Test Error Rate (%)
784-300-10 MLP + MSE [64] 4.70
784-300-10 MLP + NRAE-MSE (this dissertation) 4.58
784-1000-10 MLP + MSE [64] 4.50
784-1000-10 MLP + MSE + Image distortions [64] 3.80
784-300-10 MLP + MSE + Image distortions [64] 3.60
784-300-100-10 MLP + MSE [64] 3.05
784-500-150-10 MLP + MSE [64] 2.95
784-300-10 MLP + Pairwise GDC (this dissertation) 2.61

by the GDC training is nearly 10%, and it costs almost 15,000 training epochs. How-

ever, in all pairwise GDC training sessions, the total number of training epochs for

each session is less than 1,000. It presents a significant advantage of the pairwise

GDC training comparing to the batch GDC training in saving computational costs on

a large training dataset.

5.4 Summary

The GDC method is developed to solve the difficulty of the stagnant problem in the

NRAE training with a large �, thus leading to a global or near-global minimum of the

NRAE criterion without a deliberate selection of the initial � in training different MLPs.

Numerical experiments in approximating functions with pre-designed non-global local

minima demonstrate the effectiveness of the GDC method in searching a global minimum

of C
�

(w) of function approximation examples. Particularly, if the MLP has enough nodes,

min

w

C
�

(w) is virtually zero at a global minimum, implying that min

w

Q (w) is also vir-

tually zero where the global minimum or near-global minimum of the MSE criterion could
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be achieved. Moreover, since the GDC method further improves the NRAE-MSE train-

ing, which is confirmed better than the NRAE training, it is the best NRAE-based training

method over all others we proposed.

Although the GDC method can successfully solve function approximation examples,

it is restricted by its batch training fashion, which becomes the difficulty in handling the

large dataset with a fast convergence. To improve this shortage, a pairwise GDC training

method is proposed and evaluated. Experimental results demonstrate that the pairwise

GDC training method reaches an accuracy level similar to what the GDC training achieves

in batch mode, but requires much less computation in approximating the same function

example. Furthermore, in training a large MLP classifier with the MNIST dataset, the

pairwise GDC method is able to achieve a performance better than many benchmark results

of MLP classifiers.



Chapter 6

TRAINING DEEP NEURAL NETWORKS

Notable effectiveness of the GDC method are comprehensively evaluated in training

MLPs for approximating functions with non-global local minima and recognizing hand-

written digits with the MNIST dataset. Although the GDC method can gradually handle

the non-convex function in distinct convex error spaces as an initially large � reduces, the

effectiveness of the GDC method in training DNNs with the high-dimensional non-convex

error function is unclear. In fact, employing the GDC method to train neural networks

with deep architectures and large datasets encounters tremendously computational costs.

In this chapter, we explain the limitation of GDC in training DNNs and propose an en-

hanced gradual deconvexification (EGDC) method to train CNNs and deep MLPs in an

efficient and effective manner. Numerical experiments for recognizing handwritten digits

on the MNIST dataset are applied to evaluate the optimization and generalization perfor-

mances of the EGDC method, with comparing to many benchmark results under the same

experimental conditions.

105
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6.1 Enhanced Gradual Deconvexification Method

6.1.1 GDC-RAE Training

So far as we discussed, the NRAE training has a stagnant problem when � is chosen

very large, and the problem can be resolved by applying the GDC method to gradually

deconvexify the NRAE criterion in searching a global or near-global minimum. However,

we have not discussed another issue in the NRAE training when � is chosen very small.

Since the NRAE criterion C
�

(w) is a normalization of the RAE criterion J
�

(w) with

a logarithmically concave function, C
�

(w) has a smooth but a flat error space compared

to J
�

(w). Although C
�

(w) shares the same local and global optima with J
�

(w) when the

convexity of J
�

(w) is maintained, C
�

(w) has a larger convexity region than J
�

(w), where

the error space of C
�

(w) contains more planes and plateaus than the error space of J
�

(w),

even if J
�

(w) is strictly convex as � approaches infinity. When � is close to zero, the

planes and plateaus existed in the error space of C
�

(w) become more severe, because the

error space of C
�

(w) is not convex anymore under this scenario. However, the error space

of J
�

(w) is less smooth than the error space of C
�

(w), thus the former suffers less than the

latter from the severe planes and plateaus, which potentially slow down the gradient-based

method in searching the global or near-global minimum. Accordingly, it implies that the

RAE training can converge faster than the NRAE training in avoiding the same planes and

plateaus, if � is close to zero.

The RAE training has limitations in choosing � only with small values because of the

exponential computation of J
�

(w). However, the RAE training can be safely performed in

the GDC method, if the deconvexification in GDC brings down the initial large � to a very

small value, which is smaller enough for the RAE training to be properly performed without

any computational overflow. Therefore, it inspires us to integrate the RAE training into the

GDC method and compose a new GDC-RAE training to attain both the fast convergence
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and the good optimization. The basic idea of the GDC-RAE training performs GDC by

switching the NRAE training to the RAE training when � < �c, where �c is a critical value

of � that can be handled by J
�

(w) without any computational overflow. The selection

approach of �c is illustrated as follows.

Based on the defination from Eq. (3.4) to Eq. (3.7), we can rewrite Eq. (2.1) as

J
�

(w) =
KX

k=1

e
⇣
�kyk� ˆ

f(xk,w)k2
⌘

= e�k"M (w)k2
KX

k=1

⌘
k

(w)

(6.1)

where 0 < J
�

(w)  Ke�k"M (w)k2 . It is noticed that the evaluation of J
�

(w) will not

cause any computational overflow if Ke�k"M (w)k2 < Fmax, where Fmax is the largest positive

floating point number that can be handled by the computer. Based on this fact, the selection

of �c can be decided by

(6.2) �c :=
lnFmax � lnK

k"
M

(w)k2

As we choose a proper �c to apply the RAE training, the computation of the first-

order derivative of the RAE criterion as presented in Eq. (3.14) could yield a significant

large magnitude of the RAE gradient

(6.3) rJ
�

(w) :=


@J

�

(w)

@w
i

�

1⇥N
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To overcome this difficulty, let us first rewrite Eq. (3.14) as

@J
�

(w)

@w
i

= �2�
KX

k=1

e�k"k(w)k2"T
k

(w)
@ŷ

k

(w)

@w
i

= �2�e�k"M (w)k2
KX

k=1

⌘
k

(w) "T
k

(w)
@ŷ

k

(w)

@w
i

(6.4)

It is noticed that, if �c is chosen as a very large value, the calculation of e�k"M (w)k2 in

each component @J�(w)

@wi
of rJ

�

(w) will result in a very large magnitude. In this case,

rJ
�

(w) would easily cause significant fluctuations for adjusting trainable weights in BP, if

the learning rate of the gradient-based optimization method is not small enough. This phe-

nomenon could further bring serious saturations of the activation function to most training

nodes, and eventually lead the neural network training to fail. In order to avoid this issue,

we normalize the RAE gradient in Eq. (6.3) as rJ�(w)

krJ�(w)k , where k·k is the Euclidean norm.

With such a normalization, all components of rJ�(w)

krJ�(w)k are bounded in (�1, 1), therefore it

can be safely applied for BP.

