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1 Introduction
The book Overdispersion Models in SAS by Morel and Neerchal (2012) discusses statistical
analysis of categorical and count data which exhibit overdispersion, with a focus on compu-
tational procedures using SAS. This document retraces some of the ground covered in the
book, which we abbreviate throughout as OMSAS, with the objective of carrying out similar
analyses in R (R Core Team, 2014). Rather than attempting to cover every example in OM-
SAS, we will focus on two specific goals: analysis based on binomial/multinomial likelihoods
which support extra variation, and model selection with the binomial goodness-of-fit (GOF)
test. We will not cover examples based on count data, but extension to those should not be
difficult. We will generally not spend much time discussing the data, on justification for the
selected models, or on interpretation of the results. The reader should refer to OMSAS for
more complete discussions of the examples and statistical models. In several places we will
present additional material not found in OMSAS, such as the binomial finite mixture and the
recently proposed Mixture Link binomial model.

We will assume that the reader has basic competency in R: that you can install and start
R on your platform of choice, issue commands through the prompt, run script files, and write
basic programs. Some discussion of R programming is given as we proceed in the document,
but beginners may want to start with a more basic guide. For example, Rutgers University
Libraries (libguides.rutgers.edu/data_R) offers a series of video tutorials which appears
to be very instructive. We also recommend the RStudio program (www.rstudio.com) as a
friendly user interface to R; it is free and available for all major platforms: Windows, Mac,
and Linux.

Why consider R when there are many statistical computing packages available, including
SAS? SAS and R are perhaps the most popular computing tools for statisticians and data
analysts at the present time. Both have strengths and weaknesses, and neither is uniformly
better for every application. SAS is commercial software which is developed and maintained by
a corporation. Procedures generally work reliably and are well documented, but the software
is costly. On the other hand, R is free and open source software, maintained by an active
community of users. A wide variety of user-contributed packages are available, but their
quality — documentation, reliability, and completeness — varies greatly as there may be little
oversight. The programming models between SAS and R are also very different: R is built
on a unified programming language, while SAS programs are composed of disjoint blocks for
data manipulation (data steps), procedure calls, and numerical manipulation (e.g. PROC IML).
Programming modes do not necessarily share a common syntax; they are often coordinated
by macro programming, and results are passed between them via datasets.

Some of the analysis methods in this document are possible through base R, while some
are possible through contributed packages.1 We will largely avoid using contributed packages.
Instead, we develop a numerical MLE framework that produces roughly the same results as
those obtained in OMSAS using PROC GLIMMIX and PROC NLMIXED. The numerical MLE
framework is quite flexible: the user provides a dataset and a likelihood, and the framework
produces estimates, standard errors, p-values, confidence intervals, and more. To do this, we
use basic statistical theory such as large sample Normality of the MLE and the delta method.
We also make use of numerical optimization and numerical computation of a function’s Jaco-

1Readers can check CRAN (cran.r-project.org), which is traditionally the major source of R packages,
to get an idea of the large number of contributed packages that are available.
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bian. Of course, by no means does this result in the best inference for every problem. It may
give invalid results if used carelessly; for example, when assumptions about large sample size
or independence are not met. Also, naively using numerical optimization on a complicated
likelihood may not yield a good solution to the MLE problem. Still, the framework gives a
very convenient way of carrying out an analysis whose result is often more or less equivalent
to PROC GLIMMIX or PROC NLMIXED. Inference techniques that require derivation by hand for
a given model cannot be programmed in such a general way. As an alternative to the gen-
eral numerical optimization framework, we also briefly present a framework based on scoring,
which includes Newton-Raphson, Fisher scoring, and several other algorithms as specific cases.
Estimates, standard errors, p-values, etc can also be obtained from this scoring framework,
although it is less convenient to the analyst as each model requires programming of quanti-
ties such as the score and information matrix. Bayesian statistical analysis is not discussed
here or in OMSAS, but MCMC methods can also be programmed in a very general way. For
example, the package LaplacesDemon (www.bayesian-inference.com/software) carries
out MCMC sampling given data, a likelihood, a prior, and selection of an MCMC sampler.

Throughout this document, a box with a white background will represent an R prompt.

> cat("Hello world\n")
Hello world

The symbol “>” at the beginning of a line represents the prompt, and the text that follows is
to be entered by the user. Lines that begin without “>” represent output. A box with a grey
background represents a script or file.

1 cat("Hello world\n")
2 x <- y + z

The rest of the document proceeds as follows. Section 2 discusses distributions to be
used in later examples and shows how to work with them in R. Section 3 presents the nu-
merical MLE framework and shows its development piece-by-piece in R. Section 4 presents a
scoring framework which may be used to compute MLEs without relying on a sophisticated
optimization routine. In Section 5, a goodness-of-fit test for binomial data is presented along
with an R implementation. Here, the parametric bootstrap is demonstrated to produce a
specific p-value, as the basic test gives only an interval for the p-value. When we arrive at
Section 6, we have the tools necessary to reproduce some of the data analyses from OMSAS.
Readers may want to start here to see the finished product, then jump back to earlier sec-
tions for implementation details. Finally, Section 7 mentions some special considerations in R
programming.

1.1 OverdispersionModelsInR Package
An R package called OverdispersionModelsInR is available for use with this document. It
contains the full code for the distributions covered in this document, the numerical MLE
framework, and the goodness-of-fit procedure. The reader can repeat the steps of the
data analysis examples in Section 6 once the package is installed. The latest version of
the package and installation instructions will be maintained at www.umbc.edu/~araim1/
OverdispersionModelsInR. The reader may also wish to browse the source code in the
package to see completed versions of the procedures discussed in this document.
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1.2 Example Datasets
The datasets used in Section 6 have been adapted from ones which are freely available from
the SAS website for OMSAS; see www.sas.com/store/prodBK_62693_en.html and follow
the link “Example Code and Data”. We have reorganized the data into a form which is more
conveniently read into R. To err on the side of caution, we are not making these versions of
the datasets publicly available without obtaining permission from the publisher of OMSAS.
For now, this unfortunately means the reader must download the original examples from the
SAS website, extract the data from the files, and put it into a more convenient form yourself.
We suggest using comma-separated files as in the example below.

File: /home/araim/R/example.dat
1 Id,X,Y,Z
2 1,10,20,30
3 2,11,21,32
4 3,13,18,16

The data may then be read it into R as follows.

> dat <- read.table("/home/araim/R/example.dat", sep = ",", header = TRUE)
> dat

Id X Y Z
1 1 10 20 30
2 2 11 21 32
3 3 13 18 16

1.3 Tarball of Example Code
Some of the examples from this document have been made available in a tarball

OverdispersionModelsInR_examples.tar.gz

for the reader’s convenience. This tarball should be available alongside the document. It
includes many of the longer examples which may be tedious to retype.

2 Distributions
R features support for a number of commonly encountered probability distributions. A standard
pattern is followed in the implementation of these distributions which consists of four functions.
For example, the Normal distribution is implemented in the functions:

• dnorm computes the density,
• rnorm draws random numbers from the distribution,
• pnorm computes the cumulative distribution function,
• qnorm computes the quantiles.

The binomial distribution has similar functions, but with the norm suffix replaced by binom.
To see a list of the built-in distributions, the command ?Distributions brings up the help
page.

> ?Distributions

Distributions package:stats R Documentation
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Distributions in the stats package

Description:

Density, cumulative distribution function, quantile function and
random variate generation for many standard probability
distributions are available in the ’stats’ package.

Details:

The functions for the density/mass function, cumulative
distribution function, quantile function and random variate
generation are named in the form ’dxxxv, ’pxxx’, ’qxxx’ and ’rxxx’
respectively.

For the beta distribution see ’dbeta’.

For the binomial (including Bernoulli) distribution see ’dbinom’.

For the Cauchy distribution see ’dcauchy’.
...

To see the help page for any properly documented R function, enter ? followed by the function
name.
> ?dnorm
Normal package:stats R Documentation

The Normal Distribution

Description:

Density, distribution function, quantile function and random
generation for the normal distribution with mean equal to ’mean’
and standard deviation equal to ’sd’.

Usage:

dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

...

Note that the functions dnorm, rnorm, pnorm, and qnorm share a common help page.

2.1 Normal
Here is a quick demonstration of the Normal distribution. First we will compute the density
of N(1, 52), the Normal distribution with mean 1 and variance 52.

> dnorm(1.3, mean = 1, sd = 5)
[1] 0.07964497

The density is a “vectorized” function, which means that it can be used to evaluate many
points at once.

> y <- seq(-5, 5, 0.25)
> y
[1] -5.00 -4.75 -4.50 -4.25 -4.00 -3.75 -3.50 -3.25 -3.00 -2.75 -2.50 -2.25 -2.00 -1.75

[15] -1.50 -1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
[29] 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00
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> dnorm(y, mean = 1, sd = 5)
[1] 0.03883721 0.04118725 0.04357044 0.04597643 0.04839414 0.05081181 0.05321705 0.05559698
[9] 0.05793831 0.06022749 0.06245079 0.06459447 0.06664492 0.06858877 0.07041307 0.07210539

[17] 0.07365403 0.07504807 0.07627756 0.07733362 0.07820854 0.07889587 0.07939051 0.07968878
[25] 0.07978846 0.07968878 0.07939051 0.07889587 0.07820854 0.07733362 0.07627756 0.07504807
[33] 0.07365403 0.07210539 0.07041307 0.06858877 0.06664492 0.06459447 0.06245079 0.06022749
[41] 0.05793831

We can plot the density of N(1, 52) using the curve function. In the following command, x is
a dummy variable used by the curve command, and not a variable that has previously been
given a value. It produces the following plot.

> curve(dnorm(x, mean = 1, sd = 5), xlim = c(-9, 10))
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We can also compute the density ourselves using basic arithmetic.

> mu <- 1
> sigma <- 5
> y <- seq(-5, 5, 0.25)
> (2 * pi * sigma^2)^(-1/2) * exp( -1/2 * (y - mu)^2 / sigma^2 )
[1] 0.03883721 0.04118725 0.04357044 0.04597643 0.04839414 0.05081181 0.05321705 0.05559698
[9] 0.05793831 0.06022749 0.06245079 0.06459447 0.06664492 0.06858877 0.07041307 0.07210539

[17] 0.07365403 0.07504807 0.07627756 0.07733362 0.07820854 0.07889587 0.07939051 0.07968878
[25] 0.07978846 0.07968878 0.07939051 0.07889587 0.07820854 0.07733362 0.07627756 0.07504807
[33] 0.07365403 0.07210539 0.07041307 0.06858877 0.06664492 0.06459447 0.06245079 0.06022749
[41] 0.05793831

Next we will draw some random numbers from N(1, 52).

> y <- rnorm(20, mean = 1, sd = 5)
> y
[1] -2.7226253 3.2208362 10.1373916 2.9912574 2.8425974 -0.9036215 10.0942682 -0.8051708
[9] -1.5532178 -3.8122432 5.5623794 9.6967335 -4.0715477 5.3016421 5.3031682 -1.7415364

[17] 2.6894637 -0.4759012 11.4477871 7.0996068

This represents an iid (independent and identically distributed) sample, but it is also possible
to draw an independent-but-not-identically-distributed sample by specifying a vector for mean
and/or sd. Let us take a larger iid sample and plot the histogram.

