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Abstract—Mobile robots that interact with humans in an
intuitive way must be able to follow directions provided by
humans in unconstrained natural language. In this work we
investigate how statistical machine translation techniques can
be used to bridge the gap between natural language route
instructions and a map of an environment built by a robot.
Our approach uses training data to learn to translate from
natural language instructions to an automatically-labeled map.
The complexity of the translation process is controlled by taking
advantage of physical constraints imposed by the map. As a
result, our technique can efficiently handle uncertainty in both
map labeling and parsing. Our experiments demonstrate the
promising capabilities achieved by our approach.

Index Terms—Human-robot interaction; instruction following;
navigation; statistical machine translation; natural language

I. INTRODUCTION

Following natural-language route instructions through a
building is a challenging, error-prone activity. Maps of spaces
are often incomplete or inaccurate, and the variety of ways a
single path can be described is enormous. Furthermore, people
are surprisingly poor at giving directions. Instructions may be
ambiguous or incorrect; people confuse left and right, omit
instructions for important decision points, or fail to mention
intervening decision points or landmarks. Nonetheless, giving
and following directions naturally is a crucial aspect of smooth
human/robot interactions.

The problem of following instructions can be described as
finding a way of going from the natural language description,
or layer, to an underlying map layer that is grounded in a
map built by a robot. Although there are a number of ways
to consider this problem, our approach is to apply statistical
machine translation (SMT) to the task of translating from
natural language into a formal intermediate path description
language, designed to closely mimic what current robotic
sensors and actuators can handle in a real-world environment.
This has the potential to reduce intermediate translation steps
and dependence on heuristic handling of input, while mini-
mizing assumptions about available information.

There exists a substantial body of work on robotic navi-
gation, and specifically on direction-following in navigation
and other tasks, which is described in more detail in Section
IV. We provide the following additional contributions: Initial
demonstration of a system that takes full advantage of existing
robot mapping and place-identification technology, by showing
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pathfinding in an environment where available information
is limited to automatically obtained map segmentation and
labels—neither human labeling nor manual landmark identi-
fication are required. Our approach takes uncertainty in both
the map and the language parsing into account by combining
the two into a single analysis of the most likely interpretation
of a set of directions. Finally, we show how to incorporate
map information into the parsing process, so as to manage the
combinatorics of a very non-restrictive formal language with
an extraordinarily high degree of ambiguity.

To achieve this, we use existing topological place-labeling
techniques [7], which enable robots to autonomously build
maps that can be described in terms of typed areas (such
as hallways, rooms, and intersections). We define a formal
language that describes movement through a sequence of such
areas, and a statistical machine translation (SMT) system is
used to learn a probabilistic translation model between natural
language and the formal description of paths. The SMT system
is trained on examples of natural language route directions
and the corresponding paths through a map built by a mobile
robot. Because natural language directions are very ambiguous
with respect to the types of areas being traversed, the space of
possible movements through the map is used to constrain the
parsing process, which is otherwise infeasibly large. The map
uncertainty and parser probabilities are used to find a path that
corresponds to the spoken directions.

This paper is organized as follows. In the next section,
we present our approach, starting with some background on
statistical machine translation. Experimental results are given
in Section III, followed by a discussion of related work in
Section IV. We conclude in Section V.

II. APPROACH

Our approach involves using machine translation to learn
to parse natural language instructions into a sequence of
instructions that can be executed by a robot equipped only
with a map and a laser range-finder. Specifically, there are
three representations of navigation through a map: statements
in NL (the natural language route instructions), statements in
a formal path description language, and an actual path through
a map at the map layer.

We use SMT to learn a parser that transforms NL in-
structions into the path description layer (parsing), which can
then be transformed into the map layer (path-finding). Both
parsing and path-finding must handle uncertain information.



Fig. 1. The stages of converting a statement in natural language to a path
through a map. Parsing is performed by a parser trained on example route
instructions and map traces.