6.1.2 Fast NRAE Gradient Evaluation

The NRAE training in the GDC method evaluates the first-order derivative of the

NRAE criterion in Eq. (3.9) as

@C
�

(w)

@w
j

=

�2
P

K

k=1

⌘
k

(w) "T
k

(w) @ŷk(w)

@wjP
K

k=1

⌘
k

(w)

where the evaluation of ⌘
k

(w) involves an exponential operation of "
k

(w) and "
M

(w)

based on Eq. (3.7), costing the most computational resources during the training.
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To improve the computation of Eq. (3.9) with a notational simplicity, we define

E
k

(w) := �
�
k"

k

(w)k2 � k"
M

(w)k2
�

T
k

(w) := ⌘
k

(w) "T
k

(w)
@ŷ

k

(w)

@w
i

(6.5)

where k"
k

(w)k2  k"
M

(w)k2 and 0 < ⌘
k

(w)  1.

Based on the calculation in Eq. (3.7), if k"
k

(w)k2 = k"
M

(w)k2, then ⌘
k

(w) = 1 and

⌘
k

(w) is independent of �. On the other hand, if k"
k

(w)k2 < k"
M

(w)k2, then the evaluation

of E
k

(w) in Eq. (6.5) as � approaches infinity provides

(6.6) lim

�!1
E

k

(w) = �1

which leads to

lim

�!1
⌘
k

(w) = lim

�!1
eEk(w)

=

1

e1

(6.7)

Considering the numerical computation in computer, if � is chosen as a very large value

and k"
k

(w)k2 < k"
M

(w)k2 is satisfied, the calculation of ⌘
k

(w) will provide a result with

an extremely small magnitude that is close to zero. In other words, if ⌘
k

(w) < Fmin, which

implies E
k

(w) < lnFmin, the result of ⌘
k

(w) will be rounded to zero during a numerical

approximation in computer, where Fmin is the smallest positive floating point number that

is able to be handled by computer. In this case, T
k

(w) = 0.

This phenomenon inspired us to develop an approach to fast evaluate the NRAE gra-

dient

rC
�

(w) :=


@C

�

(w)

@w
i

�

1⇥N

as defined in Eq. (3.2). This approach is described in Algorithm 5. With applying the ap-
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proach to the NRAE training, the evaluation of ⌘
k

(w) according to Eq. (3.7) is not always

required for computing @C�(w)

@wi
per training epoch, thus saving the computational costs sig-

nificantly. Moreover, because the calculation of T
k

(w) in Eq. (6.5) can be safely ignored by

direct setting T
k

(w) = 0 when E
k

(w) < lnFmin, it effectively avoids massive computations

of @ŷk(w)

@wi
in BP, especially when the neural network has a very large number N of trainable

weights.

Algorithm 5 Fast NRAE Gradient Evaluation
Require: Initialize the NRAE training with selecting the weight vector w randomly;

1: for k = 1 to K do
2: if k"

k

(w)k2 = k"
M

(w)k2 then
3: Set ⌘

k

(w) 1;
4: T

k

(w) "T
k

(w) @ŷk(w)

@wi
;

5: else
6: E

k

(w) �
�
k"

k

(w)k2 � k"
M

(w)k2
�
;

7: if E
k

(w) < lnFmin then
8: Set ⌘

k

(w) 0 and T
k

(w) 0;
9: else

10: ⌘
k

(w) eEk(w);
11: T

k

(w) ⌘
k

(w) "T
k

(w) @ŷk(w)

@wi
;

12: end if
13: end if
14: end for
15: for i = 1 to N do
16: @C�(w)

@wi
 �2

PK
k=1 Tk(w)

PK
k=1 ⌘k(w)

;
17: end for
18: return rC

�

(w) 
h
@C�(w)

@wi

i

1⇥N

6.2 Experimental Settings

To experimentally verify the effectiveness of the EGDC method in training DNNs on

a real-world dataset, we first evaluate it on LeNet-5 [64] for classifying handwritten digits
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with the MNIST dataset. LeNet-5 is generally considered as a classic CNN model with

deep architectures. It comprise 8 layers including 1 input layer, 3 convolutional layers, 2

pooling layers, 1 fully connected layer, and 1 output layer in sequence. In our experiments,

we apply the same experimental settings, including the organization of training and testing

samples, the architecture of LeNet-5, and the selection of convolutional and pooling oper-

ations, as described in [64] to evaluate the EGDC method in pairwise mode. Moreover, we

perform another pairwise GDC training with using the same parameters as the EGDC train-

ing on LeNet-5 for demonstrating the advantages of EGDC compared to GDC. At last, the

LMS training is applied to provide a baseline for measuring differences between distinct

training methods under the same experimental settings. For the organization of the MNIST

dataset, we perform the EGDC training, the GDC training, and the LMS training with the

full 60,000 training samples and test the trained LeNet-5 models with the standard 10,000

testing samples.

To further demonstrate the advantage of the EGDC method comparing to more deep

learning methods that are aided by unsupervised layer-wise pre-training, we perform

EGDC simply in the supervised manner to train distinct MLPs on the MNIST dataset and

compare the achieved test error rates to benchmark results reported in using MLPs, SAEs,

DBNs, and DBMs under the same experimental settings. Particularly, we perform EGDC

on one shallow MLP with the 784-1000-10 architecture, one deep MLP with the 784-500-

1000-10 architecture, and another deep MLP with the 784-500-500-1000-10 architecture.

To properly use the MNIST dataset as the same as the benchmark methods employed, we

randomly choose 50,000 out of 60,000 samples to train MLPs, and apply the left 10,000

samples as the validation set to select the best performed weights with the lowest valida-

tion error. Then, we adopt the optimal weights to evaluate the 10,000 testing samples and

provide the final test error rate.

As for training parameters of the EGDC and GDC methods, we set � = 10

4, TE = 10,
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TS = 10

�5, and DR = 0.9. For all the NRAE and RAE training sessions, we fix the global

learning rate and the momentum term in SGD equal to 0.0001 and 0.5, respectively. For all

the LMS training sessions, we apply the learning rate decay to decrease the global learning

rate by 50% in every 10 training epochs, i.e., 0.0001 for the first 10 epochs, then 0.00005 for

the next 10 epochs, and so on. The training session is considered as convergence once the

training error rate in ten consecutive epochs is less than 0.01%. For all EGDC experiments,

we set Fmax = 10

300 and Fmin = 10

�300.

6.3 Evaluation on Convolutional Neural Networks

6.3.1 Experiments with Training Method

Table 6.1 presents the training and test error rates obtained by applying different train-

ing methods to LeNet-5 on the MNIST dataset. The best result achieved by the EGDC

method illustrates a test error rate of 0.90%, which is better than the famous benchmark

result with a test error rate of 0.95% achieved by the Stochastic Diagonal Levenberg-

Marquardt (SDLM) method on LeNet-5. Meanwhile, the benchmark result with the test

error rate of 0.95% was obtained under a training error rate of 0.35%, but the EGDC

method is able to bring the training error rate down to 0.23%, which is about 34% re-

duction of 0.35%, for obtaining the test error rate of 0.90%. Furthermore, both the EGDC

and GDC training results are better than the LMS training results with the use of the same

initial weights and training parameters. These observations indicate that the EGDC method

has the capability to find a better solution with the training error lower than other training

results located on different non-global local minima, while maintaining a generalization

level better than others. We would like to stress that our experiments of EGDC are per-

formed by using exactly the same network architecture of LeNet-5 as that being used to

achieve the benchmark result (i.e., the test error rate of 0.95% reported in [64]). We did not



113

Table 6.1. Training and test error rates achieved by LeNet-5 on the MNIST dataset. Best
performances achieved by the pairwise EGDC method are highlighted in bold.