> y <- rnorm(200, mean = 1, sd = 5)
> hist(y)
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For completeness, examples of the quantile and cumulative distribution functions are given
below. Notice that if we leave out the mean and sd arguments, the functions default to mean
0 and sd 1, which represents the standard Normal distribution.
> qnorm(1 - 0.025)
[1] 1.959964
> pnorm(0)
[1] 0.5
> curve(pnorm(x), xlim = c(-3, 3))
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2.2 Binomial
Next we will consider the binomial distribution. We will denote Bin(m, p) as the binomial
distribution withm trials with probability of success p. Recall that ifX follows this distribution,

E(X) = mp, Var(X) = mp(1− p).

The dbinom function is available for computing the density. Notice that a warning is produced
if we attempt to evaluate the density on a number outside of the sample space.
> dbinom(10, size = 20, prob = 1/4)
[1] 0.009922275
> dbinom(10.5, size = 20, prob = 1/4)
[1] 0
Warning message:
In dbinom(10.5, size = 20, prob = 1/4) : non-integer x = 10.500000
> y <- 0:20
> dbinom(y, size = 20, prob = 1/4)
[1] 3.171212e-03 2.114141e-02 6.694781e-02 1.338956e-01 1.896855e-01 2.023312e-01 1.686093e-01
[8] 1.124062e-01 6.088669e-02 2.706075e-02 9.922275e-03 3.006750e-03 7.516875e-04 1.541923e-04

[15] 2.569872e-05 3.426496e-06 3.569266e-07 2.799425e-08 1.555236e-09 5.456968e-11 9.094947e-13
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We can also compute the density ourselves. Recall that density is in the form
(
m
x

)
px(1−p)m−x.

The
(
m
x

)
portion can produce very large numbers while the px(1 − p)m−x can produce very

small numbers. Computation of the density is more stable if done at the logarithmic scale
and then translated back to the probability scale. The function log(x!) can be computed as
lgamma(x + 1), where lgamma calculates the logarithm of the Γ function.
> m <- 20
> p <- 1/4
> log.ff <- lgamma(m+1) - lgamma(y+1) - lgamma(m-y+1) + y*log(p) + (m-y)*log(1-p)
> exp(log.ff)
[1] 3.171212e-03 2.114141e-02 6.694781e-02 1.338956e-01 1.896855e-01 2.023312e-01 1.686093e-01
[8] 1.124062e-01 6.088669e-02 2.706075e-02 9.922275e-03 3.006750e-03 7.516875e-04 1.541923e-04

[15] 2.569872e-05 3.426496e-06 3.569266e-07 2.799425e-08 1.555236e-09 5.456968e-11 9.094947e-13

We can draw from the binomial distribution using the built-in rbinom function, or code the
procedure ourselves, noting that binomial is a sum of independent Bernoulli trials. To write
the code ourselves, we can use the sample function to draw 0 or 1 with replacement, then
take the sum. We can do this in a loop to obtain the desired number of binomial draws. Note
that loops in R are generally not an efficient way to program, see Section 7.

1 y <- integer(10)
2 for (i in 1:10)
3 {
4 z <- sample(x = c(1,0), size = 20, replace = TRUE, prob = c(1/4, 3/4))
5 y[i] <- sum(z)
6 }

> rbinom(10, size = 20, prob = 1/4)
[1] 3 2 8 3 6 6 3 1 3 9

> y
[1] 3 2 4 3 5 7 2 7 5 5

2.3 Beta-Binomial
While not available as one of the standard distributions in R, beta-binomial (BB, see OMSAS
section 4.2) has been implemented in several packages. However, we will write the code
ourselves for the sake of demonstration. First, let us recall that the distribution is obtained by
assuming that the binomial probability of success is randomly drawn from the beta distribution,

Y | µ ∼ Bin(m,µ),
µ ∼ Beta(α, β).

Here, Beta(α, β) denotes the beta distribution with density f(x) = [B(α, β)]−1xα−1(1−x)β−1

on the interval (0, 1), where B(α, β) = Γ(α)Γ(β)/Γ(α + β). The marginal density of the
observed data are then given by

f(x | α, β) =
(
m

x

)
B(α + x, β +m− x)

B(α, β) , x ∈ {0, . . . ,m}.

BB may be reparameterized, as noted in OMSAS, using

α = πρ−1(1− ρ) and β = (1− π)ρ−1(1− ρ)

⇐⇒ π = α

α + β
and ρ = 1

α + β + 1 ,
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so that π = E(Y/m) can be interpreted as the probability of success. The parameter ρ
captures the amount of overdispersion, in the sense that

Var(Y ) = mπ(1− π){1 + ρ(m− 1)}.

As ρ ↓ 0, BB approaches the standard binomial distribution. Note that both π and ρ must
be in the unit interval (0, 1).

Let us create a file called betabin.R which will compute the density and produce draws
from the beta-binomial distribution.

File: /home/araim/R/betabin.R
1 d.beta.binom <- function(x, Pi, rho, m, log = FALSE)
2 {
3 a <- Pi * rho^(-2) * (1 - rho^2)
4 b <- (1-Pi) * rho^(-2) * (1 - rho^2)
5 log.ff <- lgamma(m+1) - lgamma(x+1) - lgamma(m-x+1) + lgamma(a+x) +
6 lgamma(b+m-x) - lgamma(a+b+m) + lgamma(a+b) - lgamma(a) - lgamma(b)
7
8 if (log) return(log.ff)
9 else return(exp(log.ff))

10 }
11
12 r.beta.binom <- function(n, Pi, rho, m)
13 {
14 a <- Pi * rho^(-2) * (1 - rho^2)
15 b <- (1-Pi) * rho^(-2) * (1 - rho^2)
16
17 z <- rbeta(n, a, b)
18 rbinom(n, size = m, prob = z)
19 }

Notice that the statement log = FALSE is given in the argument list so that log will be
FALSE by default, and the returned result will be given on the probability scale. In this
example, the code file has been placed at the location /home/araim/R on a Linux computer.
Mac paths will be similar. Windows users can use paths like C:\\Users\\araim\\R (where
each backslash character is escaped by another backslash), or C:/Users/araim/R (with a
forward slash). We can now read the R script /home/araim/R/betabin.R into our session
to define our functions so that we can use them.
> source("/home/araim/R/betabin.R")
> d.beta.binom(x = 10, Pi = 1/4, rho = 0.2, m = 20)
[1] 0.02637418
> y <- 0:20
> d.beta.binom(y, Pi = 1/4, rho = 0.2, m = 20)
[1] 1.655831e-02 5.370264e-02 9.920071e-02 1.360467e-01 1.530525e-01 1.484146e-01 1.275438e-01
[8] 9.874356e-02 6.953193e-02 4.475618e-02 2.637418e-02 1.420831e-02 6.967538e-03 3.087155e-03

[15] 1.221999e-03 4.250431e-04 1.267884e-04 3.125317e-05 5.990191e-06 7.964796e-07 5.531109e-08
> d.beta.binom(y, Pi = 1/4, rho = 0.2, m = 20, log = TRUE)
[1] -4.100867 -2.924293 -2.310610 -1.994757 -1.876974 -1.907746 -2.059296 -2.315229
[9] -2.665969 -3.106526 -3.635370 -4.253928 -4.966493 -5.780505 -6.707267 -7.763320

[17] -8.972991 -10.373390 -12.025387 -14.043064 -16.710292
> r.beta.binom(n = 10, Pi = 1/4, rho = 0.2, m = 20)
[1] 4 4 2 3 3 5 6 6 3 4

As a quick test to ensure that the two functions are correct (at least that they implement the
same distribution), consider comparing the histogram of an iid sample and the density itself.
As the sample size becomes large, the histogram should become close to the density.
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1 n <- 100000; m <- 20
2 Pi <- 1/4; rho <- 0.4
3 x <- 0:m
4 y <- r.beta.binom(n, Pi, rho, m)
5 f <- factor(y, levels=0:m)
6 p <- table(f)/n
7 ylim <- c(0, max(p) * 1.05)
8 coords <- barplot(p, ylim = ylim, xlab = "x", ylab = "Density")
9 points(coords, d.beta.binom(x, Pi, rho, m), pch = 19)

10 title("Histogram vs. Density")

Note that because the data are discrete, the function barplot is used here to display the
counts at each point in the sample space. The hist function could be used instead to bin
the data into intervals. barplot returns coords, which help us to plot the density at each
bar in a subsequent call. The table function is used to compute the frequency at each point
in the sample space; we divide the frequencies by n to obtain propotions. There is a chance
that some of the values in the sample space will not be present in our sample; to ensure that
these zero counts are present in our table, we explicitly convert y into a factor with values 0
to 20. Some adjustments are made to the plot to adjust the y-axis, add a title, and add axis
labels.
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2.4 Random-Clumped Binomial
The random-clumped binomial (RCB) distribution (see OMSAS section 4.3) provides an al-
ternative to BB as a binomial model with extra variation. Denote Ber(p) as the Bernoulli
distribution with probability of success p. RCB arises by considering variables

Y ∼ Ber(π),
X ∼ Bin(m−N, π),
N ∼ Bin(m, ρ).

The observation T = NY +X follows the RCB distribution with parameters π and ρ, notated
as T ∼ RCB(m,π, ρ). Here, Y represents success/failure of a leader, N is the number of trials
that follows the leader, and X represents the remaining trials that are selected independently.
Therefore, although T is a sum of Bernoulli trials, the trials are not independent; the degree
of depedence is increased as ρ ↑ 1 and decreased as ρ ↓ 0. We may interpret π ∈ (0, 1) as
an overall success probability for the RCB trials, and ρ ∈ (0, 1) as the probability of following
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the leader. The density of RCB can be expressed as a finite mixture of two binomial densities
(see Section 2.5),

f(t | m,π, ρ) = πBin
(
m, (1− ρ)π + ρ

)
+ (1− π)Bin

(
m, (1− ρ)π

)
.

Notice that probability of success for each density in the mixture is a function of π and
ρ. Therefore, we can think of RCB as a binomial finite mixture with some constraints on
the parameters. The expectation and variance of T are the same as in the formulation of
beta-binomial given in Section 2.3; namely,

E(T ) = mπ, Var(T ) = mπ(1− π){1 + ρ(m− 1)}.

