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Migratory species can travel tens of thousands of kilometers each year, spending different 
parts of their annual cycle in geographically distinct locations. Understanding the 
drivers of population change is vital for conserving migratory species, yet the challenge 
of collecting data over entire geographic ranges has hindered attempts to identify 
the processes leading to observed population changes. Here, we use remotely sensed 
environmental data and bird count data to investigate the factors driving variability 
in abundance in two subspecies of a long-distance migratory shorebird, the bar-tailed 
godwit Limosa lapponica. We compiled a spatially and temporally explicit dataset of 
three environmental variables to identify the conditions experienced by each subspecies 
in each stage of their annual cycle (breeding, non-breeding and staging). We used a 
Bayesian N-mixture model to analyze 18 years of monthly count data from 21 sites 
across Australia and New Zealand in relation to the remote sensing data. We found 
that the abundance of one subspecies L. l. menzbieri in their non-breeding range was 
related to climate conditions in breeding grounds, and detected sustained population 
declines between 1995 and 2012 in both subspecies (L. l. menzbieri, –6.7% and L. l. 
baueri, –2.1% year–1). To investigate the possible causes of the declines, we quantified 
changes in habitat extent at 22 migratory staging sites in the Yellow Sea, East Asia, 
over a 25-year period and found –1.7% and –1.2% year–1 loss of habitat at staging 
sites used by L. l. menzbieri and L. l baueri, respectively. Our results highlight the need 
to identify environmental and anthropogenic drivers of population change across all 
stages of migration to allow the formulation of effective conservation strategies across 
entire migratory ranges.
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Introduction

Widespread declines of migratory species are an emerg-
ing global phenomenon, yet the drivers of their population 
change are rarely well understood (Wilcove and Wikelski 
2008, Bauer and Hoye 2014). This is principally due to 
the vast geographic ranges of migratory species, which can 
cover thousands of kilometers across multiple countries, 
hindering attempts to identify the specific drivers of change  
(Webster et al. 2002, Piersma et al. 2015). Ecologists inves-
tigating the factors that influence population dynamics of 
migratory species have typically been limited to just one stage 
of their annual cycle, such as in wintering (hereafter non-
breeding), staging or breeding areas. However, events during 
one stage of the annual cycle can carry-over to subsequent 
stages (Marra  et  al. 1998), leading to population changes 
that may be driven by processes occurring thousands of kilo-
meters apart (Iwamura et al. 2013, Rushing et al. 2016, van 
Gils et al. 2016). For these reasons, understanding the range 
of factors that influence migratory bird populations through-
out their full annual cycle remains a fundamental challenge 
in migration biology and is the principal knowledge gap 
hindering effective conservation of many migratory species 
(Bowlin et al. 2010, Hostetler et al. 2015).

Migratory shorebird populations in the East Asian- 
Australasian (EAA) Flyway, which complete annual migra-
tions from breeding areas in the Arctic to non-breeding areas 
in Asia and Australasia, are rapidly declining (Amano et al. 
2010, Clemens et al. 2016, Studds et al. 2017). A range of 
threatening processes are thought to contribute to the popu-
lation declines, including habitat loss (Amano  et  al. 2010, 
Murray et  al. 2014, Murray and Fuller 2015, Studds et  al. 
2017), habitat degradation (MacKinnon et al. 2012, Murray  
et  al. 2015, Clemens  et  al. 2016) and human disturbance 
(Zockler  et  al. 2010, Dhanjal-Adams  et  al. 2016). These 
threats are considered most severe in migratory staging areas 
in the Yellow Sea region of East Asia (Melville et al. 2016), 
and their direct impact on survival during migration has 
emerged as a leading hypothesis on the mechanism causing 
shorebird declines in the EAA Flyway (Piersma et al. 2015, 
Studds et al. 2017). 