The natural language instructions are constrained by the maps
provided, which do not contain landmarks, and are further
limited by our grammar’s inability to express context (infor-
mation about the nodes surrounding those that are actually
traversed). These constraints are not a fundamental limitation
of our proposed technique, but rather a limitation of our current
path description language; the impact of these simplifications
is discussed in Section III and Section V.

A. LABELED MAPS AND FORMAL LANGUAGE

1) Labeled Topology Using Voronoi Random Fields: In
this paper, the maps being used for training and testing
are constructed from laser range-finder data, and have been
automatically segmented and labeled using Voronoi Random
Fields [7]. In this approach, a Voronoi graph is initially
extracted from an occupancy grid generated with a laser range-
finder; each point on the graph is represented as a node of a
conditional random field, which is a discriminatively trained
graphical model. The resulting VRF estimates the label of
each node, integrating features from both the map and the
Voronoi topology. The labels provide a segmentation of an
environment, with the different segments corresponding to
rooms, hallways, intersections, or doorways (as in Figure 3
(a)).

These maps can then be segmented to provide topological-
metric maps of the labeled Voronoi graph. The spatial layout
of rooms and hallways is retained, along with connectivity
structure based on identification of intersections. This structure
can be readily transformed to an idealized map of typed
nodes with connecting edges; the stochastic classification is
not perfect, but has an accuracy above 90% [7].

The synchronous context-free grammar (SCFG) parsing
model (see Section II-B) requires that the target language
(the path description layer) be defined by an unambiguous
grammar (Figure 2). Furthermore, path-finding—going from
the path description layer to the map layer—must be robust
against uncertainty in the segmenting and labeling of the map.
The path description layer devised for this process is quite
simple: a path is defined as a series of nodes through the
topological graph-map, connected by edges. Junction nodes
are parameterized with available exits and information about
the orientation of the robot as it traverses the junction, which
captures rotation. Nodes are described relative to the agent’s

point of view, rather than in absolute terms; for example, a 3-
way junction may be a T-junction, meaning there are openings
to the robot’s right and left, but could not be described as
having openings to the east and west.

The grammar contains both terminals—the lexicon of words
in the path description language—and nonterminals, which
can be decomposed into terminals or other nonterminals.
Nonterminals in Figure 2 are explicitly marked with n:, such
as n:Action, whereas terminals (such as rt or room) are are not
marked. While the names of the terminals are chosen to be
human-readable, it should be noted that there is no semantic
information encoded; the connection between the word “right”
and the terminal rt is entirely learned.

n:Statement → ({ ( go n:Action ) })
n:Action → ({ n:Vertex n:Movement })
n:Movement → ({ n:Edge n:Vertex })
n:Movement → ({ n:Edge n:Vertex n:Movement })
n:Vertex → ({ ( room ) })
n:Vertex → ({ ( hall ) })
n:Edge → ({ ( n:Junction ) })
n:Junction → ({ n:Jtype n:Jdir })
n:Junction → ({ n:Jtype n:Jorient n:Jdir })
n:Jtype → ({ j4 })
n:Jtype → ({ j3 })
n:Jorient → ({ t })
n:Jorient → ({ r })
n:Jorient → ({ l })
n:Jdir → ({ rt })
n:Jdir → ({ st })
n:Jdir → ({ lt })

Fig. 2. The grammar of the path description language into which natural
language directions are parsed. Hallways and rooms are treated as nodes of a
map, connected by intersections, which are three-way or four-way junctions
(j3 and j4); the direction in which a junction is traversed is given as right,
straight, or left (rt, st, and lt); and the orientation of three-way junctions
is given (t, r, and l indicate which direction is traversible). The key “n:”
is used to mark nonterminals.

2) Formal Language Path Descriptions: This statistical ap-
proach allows this system to handle noise (such as previously
unseen or irrelevant words), as well as avoiding any explicit
definition of structure such as labeling parts of speech or pre-
defining the words that correlate to actions such as turning.