Here are functions to compute and draw from the RCB density.
File: /home/araim/R/rcb.R

1 r.rcb <- function(n, Pi, rho, m)
2 {
3 stopifnot( 0 < rho && rho < 1 )
4 Y <- rbinom(n, prob = Pi, size = 1)
5 N <- rbinom(n, prob = rho, size = m)
6 X <- rbinom(n, prob = Pi, size = m-N)
7 N*Y + X
8 }
9

10 d.rcb <- function(x, Pi, rho, m, log = FALSE)
11 {
12 stopifnot( 0 < rho && rho < 1 )
13 fc1 <- dbinom(x, prob = (1 - rho) * Pi + rho, size = m)
14 fc2 <- dbinom(x, prob = (1 - rho) * Pi, size = m)
15 ff <- Pi * fc1 + (1-Pi) * fc2
16
17 if (log) return(log(ff))
18 else return(ff)
19 }

Again, as a way to quickly check our code, we will compare the histogram of a very large iid
sample to the density.

1 source("/home/araim/R/rcb.R")
2 n <- 100000; m <- 20
3 Pi <- 1/4; rho = 0.4
4 x <- 0:m
5 y <- r.rcb(n, Pi, rho, m)
6 f <- factor(y, levels=0:m)
7 p <- table(f)/n
8 ylim <- c(0, max(p) * 1.05)
9 coords <- barplot(p, ylim = ylim, xlab = "x", ylab = "Density")

10 points(coords, d.rcb(x, Pi, rho, m), pch = 19)
11 title("Histogram vs. Density")
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2.5 Binomial Finite Mixture
A finite mixture is formulated by taking a linear combination of J densities with corresponding
weights π = (π1, . . . , πJ). Many options are possible; for example, a zero-inflated binomial
distribution can be obtained by mixing a binomial density with a point mass at zero. Here we
consider the binomial finite mixture, where J binomial densities are mixed together. This is
useful to represent a heterogeneous population with differing probabilities of success, or more
generally just to obtain a model which can account for more variability than a single binomial
density. A common issue is finding an appropriate choice of J . The binomial finite mixture
has density

f(y | m,p,π) =
J∑
j=1

πj

(
m

y

)
pyj (1− pj)m−y,

where p = (p1, . . . , pJ) and π = (π1, . . . , πJ). We will use the notation Y ∼ BinMixJ(m,p,π)
to describe a random variable with this distribution. Note that

E(Y ) = mπTp, Var(Y ) = m(m− 1)
J∑
j=1

πjp
2
j +mπTp

(
1−mπTp

)

Let us create a file /home/araim/R/binmix.R with functions to compute and draw from this
density.
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File: /home/araim/R/binmix.R
1 d.binom.mix <- function(x, p, Pi, m, log = FALSE)
2 {
3 J <- length(Pi)
4 fc <- matrix(NA, length(x), J)
5 for (j in 1:J) {
6 fc[,j] <- dbinom(x, prob = p[j], size = m)
7 }
8
9 if (log) log(fc %*% Pi)

10 else fc %*% Pi
11 }
12
13 r.binom.mix <- function(n, p, Pi, m)
14 {
15 J <- length(Pi)
16 z <- sample(1:J, prob = Pi, replace = TRUE, size = n)
17
18 if (class(p) == "matrix") {
19 idx <- cbind(1:n, z)
20 prob <- p[idx]
21 } else {
22 prob <- p[z]
23 }
24
25 rbinom(n, prob = prob, size = m)
26 }

In the function r.binom.mix, we allow for the possibility that p is an n x J matrix, with the
ith row corresponding to the ith observation, and the J columns in that row corresponding
to its mixing probabilities. Here again is our test comparing the histogram of a large sample
with the density.

1 source("/home/araim/R/binmix.R")
2 n <- 100000; m <- 20
3 x <- 0:m
4 p <- c(1/2, 1/5, 1/10)
5 Pi <- c(1/6, 2/6, 3/6)
6 y <- r.binom.mix(n, p, Pi, m)
7 f <- factor(y, levels=0:m)
8 prop <- table(f)/n
9 ylim <- c(0, max(prop) * 1.05)

10 coords <- barplot(prop, ylim = ylim, xlab = "x", ylab = "Density")
11 points(coords, d.binom.mix(x, p, Pi, m), pch = 19)
12 title("Histogram vs. Density")
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2.6 Mixture Link Binomial
The Mixture Link model was introduced in (Raim, 2014), as a method to link the mean of
a binomial finite mixture to a regression. This might be desirable when the probability of
success for the population is the quantity of interest, but the population is heterogeneous or
the data are otherwise fitted well by a finite mixture.

To formulate the Mixture Link binomial model, we first assume a binomial finite mixture

f(y | m,θ) =
J∑
j=1

πj

(
m

y

)
µtj(1− µj)m−t

whose mean is E(Y ) = m
∑J
j=1 πjµj. The objective is to link a regression xTβ to the mixed

probability of success ∑J
j=1 πjµj through an inverse link function G (say, the logistic CDF

which is used for logistic regression). For a fixed β and π, and a covariate x, consider the
set

A(x,β,π) = {µ ∈ [0, 1]J : µTπ = G(xTβ)},

which explicitly represents all the vectors of binomial probabilities µ = (µ1, . . . , µJ) where
the link is enforced. The Mixture Link model assumes µi are subject-specific random effects
drawn from the set A(xi,β,π) for i = 1, . . . , n. The random effects are assumed to follow
a transformation of the Dirichlet distribution, using the vertices of the polytope A(xi,β,π).
The Mixture Link density is obtained by integrating out the random effects. The model can
be written hierarchically as

Yi | µi,π
ind∼ BinMix(mi,µi,π)

µi = V (i)λ(i), where V (i) = (v(i)
1 · · ·v

(i)
ki

) are vertices of A(xi,β,π)

λ(i) ind∼ Dirichletki
(κ, . . . , κ),

and is parameterized by θ = (β,π, κ). It may also be formulated when there is no regression,
but the parameter of interest is the population probability of success p = ∑J

j=1 πjµj. In this
case, the set representing enforcement the link is

A(p,π) = {µ ∈ [0, 1]J : µTπ = p},

and the model is parameterized by θ = (p,π, κ). Denote V = (v1 · · ·vk) as the matrix
whose columns are the vertices of A(p,π). In the case of no regression, the expectation and
variance can be written as

E(Y ) = mp, Var(Y ) = mp (1−mp) +m(m− 1)
J∑
j=1

πj
vTj.vj. + κ(kv̄j.)2

k(1 + κk) ,

where vj. denotes the jth row of the matrix V , and v̄j. denotes the mean of that row.
Functions to evaluate and draw from the Mixture Link density are not included in this

document because of their length and relative complexity compared to the previous distribu-
tions, but the reader may refer to the source code we have provided. Let us carry out the test
comparing the histogram to the density, at least to demonstrate the functions.
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1 n <- 100000; m <- 20
2 x <- 0:m
3 p <- 1/4; Pi <- c(1/6, 5/6); kappa <- 2
4 y <- r.mixture.link(n, p, Pi, kappa, m)
5 f <- factor(y, levels=0:m)
6 prop <- table(f)/n
7 ylim <- c(0, max(prop) * 1.05)
8 coords <- barplot(prop, ylim = ylim, xlab = "x", ylab = "Density")
9 points(coords, d.mixture.link(x, m, p, Pi, kappa), pch = 19)

10 title("Histogram vs. Density")
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2.7 Multinomial Finite Mixture
Multinomial distributions are appropriate for trials with more than two possible outcomes. First
consider the simple multinomial distribution involving m independent trials with k possible
outcomes. Suppose the probabilities of the outcomes are given by p1, . . . , pk. The density is
given by

f(y | m,p) = m!
y1! · · · yk!

py1
j · · · p

yk
k , y ∈

{
(y1, . . . , yk) : yj ∈ {0, . . . ,m},

k∑
j=1

yj = m
}
.

A multinomial finite mixture is then contructed by mixing J multinomial densities,

f(y | m,P ,π) =
J∑
`=1

πj
m!

y1! · · · yk!
py1
`1 · · · p

yk
`k ,

where P = (p1 · · ·pJ) is a k × J matrix whose columns are probability vectors. We will use
the notation Y ∼ MultMixJ(m,P ,π) to describe a random variable with this distribution.
We can write the expectation and variance of Y compactly as

E(Y ) = Pπ, Var(Y ) = m(m− 1)P Diag(π)P T +mDiag(Pπ)−m2PππTP T .

The notation Diag(x) represents a diagonal matrix constructed from x = (x1, . . . , xn), with
x1 in the 1st row/1st column, x2 in the 2nd row/2nd column, and so on.

The multinomial density function dmultinom in base R is not vectorized, so it is instructive
(and useful) to write a version ourselves. The following version will be efficient if evaluated
over many observations at once, but not when there are few observations with many categories.
In the latter case, performance will be similar to calling the dmultinom in base R using a loop.
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File: /home/araim/R/multinom.R
1 dmultinom <- function(x, size, prob, log = FALSE)
2 {
3 k <- nrow(x)
4 n <- ncol(x)
5
6 fj <- matrix(NA, n, k)
7 for (j in 1:k) {
8 fj[,j] <- -lgamma(x[j,]+1) + x[j,] * log(prob[j])
9 }

10
11 log.ff <- lgamma(m+1) + rowSums(fj)
12 if (log) return(log.ff)
13 else return(exp(log.ff))
14 }

Next we will implement the multinomial mixture density.
File: /home/araim/R/multmix.R

1 r.multmix <- function(n, P, Pi, m)
2 {
3 J <- length(Pi)
4 k <- nrow(P)
5 z <- sample(1:J, prob = Pi, replace = TRUE, size = n)
6
7 if (length(m) == 1) m <- rep(m,n)
8 y <- matrix(NA, nrow = k, ncol = n)
9

10 for (i in 1:n) {
11 y[,i] <- rmultinom(1, prob = P[,z[i]], size = m[i])
12 }
13
14 return(y)
15 }
16
17 d.multmix <- function(x, P, Pi, m, log = FALSE)
18 {
19 Pi <- normalize(Pi)
20 J <- length(Pi)
21 n <- ncol(x)
22
23 ff <- matrix(NA, n, J)
24 for(j in 1:J) {
25 ff[,j] <- dmultinom(x, m, P[,j])
26 }
27
28 res <- as.numeric(ff %*% Pi)
29 if (log) return(log(res))
30 else return(res)
31 }

Here, P is a k x J matrix. Again, we check the code by comparing the histogram of a large
iid sample with the density. We elect to view the density and sample proportion as a table
of discrete values rather than a simple plot. (It is also possible to plot each quantity on a
two-dimensional grid if desired).
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1 n <- 1000000
2 m <- 20
3
4 P <- matrix(NA, nrow = 3, ncol = 3)
5 P[,1] <- c(1/2, 1/4, 1/4)
6 P[,2] <- c(1/5, 1/10, 7/10)
7 P[,3] <- c(1/10, 5/10, 4/10)
8
9 Pi <- c(1/6, 2/6, 3/6)

10 y <- r.multmix(n, P, Pi, m)
11
12 for (i in seq(1,m+1)) {
13 for (j in seq(1,m+1)) {
14 x <- matrix( c(i-1, j-1, m - (i-1) - (j-1)), 3, 1 )
15 if (x[3,] > m || x[3,] < 0) next
16 cat("x =", x)
17 printf("\tdensity = %g, ", d.multmix(x, P, Pi, m))
18 printf("prop = %g\n", sum(y[1,] == x[1,] & y[2,] == x[2,]) / n)
19 }
20 }

x = 0 0 20 density = 0.00026598, prop = 0.000277
x = 0 1 19 density = 0.000760064, prop = 0.000721
x = 0 2 18 density = 0.00103296, prop = 0.001054
x = 0 3 17 density = 0.000896237, prop = 0.000898
x = 0 4 16 density = 0.000601741, prop = 0.000604
...

