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ABSTRACT  

Simple liquids are conventionally described by Newtonian fluid mechanics, based on the 

assumption that relaxation processes in the flow occur much faster than the rate at which the fluid 

is driven. Nanoscale solids, however, have characteristic mechanical response times on the 

picosecond scale, which are comparable to mechanical relaxation times in simple liquids; as a 

result, viscoelastic effects in the liquid must be considered. These effects have been observed using 

time-resolved optical measurements of vibrating nanoparticles, but interpretation has often been 

complicated by finite velocity slip at the liquid-solid interface. Here, we use highly spherical gold 

nanoparticles to drive flows that are theoretically modelled without use of the no-slip boundary 

condition at the particle surface. We obtain excellent agreement with this analytical theory that 

considers both the compression and shear relaxation properties of the liquid.  
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Newtonian fluid mechanics is widely used to describe the flow of simple liquids such as 

water (1-3). The Navier-Stokes equation together with the widely accepted no-slip condition 

readily describes the flow of such liquids when they interact with solid objects down to the 

micrometer scale (4,5). However, this treatment fails to accurately describe flows generated by the 

vibration of nanoparticles, predicting much greater damping of the nanoparticle vibrations than is 

observed experimentally (6). This disagreement can be resolved by including the natural 

viscoelastic response of the liquid. Fundamentally, this viscoelastic response arises because the 

short vibrational period of the small particles is comparable to molecular relaxation times in the 

liquid. 

The first such direct mechanical observations of the viscoelastic response of simple liquids 

were made using the ~20 GHz extensional vibrations of bipyramidal gold nanoparticles (6). 

Similar effects have been seen for the extensional vibrational mode of gold nanorods in poly(vinyl 

alcohol), a viscoelastic polymer (7). Complimentary methods using time-domain Brillouin 

scattering have also been developed to probe liquids in the GHz frequency regime (8) and were 

used to measure both shear and longitudinal viscoelastic properties of liquid glycerol (9).  

In the case of the gold-bipyramid extensional vibrations, however, systematic deviations 

have been observed between the measured and predicted damping rates (6). This deviation is 

attributable to violation of the no-slip boundary condition at the particle-liquid interface (10). This 

assumption, that there is zero difference in tangential velocity between a solid surface and the 

liquid immediately adjacent to the surface, is known to break down at the nanometer scale (11,12). 

The precise nature of this no-slip violation is difficult to theoretically predict and quantify. There 

is thus a need for experiments that directly probe the viscoelastic response of simple liquids 
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without invoking the no-slip boundary condition at the liquid-solid interface. This would enable 

the unequivocal assessment of viscoelastic constitutive models for simple liquids. 

This goal can be accomplished using purely radial flows, such as those generated by the 

breathing-mode vibrations of purely spherical or cylindrical nanoparticles (13-18). Since there is 

no tangential motion of the nanoparticle surface, the resulting flow is independent of the no-slip 

boundary condition. However, most previous measurements used nanoparticles that were only 

approximately spherical and highly polydisperse; the particle surface motion was therefore not 

purely radial. The variance in particle diameter present in typical samples meant that 

inhomogeneous dephasing dominated the measured signal, so that energy damping rates could not 

be resolved (19). Single-particle measurements overcame this inhomogeneous dephasing but were 

still limited by non-ideal particle geometries. For example, measurements have been made of the 

breathing-mode vibrations of individual gold nanorings in glycerol (20), of single quasi-spherical 

gold nanoparticles in optical tweezers (15), or of single gold nanowires suspended over a trench 

(21). However, the nanorings had flat faces; the quasi-spherical particles had irregular, faceted 

geometries; and the nanowires had pentagonal cross-sections. In all cases, then, accurate 

characterization of viscoelastic effects generated by the vibrating particles required knowledge and 

modeling of the precise particle geometry and involved slip at the solid-liquid interface.  Moreover, 

these previous experiments probed either the viscous regime (15) or the elastic regime (21,22) but 

did not access the viscoelastic crossover between the two.  