Training Method
Error Rate (%)
Training Test

LeNet-5 + LMS (this dissertation) 0.40 1.10
LeNet-5 + SDLM [64] 0.35 0.95
LeNet-5 + Pairwise GDC (this dissertation) 0.27 0.93
LeNet-5 + Pairwise EGDC (this dissertation) 0.23 0.90

find any reported results that have the training and test error rates better than ours under the

same experimental conditions.

As an enhanced method of GDC, EGDC contains the main procedure of GDC but

performs in a more efficient way. Therefore, the major effectiveness of GDC, which is con-

firmed in avoiding the non-global local minimum, could be maintained in EGDC. Although

the EGDC method did not provide a notable improvement to the GDC method based on

their test error rates shown in Table 6.1, EGDC costs significantly less training time than

GDC. According to our estimation, LeNet-5 needs to be trained about 4 weeks by the GDC

method to achieve the reported result, but the EGDC method can reduce almost a half of

that training time to 15 days, which is also comparable to the LMS training in 10 days.

This observation confirms that the EGDC method has the ability to significantly speedup

the GDC method with the use of the GDC-RAE training and the fast NRAE gradient eval-

uation.

There is no doubt that much better results in training very deep CNNs can be achieved

quite fast by using GPUs together with many well-known deep learning techniques, such

as stochastic pooling, rectified linear units, and dropout. However, we stress that our ex-

periments are performed without using GPU-acceleration, which can potentially reduce

the training time of LeNet-5 from several days down to few hours though. Moreover, the
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EGDC method consistently achieves better performances than the standard benchmark on

LeNet-5 with employing neither additional tricks nor excessive trials of initial weights.

Based on our experiments, it is fair to argue that the EGDC method has the potential to

outperform more benchmark results with a faster computation, if EGDC is integrated with

appropriate training tricks together with GPU-accelerated computing.

It is proper to mention that the benchmark result with the test error rate of 0.95% was

achieved by the SDLM method on LeNet-5, which takes advantage of the diagonal terms

of an estimation of the Gauss-Newton approximation to Hessian matrix [64]. It is noticed

that both the EGDC and the GDC methods provide satisfactory performances better than

the SDLM method, merely relying on SGD. This observation demonstrates that both the

EGDC and GDC methods are better than or at least comparable to the SDLM method in

training LeNet-5 with the MNIST dataset for achieving good optimization and generaliza-

tion. Meanwhile, both the EGDC and GDC methods achieve satisfactory performances in

pairwise mode better than the LMS method.

6.3.2 Experiments with Learning Rate Decay

As described in [64], a specific schedule of learning rate decay has been applied to

train LeNet-5 for achieving a stable test error rate of 0.95%. This schedule chose an initial

learning rate and gradually reduced it after certain training epochs until the learning rate is

very small. Although it stated that the overfitting was not observed in training LeNet-5 with

the specific schedule of learning rate decay, the reason of selecting that particular schedule

has not been discussed in [64]. We expand our experiments through exploring the relation

between the learning rate decay and the performance of EGDC as follows: we first choose

9 different percentages of learning rate decay to perform the EGDC training with the same

initial weights, then we fix the percentage of learning rate decay and perform the EGDC

training on 10 different sets of initial weights. In our experiments, the learning rate decay is
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applied in every 10 epochs to the LMS training sessions in EGDC. Experimental results as

presented in Fig. 6.1 demonstrate the variation of EGDC performances affected by distinct

schedules of learning rate decay.

Generally, a learning process tends to find the optimal weights to approximate training

samples, but it may easily escape from the ”sweet spot” for generalizing testing samples

once the overfitting is occurred. Experimental results in Fig. 6.1(a) show that the test error

rates achieved by small percentages of learning rate decay from 10% to 50% are smaller

than the benchmark test error rate of 0.95%, while the 50% learning rate decay provides

the lowest test error rate as 0.90%. Our explanation is that, if a large percentage of learn-

ing rate decay is applied, the corresponding learning rates will be kept as large numbers

during the training. Thus, the learning procedure could suffer from many fluctuations in

searching optimal weights and would converge on a solution with overfitting. In contrast,

a small percentage of learning rate decay provides a quick drop of learning rates with less

fluctuations. It can lock the optimal weights into the lower positions of wide open minima

in the training error space, while stabilizing the learning procedure on good generalization

levels with less overfitting.

Furthermore, the training sessions with 10 different sets of initial weights are per-

formed to study whether the EGDC method is able to achieve good performances consis-

tently when the learning rate decay is fixed as 50%. As illustrated in Fig. 6.1(b), the EGDC

method achieves the training and test error rates in ranges of 0.22% - 0.25% and 0.90% -

0.92% over 10 different sets of initial weights, respectively. These results are consistently

better than the benchmark results with the 0.35% training error rate and the 0.95% test error

rate, implying that no multiple trials of initial weights are necessary for the EGDC method

to achieve satisfactory performances.



116

10% 20% 30% 40% 50% 60% 70% 80% 90%

0.2

0.4

0.6

0.8

1

1.2

Percentage of Learning Rate Decay

E
rr

o
r 

R
a

te
 (

%
)

 

 

Training

Test

Benchmark

(a) Learning rate decay with different percentages

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10

0.2

0.4

0.6

0.8

1

1.2

Set of Initial Weights

E
rr

o
r 

R
a

te
 (

%
)

 

 

Test

Training

Benchmark

(b) Learning rate decay with a fixed percentage (50%)

FIG. 6.1. Error rates of LeNet-5 achieved by the EGDC method on the MNST dataset. The
blue color denotes the training result, while the red color shows the test result. Benchmark
results of the 0.35% training error rate and the 0.95% test error rate are represented as dash
lines in both figures.
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6.4 Evaluation on Multilayer Perceptrons

The success of CNNs, such like LeNet-5, is benefited by a combination of convolu-

tion and pooling layers, where the combination captures a spatial topology that produces

a rich feature representation of the input information with the weight sharing technique.

Comparing to the traditional MLP trained by the non-convex error function, the CNN re-

duces the complexity of the error function in the parameter space by using significantly less

trainable weights, which effectively lead the gradient-based method to converge on a bet-

ter solution without serious overfitting. Because of the intrinsic advantages of CNNs, the

high-dimensional non-convex optimization is not the vital issue in training CNNs, thereby

the effectiveness of EGDC method for fighting the non-convex error function in training

CNNs is limited.

However, many deep learning methods have focused on attacking the high-dimensional

non-convex optimization problem by applying unsupervised layer-wise pre-training to-

gether with supervised fine-tuning to train DNNs, such as SAEs, DBNs, and DBMs. There-

fore, to further demonstrate the effectiveness of the EGDC method comparing to deep

learning methods that employ unsupervised pre-training, we perform EGDC to train dis-

tinct shallow and deep MLPs on the MNIST dataset merely in the supervised fashion and

compare the test error rates achieved by these MLPs to the results achieved by architectures

and methods of the benchmark training as presented in Table 6.2.