The printf function is not built into R; we will define it later in Section 3.

2.8 Dirichlet-Multinomial
Dirichlet-multinomial (DM) is the multinomial analogue of the beta-binomial distribution. See
Section 7.7 of OMSAS. In the DM distribution, the vector of category probabilities is assumed
to be drawn from the Dirichlet distribution

Y | µ ∼ MultJ(m,µ),
µ ∼ DirichletJ(α).

This makes DM one type of multinomial distribution with extra variation. We consider the
parameterization which takes α = cπ, where π is a probability vector and c = ρ−2(1− ρ2).
The density is given by

f(y | m,π, ρ) = m!
y1! · · · yk!

Γ(c)
Γ(c+m)

k∏
j=1

Γ(yj + cπj)
Γ(cπj)

,

and the notation Y ∼ DMk(m,π, ρ) is used to describe a random variable with this density.
The expectation and variance of Y are given by

E(Y ) = mπ, Var(Y ) = m[1 + ρ2(m− 1)]
[
Diag(π)− ππT

]
.

The following code allows us to evaluate and draw from the density in R.
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File: /home/araim/R/dm.R
1 r.dm <- function(n, Pi, rho, m)
2 {
3 k <- length(Pi)
4 if (length(m) == 1) m <- rep(m, n)
5 C <- rho^(-2) * (1 - rho^2)
6 alpha <- C * Pi
7 z <- rdirichlet(n, alpha)
8
9 Y <- matrix(NA, k, n)

10 for (i in 1:n) {
11 Y[,i] <- rmultinom(1, prob = z[i,], size = m[i])
12 }
13
14 return(Y)
15 }
16
17 d.dm <- function(x, Pi, rho, m, log = FALSE)
18 {
19 k <- length(Pi)
20 n <- ncol(x)
21 if (length(m) == 1) m <- rep(m, n)
22 C <- rho^(-2) * (1 - rho^2)
23 alpha <- C * Pi
24
25 log.part <- matrix(NA, n, k)
26 for (j in 1:k) {
27 log.part[,j] <- lgamma(alpha[j] + x[j,]) - lgamma(alpha[j]) - lgamma(x[j,] + 1)
28 }
29
30 log.ff <- lgamma(m+1) + lgamma(C) - lgamma(C + m) + rowSums(log.part)
31 if (log) return(log.ff)
32 else return(exp(log.ff))
33 }

As in the function d.multmix, we evaluate the DM density in a vectorized manner over n
observations. Now we carry out our simple test to ensure d.dm and r.dm are implemeting the
same distribution.

1 n <- 1000000
2 m <- 20
3 Pi <- c(1/6, 2/6, 3/6)
4 rho <- 1/4
5 y <- r.dm(n, Pi, rho, m)
6
7 for (i in seq(1,m+1)) {
8 for (j in seq(1,m+1)) {
9 x <- matrix( c(i-1, j-1, m - (i-1) - (j-1)), 3, 1 )

10 if (x[3,] > m || x[3,] < 0) next
11 cat("x =", x)
12 printf("\tdensity = %g, ", d.dm(x, Pi, rho, m))
13 printf("prop = %g\n", sum(y[1,] == x[1,] & y[2,] == x[2,]) / n)
14 }
15 }

x = 0 0 20 density = 0.000329156, prop = 0.000332
x = 0 1 19 density = 0.0012421, prop = 0.001232
x = 0 2 18 density = 0.00277645, prop = 0.002772
x = 0 3 17 density = 0.00475963, prop = 0.004693
x = 0 4 16 density = 0.00688628, prop = 0.006862
...

19



2.9 Random-Clumped Multinomial
Random-clumped multinomial (RCM) is the multinomial analogue of random-clumped bino-
mial. See Section 7.8 of OMSAS. RCM arises by considering variables

Y ∼ Mult(1,π),
X ∼ Bin(m−N,π),
N ∼ Bin(m, ρ).

The observation T = NY +X follows the RCB distribution with parameters π and ρ, notated
as T ∼ RCMk(m,π, ρ). As in RCB, Y represents selection of a leader, N is the number
of trials that follows the leader, and X represents the remaining trials that are selected
independently. Therefore, T is a sum of multinomial trials which are dependent, and the
degree of depedence is increased as ρ ↑ 1. We may interpret π as the category probabilities
for the RCM trials, and ρ ∈ (0, 1) as the probability of following the leader. The density of
RCM can be expressed as a finite mixture of k multinomial densities, with mixing proportions
π and the jth mixture component as Multk(m,pj), where

pj = (1− ρ)π + ρej, j = 1, . . . , k

and ej is the jth column of the k × k identity matrix. The expectation and variance of T
turn out to be identical to the expressions from Dirichlet-multinomial, namely

E(T ) = mπ, Var(T ) = m[1 + ρ2(m− 1)]
[
Diag(π)− ππT

]
.

The following code evaluates and draws from the density in R.
File: /home/araim/R/rcm.R

1 r.rcm <- function(n, Pi, rho, m)
2 {
3 k <- length(Pi)
4 stopifnot( 0 < rho && rho < 1 )
5 if (length(m) == 1) m <- rep(m, n)
6 Y <- rmultinom(n, prob = Pi, size = 1)
7 N <- rbinom(n, prob = rho, size = m)
8 X <- sapply(m-N, rmultinom, n = 1, prob = Pi)
9 N.mat <- matrix(N, k, n, byrow = TRUE)

10 N.mat*Y + X
11 }
12
13 d.rcm <- function(x, Pi, rho, m, log = FALSE)
14 {
15 k <- length(Pi)
16 Pi <- normalize(Pi) # We get strange results if Pi isn’t normalized
17 P <- (1 - rho) * Pi + diag(rho, k, k)
18 d.multmix(x, P, Pi, m, log)
19 }

Notice that in d.rcm, we make use of the d.multmix function presented in Section 2.7. Here
is our test to ensure d.rcm and r.rcm are implemeting the same distribution.
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1 n <- 1000000
2 m <- 20
3 Pi <- c(1/6, 2/6, 3/6)
4 rho <- 1/4
5 y <- r.rcm(n, Pi, rho, m)
6
7 for (i in seq(1,m+1)) {
8 for (j in seq(1,m+1)) {
9 x <- matrix( c(i-1, j-1, m - (i-1) - (j-1)), 3, 1 )

10 if (x[3,] > m || x[3,] < 0) next
11 cat("x =", x)
12 printf("\tdensity = %g, ", d.rcm(x, Pi, rho, m))
13 printf("prop = %g\n", sum(y[1,] == x[1,] & y[2,] == x[2,]) / n)
14 }
15 }

x = 0 0 20 density = 4.13605e-05, prop = 3.2e-05
x = 0 1 19 density = 0.000330906, prop = 0.000317
x = 0 2 18 density = 0.0012577, prop = 0.001253
x = 0 3 17 density = 0.00302045, prop = 0.002988
x = 0 4 16 density = 0.00514576, prop = 0.005088
...

3 Numerical Framework for Maximum Likelihood
In this section, we develop a framework for numerical maximum likelihood which can be used
to replicate analysis of examples in OMSAS, which have been carried out in SAS via PROC
NLMIXED and PROC GLIMMIX. These examples make use of BB, RCB, and other distributions
which are not readily fit in R without some work (i.e. programming or searching for an ap-
propriate package). Given a likelihood model, data, and analysis objectives, we would like
to obtain estimates, confidence intervals, and model fit statistics via MLE without too much
programming for each new problem.

The reader may want to skip to Section 6 to see the example data analyses first, then
return here to see the underlying framework. A complete version of the code is provided as
the package OverdispersionModelsInR; see Section 1.1.

3.1 Methodology
Suppose Yi ind∼ fi(y | θ) for i = 1, . . . , n so that we observe y1, . . . , yn. Often, fi(y | θ) =
f(y | θ,xi) so that the fi vary only by a covariate xi. Generically, we will denote all the data
needed for the given likelihood as D. The log-likelihood is logL(θ) = ∑n

i=1 log[fi(yi | θ)],
and the maximum likelihood estimator (MLE) θ̂ is found by maximizing logL(θ) over θ in
the parameter space Θ. Numerical optimization routines may be used when the maximization
cannot worked out in closed form. Unconstrained optimization routines are the most com-
monly available in software, but the space Θ often has natural constraints. For example, there
may be range restrictions on individual parameters (e.g. the probability of success of a bino-
mial must be between 0 and 1), or the restrictions may involve multiple parameters (e.g. the
probabilities of a multinomial must be non-negative and sum to 1). For our optimization
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routine, we assume that the Hessian

H(θ̂) = ∂2

∂θ∂θT
logL(θ)

∣∣∣∣∣∣
θ=θ̂

will be returned along with the solution θ̂.
One way to compute θ̂ using an unconstrained optimizer is to consider θ = θ(φ) as a

smooth transformation of unconstrained variables φ ∈ Rq. We will assume that the transfor-
mation is invertible. Then maximizing logL(θ(φ)) over φ yields a solution φ̂ and Hessian
H(φ̂). Multivariate optimization routines often require a starting value φ(0) to be provided
as an input, and we will assume this in our framework.

We may also be interested in additional functions ξ(θ) of θ which do not appear in the
likelihood. For example, in a binomial analysis of a 2 × 2 table, we are often interested in
the odds-ratio for a treatment vs. control. The ξ of interest varies from problem to problem,
even when the same model is used. We define ψ(φ) = (θ, ξ) to be the combined parameters
of interest: those needed to compute the likelihood plus additional parameters of interest.

Given the solution φ̂ and Hessian H(φ̂), ψ̂ = ψ(φ̂) is an MLE of ψ by the invariance
property. The large sample variance V(ψ̂) can also be estimated in the following way. If the
large sample distribution of φ̂ is N(φ, I−1(φ)) with I(φ) denoting the Fisher information
matrix, then V̂(φ̂) = [−H(φ̂)]−1 is an estimate of V(φ̂). The large sample distribution of ψ̂
is then

N
ψ,(∂ψ

∂φ

)
I−1(φ)

(
∂ψ

∂φ

)T ,
whose variance can be estimated by

V̂(ψ̂) =
(
∂ψ

∂φ

)
[−H(φ)]−1

(
∂ψ

∂φ

)T ∣∣∣∣∣∣
φ=φ̂

.