Though threatening processes from human activities are 
known to impact shorebird populations, environmental con-
ditions have also been shown to strongly influence popula-
tions of migratory shorebirds, primarily through direct effects 
on survival and reproduction, and indirect effects on prey, 
predators and competitors. For example, colder than average 
conditions at breeding grounds negatively influenced growth 
rate and survival of red knot Calidris canutus canutus (Boyd 
and Piersma 2001) and curlew sandpiper Calidris ferruginea 
(Schekkerman et al. 1998). Similarly, reduced precipitation 
has been suggested as a mechanism causing reduced survival 
of European black-tailed godwit Limosa limosa limosa at sites 
across their range, primarily by increasing population densi-
ties at foraging sites, although these effects were considered 
highly coupled with widespread habitat change (Gill  et  al. 

2007). Recently, van Gils  et  al. (2016) found that earlier 
snowmelt in the arctic breeding range of red knot led to a 
timing mismatch with peak food abundance which inhib-
ited the growth rate of chicks that ultimately led to reduced 
survival at their non-breeding grounds in Africa and an  
overall population decline (van Gils et al. 2016).

However, despite evidence that both anthropogenic 
threats and environmental conditions can lead to population 
change in migratory shorebirds, few studies have simultane-
ously investigated the influence of both of these factors on 
shorebird abundance across their entire migratory range. 
Indeed, understanding the factors influencing the abun-
dance of migratory shorebirds requires spatially and tempo-
rally explicit analyses of data from sites that can occur across 
entire hemispheres. The rapid growth of satellite derived data, 
which permits the remote collection of data on factors known 
to influence the population dynamics of migratory species 
at relevant temporal and spatial scales, offers the potential 
to improve our understanding of these factors across the full 
annual cycle of migratory species. In this study, we utilize 
information from satellite tracking, ringing studies, high 
resolution satellite environmental datasets and a continent-
wide shorebird monitoring program to investigate the factors 
that influence abundance across the entire range of a long-
distance migratory shorebird, the bar-tailed godwit Limosa 
lapponica. We focus our analysis on two geographically sepa-
rated subspecies (L. l. menzbieri and L. l. baueri) that have 
unique breeding and non-breeding areas and highly contrast-
ing migration routes, allowing a comparative investigation 
of the range-wide factors that may explain population vari-
ability. First, we develop a spatially and temporally explicit 
dataset of three environmental variables that are known to 
influence survival, body condition or breeding performance 
of migratory shorebirds across their annual cycle. Second, 
we implement a population analysis of an 18-year time 
series from 21 sites across Australia and New Zealand using 
a Bayesian N-mixture model to identify the environmental 
drivers important for population abundance across the full 
geographic range of each subspecies. Last, because habitat loss 
is considered the primary cause of shorebird declines in the 
EAA Flyway, we quantify changes in extent of intertidal habi-
tat at 22 internationally important migratory staging sites in 
the Yellow Sea region of East Asia using satellite images from 
the Landsat Archive.

Material and methods

Study species

Our analysis focuses on two subspecies of bar-tailed godwit  
that occur in the EAA Flyway. Recent satellite tagging 
studies have illustrated the vastly different migration 
routes of the two subspecies (Fig. 1), providing the most 
comprehensive migration route data for any species of 
shorebird in the flyway (Gill et al. 2005, Minton et al. 2006,  
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Wilson et al. 2007, Minton et al. 2011, Battley et al. 2012). 
The Alaskan-breeding subspecies L. l. baueri completes the 
longest recorded non-stop migratory flight of any shorebird 
(Gill et al. 2009), flying non-stop across the Pacific Ocean 
from Alaska to New Zealand and eastern Australia for the 
non-breeding season before migrating back to breeding 
grounds via staging sites in the eastern Yellow Sea region 
of East Asia (Wilson  et  al. 2007, Battley  et  al. 2012). In 
contrast, the Russian-breeding subspecies L. l. menzbieri 
migrates from breeding grounds in eastern Russia, through 
staging sites in the western Yellow Sea to non-breeding sites 
in remote north-western Australia, before returning to breed-
ing grounds via the same route (Fig. 1; Wilson et al. 2007, 

Battley et al. 2012). Although both subspecies stage in the 
Yellow Sea, there are differences in how they migrate through 
the region; menzbieri primarily stages on the western coast of 
the Yellow Sea, while baueri stages on the eastern coastline 
(Fig. 1; Wilson et al. 2007).