Recently, measurements of vibrations of gold nanoplates have accessed the viscoelastic 

regime (23); however, analysis of these results followed a previous theory that considered only 

shear relaxation processes in the liquid and did not rigorously account for bulk (compressional) 

relaxation processes. Qualitatively different behavior has been predicted for the viscoelastic 
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response of simple liquids depending on whether shear or bulk relaxation effects are activated (24-

26), meaning that models that only account for a single relaxation process (27) are not expected to 

correctly characterize the liquid response. There has been an ambiguity in the literature regarding 

how to correctly account for both shear and bulk relaxation in a constitutive equation; recently, 

this ambiguity was clarified by proper consideration of the classical thermodynamic relationship 

between the mechanical and thermodynamic pressures (28). The resulting constitutive relation 

provides the required Newtonian (liquid-like) behavior at low frequency and elastic (solid-like) 

response at high frequency (29,30), and is the basis of the model used here.  
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Figure 1. Comparison of highly spherical gold nanospheres used to generate compressional flow 
in water-glycerol mixtures to a conventional sample of gold nanospheres. (a) Transmission-
electron-microscope (TEM) image of the highly spherical gold nanoparticles; scale bar equals 100 
nm. (b) TEM image of a conventional sample of spherical gold nanoparticles purchased from 
Sigma Aldrich; scale bar equals 200 nm. (c) Histogram of measured sphere diameters for the highly 
spherical nanoparticles obtained from TEM images. (d) Histogram of the measured circularity 
from the TEM images of the highly spherical (red) and conventional (black) gold nanosphere 
samples.  

 

In this letter, we eliminate any ambiguity in particle geometry by using highly spherical 

particles (Ultra Uniform gold nanospheres purchased from nanoComposix). This eliminates any 

influence of the no-slip condition at the particle-liquid interface and thus provides an ideal model 

system to investigate viscoelastic effects generated in the liquid. A representative transmission 

electron microscope (TEM) image of the nominally 50 nm diameter nanoparticles is given in 

Figure 1a; for details of the sample preparation and the extinction spectrum in water see the 

Supporting Information. The nanosphere diameter was chosen to access both the Newtonian 

(viscous) regime and the high-frequency (elastic) regime for the water-glycerol mixtures and 

temperatures studied (22). 

Figure 1c shows a histogram of the measured sphere diameters obtained from the TEM images 

for approximately 170 nanoparticles. The diameters were measured using ImageJ (31), yielding 

an average diameter of 49.5 ± 1.2 nm (errors are standard deviations).  The sphericity of the 

particles was characterized using the circularity function in ImageJ (31), with circularity defined 

as 𝐶𝐶 = 4𝜋𝜋(𝐴𝐴/𝑃𝑃2), where 𝐴𝐴 is the cross-sectional area of the particle in the TEM image and 𝑃𝑃 is 

its perimeter; 𝐶𝐶 = 1 corresponds to a perfect circle. A representative TEM image of a conventional 

sample of gold nanospheres purchased from Sigma Aldrich is given in Figure 1b and is used to 

compare the geometry to the highly spherical sample. Figure 1d shows a histogram of the measured 

circularity of the highly spherical (red) and the conventional (black) nanosphere samples. 
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Determination of the circularity is limited by the contrast of the TEM images; specifically, the 

thresholding procedure used to distinguish the particle from its surroundings sometimes 

incorporates features from the surroundings into the nanoparticle. This limited contrast may 

explain the upper limit of 0.9 for the circularity of all samples. The high circularity evident in the 

distribution means that vibration of the highly spherical sample will selectively excited radial 

motion in the surrounding liquid, minimizing any influence of the no-slip boundary condition. The 

high monodispersity of the sample minimizes inhomogeneous dephasing, enabling the 

characterization of homogeneous damping by the surrounding liquid (19).  

 

 

Figure 2. Breathing-mode vibrations of gold nanospheres for 60% mass-fraction glycerol at 20°C. 
(a) Extinction change, ΔA, after excitation by an initial pump laser pulse tuned to the plasmon 
resonance of the nanosphere sample as a function of probe pulse wavelength and delay time 
between the arrival of the pump and probe pulse. (b) Fractional shift corresponding to the change 
in the peak plasmon resonance frequency normalized by the linewidth, blue dots, obtained from 
fitting the data in (a). The red line is a fit to the corresponding fractional shifts using a model of a 
damped oscillation imposed on a decaying background; for details see the Supporting Information. 
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The frequency and decay rate for vibrations of these particles in glycerol-water mixtures 

with different compositions and at different temperatures are measured using transient absorption 

spectroscopy (13,32). Representative transient-absorption data for vibrating nanospheres are 

shown in Figure 2a. Our data analysis follows that of our previous work (6,33); a representative 