The use of a numerical differentiation routine may be used to compute ∂ψ/∂φ at a given
φ̂. Using this method, it is possible to compute ψ̂ and V̂(ψ̂) numerically, given a like-
lihood, without additional derivations by hand. Furthermore, standard errors SE(ψ̂j) for
j = 1, . . . , dim(ψ) may be computed from the diagonal of V̂(ψ̂). Corresponding t-values
may be computed as t-valuej = ψ̂j/ SE(ψ̂j), and p-values for the tests H0 : ψj = 0 vs.
H1 : ψj 6= 0 may be computed using p-valuej = P(|t| ≥ t-valuej), where t is distributed
from Student’s t-distribution with n degrees of freedom. We may compute components of
the gradient ∂

∂ψ
logL(θ) at the solution θ̂, which is a useful diagnostic provided by PROC

NLMIXED.
To summarize, the inputs to our numerical MLE framework will be:

• The data D needed to evaluate the likelihood, including any observations and covariates.
• The likelihood L(θ) describing our statistical model.
• Unconstrained start values φ(0) for the optimization.
• A transformation θ(φ) ∈ Θ to obtain valid likelihood parameters from a given φ.
• Additional functions ξ(θ) of θ which are of interest to us.
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The outputs will be:

• Estimates ψ̂.
• Estimate of the variance V̂(ψ̂).
• Standard errors SE(ψ̂j).
• t-valuej = ψ̂j/ SE(ψ̂j).
• p-valuej = P(|t| ≥ t-valuej) where t ∼ tn.
• The gradient ∂

∂ψj
logL(θ) evaluated at θ = θ̂.

• Log-likelihood, AIC, BIC, and other functions of logL(θ̂) that are generally useful.

3.2 R Code
We will use two numerical tools in R to program our MLE framework: the optim function for
optimization and the numderiv package for numerical derivatives. To demonstrate optim,
consider maximizing the function f(x) = −∑n

i=1 x
2
i over x ∈ Rn. In this simple example, it

is immediate that x∗ = 0 maximizes f with f(x∗) = 0. Let us do this computation in R.

> f <- function(x) { -sum(x^2) }
> x0 <- rep(1/2, 10)
> res <- optim(x0, f, method = "L-BFGS-B", control = list(fnscale = -1))
> res
$par
[1] 2.414044e-20 2.414044e-20 2.414044e-20 2.414044e-20 2.414044e-20 2.414044e-20
[7] 2.414044e-20 2.414044e-20 2.414044e-20 2.414044e-20

$value
[1] -5.827608e-39

$counts
function gradient

4 4

$convergence
[1] 0

$message
[1] "CONVERGENCE: NORM OF PROJECTED GRADIENT <= PGTOL"

Notice that the dimension of x is not specified in f, and is only determined by the initial value
x0 used in optim. We have selected the Quasi-Newton method L-BFGS-B as our optimization
algorithm, and have specified fnscale = -1 to tell optim that this is a maximization problem
rather than a minimization problem. We obtain a solution that is not exactly x∗ = 0, but is
very close. The value 0 for res$convergence indicates that the algorithm has converged.
We could also pass the argument hessian = TRUE to request that optim return the Hessian
matrix.

To install the package numDeriv from CRAN, use the following command.

> install.packages("numDeriv")

Consider computing the Jacobian of the function f : Rn → Rn defined by f(x) = (x1, x1 +
x2, . . . , x1 + · · · + xn). In this simple example, the Jacobian is computed exactly as the
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lower-triangular matrix of ones

J{f}(x) =


1 0 · · · 0 0
1 1 · · · 0 0
1 1 . . . 1 0
1 1 · · · 1 1

 .

Let us carry out the computation in R. Notice that we must specify a point x0 at which to
evaluate the Jacobian, even though J{f}(x) is constant over x in this particular example.
Also note that the function f is implemented in R as the cumsum function.

> library(numDeriv)
> x0 <- rep(0, 5)
> jacobian(cumsum, x0)

[,1] [,2] [,3] [,4] [,5]
[1,] 1 0 0 0 0
[2,] 1 1 0 0 0
[3,] 1 1 1 0 0
[4,] 1 1 1 1 0
[5,] 1 1 1 1 1

Let us proceed in constructing the MLE framework using the RCB distribution as an example.
Recall that φ are the unconstrained optimization variables and θ(φ) are the variables needed
to evaluate the likelihood. For the setting Yi iid∼ RCB(π, ρ), we will take φ ∈ R2 and let
θ = (π, ρ) so that π = G(φ1) and ρ = G(φ2) where G is the logistic CDF. This will ensure
that π and ρ are both constained to the interval (0, 1). We can construct the log-likelihood
in the following way.

File: /home/araim/R/likelihood-rcb.R
1 source("/home/araim/R/rcb.R")
2
3 theta.tx <- function(phi)
4 {
5 list(Pi = plogis(phi[1]), rho = plogis(phi[2]))
6 }
7
8 loglik <- function(phi, Data)
9 {

10 theta <- theta.tx(phi)
11 sum( d.rcb(Data$y, Pi = theta$Pi, rho = theta$rho,
12 m = Data$m, log = TRUE) )
13 }

The function theta.tx is the transformation from φ to θ. Here we have returned a list for
convenience, so that later we can use an expression like theta$rho to access ρ rather than
theta[2] (which is what we would use if we returned a numerical vector). We also require
that the likelihood data D be made available as the list Data. Now we can evaluate the
likelihood given a particular dataset, say, one we have drawn ourselves.

> y <- r.rcb(n = 100, Pi = 0.25, rho = 0.4, m = 20)
> Data <- list(y = y, m = 20)
> phi <- c(0,0)
> loglik(phi, Data)
[1] -334.9084

We now compute the MLE of φ, although the optimization variables themselves may not be
our eventual interest.
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> phi.init <- c(0,0)
> res <- optim(phi.init, loglik, method = "L-BFGS-B", control = list(fnscale = -1),
+ hessian = TRUE, Data = Data)
> phi.hat <- res$par
> V.phi <- solve(-res$hessian)
> print(phi.hat)
[1] -1.1014219 -0.5168278
> print(V.phi)

[,1] [,2]
[1,] 0.006599719 0.001625827
[2,] 0.001625827 0.009781809

Next we will transform to the estimates and estimated variances for ψ = (θ, ξ). Suppose we
are interested in the additional parameters ξ = (log π, ρ2) as well.

File: /home/araim/R/transform-rcb.R
1 extra.tx <- function(theta)
2 {
3 list(log.Pi = log(theta$Pi), rho.sq = theta$rho^2)
4 }
5
6 psi.tx <- function(phi)
7 {
8 theta <- theta.tx(phi)
9 psi1 <- unlist(theta)

10 psi2 <- unlist(extra.tx(theta))
11 psi <- c(psi1, psi2)
12 return(psi)
13 }
14
15 theta.hat <- theta.tx(phi.hat)
16 xi.hat <- extra.tx(theta.hat)
17 psi.hat <- psi.tx(phi.hat)
18
19 V.phi <- solve(-res$hessian)
20 J.tx <- jacobian(psi.tx, phi.hat)
21 V.psi <- J.tx %*% V.phi %*% t(J.tx)

Notice that psi.tx returns a vector rather than a list. This makes it usable with the
jacobian function. We now have the following results.

> unlist(theta.hat)
Pi rho

0.2494736 0.3735943
> unlist(xi.hat)

log.Pi rho.sq
-1.3884023 0.1395727
> psi.hat

Pi rho log.Pi rho.sq
0.2494736 0.3735943 -1.3884023 0.1395727

> V.phi
[,1] [,2]

[1,] 0.006599719 0.001625827
[2,] 0.001625827 0.009781809
> J.tx

[,1] [,2]
[1,] 0.1872365 0.0000000
[2,] 0.0000000 0.2340216
[3,] 0.7505264 0.0000000
[4,] 0.0000000 0.1748583
> V.psi

[,1] [,2] [,3] [,4]
[1,] 2.313697e-04 0.0000712395 0.0009274318 5.322934e-05
[2,] 7.123950e-05 0.0005357116 0.0002855593 4.002776e-04
[3,] 9.274318e-04 0.0002855593 0.0037175555 2.133667e-04
[4,] 5.322934e-05 0.0004002776 0.0002133667 2.990828e-04
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The unlist function converts a list into a vector; here we have used it to display the output
more compactly for our list variables. Now psi.hat represents ψ̂ and V.psi represents
V̂(ψ̂). We can now compute a table with the estimates, standard errors, t-values, and p-
values.

> df <- n
> se <- sqrt(diag(V.psi))
> t.val <- psi.hat / se
> p.val <- 2 * (1 - pt(abs(t.val), df))
> gr <- J.tx %*% grad(loglik, x = phi.hat, Data = Data)
> estimates <- cbind(psi.hat, se, t.val, p.val, gr)
> colnames(estimates) <- c("Estimate", "SE", "t-val", "P(|t|>t-val)", "Gradient")
> estimates

Estimate SE t-val P(|t|>t-val) Gradient
Pi 0.2580914 0.01620894 15.922784 0 3.363525e-06
rho 0.4404795 0.02613963 16.851023 0 3.855720e-06
log.Pi -1.3544414 0.06280309 -21.566479 0 1.303230e-05
rho.sq 0.1940222 0.02302794 8.425511 0 3.396731e-06

Note that grad is a function in the numDeriv package which computes the gradient of a
function f evaluated at a point x. We may also be interested in quantites such as logL(θ̂),

AIC = −2 logL(θ̂) + 2q,
BIC = −2 logL(θ̂) + q log(n),

AICC = −2 logL(θ̂) + 2nq
n− q − 1 .

where q = dim(θ). Note that the variable name q is reserved for the “quit” function in R, so
we use qq instead.

> qq <- length(unlist(theta.hat))
> n <- length(Data$y)
> ( loglik.hat <- res$value )
[1] -257.6272
> ( aic <- -2 * loglik.hat + 2*qq )
[1] 519.2543
> ( aicc <- -2 * loglik.hat + 2*qq*n / (n-qq-1) )
[1] 519.378
> ( bic <- -2 * loglik.hat + qq*log(n) )
[1] 524.4647

Listing 1 presents code for the function fit-mle.R. It computes the table of estimates and
some additional statistics based on numerical maximization of the log-likelihood given ingre-
dients: a loglik function, a theta.tx transformation to compute likelihood parameters,
an extra.tx transformation to compute additional parameters of interest, an initial value
phi.init for the optimizer, and the Data.
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File: /home/araim/R/fit-mle.R
1 library(numDeriv)
2
3 fit.mle <- function(phi.init, loglik, theta.tx, extra.tx, Data)
4 {
5 stopifnot(!is.null(Data$n))
6 n <- Data$n
7
8 psi.tx <- function(phi)
9 {

10 theta <- theta.tx(phi)
11 psi1 <- unlist(theta)
12 psi2 <- unlist(extra.tx(theta))
13 psi <- c(psi1, psi2)
14 return(psi)
15 }
16
17 optim.res <- optim(par = phi.init, fn = loglik, method = "L-BFGS-B",
18 control = list(fnscale = -1), hessian = TRUE, Data = Data)
19
20 phi.hat <- optim.res$par
21 theta.hat <- theta.tx(phi.hat)
22 xi.hat <- extra.tx(theta.hat)
23 psi.hat <- psi.tx(phi.hat)
24
25 V.phi <- solve(-optim.res$hessian)
26 J.tx <- jacobian(psi.tx, phi.hat)
27 V.psi <- J.tx %*% V.phi %*% t(J.tx)
28
29 loglik.hat <- optim.res$value
30 qq <- length(unlist(theta.hat))
31 aic <- -2 * loglik.hat + 2*qq
32 aicc <- -2 * loglik.hat + 2*qq*n / (n-qq-1)
33 bic <- -2 * loglik.hat + qq*log(n)
34
35 df <- n
36 se <- sqrt(diag(V.psi))
37 t.val <- psi.hat / se
38 p.val <- 2 * (1 - pt(abs(t.val), df = df))
39 gr <- J.tx %*% grad(loglik, x = phi.hat, Data = Data)
40
41 estimates <- cbind(psi.hat, se, t.val, p.val, gr)
42 colnames(estimates) <- c("Estimate", "SE", "t-val", "P(|t|>t-val)", "Gradient")
43
44 res <- list(estimates = estimates, loglik = loglik.hat, aic = aic,
45 aicc = aicc, bic = bic, vcov = V.psi, optim.res = optim.res)
46 class(res) <- "mle.fit"
47 return(res)
48 }

Listing 1: Code for main function of numerical MLE framework.