Population data

To estimate total abundance and population trends of 
the two godwit species, we used 18 years of godwit count 
data from 21 non-breeding sites across Australia and New  
Zealand (1995–2012; Supplementary material Appendix 1  
Fig. A1). Counts were conducted at high-tide roosts of five 

Figure 1. The contrasting migration routes of the two subspecies of bar-tailed godwit investigated in this study. The migration routes from 
breeding areas to non-breeding areas, via staging sites, are shown for L. l. menzbieri (blue arrows) and L. l. baueri (orange arrows). Points 
are internationally important sites, defined as supporting  1% of the flyway population (Bamford et al. 2008). Data for the population 
trend analysis were available for 21 sites in Australia and New Zealand (Supplementary material Appendix 1 Fig. A1).
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L. l. menzbieri sites in north-west Australia and 16 L. l. baueri  
sites in east Australia and New Zealand by experienced 
observers from wader study groups (Clemens  et  al. 2012). 
We selected maximum counts conducted during January and 
February (peak non-breeding season) for use as replicates 
in the statistical analyses (L. l. menzbieri, n = 64 counts; L. 
l. baueri, n = 328 counts) because, at this time, godwits are 
unlikely to move between sites while in primary moult (Wil-
son et al. 2007). However, monthly counts were not available 
at all sites in all years, and the mean number of counts per site 
per year was 1.04 (range 0−2). Further details of the count 
dataset, including contributing organizations, quality assur-
ance and a full list of observers, are provided in Clemens et al. 
(2012).

Migratory network

Across the EAA Flyway, bar-tailed godwits occur at 58 sites 
in numbers exceeding 1% of their estimated total flyway 
population (Bamford  et  al. 2008). We developed a spatial 
dataset of these internationally important wetland sites to 
define the known flyway network of each subspecies (after 
Iwamura  et  al. 2013). Site boundaries were digitized and 
classified according to their role in the annual cycle, which 
included breeding sites in the arctic, non-breeding sites in 
New Zealand and Australia, and staging sites in the Yellow 
Sea, East Asia (Fig. 1; Wilson  et  al. 2007, Bamford  et  al. 
2008, Battley  et  al. 2012). For further details of the site 
mapping protocol, see Iwamura et al. (2013).

Environmental data

To investigate the influence of environmental conditions 
across the full annual cycle on godwit abundance, we com-
piled a spatially and temporally explicit dataset of environ-
mental conditions encountered by godwits at each stage of 
their annual cycle (breeding, staging and non-breeding). We 
acquired global-scale gridded data for three environmental 
variables that have been shown to affect survival, condition or 
breeding performance of migratory shorebirds using global-
scale gridded datasets (Supplementary material Appendix 1 
Table A1). Changes in mean temperature have been shown 
to influence abundance through reduced growth rates of 
chicks, and reduced breeding success and survival (Schekker-
man et al. 1998, Aharon‐Rotman et al. 2015, Senner et al. 
2015, van Gils et al. 2016), so we obtained monthly land sur-
face temperature data from the NOAA Earth System Research 
Laboratory (LST; GHCN CAMS Gridded 2m Temperature). 
Second, precipitation has been shown to alter the availability 
of foraging habitat, increase population densities at foraging 
sites, influence the distribution and availability of benthic 
prey, and reduce breeding success at breeding sites (Farmer 
and Wiens 1999, Gill et al. 2007). We used Global Precipita-
tion Climatology Project (GPCP) precipitation data from the 
NOAA Earth System Research Laboratory (Huffman et  al. 
2009). Third, chlorophyll-a, a proxy for primary produc-
tivity in coastal zones, was included in the analysis due to 