fit of the fractional shift, corresponding to the change in the peak plasmon resonance frequency 

normalized by the linewidth, to a model of a damped oscillator on top of a decaying background 

is shown in Figure 2b. The frequency and decay rate for the vibrations are obtained from these fits, 

and the dimensionless quality factor is determined to quantify the degree of damping; for details, 

see the Supporting Information. The experimental vibrational frequencies and quality factors 

determined from the transient absorption fitting are shown in Figure 3.  
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Figure 3. Frequency and quality factor for vibrations of highly spherical gold nanoparticles in 
water-glycerol mixtures. Blue points are experimental data (error bars are 95% confidence 
intervals), red solid lines are viscoelastic theory, and green dashed lines are Newtonian theory. The 
top row shows vibrational frequencies and the bottom row gives total quality factor. The 
compressional Deborah number is given on the upper horizontal axes; the relationship between the 
shear and compressional Deborah numbers is given in Supporting Information Figure S5. (a) Mass 
fraction glycerol varied while holding temperature constant at 20°C. (b) Temperature varied while 
holding mass fraction glycerol constant at 40%. 

 

Figure 3a shows the frequency and quality factor as a function of the mass fraction of 

glycerol with the liquid held at a constant temperature of 20ֹ°C. Intuitively, Newtonian fluid 

mechanics predicts that an increase in viscosity leads to a corresponding increase in damping, or 
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a monotonic decrease in the quality factor. This damping should also lead to a monotonic decrease 

in the frequency of the damped oscillator due to enhanced added mass in the liquid. By contrast, 

as the mass fraction of glycerol is increased, the experimental quality factors and the experimental 

frequencies reach plateaus. These plateaus are signatures of viscoelastic effects: at high glycerol 

concentrations, the elastic response of the liquid contributes strongly to the stiffening of the 

nanoparticle-liquid system, so the vibrational frequency increases relative to its purely viscous 

counterpart (6). Some energy is stored in the liquid, rather than being only dissipated through 

viscous effects, leading to a reduction in the amount of damping. The crossover from the purely 

viscous to the viscoelastic regime is also seen in Figure 3b, where the quality factor and frequency 

are shown as a function of temperature with the glycerol concentration of the mixture now held 

constant (at 40% mass-fraction glycerol). Here, as temperature increases, viscosity decreases, but 

there is no corresponding increase in the resonant frequency as would be the case for a Newtonian 

fluid; instead, the frequency remains nearly constant.  

To provide a quantitative description of the viscoelastic effects, we follow the recently 

developed theoretical framework of Ref. 29. The nanospheres exhibit small-amplitude vibrations, 

which enables linearization of the fluid’s equations of motion: 

𝜕𝜕(𝜅𝜅𝜅𝜅)
𝜕𝜕𝜕𝜕

+ ∇ ⋅ 𝒗𝒗 = 0, 𝜌𝜌0
𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

= ∇ ⋅ 𝐓𝐓, 

where 𝜅𝜅 is the fluid pressure, 𝒗𝒗 its velocity, 𝜌𝜌0 its equilibrium density, 𝐓𝐓 its Cauchy stress tensor 

and 𝜅𝜅 its compressibility, i.e., 𝜅𝜅 =  1 𝐾𝐾⁄  where 𝐾𝐾 is the complex compressional modulus. Because 

the nanosphere vibrations are periodic, we specify all variables to have the exponential time 

dependence, 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 (e.g., 𝜅𝜅 = �̅�𝜅𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖), where 𝜔𝜔 is the angular frequency of vibration. Henceforth, 

we work in Fourier space and the overbar notation is omitted in the remainder of the analysis. 
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The fluid compressibility, 𝜅𝜅, is frequency dependent for glycerol-water mixtures (9). 

However, for small amplitude vibrations, 𝜅𝜅 exhibits a linear response to 𝜅𝜅 and hence the required 

governing equations are 

−𝑖𝑖𝜔𝜔𝜅𝜅𝜅𝜅 + ∇ ⋅ 𝒗𝒗 = 0, −𝑖𝑖𝜔𝜔𝜌𝜌0𝒗𝒗 = ∇ ⋅ 𝐓𝐓.                                             (1)  

The fluid is assumed to be a compressible viscoelastic Maxwell fluid so that the constitutive model 

for the Cauchy stress is (29,30): 

𝐓𝐓 = −𝜅𝜅𝐈𝐈 + 𝐒𝐒sh + 𝐒𝐒comp 

where the shear and compressional components of the deviatoric stress tensor are, respectively, 

𝐒𝐒sh =
2𝜇𝜇

1 − 𝑖𝑖Desh
�𝐃𝐃 −

tr(𝐃𝐃)
3

𝐈𝐈�, 

𝑺𝑺comp =
𝜇𝜇B

1 − 𝑖𝑖Decomp
tr(𝐃𝐃)𝐈𝐈. 