Notice that before the final result is returned, we have specified that is of class mle.fit,
which will be used later. Also, we require Data to contain a sample size n which is needed
for calculation of AIC, BIC, etc. Next we present a function fit-rcb-mle.R which fits the
likelihood of Yi iid∼ RCB(π, ρ) using the fit.mle function.

27



File: /home/araim/R/fit-rcb-mle.R
1 source("rcb.R")
2 source("fit-mle.R")
3
4 fit.rcb.mle <- function(y, m, extra.tx)
5 {
6 Data <- list(y = y, m = m, n = length(y))
7 qq <- 2
8 phi.init <- rep(0, qq)
9

10 theta.tx <- function(phi)
11 {
12 list(Pi = plogis(phi[1]), rho = plogis(phi[2]))
13 }
14
15 loglik <- function(phi, Data)
16 {
17 theta <- theta.tx(phi)
18 sum( d.rcb(Data$y, Pi = theta$Pi, rho = theta$rho,
19 m = Data$m, log = TRUE) )
20 }
21
22 fit.out <- fit.mle(phi.init, loglik, theta.tx, extra.tx, Data)
23 fit.out$description <- "y[i] ~iid~ RCB(Pi, rho)"
24 return(fit.out)
25 }

Notice that the only inputs are the data y and m, and the additional transformation function
extra.tx. Before returning the fit, we add a descriptive string that specifies the model.
Fitting the RCB likelihood can now be done in a few lines.

> source("fit-rcb-mle.R")
> n <- 100
> m <- 20
> y <- r.rcb(n, Pi = 1/4, rho = 0.4, m = m)
> extra.tx <- function(theta) { list(log.Pi = log(theta$Pi), rho.sq = theta$rho^2) }
> fit.out <- fit.rcb.mle(y, m, extra.tx)
> fit.out$estimates

Estimate SE t-val P(|t|>t-val) Gradient
Pi 0.2580914 0.01620894 15.922784 0 3.363525e-06
rho 0.4404795 0.02613963 16.851023 0 3.855720e-06
log.Pi -1.3544414 0.06280309 -21.566479 0 1.303230e-05
rho.sq 0.1940222 0.02302794 8.425511 0 3.396731e-06

The list fit.out contains many fields, and printing it gives a long output. We can format
the output to get a nicer display by adding the function print.fit.out to the file fit-mle.R.
Let us also add a function printf for printing of formatted messages, similar to printf in
C. We use the built-in R function sprintf to handle formatting.
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1 printf <- function(msg, ...) { cat(sprintf(msg, ...)) }
2
3 print.mle.fit <- function(fit.out)
4 {
5 printf("Fit for model:\n")
6 printf("%s\n", fit.out$description)
7 printf("--\n")
8
9 estimates <- fit.out$estimates

10 estimates[,1] <- round(estimates[,1], 4)
11 estimates[,2] <- round(estimates[,2], 4)
12 estimates[,3] <- round(estimates[,3], 4)
13
14 print(estimates)
15 printf("--\n")
16 printf("LogLik = %0.4f\n", fit.out$loglik)
17 printf("AIC = %0.4f\n", fit.out$aic)
18 printf("AICC = %0.4f\n", fit.out$aicc)
19 printf("BIC = %0.4f\n", fit.out$bic)
20 }

> fit.out
Fit for model:
y[i] ~iid~ RCB(m[i], Pi, rho)
--

Estimate SE t-val P(|t|>t-val) Gradient
Pi 0.2580914 0.01620894 15.922784 0 3.363525e-06
rho 0.4404795 0.02613963 16.851023 0 3.855720e-06
log.Pi -1.3544414 0.06280309 -21.566479 0 1.303230e-05
rho.sq 0.1940222 0.02302794 8.425511 0 3.396731e-06
--
LogLik = -243.8098
AIC = 491.6195
AICC = 491.7433
BIC = 496.8299

It is not a coincidence that we named our function print.mle.fit, and that the object
returned from fit.mle has been given class type mle.fit. This is a simple use of object
oriented programming in R. When we call print on an object of type fit.mle, R will see that
the function print.mle.fit exists, and will use it to print our object. This is because the
print function has been defined specially. Let us check the definition of the print function.

> print
function (x, ...)
UseMethod("print")
<bytecode: 0x2b8b258>
<environment: namespace:base>

The declaration UseMethod("print") lets us know that R will try to find a specialized print
function for our object if we simply write print(object). Also notice that when we viewed
our results, we simply wrote fit.out, which is a shorthand for print(fit.out).

4 Scoring Framework for Maximum Likelihood
It may be desirable to avoid use of sophisticated optimization routines in statistical applica-
tions. Optimization based on Newton-Raphson or scoring uses simpler iterations, which are
more easily coded and often work very well. In this section we will briefly present a framework
for scoring type algorihms.
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4.1 Methodology
Denote θ generically as the parameter of interest, θ(g) as the gth iterate in an iterative
algorithm, S(θ) as the score function, H(θ) as the Hessian of the score function, and I(θ)
as the Fisher information matrix (FIM). Two widely used algorithms are Newton-Raphson,
with iterations

θ(g+1) = θ(g) −
{
H(θ(g))

}−1
S(θ(g)), g = 0, 1, 2, . . . (1)

and Fisher scoring

θ(g+1) = θ(g) +
{
I(θ(g))

}−1
S(θ(g)), g = 0, 1, 2, . . . (2)

which replaces the Hessian with the information matrix. These algorithms have a fast rate of
convergence to a solution (of the likelihood equations) when given a starting value θ(0) near
the solution. However, they may have difficulty making progress if started from an arbitrary
starting value. Raim et al. (2014) find this to be the case when fitting multinomial finite
mixtures, whose likelihood may be relatively difficult to maximize numerically compared to,
say, the standard multinomial, DM, or RCM. Raim et al. (2014) consider an approximate
scoring algorithm,

θ(g+1) = θ(g) +
{
Ĩ(θ(g))

}−1
S(θ(g)), g = 0, 1, 2, . . . , (3)

which is more robust to the starting value but slower than Fisher scoring, and uses an approx-
imation Ĩ(θ) to the information matrix. The matrix Ĩ(θ) is the complete data information
matrix of the observed Y and the latent mixing process Z. In the case of a finite mixture, Z
is taken to be the latent subpopulation indicator. The matrix Ĩ(θ) often has a form which
can be derived analytically, even when I(θ) does not, which is one advantage of approximate
scoring. The convergence rate of approximate scoring is seen to be very similar to that of
Expectation-Maximization. Raim et al. (2014) suggest a hybrid scoring method, using approx-
imate scoring iterations until some initial convergence criteria, then proceeding with Fisher
scoring until the desired convergence. This provides a fast and robust algorithm. A hybrid
of approximate scoring and Newton-Raphson may be used instead when the FIM can not be
computed, and the Hessian of the log-likelihood can at least be computed numerically.

4.2 R Code
Notice that all algorihms discussed above — Newton-Raphson, Fisher scoring, approximate
scoring, and the two hybrid methods — are essentially of the same form, swapping out the
matrix used as the Hessian. To implement the algorithms, the code for Newton-Raphson is
given below in the fit.nr function.
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File: /home/araim/R/scoring-nr.R
1 fit.nr <- function(theta.init, loglik, score = NULL, hess = NULL,
2 Data, max.iter = Inf, tol = 1e-6)
3 {
4 ll <- -Inf
5 iter <- 0
6 delta <- Inf
7 theta <- theta.init
8
9 if (is.null(score)) {

10 score <- function(theta, Data) { grad(func = loglik, x = theta, Data = Data,
11 method.args = list(d = 1e-4)) }
12 }
13
14 if (is.null(hess)) {
15 hess <- function(theta, Data) { hessian(func = loglik, x = theta, Data = Data,
16 method.args = list(d = 1e-4)) }
17 }
18
19 while (iter < max.iter && abs(delta) > tol) {
20 iter <- iter + 1
21 S <- score(theta, Data)
22 H <- hess(theta, Data)
23 theta <- theta - solve(H, S)
24
25 ll.old <- ll
26 ll <- loglik(theta, Data)
27 delta <- ll - ll.old
28 }
29
30 list(loglik = ll, iter = iter, tol = delta, converged = (iter < max.iter), theta.hat = theta)
31 }

As a convenience to the user, we compute the score or Hessian numerically if they are not
supplied. The other algorithms can now be implemented simply by calling the fit.nr function
with different arguments for hess.

File: /home/araim/R/scoring-rest.R
1 fit.fs <- function(theta.init, loglik, score, fim, Data, max.iter = Inf,
2 tol = 1e-6)
3 {
4 hess <- function(theta, Data) { -fim(theta, Data) }
5 fit.nr(theta.init, loglik, score, hess, Data, max.iter, tol)
6 }
7
8 fit.afs <- function(theta.init, loglik, score, afim, Data, max.iter = Inf,
9 tol = 1e-6)

10 {
11 hess <- function(theta, Data) { -afim(theta, Data) }
12 fit.nr(theta.init, loglik, score, hess, Data, max.iter, tol)
13 }
14
15 fit.fs.hybrid <- function(theta.init, loglik, score, fim, afim, Data,
16 max.iter = Inf, tol = 1e-6, warmup.tol = 1e-4)
17 {
18 out.afs <- fit.afs(theta.init, loglik, score, afim, Data, max.iter, tol = warmup.tol)
19 fit.fs(out.afs$theta.hat, loglik, score, fim, Data, max.iter - out.afs$iter, tol)
20 }
21
22 fit.nr.hybrid <- function(theta.init, loglik, score, hess, afim, Data,
23 max.iter = Inf, tol = 1e-6, warmup.tol = 1e-4)
24 {
25 out.afs <- fit.afs(theta.init, loglik, score, afim, Data, max.iter, tol = warmup.tol)
26 fit.nr(out.afs$theta.hat, loglik, score, hess, Data, max.iter - out.afs$iter, tol)
27 }

To make the code usable, ingredients such as the log-likelihood, score, FIM, and approximate
FIM must be provided for each model under consideration. The reader may refer to the source
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code for the OverdispersionModelsInR package, which implements the needed functions
for RCM and DM iid models. The functions for each likelihood model are grouped into a
“family”, and abbreviated calls to the algorithms are also possible as follows.