a reported influence on the distribution and abundance of 
shorebirds globally (Butler et al. 2001). We used the SeaWiFS 
Global Monthly Mapped 9 km Chlorophyll-a concentration 
data (SeaWiFS Project 2003). The chlorophyll-a data only 
became available in 1998, so we assigned the mean of the 
corresponding stage of all other years to the first three years 
of chlorophyll data (Supplementary material Appendix 1  
Fig. A2; Kéry and Schaub 2012). Further details of environ-
mental data, including dataset names, data resolution, tem-
poral availability, and sources are provided in Supplementary 
material Appendix 1 Table A1.

To develop the covariate dataset of environmental condi-
tions encountered by migrating godwits, we first determined 
the annual migration schedule of each subspecies from pub-
lished banding, observation and satellite tagging studies 
(Wilson et al. 2007, Conklin et al. 2010, Battley et al. 2012, 
Choi et al. 2016). The review indicated that godwits are pres-
ent in their breeding range in June–July, non-breeding range 
in October–March, and staging sites in Apr–May (northern 
migration) and Aug–Sept (southern migration). Second, we 
calculated mean environmental conditions at each stage of 
the annual cycle for the period in which godwits were pres-
ent; breeding season (June–July) and stopover data (April–
May; August–September) were collected for the year prior to 
the count and non-breeding season data (October–March) 
were collected for the months that included the January 
and February counts. This process yielded a covariate data-
set consisting of 9 covariates of environmental conditions  
(3 migration stages × 3 environmental variables) representing 
conditions encountered by godwits during each annual cycle 
(hereafter referred to as years) over the 18 year study period 
(1995–2012). We tested for covariation among the envi-
ronmental covariates, which indicated that mean tempera-
ture and rainfall were highly correlated within breeding and 
non-breeding stages of the annual cycle (Pearson’s |r|  0.7;  
Dormann  et  al. 2012). We retained breeding season land 
surface temperature over breeding season rainfall because 
changes in temperature have been shown to influence recruit-
ment and survival of shorebirds in their breeding regions 
(Piersma et  al. 2015, van Gils  et  al. 2016). Conversely, we 
opted to retain rainfall over land surface temperature in non-
breeding areas because reduced rainfall has previously been 
shown to increase shorebird densities at non-breeding sites by 
reducing water availability in nearby areas (Gill et al. 2007, 
Clemens  et  al. 2016). Thus, the final seven environmental 
covariates for the statistical analysis were land surface temper-
ature in staging and breeding regions (temst, tembr), rainfall 
at staging and non-breeding regions (raist, rainb) and coastal 
chlorophyll-a at staging, breeding and non-breeding regions 
(chlst, chlbr, chlnb). For each covariate, we subtracted the mean 
and divided by the standard deviation prior to the statistical 
analysis (Kéry and Schaub 2012).

Statistical analysis

We used a Bayesian N-mixture model to analyze the 
abundance and population trends of the bar-tailed godwit 
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subspecies in relation to the spatially and temporally explicit 
environmental covariate dataset. The N-mixture model 
is a hierarchical extension of a generalized linear mixed 
model (GLMM) that provides estimates of abundance that 
account for detection error (Royle 2004, Kéry and Schaub 
2012, Kéry and Royle 2015,). N-mixture models are par-
ticularly useful for obtaining ecologically realistic estimates 
of abundance where repeated counts have been conducted 
and where the inclusion of covariates relevant to abundance 
is possible (Kéry 2008, Joseph  et  al. 2009). Two relevant 
assumptions of N-mixture models are (i) that the popula-
tion is closed between replicate counts in year k and (ii) that 
there are no identification errors (such as false inclusion or 
double counting) in the count data (Kéry and Schaub 2012).  
Bar-tailed godwits exhibit very high site fidelity at non- 
breeding sites within seasons (Conklin  et  al. 2010) and 
all counts were conducted by experienced observers 
(Clemens et al. 2012). 