6.4.1 Comparison on MLP and SAE

Experimental results in Table 6.2 demonstrate that the EGDC method consistently

achieves the lowest test error rates, i.e., 1.36% on the shallow MLP and 1.29% on the deep

MLP, comparing to both the MSE and the cross-entropy (CE) method under the use of

the same or similar benchmark architecture of MLPs. It indicates that the EGDC method,



118

Table 6.2. Test error rates achieved by shallow and deep neural networks on the MNIST
dataset. Best performances achieved by the pairwise EGDC method are highlighted in

bold.

Neural Network Training Method Test Error Rate (%)

Shallow

784-300-10 MLP + MSE [64] 4.70

Architecture

784-300-10 MLP + NRAE-MSE (this dissertation) 4.58
784-1000-10 MLP + MSE [64] 4.50
784-1000-10 MLP + MSE + Image distortions [64] 3.80
784-300-10 MLP + MSE + Image distortions [64] 3.60
784-300-10 MLP + Pairwise GDC (this dissertation) 2.61
Shallow MLP + CE [3] 1.90
784-1000-10 SAE + CE [90] 1.78
784-1000-10 SAE + CE + Weight-decay regularization [90] 1.68
784-1000-10 Denosing SAE + CE + Binary masking noise [90] 1.57
784-1000-10 MLP + Pairwise EGDC (this dissertation) 1.37
784-1000-10 RBM + Contrastive divergence [90] 1.30

Deep

784-300-100-10 MLP + MSE [64] 3.05

Architecture

784-500-150-10 MLP + MSE [64] 2.95
784-300-100-10 MLP + MSE + Image distortions [64] 2.50
784-500-150-10 MLP + MSE + Image distortions [64] 2.45
Deep MLP + CE [3] 2.40
Deep MLP + CE + Supervised pre-training [3] 2.00
Deep SAE + CE + Unsupervised pre-training [3] 1.40
784-500-1000-10 MLP + Pairwise EGDC (this dissertation) 1.31
784-500-500-1000-10 MLP + Pairwise EGDC (this dissertation) 1.29
Deep DBN + CE [3] 1.20
784-500-500-1000-10 DBM + Discriminative fine-tuning [95] 1.01
784-500-1000-10 DBM + Discriminative fine-tuning [95] 0.95
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which contains the theoretical essences of both NRAE and RAE criteria in convexifying the

non-convex error function, is better than the benchmark methods based on the MSE and the

CE criteria in achieving the optimum with a good generalization performance. Moreover,

the EGDC method is able to be applied to train both the shallow and deep MLPs, indicating

that the method is completely applicable to train DNNs without any numerical and scaling-

up problems.

The application of SAEs has been widely reported as a successful deep learning model

for learning the high-level representation from the raw data thus generalizing the new data

effectively, with involving unsupervised layer-wise pre-training followed by supervised

fine-tuning. In our experiments, the shallow and deep MLPs trained by EGDC are com-

pared to the SAEs trained by CE, demonstrating the significant effectiveness of the convex-

ification and deconvexification methodology that is better than unsupervised pre-training

approach in handling the high-dimensional non-convex optimization problems (i.e., train-

ing DNNs). Although unsupervised pre-training can guide the learning of SAEs towards

attraction basins of the local minima that contain good generalization results from the train-

ing dataset, EGDC applies the proper convexification and deconvexification approach to the

non-convex training criterion and provides an even better error space to reach the optimum

with the superior generalization. Meanwhile, without the aid of unsupervised pre-training,

the EGDC method merely needs to work in the supervised fashion, thus it is expected to be

more efficient in computation.

It is worth noticing that the benchmark results reported in [3] are selected by different

performances of the validation set with choosing the number of hidden nodes between 500

and 1000, where the shallow MLP has 1 hidden layer and the deep MLP/SAE/DBN has 3

hidden layers. We stress that our experimental results are not selected by performing the

EGDC method on many MLP architectures then reporting the best. In fact, we only perform

the EGDC method on each tested MLP with a single trial, then we report our experimental
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results of MLPs and compare them to the benchmark results. It evidently implies that, with

an adequate MLP architecture to fully express the training data and with a learning method

like EGDC to effectively train the model, multiple trials on selecting different network

architectures for the best performance are not necessary in training DNNs.

6.4.2 Comparison on DBN and DBM

As presented in Table 6.2, the shallow MLP trained by EGDC does not achieve a

test error rate lower than the RBM trained by contrastive divergence, while the deep MLPs

trained by EGDC also cannot provide test error rates better than the DBN trained by CE and

the DBM trained with discriminative fine-tuning. Because our tests are correspondingly

performed and compared to the benchmark results under the same experimental settings,

the shallow and deep MLPs trained by EGDC have not demonstrated effective advantages

comparing to the models of RBM, DBN, and DBM.

However, it is worth stressing that the generalization ability of our tested MLPs is

restricted by the intrinsic nature of MLP as the discriminative learning model, but not by

the EGDC method. Comparing to MLP, RBM is a generative model that is designed to

express more complex relationships between the target and observed data as a full proba-

bilistic model of variables, while DBN is basically composed of stacked RBMs, and DBM

is intensively built with Boltzmann machines that are more generalizing than RBM. Al-

though it has been claimed in [58, 84] that discriminative models are able to yield superior

performances than generative models in some regression and classification tasks that do

not require the joint distribution of the input data, recent research works in training DNNs

[2, 5, 61, 100] implies that generative models are typically more flexible than discrimina-

tive models in expressing dependencies in complex learning tasks, especially with the aid

of unsupervised layer-wise pre-training followed by supervised fine-tuning. Therefore, it

is fairly to argue that the generative model, such as RBM, DBN, and DBM, has more ben-
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efits than the discriminative model, such as MLP, in generalizing the MNIST dataset thus

providing the lower test error rate under our experimental settings.

In fact, experimental results in Table 6.2 illustrate that the 784-1000-10 MLP trained

by EGDC achieves a comparable generalization ability to the RBM trained with the

same network architecture (i.e., 1.36% versus 1.30%), and the 784-500-500-1000-10 MLP

trained by EGDC also presents a test error rate that is comparable to the DBN trained with

the similar network setting (i.e., 1.29% versus 1.20%). However, the MLPs trained by

MSE or CE can hardly compare to the performance achieved by EGDC under the same

experimental settings. It demonstrates that the EGDC method has the ability to improve

the generalization of discriminative model better than the MSE and the CE methods, while

achieving the comparable performance to generative model such as RBM and DBN in

the meantime. Therefore, it is reasonable to expect that, if the EGDC method is applied

to generative models, it would effectively achieve the generalization performance better

than other training methods, which do not apply the convexification and deconvexification

methodology.

6.5 Summary

The EGDC method is proposed to improve the GDC method with the use of GDC-

RAE training and the fast NRAE gradient evaluation for training DNNs. Since EGDC

contains the main procedures of GDC but performs in a more efficient way, the major

effectiveness of GDC, which is confirmed in avoiding the non-global local minimum and

achieving a global or near-global minimum, is maintained in EGDC.

The theoretical essence of EGDC is derived from the NRAE and RAE criteria, which

are proposed to alleviate the local minimum problem by convexifying the non-convex error

function. With a proper use of the convexification and deconvexification methodology,
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the non-convex optimization can be transformed to a convex optimization problem, while

many difficulties in training the non-convex error criterion, such as local minima, large flat

regions, and saddle points, are expected to be effectively alleviated or fundamentally solved

by the convex optimization. Therefore, instead of applying a deeper network architecture

or developing a tricky technique to perform deep learning, the proposed EGDC method

provides a new perspective to solve the fundamental difficulties of the high-dimensional

non-convex optimization in training DNNs.