As mentioned, we make two noteworthy simplifications to
the language: we do not represent landmarks (other than the
nodes themselves) or context. Landmarks are any element of
the environment that could be used to describe an area, such
as “go past the couch” or “the room with the blue rug,” while
context describes nodes on the map that surround the path,
but are not actually traversed. Examples of contextual path
descriptions might include sentences such as “Go to the end
of the hall,” which requires information about the step one
past the steps actually taken, or “go past a hall, then a room.”
In these cases, the spaces being described are not on the path
taken by the agent, and so are not represented in the path
descriptions, making it impossible to learn a translation into
the path description language.



Fig. 3. The test map used for evaluation. (far left) An occupancy map constructed from laser range-finder data, with a Voronoi-based route graph shown.
(left) The labeled Voronoi graph defines a place type for each point on the map. Hallways are colored red, rooms are green, and junctions are indicated by
blue circles. (right) A topological-metric map given by the segmentation of the labeled Voronoi graph. (far right) The topological metric map transformed
into the typed-node representation, with junctions representing edges between rooms and halls.

B. STATISTICAL MACHINE TRANSLATION

The underlying parsing approach used is Statistical Machine
Translation, in which a large body of example sentence pairs
are used to learn a translation system automatically [10]. We
use a modified version of the Word Alignment-based Semantic
Parser (WASP) developed by Wong & Mooney [23], which
learns a parser that translates from novel strings in a source
language to a formally defined target language.

WASP implements a synchronous translation learning
model, meaning that parse trees are constructed simultaneously
for sentences in the source and target language by applying
a sequence of production rules to higher-level nonterminals.
For example, in translating between two natural languages, the
nonterminals NP and V might refer to noun phrases and verbs;
a production would describe how NP could be synchronously
replaced by the strings “I” in English and “je” in French.1

The learning process can be described at a high level as
follows. First, a statistical word alignment model [3] is learned.
In word alignment, pairs of corresponding strings between
source and target languages are discovered, for example, je/I or
“turn right”/rt. For this task the off-the-shelf word-alignment
tool GIZA++ [14] is used. A lexicon of production rules is
then generated by creating a rule for each aligned string pair
in each training pair; for example, the paired training sentences
“I will” and “je vais” provide evidence for the existence of the
production rules “je←NP→I” and “vais←V→will.” If sufficient
training data is present, the set of production rules learned will
implicitly define the set of all possible derivations of target
strings. Finally, a set of parameters is learned that define a
probability distribution over derivations (a sequence of rule ap-
plications). This is a probabilistic extension of the synchronous
context-free grammar (SCFG) parsing framework [1].

A probabilistic SCFG G is then defined as follows:

G = < N , Tin, Tout , L , S , λ >

In which N is a finite set of nonterminals, Tin and Tout
are finite sets of terminals (words) in the source and target
languages, L is a lexicon of production rules, S is a defined
start symbol, and λ is the set of parameters defining a
probability distribution over derivations.

1[5] is recommended to the reader seeking a clear overview of SCFGs; we
follow the terminology of [22] in describing grammars, rules, and derivations.

WASP uses a log-linear probabilistic model described by a
set of parameters λ. The model applies to the probability of
a particular derivation (a sequence of translation steps); the
probability of a derivation d given an input sentence e is:

Prλ(d|e) =
1

Zλ(e)
exp∑

i
λi fi(d)

Where fi is one of three types of features:
• For a rule, the number of times that rule is used in any

derivation.
• For a word, the number of times that word is generated

from a word gap in a derivation.
• The total number of words generated from word gaps.
However, only the results of derivations—that is, in-

put/output sentence pairs (fj,ej)—are provided as training
data. We can compute the conditional probability of an output
sentence being produced by an input sentence by summing
over all the derivations that perform such a translation:

Prλ(fj|ej) = ∑
d

Prλ(d|e)

WASP uses a variant of the Inside-Outside algorithm to
avoid enumerating all possible derivations, since the number
of derivations may be intractably large. An estimate of λ can
then be obtained by maximizing the conditional log-likelihood
of the training set, i.e. maximizing the sum of the conditional
log likelihoods of each sentence pair, using gradient-descent
techniques (L-BFGS in WASP’s case). A detailed description
of this approach can be found in [22].