Initially, we used an indicator variable selection method 
to investigate which environmental covariates were 
potentially important predictors of abundance (Hooten 

and Hobbs 2015). Indicator variable selection is use-
ful for identifying influential predictors for models that, 
like those used here, propagate estimation uncertainty 
(Mutshinda  et  al. 2013, Hooten and Hobbs 2015). To 
perform indicator variable selection, we introduced an 
indicator variable with Bernoulli prior (0.5) to the model 
for abundance (specified below). In each Markov chain 
iteration, the indicator variable adopts a value of 1 if 
the xth covariate at site i in year k is an influential pre-
dictor of abundance and 0 if not, allowing infrequently  
selected variables to be assessed as unimportant (i.e. 
with posterior inclusion probabilities ≤ 0.25) and more 
frequently selected variables as uncertain or poten-
tially important predictors of abundance (> 0.25; 
Mutshinda et al. 2013). Three covariates were identified as 
potentially important and were retained in the final model 
for abundance (Fig. 2).

We assumed that abundance (Nik) at site i in year k 
followed a Poisson distribution with mean λik:

N Poissonik ik= ( )λ

Indicator variable
(posterior mean)

L. l. menzbieri

L. l. baueri

temst

Parameter estimate

(b)

(a)

0.300.00 0.25 0.50 -0.30 0

temst

raist

chlbr

tembr

rainb

chlnb

chlst

chlst

tembr

Figure 2.  Variable importance (a) and parameter estimates (b) of covariates used in Bayesian N-mixture models of estimated abundance of 
bar-tailed godwit in the East Asian-Australasian Flyway. (a) Indicator variable selection. Covariates with posterior inclusion probabilities  
 0.25 were considered unimportant and removed from the final model for abundance. Covariates  0.25 were considered potentially 
important and included in the final model for abundance. (b) Parameter estimates of the three covariates included in the final model for 
abundance. Points show the posterior means and lines indicate the 95% credible intervals. Coding of covariates are rain (rai), land surface 
temperature (tem), chlorophyll-a (chl) at staging (st), breeding (br) and non-breeding (nb) sites.
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Then, our model for expected abundance (λik) for each 
subspecies (s) was:

log( ) ( )*liks i s s cs ik ik
c

c

k k X= + + - + +
=

åw a b b e
1

The model includes a random effect for each count site (ωi), a 
sub-species specific intercept (αs), a sub-species specific slope 
estimate of population trend (βs) centered on mean year k*, 
species-specific slopes (βcs) for each of c environmental covari-
ates (Xik, see Environmental data), and an additional term 
to account for unmodeled variation in counts at each site in 
each year (εik). Diffuse priors with a mean drawn from a nor-
mal distribution of mean 0 and variance 0.001, and with a 
variance drawn from a gamma distribution with a shape and 
scale of 0.001 were specified for αs, βs, βcs and εik.

Detection probability (p) was modeled as:

logit( )pijk k ijk= +g d

where the γk is the mean detection probability in year k and 
δijk is a random effect that allows detection probability to 
vary by site i, count j and year k. We specified a uniform 
distribution for δijk with range 0−1. Although it is possible to 
incorporate covariates for detection probability in N-mixture 
models (Joseph et al. 2009), no covariates were included our 
model because information such as tide height and weather 
conditions that could be used reliably across all sites and years 
was not available (Clemens et al. 2012).