Here, 𝐃𝐃 = (∇𝒗𝒗 + ∇𝒗𝒗T) 2⁄  is the rate-of-strain tensor; Desh = 𝜔𝜔𝜆𝜆sh and Decomp = 𝜔𝜔𝜆𝜆comp are the 

shear and compressional Deborah numbers, where 𝜆𝜆sh and 𝜆𝜆comp are the shear and compressional 

relaxation times, respectively; and 𝜇𝜇 and 𝜇𝜇B are the shear and bulk viscosities of the fluid, 

respectively. The Deborah numbers quantify the relative importance of Newtonian (low Deborah 

number) to elastic (high Deborah number) behavior in the fluid. 

The sphere’s vibrations are governed by the unsteady Navier’s equation: 

−𝜌𝜌𝑠𝑠𝜔𝜔2𝒖𝒖 =
𝐸𝐸

2(1 + 𝜎𝜎) �∇
2𝒖𝒖 +

1
1 − 2𝜎𝜎

∇(∇ ⋅ 𝒖𝒖)� ,                                       (2) 

where 𝜌𝜌𝑠𝑠 is the particle’s density, 𝒖𝒖 its displacement, 𝐸𝐸 its Young’s modulus, and 𝜎𝜎 its Poisson’s 

ratio. Applying continuity of stress at the particle surface, a solution is found to eqs 1 and 2 for 

pure radial displacement. This leads to the following eigenequation for the sphere’s vibrational 

frequency: 
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𝐸𝐸
1 + 𝜎𝜎

�
1 − 𝜎𝜎

1 − 2𝜎𝜎
𝑗𝑗0(𝜏𝜏)
𝑗𝑗1(𝜏𝜏) 𝜏𝜏 − 2� = 𝜇𝜇𝜔𝜔 �

𝛽𝛽
1 − 𝑖𝑖𝑖𝑖

+
4𝑖𝑖

1 − 𝑖𝑖Desh
� ,                          (3) 

where 𝑗𝑗𝑛𝑛(𝑥𝑥) is the spherical Bessel function of the first kind of order 𝑛𝑛, 

𝜏𝜏 = 𝜔𝜔𝜔𝜔�
𝜌𝜌𝑠𝑠(1 + 𝜎𝜎)(1 − 2𝜎𝜎)

𝐸𝐸(1 − 𝜎𝜎)
, 

is the dimensionless frequency, 𝛽𝛽 = 𝜔𝜔2𝜔𝜔𝜌𝜌0 𝜇𝜇⁄  is the acoustic Reynolds number (where 𝜔𝜔 is the 

nanosphere’s radius), and 

𝑖𝑖 = �
𝛽𝛽𝜁𝜁2(1 − 𝑖𝑖Desh)

𝛽𝛽(1 − 𝑖𝑖Desh) − 𝑖𝑖𝜁𝜁2 �4
3 + 𝜇𝜇𝐵𝐵

𝜇𝜇
1 − 𝑖𝑖Desh

1 − 𝑖𝑖Decomp
 �

 

where 𝜁𝜁 = 𝜔𝜔𝜔𝜔�𝜌𝜌0𝜅𝜅 is a dimensionless wavenumber. Solving for the fundamental solution to eq 

3 gives the complex eigenfrequency for the breathing mode of the nanosphere, from which the 

angular resonant frequency and quality factor are, respectively, 

𝜔𝜔f = �𝜔𝜔r + 𝜔𝜔i,           𝑄𝑄fluid = −𝜔𝜔f 2𝜔𝜔i,⁄                                   (4a, b) 

where 𝜔𝜔r and 𝜔𝜔i are the real and imaginary parts of 𝜔𝜔, respectively.  