The advantages of using this approach to parser learning
are twofold. First, rules with nested non-terminals can readily
represent commands that do not specify a fixed number of
actions, such as “take the second left,” which may traverse
an arbitrary number of map nodes. Second, it minimizes
commitment to a specific domain. This approach can be
applied to any domain for which a simple grammar can be
defined and examples can be readily expressed using that
grammar. However, because the process of parsing from route
instructions to path descriptions is not dependent on a specific
map, and because the formal language being parsed into does
not have complex or deeply nested structural constraints, the
parse ambiguity is very large compared to parsing problems



which target more constrained formal languages such as [22],
[4], [6] (see Figure 5 for an example); further work is required
to manage this complexity.

C. PATH SEARCH

The parsing process produces uncertain information; addi-
tionally, because the map is automatically labeled, there is
uncertainty in the annotation of the underlying map graph.
(For instance, the robot might not be sure if a certain node in
the topological graph is a hallway or a room.) This combined
uncertainty means that evaluation of parses against the map
is not necessarily reliable. Because we wish for our direction-
following approach to be robust in the face of such uncertainty,
we backtrack to lower-probability paths if the most probable
path does not lead to the desired destination. As a result, all
parses of a sequence of route instructions must be retained
and considered when choosing the most probable path to take,
leading to an exponential blowup in possible path traces for a
given input description. The large fan-out of possible parses
makes a brute-force approach to this problem intractable (see
Figure 6 for example parses of a single segment).

Fig. 5. An example of parsing ambiguity. Without reference to a specific
map, all of the following are correct parses of the phrase “turn right,” with
the distinct path descriptions (j4 rt), (j3 t rt) , and (j3 r rt).
Combinations of such commands (such as “turn right, then turn right again”)
quickly become intractable.

We treat complexity in the parsing stage and in the path-
finding stage separately.

1) Parse Complexity: Route instructions may be thought
of as a sequence of semi-independent segments, each of
which describes a separable set of steps between decision
points. Because the parse grammar does not have much nested
structure, it is rare for the parse of a segment to rely on
other segments; as a result, segments of the natural language
inputs can generally be parsed separately. For example, given
the instructions “Go left, then turn right,” the meaning of
“turn right” is unlikely to depend on the meaning of “Go
left”—unlike unconstrained natural language, in which a later
phrase may refer back to the subject of a previous phrase.

Segmentation can be done either automatically (e.g., by relying
on phrase boundaries learned by the parser [4]), or by pre-
processing route instructions in some way; in our experiments,
we segmented instructions by splitting on defined keywords.

(room) (4j rt) (room) (room) (4j rt) (hall)

(room) (3j r rt) (room) (room) (3j r rt) (hall)

(room) (3j t rt) (room) (room) (3j t rt) (hall)

(hall) (4j rt) (room) (hall) (4j rt) (hall)

(hall) (3j r rt) (room) (hall) (3j r rt) (hall)

(hall) (3j t rt) (room) (hall) (3j t rt) (hall)

Fig. 6. All possible ways to describe a right turn, as specified by the grammar
of the path description language.

In this terminology, the natural language route instructions
“Go out of the room and go right, then go past two inter-
sections, then turn left” contains four segments: “Go out of
the room; go right; go past two intersections; turn left.” The
correct path description when these instructions are applied to
Figure 3 is (room) (j4 rt) (hall) (j3 r st) (hall) (j3 l

st) (hall) (j3 t lt) (room), corresponding to a path going
from the entryway down to the room on the lower right.
However, without oracular knowledge of the correct parse and
correct map labeling, this is only one many thousands of path
descriptions that must be considered.