Experimental results of training LeNet-5 with the MNIST dataset confirm that the

EGDC method is able to reach the same accuracy level as the GDC method but with signif-

icantly less computational costs, while attaining good performances compared to the LMS

training with the same experimental settings. Meanwhile, the EGDC method demonstrates

its capability in training LeNet-5 with the MNIST dataset for achieving both training and

test error rates better than those reported in benchmark results. To consistently achieve sat-

isfactory performances, it is confirmed that multiple trials of initial weights are unnecessary

for the EGDC method.

Furthermore, the shallow and deep MLPs trained by the EGDC method are evaluated

merely in the supervised fashion with the MNIST dataset, illustrating significant advan-

tages in achieving satisfactory generalization levels compared to many benchmark MLPs

and SAEs that are trained by MSE or CE. Corresponding experiments indicate that the

EGDC method based on the convexification and deconvexification methodology, which

properly handles the non-convex error criterion, is suitable to train DNNs without the aid

of unsupervised pre-training. More comparisons between the MLPs trained by EGDC and

the DBN/DBM trained by CE present different performances caused by discriminative and

generative models, demonstrating that the EGDC method can effectively improve the gen-

eralization of discriminative model better than the MSE and the CE methods.



Chapter 7

STATISTICAL NEURAL NETWORK PRUNING

This chapter introduces a statistical neural network pruning approach based on the

hypothesis testing to improve the generalization of ANNs. Two pruning methods are de-

veloped with the essence of the statistical neural network pruning. They are experimen-

tally studied by pruning ANNs after applying the EGDC method with the MNIST dataset,

demonstrating that the statistical neural network pruning is not only able to be applied to

enhance the generalization of shallow MLPs, but also applicable to improve the general-

ization of DNNs, such as CNNs and deep MLPs.

7.1 Background

In training ANNs, the optimal number of hidden nodes is hard to be determined before

the training starts, while it is commonly estimated by the trial-and-error fashion. Many re-

search works have been developed mainly in view of two strategies named as network

growing and network pruning for deciding the size of hidden layers [26]. A network prun-

ing strategy is the most important way to achieve an proper ANN, which uses less train-

able parameters and thus has better generalization capability. This strategy first selects an

ANN with a large number of hidden nodes, then it removes the redundant nodes during

the training based on different approaches. The implementation of these approaches is

123



124

often categorized into two groups corresponding to the sensitivity-based methods and the

penalty-based methods [16, 89]. Here, we only focus on the pruning strategy according to

the sensitivity-based methods.

A sensitivity-based pruning method applies the relevance or sensitivity measure to

quantify the contribution of trainable weights (or hidden nodes) in ANN for solving a task,

where the less relevant or sensitive weights (or nodes) can be removed from the network.

This method is often required to integrate with a network retraining manner [103]. For

example, if two hidden nodes in a network produce the same or proportional outputs for

a training dataset, one of them can be safely removed. Or, if several small weights are

irrelevant in training the network, they should be pruned properly. Although it is difficult

to decide which weights or nodes are least important for pruning the network, several tech-

niques and heuristic approaches have been developed to resolve this issue, such as the itera-

tive pruning algorithm for feedforward neural networks [14], the Karnin’s pruning method

[55], the pruning based on orthogonal transforms like the singular value decomposition and

QR decomposition with column pivoting [54], the principal components pruning [69], and

the method based on the perturbation analysis of the second-order Taylor expansion of the

objective function like optimal brain damage (OBD) [66] and optimal brain surgeon (OBS)

[36].

Particularly, the OBD and the OBS methods together with their variations are the

most popular methods to prune ANNs through determining the saliency of weights with

the aid of Hessian. However, pruning large ANNs with these methods involves intensive

calculations of Hessian, which cost enormous amount of computational time and memory

spaces on the real-world datasets in practice. A statistical neural network pruning method

proposed in [77] described an innovated approach, which can reduce the total amount of

computation in OBS with the use of a sensitivity measurement that is closely related to the

saliency of weights defined by OBS under certain demonstrated conditions. In this chapter,
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we study this statistical neural network pruning approach with more details in both theory

and practice.

7.2 Statistical Neural Network Pruning

The basic idea of the statistical neural network pruning proposed in [77] is derived

from a hypothesis testing, which is a standard procedure of statistical inferences applied for

testing a statistical hypothesis. If the hypothesis testing declares a null and an alternative

hypothesis as

H
0

: µ = 0

H
1

: µ 6= 0

(7.1)

where µ is a population mean. If a sample mean x taken from the population that has a

normal distribution with variance s2, then the test z-statistic for the mean under H
0

is

(7.2) z =

x� µ

s

which describes the distance of the sample mean x away from the population mean µ = 0.

A significance level is selected as a probability threshold to test the z-statistic, where the

smaller significance level means the stronger evidence to reject the null hypothesis.

The z-statistic, which is applied to test the statistical hypothesis, is an estimation of

each component of the weight vector in ANN. The z value is calculated by Eq. (7.2) with

the use of the absolute value of weight as x and the estimation of s as

(7.3) s =

vuutQ(w)
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where Q(w) is the MSE criterion described in Eq. (2.2) and @Q(w)

@wi
is the first-order deriva-

tive of the MSE criterion defined by

(7.4)
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If the tested z value is greater than or equal to a chosen critical value zc, such a z-statistic

is regarded as the sufficient evidence to support that the evaluated component of the weight

vector is not zero. Otherwise, the sensitivity of the evaluated weight is zero, which indi-

cates that the corresponding connection associated with the evaluated weight in the network

should be pruned.

7.2.1 Statistical Pruning Method

A statistical pruning (SP) method directly calculates z values for all components of the

weight vector and prunes the weight if its corresponding z value is smaller than a critical

value zc. With choosing the proper zc, the ANN after pruning is able to be retained in RT

epochs for achieving a better generalization level with less number of weights comparing

to the original network. The critical value zc is commonly chosen as the value with respect

to a small significance level in the complementary cumulative convention of the standard

normal table (also referred to as the Z table), which gives a probability that a statistic is

greater than zc. For example, when we choose zc = 2.00, the corresponding significant

level in the Z table is 4.55%, which is generally accepted as a sufficiently small probability

in practice to reject the null hypothesis, if any evaluated z value is greater than or equal to

the zc. The SP method is described in Algorithm 6.
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Algorithm 6 Statistical Pruning Method
Require: Obtain the weight vector w from the previously trained neural network, select a

critical value zc, and set RT ;
1: for i = 1 to N do {Perform the pruning}

2: Compute z  |w
i

|/s where s 

s

Q(w)

�⇣
@Q(w)

@wi

⌘
2

;

3: if z < zc then
4: Set w

i

 0 and flag
i

 0;
5: else
6: Set flag

i

 1;
7: end if
8: end for
9: Obtain the pruned weight vector w;

10: for j = 1 to RT do {Retrain the network}
11: for i = 1 to N do
12: if flag

i

= 1 then
13: Update w

i

to w
i

⇤ using the first-order derivative of the objective function;
14: else
15: Set w

i

⇤  w
i

;
16: end if
17: end for
18: end for
19: return The optimal weight vector w⇤.

7.2.2 Gradual Statistical Pruning Method

Although a proper critical value zc is generally selected by a small significance level

to reject the null hypothesis in practice, the ANN could be pruned incorrectly by an inap-

propriate selection of zc. First, if zc is too large, the linearization in the derivation of the

statistical neural network pruning is invalid, leading to incorrect pruning results of the sig-

nificant weights without the linearization or the critical statistic against the null hypothesis.