We used JAGS via the ‘R2jags’ package in R (Plummer 
2003, Su and Yajima 2013) to fit the N-mixture model 
simultaneously to each subspecies (model code is provided in 
Supplementary material Appendix 2). We ran three Markov 
chains for 800 000 iterations and, after discarding the first 
200 000 iterations, drew samples at a thinning rate of 1 in 20 
from the posterior (n = 90 000 samples). Gelman-Rubin sta-
tistics ( . )R < 1 1  and trace-plots indicated convergence of all 
parameters in the model (Gelman and Hill 2007). We diag-
nosed model fit through a posterior predictive check, which 
compares the chi-squared goodness of fit in the observed data 
to the goodness of fit in data simulated from the posterior 
distribution. The proportion of MCMC samples where good-
ness of fit in the observed data exceeds that of the replicate 
data should have a Bayesian p-value near 0.50 when model 
fit is good. Even when model structure is correct, the variance 
may still be too large (Kéry and Royle 2015). We therefore 
tested for over-dispersion in the data with the c  ratio, which 
should be close to 1.00 when model fit is good. A posterior 
predictive check indicated good model fit (p = 0.507) and 
there was no evidence of over-dispersion ( c< 1 004. ).

Habitat loss data

To provide context for the population analysis, we obtained 
a remotely-sensed dataset of intertidal wetland loss for the 
entire Yellow Sea staging region for the period 1980–2009. 
The dataset, developed from Landsat TM and ETM+ imagery, 

allowed the estimation of the extent of intertidal habitat 
remaining at staging sites for each subspecies in relation to 
historical extents (Murray et al. 2012, 2014). We extracted 
tidal flat extent data for the staging sites used by the two sub-
species of godwit (n = 22 staging sites) and determined the 
percentage of habitat lost at each site over a ~30 year period 
(Table 1; Murray and Fuller 2015). Although the habitat loss 
data could not be included in the statistical analysis due to 
a lack of yearly data and its confounding effect with the lin-
ear time trend (van Gils et al. 2016), habitat loss is thought 
to be the leading driver of shorebird population declines in 
the EAA Flyway (Piersma et al. 2015, Clemens et al. 2016, 
Conklin  et  al. 2016, Studds  et  al. 2017) and therefore  
warrants consideration in our study.

Data deposition

Data available from the Dryad Digital Repository: <http://
dx.doi.org/10.5061/dryad.3879g> (Murray et al. 2017).

Results

Environmental drivers of abundance

The indicator variable selection analysis suggested that rain-
fall and coastal chlorophyll-a in staging areas (raist, chlst), 
rainfall at non-breeding sites (rainb) and coastal chlorophyll-
a at breeding sites (chlbr) were unimportant in influencing 
non-breeding abundance of godwits (Fig. 2a). With posterior 
inclusion probabilities of > 0.25, land surface temperature at 
staging sites (temst) and coastal chlorophyll-a at north-west 
Australian non-breeding sites (chlnb) were identified as poten-
tially important for both subspecies. Temperature at breed-
ing sites (tembr) was also identified as a potentially influential 
predictor for L. l. menzbieri. The posterior distributions of 
the parameter estimates from the N-mixture model indicated 
that abundance L. l. menzbieri increased after warmer breed-
ing seasons, but there was no evidence that abundance was 
related to the other environmental variables (Fig. 2b). No 
relationship between the three environmental variables and 
the abundance of L. l. baueri was detected (Fig. 2b).

Population trends

Our analysis revealed that between 1995 and 2012, both 
subspecies of bar-tailed godwit exhibited sustained popula-
tion declines across their entire non-breeding range (Table 1;  
Fig. 3a, b). The Russian breeding subspecies (L. l. menzb-
ieri) declined at a greater rate (–6.7% year–1, 95% credible 
intervals, CRI: –9.7 to –3.9) than the Alaskan breeding 
subspecies (L. l. baueri; –2.1% year–1, 95% CRI: –3.3 to 
–1.0). In 1995, total abundance across all sites in Australia 
and New Zealand was estimated to be 229 480 (95% CRI:  
160 599−347 041) individuals of L. l. menzbieri and  
180 171 (95% CRI: 161 165−204 522) individuals of  
L. l. baueri. By 2012, populations had declined 56.6% 
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wwand 22.7% for L. l. menzbieri and L. l. baueri respectively, 
with estimated total abundances of 100 160 (95% CRI: 
88 436−121 263) and 139 357 (95% CRI: 126 331−154 
919). Mean detection probabilities estimated from the 
model for each subspecies were 0.46 (L. l. menzbieri; 95%  
CRI: 0.32−0.61) and 0.48 (L. l. baueri; 95% CRI: 0.4−0.55; 
Supplementary material Appendix 1 Fig. A3).