2) Pathfinding Complexity: While segmenting controls the
complexity of the parsing step, the path-finding step must still
consider every possible combination of segment parses. In
addition, each step in a parse has an associated uncertainty,
produced by combining the parse weight with the current
belief as to whether the step is correct with respect to the map.
An example helps ground this description. A single parse of
the phrase “go right” may be (room) (j4 rt) (hall), with
an associated parse weight of 0.5. If this command is given
while the robot is at node 418 on Figure 7(a), the first step,
(room), is believed to be consistent with the map, and so
should be scored highly. The second step, however, describes
a 4-way intersection, when it is in fact believed to be a 3-
way intersection; that parse receives a lower score. These
scores, when combined with the parse score, must be treated
individually. Sequences of nodes can be stored in a weighted
tree (Figure 4 shows such a tree for the instruction “go right”);
however, the size of that tree rapidly becomes intractable for
larger sequences of commands.

Fig. 4. The complete set of possible correct parses of the command “go right,” with weights provided by the agent’s beliefs about the map. Because
instruction-giving is often noisy, incorrect parses should also be considered with low weight, making the fan-out of the actual tree larger.



Fig. 7. The components of the tractable search problem. (a) A small section of a map through which a right turn is to be taken, starting from room 418
(outlined). (b) A portion of the parse tree showing possible interpretations of the command “turn right,” with the combined probabilities of the parses and
map node types. (c) The collapsed map/parse tree. (d) The search tree used to iteratively find the k-shortest paths from the source to possible destinations.

In order to search this space feasibly, we first introduce a
combined map/parse tree, in which the structure of the map
is used to both constrain and efficiently store possible parses.
We construct a tree of nodes corresponding to regions of the
map, rooted in the robot’s starting position, disallowing cycles
by terminating a branch when the only possible step is a node
that already exists on that branch. Because there are a sharply
limited number of map nodes that are n steps from a known
starting point, this tree is feasible to construct. The n-th nodes
of possible parses are then stored as a list attached to each tree
node (see Figure 7 (c)). This representation is substantially
more compact than the full tree.

We assume that the robot is in possession of a complete
map, the ability to follow the path through the map, and a
starting point on the map, but not a goal-point in the map.
We additionally supply a test for whether the destination has
been reached once a path has been traversed. Our goal is to
produce an ordered list of paths to attempt to take through
the map. If the first proposed path does not reach the desired
destination, the next highest-probability path is selected and
the robot backtracks to the point where the next proposal
diverges from the path already traveled before exploring the
new path.

If a path fails, it is often not obvious at what step the
problem occurred, meaning it is not obvious how to prune
the tree. The need to try several paths (due to map or parsing
errors, or due to human errors in giving the directions) there-
fore means finding the first, second, . . . k-th highest-probability
walk through list entries on the map/parse tree. This task can
be considered as a variant of the well-studied problem of
finding the k-th best (lowest cost) path through a graph. We
treat the individual steps as edges between nodes, with a cost
proportional to their probability; Figure 7(d) shows this new
graph.

The canonical solution to this task is Yen’s Kth-shortest-
path algorithm [24], which is O(kn(m + n logn)) for a graph
with n nodes and m edges; [12] provides a more efficient
variant which we use for this work, with some modifications.
First, because probabilities are combined via multiplication
and path costs are combined by addition, we use the log of
the probabilities, negated in order to make higher probabilities
consistent with lower costs. Second, the Kth-shortest-path
algorithm does not handle multiple edges between nodes, so
dummy nodes (not shown in Figure 7) are inserted between
each pair of map/parse tree nodes. Each dummy node contains
a pointer to the actual step value (for example, room), which

makes reconstructing a path description from a graph walk
trivial.