Moreover, if zc is too large, more sensitive weights with large z values could be removed

excessively because of z < zc. It may cause the model underfitting, where the weights after

pruning with the large zc are insufficient to properly express the training data. On the other
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hand, if zc is too small, it could cause ineffective pruning, where the weights may not be

pruned enough thus the overfitting of the original network is not properly alleviated.

Therefore, a gradual statistical pruning (GSP) method is proposed for choosing the

best critical value zc adaptively via repeating the pruning and retraining phases with the aid

of a validation data. Like the SP method, a critical value zc is initially selected to prune the

trained network with the weight vector wold and the error of the validation data vold. Then,

the network is retrained after pruning in RT epochs. In the GSP method, we always record

the weight vector wnew according to the recently lowest validation error vnew, and then wnew

is pruned by an updated critical value zc = zc+zinc, where zinc is an increment for gradually

raising zc as each pruning phase applies. The described pruning and retraining phases will

repeat until the maximum critical value zmax or a satisfactory validation error vopt is reached.

The GSP method is described in Algorithm 7.

Algorithm 7 Gradual Statistical Pruning Method
Require: Obtain the weight vector wold and its related validation error vold from the pre-

viously trained neural network, choose a desired validation error vopt, select zmax and
zinc, and set zc << zmax;

1: while zc < zmax or vold > vopt do
2: Start SP with wold and zc;
3: Record the lowest validation error vnew during the retraining phase in SP;
4: Save the corresponding weight vector as wnew;
5: if vnew < vold then
6: Let wold  wnew and vold  vnew;
7: end if
8: zc  zc + zinc;
9: Set w⇤  wold;

10: end while
11: return The optimal weight vector w⇤.
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7.3 Experimental Evaluation

7.3.1 Experimental Settings

The effectiveness of the statistical neural network pruning method is evaluated by ap-

plying the SP and the GSP methods to remove redundant weights and to improve the gen-

eralization of the previously evaluated MLPs and CNNs with the MNIST dataset. For the

experiments with shallow MLPs, we separately perform SP and GSP to prune ten 784-300-

10 MLPs trained by GDC, denoting as sMLP-1, sMLP-2, ... , and sMLP-10 respectively.

Moreover, for the experiments with CNNs, we separately perform SP and GSP to prune ten

LeNet-5 models trained by EGDC, denoting as LN-1, LN-2, ..., and LN-10 respectively. At

last, for the experiments with deep MLPs, we perform GSP to prune the 784-500-1000-10

and the 784-500-500-1000-10 MLPs trained by EGDC.

To perform SP, we first choose 15 critical values of zc from 0.2 to 3.0 with an interval

of 0.2. Then, we apply one critical value to prune one network each time, and we test

all 15 critical values over 10 MLPs and 10 CNNs. At last, we perform the LMS training

on each pruned network with setting the global learning rate and the momentum term as

0.0001 and 0.5 in SGD. In addition, the learning rate decay is applied to decrease the global

learning rate by 50% in every 10 training epochs, and the training session is considered

as convergence once the total number of retraining epochs RT = 100 is reached. To

perform the experiments with the MNIST dataset, the full 60,000 training samples are

applied to retrain the network, and the 10,000 testing samples are employed to test the

retrained network after the corresponding session is converged.

For employing GSP, we choose zc = 0.2, zmax = 3.0, zinc = 0.1, RT = 10, and vopt =

0.80% in our experiments. Since GSP provides the best pruned and retrained network with

the aid of the validation data, the network does not need to convergence in the retraining

phase after pruning. Accordingly, it would avoid excessive training time if the network is
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large. Therefore, in each retraining phase, we always apply SGD by using the fixed global

learning rate and the momentum term as 0.00001 and 0.5 without employing the learning

rate decay. To properly use the MNIST dataset, we apply 50,000 out of 60,000 training

samples to retain the network, and employ the left 10,000 samples as the validation data

to maintain the network with the lowest validation error. After that, the pruned network

selected by the best validation error is tested by 10,000 test samples, with providing the

final test error rate.

7.3.2 Experiments with Shallow Multilayer Perceptrons

Evaluating the SP Method In this section, the SP method is evaluated on ten 784-

300-10 MLPs from sMLP-1 to sMLP-10 with choosing 15 different critical values. We

present one experiment in sMLP-1 and show the results in Fig. 7.1 as an example to demon-

strate the performance of SP on the shallow MLPs. Based on our experiments, the other

784-300-10 MLPs from sMLP-2 to sMLP-10 have the similar performances of SP as we

state below:

1. Experimental results presented in Fig. 7.1(a) demonstrate that the SP method is able

to achieve a new test error rate, which is lower than or equal to the original test error

rate, when zc < 1.8. As presented in Table 7.1, the best test error rate 2.49%, which

is lower than the original test error rate 2.61%, is achieved by the SP method when

zc = 1.8. It confirms the effectiveness of SP in improving the generalization of the

shallow MLP with the use of the statistical neural network pruning method under the

proper critical value of zc.

2. For the experimental results after applying the SP method with zc > 1.8, we ob-

serve several unusual large training and test error rates in Fig. 7.1(a). The reason

can be explained by the curve of pruning percentages illustrated in Fig. 7.1(b). It
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Table 7.1. Test error rates achieved by the 784-300-10 MLP classifiers on the MNIST
dataset. The best test error rate of the MLP classifier trained by the pairwise GDC method
and then pruned by the SP method is highlighted in bold.

Training Method Test Error Rate (%)
784-300-10 MLP + MSE [64] 4.70
784-300-10 MLP + NRAE-MSE (this dissertation) 4.58
784-300-10 MLP + MSE + Image distortions [64] 3.60
784-300-10 MLP + Pairwise GDC (this dissertation) 2.61
784-300-10 MLP + Pairwise GDC + SP (this dissertation) 2.49

demonstrates that the large critical values with zc > 1.8 yield intensive pruning per-

centages that are larger than 50%, where such large pruning percentages can easily

cause underfitting in retraining the 784-300-10 MLPs. Without a proper ability to

express the training error space, the model underfitting brings a poor training result

together with an inappropriate generalization. In order to avoid any possible model

underfitting, too large critical values should not be taken to perform SP.

3. In Fig. 7.1(a), we merely observe slight improvement of the original test error rate

when zc < 1.0. The reason is that such a small critical value often associates with a

small pruning percentage, which is less than 20%. It indicates that if the pruning per-

centage is selected too small to apply SP, the effectiveness of reducing the network

redundancy and improving the generalization could be limited, because such a small

pruning percentage is not enough to properly remove overfitting of the original net-

work. Nevertheless, it is worth stressing that, even though choosing a small critical

value of zc in SP may not produce a satisfactory pruning result, it does not lead to a

performance worse than the original network after all.
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The best test error rate: 2.49%

(a) Error rates according to 15 critical values
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(b) Significance levels and pruning percentages according to 15 critical values

FIG. 7.1. Experimental results of evaluating the SP method on sMLP-1 with 15 critical
values. In Fig. 7.1(a), the training and test results are marked as red squares and green
triangles, while the results before and after applying SP are denoted by dash and solid
lines, respectively. The original training and test error rates of sMLP-1 before applying SP
are 1.33% and 2.61%.
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Evaluating the GSP Method Unlike the SP method, GSP adaptively chooses the

best critical value during the pruning, thus it does not need to be tested with choosing

different critical values of zc. The GSP method is evaluated on the same ten 784-300-

10 MLPs from sMLP-1 to sMLP-10 as we applied for the evaluation of SP. Experimental

results are presented in Fig. 7.2.