Habitat losses at staging sites

The analysis of Landsat Archive imagery indicated a net loss 
of 3315 ha of tidal flat habitat across all staging sites used by 
L. l. menzbieri and 1498 ha of tidal flat habitat at L. l. baueri 
sites (Table 1). Tidal flats declined faster (–1.66% year–1) at 
sites used by the more rapidly declining L. l. menzbieri than at 
sites (–1.18% year–1) used by L. l. baueri (Table 1). However, 
although rates of habitat loss were higher at sites used by  
L. l. menzbieri, the area of intertidal habitat remaining at  
L. l. menzbieri sites (8151 ha) was nearly twice the extent as 
L. l. baueri sites (4153 ha; Table 1).

Discussion

Understanding the impact of environmental change on 
migratory species is critical to conserve declining popula-
tions, yet determining the underlying drivers of population 
change has been limited by the difficulty of obtaining rel-
evant data across entire migration pathways. By integrat-
ing data from across the full annual cycle of two subspecies 
of bar-tailed godwit, we have conducted a comprehensive 
analysis of the factors that may influence abundance across 
the entire range of a migratory shorebird. Our results sup-
port hypotheses that the extensive loss of tidal flat habitat at 
migratory staging sites plays a central role in the long-term 
declines of migratory shorebird populations in the EAA  
Flyway. In addition to providing further support to the habi-
tat loss hypothesis for EAA Flyway population declines, our 
study also provides intriguing evidence that non-breeding 
shorebird abundance in the EAA Flyway may also be related 
to large-scale climatic drivers.

Our approach of analyzing environmental conditions at 
breeding, non-breeding and migratory staging areas while 
simultaneously quantifying habitat loss allows several new 
insights into the state of the EAA Flyway. First, our analy-
sis of Landsat Archive imagery revealed widespread and 
rapid losses of tidal flat habitat at the staging sites used by 
both of the subspecies considered in our analysis. In par-
ticular, we found that tidal flats used by the more rapidly 
declining L. l. menzbieri subspecies have disappeared at a 
faster rate than sites used by the more moderately declin-
ing L. l. baueri. Theoretical models demonstrate that these 
patterns of decline should be expected, and typically result 
in higher densities of birds in remaining habitat, lower prey 
intake rates, higher mortality and a greater rate of popula-
tion decline in the population experiencing a greater rate of 
habitat loss (Sutherland and Dolman 1994). However, the Ta
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extent of habitat remaining at L. l. menzbieri sites was nearly 
twice that of L. l. baueri sites which, because both popula-
tions are of similar size, may suggest that habitat at L. l. menz-
bieri staging sites is of lower quality (Sutherland 1996) or has 
undergone greater degradation (Norris 2005, Sheehy  et  al. 
2011). Degradation of tidal flat habitats around the Yellow 
Sea is unlikely to be uniform, and this result could suggest 
that the quality of remaining tidal flat habitat at western  
Yellow Sea sites occurring in China is poorer than at eastern 
Yellow Sea sites that occur in North and South Korea. 