Because we do not know the desired endpoint, it is nec-
essary to find the k best paths from the start node to all
other nodes in the graph, making the actual complexity
O(kn2(m + n logn)) in the worst case. When this graph has
been constructed, the search process proceeds by creating a
list of the best (k=1) path to every node, ordering the resulting
n−1 paths by total probability, and exploring the first. If the
first fails, k is incremented, n− 1 more paths are generated
(the second-best path to every node except the starting point),
and the process is repeated.

III. EVALUATION

As described in Section II-C, we assume that the robot starts
with a complete (but possibly not correctly labeled) map, the
ability to follow a path through the map, a starting point but not
an end-point on the map, and a test to determine whether the
goal has been reached. We are interested in whether the robot
reaches the desired destination, and if so, whether the path
taken is the one described by the instructor—since both testing
and training maps contain loops, a destination can always be
reached in any of several ways, but our primary interest is in
how successfully the robot is following directions.

Fig. 8. The training map, produced from the Allen Center computer science
building. The red line shows one of the paths the route instructors were asked
to describe in the training data.

Training and testing maps were generated from Voronoi
graph maps of two buildings, the Allen Center and Intel
Research (pictured in Figure 8 and Figure 3, respectively.)
These maps were constructed from real laser range-finder data
collected by a SICK scanner mounted on a small Pioneer robot



base. Because the path description language is unambiguous
with respect to movement through a map, it is feasible to
generate the formally described component of training exam-
ples. Since paths can be generated randomly, the process of
collecting training data is primarily constrained by our ability
to obtain natural human descriptions of paths.

To obtain training data, five random paths were generated
on the map. on the training map; the paths were not always the
shortest possible route between start and end points. For this
work, we obtained a collection of 33 sets of route instructions
describing five paths from eight volunteers. Three of the five
paths were non-optimal. The paths varied in length from 4-
9 instruction segments and 15-20 nodes traversed. In order
to increase the size of the training set, the training data
was analyzed and phrases corresponding to individual actions
(such as “turn left”) were extracted and randomly combined
to describe other paths through the map, producing a much
larger synthetic data set, into which words were randomly
introduced to provide noise. (This allows for the learning
of word gap models, although those models would in this
case be strictly random.) Some examples of (noiseless) route
instructions produced in this way are:

Leave the room and go left, go past the next

junction, and then take the second right.

Go straight through the second junction and take a

right, pass the next junction, and go into the room

ahead.

As noted in Section II-A2, neither landmarks nor context
are considered in this work. The former do not appear in the
natural-language training data collected. Because volunteers
were shown only the final topological graph-map when giving
instructions, no additional landmarks were described. How-
ever, context-based instructions, which are not representable
in the current path description language, were used in some
route instructions.

We tested on a corpus of an additional five paths provided by
four volunteers over the Intel building testing map, providing
20 sets of route instructions.2 The testing map was not seen
during the training phase. We asked additional human volun-
teers to follow the directions provided in order to evaluate
their quality, and found that 70% of them were followed
successfully (fourteen). This is consistent with results reported
by others [11], [21].

We found no cases in which our system successfully fol-
lowed instructions that human evaluators could not follow;
this is a likely result of training data which contains very
few errors. A larger body of less-perfect training data would
probably allow the translation step to provide incorrect parses
with low probabilities, which would eventually be tried. Of
the fourteen human-followable direction sets, our system was
able to follow ten successfully, or 71% (50% of the total),

2Because there was no overlap among people providing directions for
training and testing, we asked the testing group to use approximately the
same style of giving directions; because direction-giving is known to employ
a fairly limited vocabulary, a larger body of training data would make this
step unnecessary.

getting to the correct destination along the specific route
described by the route director. For a perfect map, the route
selected to explore first was the correct one in all cases
except those that involved counting (e.g., “Go through two
interesctions,”), which entail taking an arbitrary number of
steps before the conditions described are met, and sometimes
have very strong parse probability differences based on the
specific cases encountered in training. Given the nature of the
statistical machine translation system, it seems very likely that
these results would improve with additional training data and
less reliance on synthetic data.