Fig. 7.2(a) demonstrates that the GSP method applied on ten 784-300-10 MLPs con-

sistently achieves the new test error rates, which are lower than the original test error rates

achieved by the shallow MLPs. Since the GSP method is evaluated with applying the same

parameters as the evaluation of shallow MLPs adopt, our obtained results confirm the ef-

fectiveness of GSP for improving the generalization of the shallow MLPs with the use of

adaptive critical values. Comparing to the SP method, GSP removes the requirement of

selecting the proper critical value of zc in pruning a network, thus avoiding too large or too

small critical values to be chosen during the pruning.

Furthermore, it is observed in Fig. 7.2(b) that the experimental results achieved by

the GSP method are associated with the critical values of zc in the range between 1.6 and

1.8, the significance levels close to 10%, and the pruning percentages in the range between

40% and 50%. These results are comparable to the best test error rate achieved by the SP

method with choosing the critical value zc = 1.8 as shown in Fig. 7.1. It illustrates that

the GSP method has the ability to preserve the best performance of the SP method, thus

reaching the same generalization level as SP achieves without selecting the proper critical

value of zc by trial and error in pruning shallow MLPs.

7.3.3 Experiments with Convolutional Neural Networks

Evaluating the SP Method In this section, the SP method is evaluated on ten

LeNet-5 models from LN-1 to LN-10 with choosing 15 different critical values. We present

one experiment in LN-1 and show the results in Fig. 7.3 as an example to demonstrate the
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(a) Error rates according to ten sMLPs
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(b) Significance levels and pruning percentages according to ten sMLPs

FIG. 7.2. Experimental results of evaluating the GSP method on ten 784-300-10 MLPs. In
Fig. 7.2(a), the training and test results are marked as red squares and green triangles, while
the results before and after applying GSP are denoted by dash and solid lines, respectively.
In Fig. 7.2(b), the exact critical values which produce the corresponding results are shown
on top of the figure.
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performance of SP on the CNNs. Based on our experiments, the other tests of the CNNs

from LN-2 to LN-10 behave the similar performances of SP as we state below:

1. Experimental results shown in Fig. 7.3(a) demonstrate that the SP method is able to

achieve a new test error rate, which is lower than or equal to the original test error

rate, when zc < 2.2. As presented in Table 7.2, the best test error rate 0.84%, which

is lower than the original test error rate 0.90%, is achieved by the SP method when

zc = 2.0. Moreover, the test error rate of 0.84% is also close and comparable to

a benchmark result 0.80% achieved by applying a huge training data distortion. It

confirms the effectiveness of SP in improving the generalization of the CNN with the

use of the statistical neural network pruning under proper critical value of zc.

2. As similar as what we observed in pruning the shallow MLPs, several unusual large

training and test error rates appear after applying SP with zc > 2.2. The reason can

be explained by the curve of pruning percentages illustrated in Fig. 7.3(b). It demon-

strates that the large critical values with zc > 2.2 yield intensive pruning percentages

that are larger than 70%, where such large pruning percentages can easily cause un-

derfitting in retraining the LeNet-5. It further confirms that too large critical values

should not be taken to perform SP for avoiding any possible model underfitting. Fur-

thermore, for the achieved test error rates according to small pruning percentages

closed to 25% as shown in Fig. 7.3(b), we only observe small improvement of the

original test error rate, because the overfitting of the original network is not properly

removed by small critical values of zc.

Evaluating the GSP Method In this section, the GSP method is evaluated on the

same ten LeNet-5 models from LN-1 to LN-10 as we applied for the evaluation of SP, and

the experimental results are presented in Fig. 7.4.
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FIG. 7.3. Experimental results of evaluating the SP method on LN-1 with 15 critical values.
In Fig. 7.3(a), the training and test results are marked as red squares and green triangles,
while the results before and after applying SP are denoted by dash and solid lines, respec-
tively. The original training and test error rates of LN-1 before applying SP are 0.24% and
0.90%.
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Table 7.2. Training and test error rates achieved by LeNet-5 on the MNIST dataset. The
best test error rate of LeNet-5 trained by the pairwise EGDC method and then pruned by
the SP method is highlighted in bold.

Training Method
Error Rate (%)
Training Test

LeNet-5 + LMS (this dissertation) 0.40 1.10
LeNet-5 + SDLM [64] 0.35 0.95
LeNet-5 + Pairwise GDC (this dissertation) 0.27 0.93
LeNet-5 + Pairwise EGDC (this dissertation) 0.23 0.90
LeNet-5 + Pairwise EGDC + GSP (this dissertation) 0.28 0.84
LeNet-5 + SDLM + Image distortions [64] N/A 0.80

Fig. 7.4(a) demonstrates that the GSP method applied on ten LeNet-5 models con-

sistently achieve the new test error rates, which are lower than the original test error rates

achieved by the LeNet-5. Since the GSP method is evaluated with applying the same pa-

rameters as the evaluation of LeNet-5 employs, the experimental results confirm the the

effectiveness of GSP for improving the generalization of CNNs with the use of adaptive

critical values.

Furthermore, it is observed in Fig. 7.4(b) that the results achieved by GSP are associ-

ated with the critical values of zc in the range between 1.8 and 2.1, the significance levels

close to 10%, and the pruning percentages in the range between 50% and 60%. These re-

sults are comparable to the best test error rate achieved by the SP method with choosing

the critical value zc = 2.0 as shown in Fig. 7.4. It further confirms that GSP has the ability

to preserve the best performance of SP and reach the same generalization level as SP does,

without manually selecting the proper critical value of zc in pruning CNNs.
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FIG. 7.4. Experimental results of evaluating the GSP method on ten LeNet-5 models. In
Fig. 7.4(a), the training and test results are marked as red squares and green triangles, while
the results before and after applying GSP are denoted by dash and solid lines, respectively.
In Fig. 7.4(b), the exact critical values which produce the corresponding results are shown
on top of the figure.
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Table 7.3. Test error rates achieved by deep neural networks on the MNIST dataset. The
best performance of the deep MLP trained by the pairwise EGDC method and then pruned
by the GSP method is highlighted in bold.

Training Method Test Error Rate (%)
784-300-100-10 MLP + MSE [64] 3.05
784-500-150-10 MLP + MSE [64] 2.95
784-300-100-10 MLP + MSE + Image distortions [64] 2.50
784-500-150-10 MLP + MSE + Image distortions [64] 2.45
Deep MLP + CE [3] 2.40
Deep MLP + CE + Supervised pre-training [3] 2.00
Deep SAE + CE + Unsupervised pre-training [3] 1.40
784-500-1000-10 MLP + Pairwise EGDC (this dissertation) 1.31
784-500-1000-10 MLP + Pairwise EGDC + GSP (this dissertation) 1.29
784-500-500-1000-10 MLP + Pairwise EGDC (this dissertation) 1.29
784-500-500-1000-10 MLP + Pairwise EGDC + GSP (this dissertation) 1.27
Deep DBN + CE [3] 1.20
784-500-500-1000-10 DBM + Discriminative fine-tuning [95] 1.01
784-500-1000-10 DBM + Discriminative fine-tuning [95] 0.95

7.3.4 Experiments with Deep Multilayer Perceptrons

Since the SP method requires to select the proper critical value of zc to achieve the

best performance, and it will greatly cost computational efforts to evaluate SP in pruning

deep MLPs. In fact, based on what we observed from our previous experiments in pruning

shallow MLPs and CNNs, the GSP method can perform at least as good as the SP method

without manually selecting the proper critical value of zc for the best result. Therefore,

we only apply the GSP method to prune the 784-500-1000-10 and the 784-500-500-1000-

10 MLPs in this section for evaluating the performance of the statistical neural network

pruning approach on the deep MLPs.