1 dm <- dm.scoring(k = 4)
2 theta.init <- c(1/4,1/4,1/4, 0.5)
3 out.nr <- fit.family.afs(theta.init, dm, Data)

In this example, we create an object representing the DM family with k = 4 categories. The
function fit.family.afs extracts the log-likelihood, score, and approximate FIM, and calls
the original fit.afs function.

As in the numerical MLE framework discussed in Section 3, we can add support to
estimate extra quantities of interest, compute the table of estimates and standard errors,
and print a nice display of the results. The reader may refer to the source code for the
OverdispersionModelsInR package to see these additions. It is also possible to start with
real-valued optimization variables φ and provide a transformation to likelihood parameters
θ, which may help the algorithms to avoid wandering outside the parameter space (which
essentially dooms them to failure), but this has currently not been implemented.

5 Goodness of Fit Test for Binomial Data
This section presents a goodness-of-fit test for binomial data, and gives R code to implement
it. The reader may want to jump ahead to Section 6.4 to see the procedure applied to an
example, then return to this section to look through the details.

5.1 Methodology
To compare several variations of the binomial model on the same dataset, consider the
goodness-of-fit (GOF) test

H0 : Yi ind∼ fi(ti | mi,θ) for some θ ∈ Θ vs. H1 : Not,

where fi is fully specified up to parameter θ (which is usually unknown in practice) in the
space Θ ⊆ Rq. For binomial-type data with mi varying with observations, Neerchal and Morel
(1998) proposed the following variation to the usual Pearson chi-square test statistic (see also
OMSAS section 5.3). Suppose A1, . . . ,Ar are disjoint intervals that cover [0, 1], and define
the GOF test statistic

X(θ) =
r∑
`=1

[O` − E`(θ)]2
E`(θ) , (4)

where

E`(θ) =
n∑
i=1

mi∑
t=0

P(t | mi,θ)I
(
t

mi

∈ A`
)

and O` =
n∑
i=1

I
(
ti
mi

∈ A`
)
.

represent the expected and observed counts in the `th interval, respectively, for ` = 1, . . . , r.
Sutradhar et al. (2008) showed that X(θ) ∼ χ2

r−1 when all parameters are known and
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X(θ̂) ∼ χ2
r−1−q when θ ∈ Θ ⊆ Rq is estimated by maximizing the likelihood under the

given intervals (the grouped likelihood). In practice, it is more natural to work with the usual
(ungrouped) likelihood

Lu(θ) =
n∏
i=1

fi(yi | mi,θ).

There is a “recovery” of degrees of freedom in the GOF statistic when the ungrouped MLE is
used, so that X(θ̂) follows a χ2

ν distribution with ν between r − 1− q and r − 1. Although
(Sutradhar et al., 2008) specifically discusses the random-clumped binomial distribution, the
theory is given for general binomial models with varying mi. A number of regularity conditions
are assumed for the χ2 distributions to hold.

In liu of checking these regularity conditions, the parametric bootstrap may be used to
verify the distribution of the test statistic and determine a p-value for the GOF test. Suppose
θ̂ is the MLE computed from the (ungrouped) likelihood. The parametric bootstrap consists
of drawing B samples

Y
(b)
i

ind∼ fi(yi | mi, θ̂), for i = 1, . . . , n and b = 1, . . . , B.

The test statistic X(b) is computed using the observations (y(b)
1 , . . . , y(b)

n ) and the MLE
θ̂

(b)
from the bth bootstrap sample. The theoretical distribution of X(θ̂) can be studied

through the empirical distribution of X(1), . . . , X(B), and a p-value can be computed using
1
B

∑B
b=1 I

(
X(b) ≥ X(θ̂)

)
. Notice that X(θ̂) remains fixed throughout the bootstrap proce-

dure.
The selection of intervals A` is left up to the analyst, but it is suggested to follow the rule

of thumb that all E`(θ) ≥ 5 to ensure that the distribution theory holds. Common choices
include equal width intervals or intervals having equal probability.

5.2 R Code
First we will write code to count the number of observations in each interval. Suppose we
select the intervals A1 = [0, 1/10],A2 = (1/10, 2/10], . . . ,A10 = (9/10, 10/10].

> source("/home/araim/R/rcb.R")
> n <- 50
> m <- 20
> y <- r.rcb(n, Pi = 1/4, rho = 0.4, m = m)
> ( gof.breaks <- seq(0,1, 0.1) )
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> ( Intervals <- cut(y/m, gof.breaks, include.lowest = TRUE) )
[1] (0.4,0.5] (0.1,0.2] (0.5,0.6] [0,0.1] (0.1,0.2] (0.8,0.9] (0.5,0.6] (0.2,0.3]
[9] [0,0.1] (0.4,0.5] (0.1,0.2] (0.2,0.3] (0.1,0.2] (0.2,0.3] (0.1,0.2] (0.1,0.2]

[17] (0.5,0.6] [0,0.1] (0.3,0.4] (0.2,0.3] (0.6,0.7] (0.6,0.7] (0.2,0.3] (0.1,0.2]
[25] (0.1,0.2] (0.1,0.2] (0.6,0.7] (0.6,0.7] (0.3,0.4] (0.1,0.2] (0.1,0.2] (0.4,0.5]
[33] (0.4,0.5] (0.5,0.6] (0.2,0.3] [0,0.1] (0.1,0.2] (0.2,0.3] (0.1,0.2] (0.1,0.2]
[41] (0.6,0.7] (0.6,0.7] (0.2,0.3] [0,0.1] [0,0.1] (0.1,0.2] (0.8,0.9] (0.5,0.6]
[49] (0.1,0.2] (0.1,0.2]
10 Levels: [0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5] (0.5,0.6] ... (0.9,1]
> table(Intervals)
Intervals

[0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5] (0.5,0.6] (0.6,0.7] (0.7,0.8]
6 17 8 2 4 5 6 0

(0.8,0.9] (0.9,1]
2 0
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The cut function determines the interval for each sample proportion y/m. The breaks
(0, 1/10, . . . , 10/10) along with the option include.lowest = TRUE ensure that intervals
are set up as desired. The table function then counts the frequency of each interval among
the entries of y/m. Putting parentheses around a statement causes the result to be printed;
e.g. (x <- 10) is a shorthand for print(x <- 10).

Computing the expected counts is a bit more involved, so we will proceed in smaller steps.
First recall that the count for the `th interval is

E`(θ) =
n∑
i=1

mi∑
t=0

P(t | mi,θ)I
(
t

mi

∈ A`
)

for ` = 1, . . . , r. For a given mi, and assuming RCB(mi, π = 1/4, ρ = 0.2) as the null
distribution, here is code to compute the inner summation.

1 m <- 20
2 gof.breaks <- seq(0, 1, 0.1)
3 K <- length(gof.breaks) - 1
4
5 # Note: Workaround for breaks 2, ..., K to obtain the correct expected counts
6 gof.breaks[-c(1,K+1)] <- gof.breaks[-c(1,K+1)] + .Machine$double.eps
7
8 tt <- seq(0, m)
9 ff <- d.rcb(tt, Pi = 1/4, rho = 0.2, m = m)

10 Int <- findInterval(x = tt / m, vec = gof.breaks, rightmost.closed = TRUE)
11 res <- aggregate(ff ~ Int, FUN = sum)

Line 9 computes the density at each sample point ti while line 10 finds the index of the interval
to which ti/mi belongs. Line 11 then sums the densities which belong to the same interval,
so that have a table of interval indices and their total mass. Note the adjustment on line 6,
where a tiny positive number (machine epsilon) is added to all breaks, except the two outer
ones. This adjustment seems to be necessary with this code; without it, density is sometimes
credited to the wrong intervals. The results for ff, Int, and res are shown below.

> ff
[1] 8.656052e-03 4.335643e-02 1.034539e-01 1.571105e-01 1.723972e-01 1.495814e-01 1.129277e-01
[8] 8.238295e-02 6.154710e-02 4.547484e-02 3.080895e-02 1.809498e-02 8.939284e-03 3.650751e-03

[15] 1.214836e-03 3.237482e-04 6.743129e-05 1.057650e-05 1.175127e-06 8.246400e-08 2.748787e-09
> Int
[1] 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10

> res
Int ff

1 1 1.554664e-01
2 2 3.295078e-01
3 3 2.625091e-01
4 4 1.439301e-01
5 5 7.628379e-02
6 6 2.703427e-02
7 7 4.865588e-03
8 8 3.911795e-04
9 9 1.175163e-05
10 10 8.521279e-08

Now we can compute the expected counts for a sample of size n
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1 n <- 50
2 m <- rpois(n, lambda = 20)
3 gof.breaks <- seq(0, 1, 0.1)
4 f <- function(x, i) { d.rcb(x, Pi = 1/4, rho = 0.2, m = m[i]) }
5
6 K <- length(gof.breaks) - 1
7 gof.breaks[-c(1,K+1)] <- gof.breaks[-c(1,K+1)] + .Machine$double.eps
8 Ex <- numeric(K)
9

10 for (i in 1:n)
11 {
12 tt <- seq(0, m[i])
13 ff <- f(tt, i)
14 Int <- findInterval(x = tt / m[i], vec = gof.breaks, rightmost.closed = TRUE)
15 res <- aggregate(ff ~ Int, FUN = sum)
16 Ex[res$Int] <- Ex[res$Int] + res$ff
17 }

Notice that we now let the number of trials m[i] vary with i. We have also replaced d.rcb
with a general function f in the loop; this will allow us to reuse the code for other densities
besides RCB. When computing the expected counts, we only need f(x,i), the density for
the ith subject evaluated at x. Running this code once obtains the following result.