As erroneous map labeling increases, so does the likelihood
of exploring an incorrect path initially. For example, if a four-
way intersection is incorrectly identified as being a three-
way intersection, then a robot instructed to “take the second
left” might pass through that intersection rather than turning,
preferring the parse that matched the (incorrect) map labels.
Because the robot backtracks when its explorations fail, this
error is recoverable; the correct parse will be explored and
the goal will be reached, although not as efficiently. This
behavior—exploring the “best” (i.e., most likely) interpretation
and backtracking if the goal is not reached—mimics human
direction following. We artificially introduce a random map-
labeling error of 90%, which is actually higher than that
produced by the Voronoi Random Field approach.

Fig. 9. One of the routes used for testing, with human-provided directions
that could be followed successfully. This set of navigation instructions demon-
strates the system’s learned capability to follow directions which include
counting information (e.g., “take the third right”).

Our system successfully generalizes from a few examples to
unfamiliar cases, making it able to handle not only input with
terms that were not previously encountered, but also cases that
require counting (such as in Figure 9) or an understanding
of semantic grouping, e.g., the similar uses of the terms
“right” and “left.” The training data provided to the system
for different types of actions is necessarily incomplete; for
example, in our tests, we successfully handle commands such
as “Take the third left,” which requires passing through an
unknown number of intersections and rooms or hallways of
unknown types. The training data provided examples of a
few possible ways of stating the command, with different



lengths, and novel parses of the command are generated. We
demonstrate learning of higher-level semantic groupings such
as generalization between the concepts of right and left. The
concept of “left” was learned automatically from examples; no
information on the meaning of left, as a motion, was explicitly
encoded in the map or in the path description. From the fact
that the two terms appear in otherwise identical examples
some of the time, the system was able to transfer learning
between left and right in cases where examples of only on
or the other was provided, thereby reducing the amount of
necessary training data.

IV. RELATED WORK

Navigation is a critical and widely-studied task in mo-
bile robotics, and following natural-language instructions is
a key component of natural, multi-modal human/robot inter-
action [19]. There has been substantial work on mapping and
localization [20], segmenting and describing a map from sen-
sor data [7], [8], and navigating through such an environment
[15], [25]. Our work fits into the broader class of grounded
language acquisition, in which language is learned from some
situated context, usually by learning over a corpus of parallel
language and context data [17], [13]. Learning to follow
natural-language directions has been explored in a wide variety
of tasks, including scene description [16] and controlling the
grasping behaviors of a robotic hand [9], interpreting written
software and game manuals [2], and generating commentaries
of simulated robocup soccer games [4]. Natural language-
directed navigation is the task most closely related to the work
presented in this paper.

[11] studied the inference requirements and language used
for natural-language navigational instructions in complex sim-
ulated environments, as well as providing experimental evi-
dence of the poor quality of instructions provided by human
direction-givers. The underlying model of the world used
in these trials is more complex than that available in our
limited-sensor model, and the instructions are annotated with a
semantic grammar based on the semantically rich environment.
Because we are using less rich map data collected by laser
sensors, we are constrained to solving a similar problem with
much less data. As well, we rely entirely on learning from
examples, with no human supplied heuristics for managing
missing or implies knowledge.

Our approach is similar to [18] with respect to the rep-
resentation of the path description layer and map layer, but
we do not rely on labeled training data, and our natural
language segmentation is not map-based. In contrast to [6],
the formal representation extracted from instructions defines
a path, rather than a set of action and goal representations
defined over a hand-annotated map. We share with [21] the
goal of probabilistic handling of uncertain environments and
noisy input, as well as reasoning over the entire trajectory.
However, we rely entirely on an automatically segmented and
labeled map with no information about objects encountered or
object co-occurence. Most importantly, however, our semantic

parser is not limited to nouns and explicit direction terms, as
it is trained over more general natural language.