However, the differential rates of population decline 
in the two subspecies seem better explained by the highly 
contrasting migration routes of the two sub-species (Fig. 1).  
Specifically, the Russian breeding L. l. menzbieri traverses the 
Yellow Sea region of East Asia twice in each annual cycle 
(on both north and south migration), whereas L. l. baueri 
migrates through the region only once (on northern migra-
tion), migrating directly across the Pacific Ocean on south-
ern migration. Recently reported survival estimates from a 
mark-recapture study (Piersma  et  al. 2015) indicated that 
survival of shorebirds are considerably lower while traversing 
the Yellow Sea than in breeding and non-breeding seasons. 
Therefore, by doubling the exposure to a region that is known 
to directly influence survival, impacts to the L. l. menzbieri 
population should be greater than the L. l. baueri population, 
leading to a greater rate of population decline. This echoes the 
findings of a recent flyway-wide analysis of shorebird popula-
tion trends, which found that species with a greater reliance 
on Yellow Sea for stopover have declined at greater rates than 
the species which have lower reliance on this region to com-
plete their annual cycle (Studds et al. 2017). Thus, shorebird 
populations that are more exposed to threats in the Yellow 
Sea, both spatially and temporally, are expected to be at the 
greatest risk of decline, and therefore actions that reduce the 
impacts of threats in the Yellow Sea on shorebird populations 
should be a conservation priority.

Our population analysis indicated a positive relationship 
between breeding temperature and the non-breeding abun-
dance of the L. l. menzbieri population. Such large-scale 
population responses to temperature have been detected 

in shorebird species in other migration flyways, both by 
increasing breeding productivity which drove positive 
population growth rates (Schekkerman et al. 1998) and by 
increasing mortality as a result of timing mismatches with 
food resources (van Gils  et  al. 2016). That L. l. baueri did 
not show a similar response to breeding temperature could 
be due to a range of reasons, including that individuals of 
each subspecies complete a vastly different migration and 
are likely to encounter a wide range of environmental condi-
tions and threats across their full annual cycle, making the 
relationship between climate drivers and populations dif-
ficult to detect (Piersma et  al. 2015, van Gils  et  al. 2016). 
Nevertheless, this result suggests that shorebirds in the EAA 
flyway may also be susceptible to extreme and changing  
climatic conditions, compounding the impacts of threats in 
their staging areas.

Unfortunately, high-resolution data are not frequently 
available for all of the factors that could influence the demo-
graphic parameters and vital rates of migratory shorebirds, 
particularly for migratory birds with ranges that span large 
areas of the globe. For example, some studies have suggested 
that, given the long-distance non-stop migratory flights com-
pleted by godwits, wind conditions during migration could 
influence survival and, by extension, whole populations 
(Gill et al. 2009, Conklin and Battley 2011, Klaassen et al. 
2011). Although godwits have recently been shown capable 
of selecting departure timing, migration routes and altitudes 
to avoid adverse conditions during migration (Gill  et  al. 
2014), further work to reliably incorporate wind conditions, 
extreme climatic events and finer-scale climatic data into 
population analyses would be useful, but will require highly 
detailed information on flight altitudes, breeding distribu-
tions and migration timing. Furthermore, our study shows 
that research which aims to further disentangle the influ-
ence of variable population drivers such as temperature fluc-
tuations with long-term drivers such as habitat loss, habitat 
degradation and climate change are needed within the EAA 
Flyway (van Gils et al. 2016).

With confirmed declines of many shorebird species that 
migrate across the EAA Flyway, our study provides valuable 
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Figure 3. Total abundance estimates for the two subspecies of bar-tailed godwit, L. l. menzbieri (a) and L. l. baueri (b), investigated in this 
study. Solid colored lines indicate the posterior mean abundance estimate and shading areas indicate the 95% credible intervals. We 
detected significant declines in both species during the study period (1995–2012; L. l. menzbieri, –6.7% year–1; L. l. baueri; –2.1% year–1).
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new information on the environmental and anthropogenic 
factors that drive change in migratory shorebird popula-
tions. It is also among the first studies to investigate drivers of 
abundance across the entire migratory range of a species, and 
the first to examine the consequences of disparate migration 
strategies of two subspecies. Additionally, our investigation 
adds to the growing number of studies that have confirmed 
widespread declines of shorebird species in the EAA Flyway. 
Clearly, swift action to improve the population trajectories 
of migratory shorebirds in the EAA Flyway is needed, and 
immediate action to halt the loss of tidal flat habitat should 
be promoted at Yellow Sea staging sites.
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