We use independently measured and tabulated shear and compressional relaxation times, 

compressional moduli, and bulk viscosity of glycerol-water mixtures from ref 9 and tabulated 

shear viscosity and density of glycerol-water mixtures from ref 34. We also choose literature 

values (29) for the material properties of gold at room temperature: 𝜌𝜌𝑠𝑠 = 19,320 kg/m3, 𝐸𝐸 = 79 

GPa, and 𝜎𝜎 = 0.44. (Adjusting the value of Poisson’s ratio to optimize the agreement between 

theory and experiment results in 𝜎𝜎 = 0.427, which agrees well with the quoted literature value of 

𝜎𝜎 = 0.44.). While the viscoelastic response of the liquids may exhibit a spectrum of relaxation 

times, the single relaxation time Maxwell model is used for consistency with tabulated data (34). 

The nanoparticles are single crystalline gold (35), which may break the symmetry of the radial 
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breathing mode. The comparison between theory and measurement reported below suggests that 

the effect of such a nonideality is small. 

Figure 3 shows the theoretically calculated values of the vibrational frequency for different 

mass fractions of glycerol and different temperatures. Both theory and experiment show little 

variation in vibrational frequency over the range of water-glycerol mixtures and temperatures 

studied; this is not consistent with a Newtonian model, which predicts a monotonic and significant 

decrease in the frequency as viscosity increases.  

The quality factor, being a dimensionless measure of fluid damping, provides a critical test 

of the viscoelastic model. Using the above-determined material properties, the fluid quality factor, 

𝑄𝑄fluid, is calculated from eq 4b. The total quality factor, 𝑄𝑄tot, is then given by 

1
𝑄𝑄tot

=
1
𝑄𝑄o

+
1

𝑄𝑄fluid
,                                                                (5) 

where 𝑄𝑄o is the (constant) quality factor including both intrinsic damping and inhomogeneous 

dephasing of the nanospheres. A non-linear least-squares fit of eq 5 to the measured quality factors 

gives 𝑄𝑄o = 23.7, consistent with reported values for previous measurements on gold nanoparticles 

(6,13,15-17,21). As shown in Figure 3, this single fitting parameter provides excellent quantitative 

agreement between the theoretical quality factors and the entire set of experimental quality factors. 

Increasing the glycerol concentration, or decreasing the temperature, causes an increase in 

the molecular relaxation time of the liquid, which in turn increases the Deborah number. As Figure 

3 demonstrates, the viscoelastic model (and experiment) diverge from the Newtonian model when 

the compressional Deborah number, Decomp ≈ 1. That is, viscoelastic effects arise when the 

molecular relaxation times become comparable to the period of the breathing-mode vibrations. We 

note that the ratio of shear to compressional Deborah numbers varies between 0.7 and 1 for these 

experiments (see Supporting Information Figure S5).  
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 In summary, this work demonstrates that viscoelastic effects in the liquid, i.e., molecular 

relaxation, strongly affect the breathing mode vibrations of gold nanospheres at sufficiently high 

glycerol concentrations or at sufficiently low temperatures. Excellent agreement is found between 

the compressible viscoelastic Maxwell model and all measurements of the nanosphere vibrations 

in glycerol-water mixtures with different compositions and with different temperatures. Use of 

highly spherical nanoparticles inherently eliminates the no-slip boundary condition, thus providing 

a direct probe of viscoelastic effects in simple liquids. The results show that, in general, a complete 

description of nanoscale-driven flows requires consideration of both shear and compressional 

relaxation effects in the liquid.  

The results also show that nanoscale mechanical resonators in simple liquids can preserve 

higher quality factors than would be predicted by Newtonian fluid mechanics, because the elastic 

properties of the liquids are activated at the gigahertz resonance frequencies of these resonators 

(36-38). This, in turn, has the potential to extend mass sensing using the vibrations of nanoscale 

objects (36,37) to liquid environments (39). That is, nanostructures exploit the inherent 

viscoelasticity of simple liquids to overcome the strong viscous damping of small scale resonators 

that ultimately limits the sensitivity of such nanomechanical sensors (5,40,41). Indeed, the 

viscoelasticity of simple liquids will impact the mechanical dynamics of any nanoscale structure 

moving in a liquid, from nanomotors (42,43) to proteins (44,45).  
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Supporting Information contains details of nanoparticle sample preparation, additional TEM 

images of the highly spherical and conventional gold nanospheres, experimental methods, and 

plots of the ratio of shear to compression Deborah numbers. The Supporting Information is made 

available free of charge [insert link].  
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