This work would not have been possible without access to
WASP, a grounded language acquisition system that can be
trained over a parellel corpus of natural language and formal
representations in a wide variety of domains.3 WASP provides
SCFG-based statistical parsing and generation capabilities
[22], [23]. Additional related work on parsing is described
in Section II-B. The simplicity and lack of constraints on our
formal language mean that the core SMT approach taken by
WASP becomes unmanageable for sequences of instructions;
the additional work required to make the problem feasible is
described in Section II-C.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated a novel system that
allows robots to learn, entirely from examples, how to use
statistical machine translation to follow natural language di-
rections in a tractable way. We have implemented a version
of this system and demonstrated that it shows promise for
route instruction following. No information was provided
about the alignment of natural language concepts and path
descriptions; learning was entirely based on example pairs of
instructions and map traces, with no pre-programmed concept
of the meaning of natural language phrases such as “room,”
“intersection,” or “turn.”

The search mechanism we describe feasibly combines man-
agement of uncertainty in parsing and in map labeling; this
makes our approach robust to imperfect labeling techniques,
meaning it is possible to demonstrate a system that goes all
the way from NLP to robot-built maps. Even though our
experiments were performed without using a real robot, all
the information used by our system was extracted from data
collected by a real robot. Our results show approximately a
70% success rate in following instructions given by humans
through an entirely novel map, including demonstrated ability
to interpret difficult concepts such as counting up to some
condition.

A. FUTURE WORK

The experimental results demonstrate the potential of
our approach. However, there are several improvements in
progress which will make human direction-giving easier and
more natural. Our tests were performed in a previously-
unseen map, suggesting that our training approach does lead
to learning of the semantic intent of English route instructions.
However, our current system uses a complete map of the
environment to perform route-finding. Since there are cases
when such a map may not be available a priori, we intend to
extend our current work to enable online parsing—that is, the
robot interprets the directions as it moves through an unknown
environment. We also plan to extend the current approach to
learn to label maps based on training data; in this way, we will
learn a topological map representation that is most suitable

3Retrieved from http://www.cs.utexas.edu/∼ml/wasp.



as a target for the natural language examples. In future, we
also intend to perform more extensive experiments with actual
robots in various environments.

Additionally, the version of this system for which we have
experimental results does not handle natural language descrip-
tions that relate to objects or the appearance of certain areas
in an environment (i.e., landmarks), which are an important
aspect of human navigation [21]. It also does not take context
into account; the grammar expresses only information about
rooms the robot traverses, and not surrounding spaces, which
makes certain commonly-occurring utterances (such as “go
to the end of the hall” or “pass the hallway on your left”)
impossible to express. Neither of these restrictions are inherent
limitations of our approach, but rather are a result of the
underlying map representation and path description grammar.
We are currently extending the Voronoi representation to a
more fine-grained spatial resolution along with the ability to
represent landmark and object locations in the map, and a
more complex version of the grammar has been designed
which allows for formal path descriptions which use landmarks
in the form of identifiable node types as well as contextual
information. We are confident that our approach will be able
to parse more general descriptions using such a representation.

Fig. 10. An example of a map that incorporates labeled nodes, which will
allow contributors to describe paths in terms of landmarks seen and passed
through. Contributors will be asked to describe the path shown in red through
the map.

Because these changes will allow more complex directions
to be learned and grounded in a more complex map, we expect
to need a larger set of training data to fully cover the richer
language allowed. We are pursuing gathering much larger
training and test sets using Amazon’s Mechanical Turk tool,
which will allow us to explore the effectiveness and tractability
of this scheme for unconstrained natural language input from
a large number of contributors.
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