Table 7.3 shows the performances of two deep MLPs trained by the pairwise EGDC
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method and then pruned by the GSP method. It demonstrates the effectiveness of GSP in

achieving the lower test error rate of deep MLPs with the use of adaptive critical values.

Particularly, the test error rate of 1.29% and 1.27% are achieved by the critical value of

zc = 1.8 and zc = 2.0, the significance level of 7.19% and 4.55%, the pruning percentage

of 20% and 30%, respectively. Although the best test error rate that is achieved by the

784-500-500-1000-10 MLP with performing the pairwise EGDC training and GSP cannot

outperform the test error rates achieved by the DBN or the DBM, the effectiveness of GSP

in pruning deep MLPs for a better generalization with a smaller network architecture is

certainly verified.

7.4 Summary

A statistical neural network pruning approach based on the hypothesis testing is im-

plemented and evaluated as the SP and the GSP methods to enhance the generalization

of ANNs. Experimental results of pruning MLPs and CNNs on the MNIST dataset with

separately employing SP and GSP successfully demonstrate the effectiveness of the statisti-

cal neural network pruning approach in improving the generalization of MLPs and CNNs.

Furthermore, comparing to the SP method, the GSP method removes the requirement of

selecting a proper critical value to perform a pruning, thus avoiding too large or too small

critical values to be chosen during the pruning. Meanwhile, it confirms that GSP has the

ability to preserve the best performance of SP and reach the same generalization level as

SP does, without selecting the proper critical value by trial and error in pruning MLPs and

CNNs.



Chapter 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

The local minimum problem has attracted much attention since its occurrence for

decades in training artificial neural networks (ANNs) with backpropagation (BP). Nowa-

days, this conundrum still impedes the development and the application of ANNs via affect-

ing the performance of BP with the presence of local minima in addition to global minima.

Although numerous learning methods have been developed to avoid or alleviate poor local

minima by using a wide array of training techniques together with practical heuristics, the

fundamental difficulty caused by the use of the non-convex objective function in training

ANNs has not been solved thoroughly. Even poor local minima are rarely a serious problem

in training neural networks with deep architectures, the intrinsic quality of local minimum

still leads to more severe difficulties corresponding to the high-dimensional non-convex

optimization in training deep neural networks (DNNs).

This dissertation proposes a series of methodologies with applying convexification and

deconvexification to avoid non-global local minima and achieve the global or near-global

minima with satisfactory optimization and generalization performances. The theoretical

essence of the convexification and deconvexification methodologies is developed based

on the normalized risk-averting error (NRAE) criterion, which can be properly applied to
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handle the fundamental difficulty of the local minimum problem by transforming a non-

convex optimization to a convex optimization in a certain convexity region.

The NRAE criterion is derived from its predecessor, the risk-averting error (RAE) cri-

terion, with resolving the difficulty of computational overflow in practically applying the

RAE criterion to convexify the standard mean squared error (MSE) criterion. The theo-

retical foundation of the NRAE criterion is justified by its bounded computation and con-

vexification property, indicating the ability to avoid or alleviate non-global local minima

in training the ANN with an non-convex objective function. Meanwhile, the effective-

ness of the NRAE criterion is evaluated by the NRAE training and the NRAE-MSE train-

ing methods, which are developed according to the convexification methodology. These

methods demonstrate significantly better performances comparing to the MSE method in

training multilayer perceptrons (MLPs) for approximating functions with poor non-global

local minima, illustrate the benefit of handling the local minimum problem in using the

convexification methodology based on the NRAE criterion.

Although the convexification methodology works well in solving problems with in-

volving non-global local minima, it is constrained by properly selecting distinct parameters

of � for applying the NRAE criterion to different tasks. Since the convexification property

of the NRAE criterion is limited by a stagnant problem, it hinders the convexity region to

be expanded thoroughly by using a fixed but a very large �. However, according to a decon-

vexification methodology, the stagnant problem can be overcome by gradually reducing �

to control the expansion of the convexity region for employing the NRAE criterion in prac-

tice. Following this idea, a gradual deconvexification (GDC) method is developed. Based

on the experiments of approximating functions with non-global local minima and recog-

nizing handwritten digits with the well-know MNIST dataset, the GDC method presents

a capability that is superior to the MSE method in training MLPs to achieve satisfactory

optimization and generalization performances.



143

To evaluate the effectiveness of the NRAE criterion in challenging real-world tasks

when the problem size becomes larger as well as the neural network has deep architec-

tures in practice, an enhanced gradual deconvexification (EGDC) method is developed to

handle the high-dimensional non-convex optimization with a large dataset in training deep

neural networks. Under the same experimental settings, the EGDC method outperforms

many benchmark approaches in training convolutional neural networks (CNNs) and deep

MLPs with the MNIST dataset for better performances, without adopting excessive trials

of initial weights, network architectures, and even without the aid of unsupervised pre-

training. Such the results illustrate that the non-convex optimization can be transformed to

a convex optimization problem with the proper use of the convexification and deconvexi-

fication methodology. As a consequence, many difficulties of using the high-dimensional

non-convex error criterion, such as local minima, large flat regions, and saddle points, are

expected to be effectively alleviated or fundamentally solved by the convex optimization in

training DNNs.

Last but not least, a statistical neural network pruning approach based on the hypoth-

esis testing is developed to improve the generalization of ANNs. Experimental results

indicate that the statistical pruning can be applied to remove the redundancy of weights in

training MLPs and CNNs with achieving better generalization results.

8.2 Future Work

With the development of the high performance computing on graphics processing

units (GPUs), many deep learning frameworks, such as Theano, TensorFlow, Torch, Caffe,

MXNet, etc., are tremendously benefited by applying GPU-acceleration instead of the tra-

ditional CPU-based computation to train DNNs. Although training with the NRAE crite-

rion presents remarkable performances comparing to many benchmark results in solving
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function approximation and data classification tasks, the NRAE-based training method is

merely based on the old fashion of central processing unit (CPU) computing without GPU-

acceleration. Since GPU-accelerated computing is expected to deliver approximately the

same accuracy as the standard CPU computing, the NRAE-based method is expected to

potentially achieve a much faster computation with the aid of GPU.

In order to acquire a fast computing speed, we integrate the NRAE-based training

methods into Theano with GPU-acceleration for training both shallow and deep MLPs.

Experimental results demonstrate significant improvement of training speed compared to

our CPU-based framework. Our next future work will focus on integrating the NRAE-

based training methods into Theano or Caffe for training CNNs with very deep architec-

tures (e.g., a CNN with more than 10 non-linear layers) and challenging more complicated

datasets (e.g., CIFAR-10/CIFAR-100, SVHN, ImageNet, etc.).
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