> Ex
[1] 5.609029e+00 1.537637e+01 1.410603e+01 7.786037e+00 5.041360e+00 1.585618e+00 4.098304e-01
[8] 7.783251e-02 7.276444e-03 6.245881e-04

The full GOF procedure is given as Listing 2.
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File: /home/araim/R/gof-binomial.R
1 gof.binomial <- function(y, m, f, gof.breaks, qq)
2 {
3 if (length(m) == 1) m <- rep(m, length(y))
4 K <- length(gof.breaks) - 1
5 Ob <- gof.binomial.obs(y, m, gof.breaks)
6 Ex <- numeric(K)
7 n <- length(y)
8
9 gof.breaks[-c(1,K+1)] <- gof.breaks[-c(1,K+1)] + .Machine$double.eps

10
11 for (i in 1:n)
12 {
13 tt <- seq(0, m[i])
14 ff <- f(tt, i)
15 Int <- findInterval(x = tt / m[i], vec = gof.breaks, rightmost.closed = TRUE)
16 res <- aggregate(ff ~ Int, FUN = sum)
17 Ex[res$Int] <- Ex[res$Int] + res$ff
18 }
19
20 tab <- cbind(Ob, Ex)
21 X <- sum( (Ob - Ex)^2 / Ex )
22 df.low <- K - 1 - qq
23 df.high <- K - 1
24 pvalue.low <- 1 - pchisq(X, df.low)
25 pvalue.high <- 1 - pchisq(X, df.high)
26
27 brak <- c("[", rep("(", K-1))
28 labels <- sprintf("%s%0.04f,%0.04f]", brak, gof.breaks[-(K+1)], gof.breaks[-1])
29 rownames(tab) <- labels
30
31 res <- list(tab = tab, X = X, df.low = df.low, df.high = df.high,
32 pvalue.low = pvalue.low, pvalue.high = pvalue.high, f = f,
33 breaks = gof.breaks, m = m)
34 class(res) <- "gof.binomial"
35 return(res)
36 }

Listing 2: Function for the binomial GOF procedure.

After the observed and expected counts are computed, we compose a table with their values,
and compute the test statistic. We can then compute the degrees of freedom for the χ2 test
statistics when all parameters are known (df.high), and based on the grouped likelihood
when all parameters are estimated (df.low). The number of estimated parameters qq is an
argument to be provided by the user. The associated p-values are also computed. Now let us
define a print.gof.binomial function so that the result will be displayed nicely.

1 print.gof.binomial <- function(gof.out)
2 {
3 printf("GOF for model:\n")
4 print(gof.out$f)
5 printf("--\n")
6 print(round(gof.out$tab, 4))
7 printf("--\n")
8 printf("X = %0.4f\n", gof.out$X)
9 printf("DF in [%d, %d]\n", gof.out$df.low, gof.out$df.high)

10 printf("p-value in [%f, %f]\n", gof.out$pvalue.low, gof.out$pvalue.high)
11 }

Suppose the gof.binomial and print.gof.binomial functions are stored in a file gof.R
so that we can call it as follows.
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1 source("/home/araim/R/gof.R")
2
3 n <- 100
4 m <- rpois(n, lambda = 20)
5 y <- r.rcb(n, Pi = 1/4, rho = 0.2, m)
6
7 extra.tx <- function(theta) { list(log.Pi = log(theta$Pi), rho.sq = theta$rho^2) }
8 fit.out <- fit.rcb.mle(y, m, extra.tx)
9

10 p.hat <- fit.out$estimates["Pi",1]
11 rho.hat <- fit.out$estimates["rho",1]
12
13 gof.breaks <- c(0, 0.1, 0.2, 0.3, 0.4, 1)
14 f <- function(x, i) { d.rcb(x, Pi = Pi.hat, rho = rho.hat, m = m[i]) }
15 gof.out <- gof.binomial(y, m, f, gof.breaks, qq = 2)

> gof.out
GOF for model:
function(x, i) { d.rcb(x, Pi = Pi.hat, rho = rho.hat, m = m[i]) }
--

Ob Ex
[0.0000,0.1000] 6 7.7699
(0.1000,0.1500] 11 10.3685
(0.1500,0.2000] 20 17.2156
(0.2000,0.2500] 24 18.7116
(0.2500,0.3000] 9 16.0526
(0.3000,0.4000] 21 21.3084
(0.4000,1.0000] 9 8.5735
--
X = 5.5108
DF in [4, 6]
p-value in [0.238785, 0.480157]

Here the GOF statistic indicates a very good fit, which is expected because the data were
drawn from RCB. Next we will give code to compute the p-value and sampling distribution of
the GOF test statistic based on the parametric bootstrap. Listing 3 gives the complete code
as gof-parboot.R. A terminal session calling the script is given below, and the resulting plot
is given as Figure 1.

> source("gof-parboot.R", print.eval = TRUE)
Starting bootstrap rep 1
Starting bootstrap rep 2
...
Starting bootstrap rep 500
> p.value.boot
[1] 0.53
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File: /home/araim/R/gof-parboot.R
1 source("gof.R")
2
3 # --------- Generate the data ---------
4 n <- 100
5 m <- rpois(n, lambda = 20)
6 y <- r.rcb(n, Pi = 1/4, rho = 0.2, m)
7
8 # --------- Fit the MLE for the observed data ---------
9 extra.tx <- function(theta) { }

10 fit.out <- fit.rcb.mle(y, m, extra.tx)
11 Pi.hat <- fit.out$estimates["Pi",1]
12 rho.hat <- fit.out$estimates["rho",1]
13
14 # --------- Compute GOF for the observed data ---------
15 gof.breaks <- c(0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 1)
16 f <- function(x,i) { d.rcb(x, Pi = Pi.hat, rho = rho.hat, m = m[i]) }
17 gof.out <- gof.binomial(y, m, f, gof.breaks, qq = 2)
18
19 # --------- Parametric bootstrap for GOF statistic ---------
20 B <- 500
21 X.boot <- numeric(B)
22
23 for (b in 1:B)
24 {
25 printf("Starting bootstrap rep %d\n", b)
26 y.boot <- r.rcb(n, Pi.hat, rho.hat, m)
27
28 fit.out.boot <- fit.rcb.mle(y.boot, m, extra.tx)
29 Pi.hat.boot <- fit.out.boot$estimates["Pi",1]
30 rho.hat.boot <- fit.out.boot$estimates["rho",1]
31
32 f.boot <- function(x,i)
33 {
34 d.rcb(x, Pi = Pi.hat.boot, rho = rho.hat.boot, m = m[i])
35 }
36 gof.out.boot <- gof.binomial(y.boot, m, f.boot, gof.breaks, qq = 2)
37 X.boot[b] <- gof.out.boot$X
38 }
39
40 p.value.boot <- mean(X.boot > gof.out$X)
41
42 # --------- Plot the bootstrap dist’n of the GOF statistic ---------
43 plot(ecdf(X.boot))
44 curve(pchisq(x, df = gof.out$df.low), add = TRUE, col = "red", lwd = 2)
45 curve(pchisq(x, df = gof.out$df.high), add = TRUE, col = "green", lwd = 2)
46 mynames <- c("ECDF of X.boot",
47 sprintf("chisq df = %d", gof.out$df.low),
48 sprintf("chisq df = %d", gof.out$df.high))
49 mycol <- c("black", "red", "green")
50 legend("bottomright", mynames, col = mycol, lwd = 2)

Listing 3: Code for parametric bootstrap of simulated data using RCB model.
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Figure 1: Empirical CDF of bootstrapped GOF test statistics for simulated data.
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6 Example Data Analyses
In this section, we repeat some of the example data analyses in OMSAS. Using built-in
capabilities of R, along with our numerical MLE framework, we focus on examples involving
likelihood-based analysis of binomial/multinomial data with overdispersion. We first present
an example involving simple linear regression, then progress to a binomial regression. We then
move to examples involving RCB, BB, binomial finite mixtures, and Mixture Link. Here we
demonstrate the goodness-of-fit test statistic from Section 5 for binomial data with varying
number of trials. We then proceed to multinomial analysis using DM and RCM. Our final
example involves BB and RCB models with a random effect.

The reader may repeat the programming steps in this section by first installing the
OverdispersionModelsInR package, loading it using the following command, and obtaining
the datasets as discussed in Section 1.2.

> library(OverdispersionModelsInR)

6.1 Analysis of Gain in Weight Data with Linear Regression
The Gain in Weight data are analyzed in chapter 2, pp. 19–22 of OMSAS using both ordinary
least squares (OLS) and the MLE under the simple linear regression model. This is a good
first example for R as well, before taking on more exotic likelihoods. First let us read the data.

> gain.in.weight <- read.table("/home/araim/data/gain-in-weight.dat", header = TRUE)
> tail(gain.in.weight)

Initial Gain
10 48 118
11 57 107
12 59 106
13 46 82
14 45 103
15 65 104

The tail function is useful for showing the last few rows of a table or matrix. The function
lm can be used to obtain the OLS estimate.

> lm.out <- lm(Gain ~ Initial, data = gain.in.weight)
> summary(lm.out)

Call:
lm(formula = Gain ~ Initial, data = gain.in.weight)

Residuals:
Min 1Q Median 3Q Max

-32.373 -10.168 -1.308 14.717 35.948

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 54.9502 31.9768 1.718 0.1094
Initial 1.0641 0.5259 2.024 0.0641 .
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 19.29 on 13 degrees of freedom
Multiple R-squared: 0.2395, Adjusted R-squared: 0.181
F-statistic: 4.095 on 1 and 13 DF, p-value: 0.06408
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The syntax Gain ∼ Initial says that Gain is the response in the linear model, and Initial
is the covariate. The summary function returns a standard table of estimates. Many other
functions are available to manipulate the lm.out object. Here are some examples.

> coef(lm.out) ## Coefficients
(Intercept) Initial

54.950183 1.064092
> vcov(lm.out) ## Estimated covariance of coefficients

(Intercept) Initial
(Intercept) 1022.51319 -16.6101936
Initial -16.61019 0.2765293
> confint(lm.out, level=0.95) ## Confidence intervals for coefficients

2.5 % 97.5 %
(Intercept) -14.13140706 124.031774
Initial -0.07196023 2.200145
> AIC(lm.out)
[1] 135.2016
> BIC(lm.out)
[1] 137.3257
> anova(lm.out)
Analysis of Variance Table

Response: Gain
Df Sum Sq Mean Sq F value Pr(>F)

Initial 1 1522.9 1522.86 4.0947 0.06408 .
Residuals 13 4834.9 371.91
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
> resid(lm.out) ## Residuals

1 2 3 4 5 6 7
19.8451968 35.9479032 22.1787945 -4.0520968 -0.6930207 -6.7957272 -32.3725587

8 9 10 11 12 13 14
-1.3084663 17.4606424 11.9733816 -8.6034500 -11.7316348 -21.8984336 0.1656588

15
-20.1161892

To obtain the MLE, we can use our numerical MLE framework.

1 y <- gain.in.weight$Gain
2 X <- model.matrix(~ Initial, data = gain.in.weight)
3 extra.tx <- function(theta) { list(sigmasq = theta$sigma^2) }
4 var.names <- c("Intercept", "Initial", "sigma", "sigmasq")
5 fit.out <- fit.normal.x.mle(y, X, extra.tx, var.names)

> tail(X)
(Intercept) gain.in.weight$Initial

10 1 48
11 1 57
12 1 59
13 1 46
14 1 45
15 1 65
> fit.out
Fit for model:
y[i] ~indep~ N(mu[i], sigma^2)
mu[i] = x[i]^T Beta
--- Parameter Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Intercept 54.9506 29.7687 1.8459 0.0847 1.647E-06
Initial 1.0641 0.4895 2.1736 0.0462 0.0001
sigma 17.9534 3.2778 5.4772 6.372E-05 0.0001
--- Additional Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
sigmasq 322.3249 117.6963 2.7386 0.0152 0.0047
--
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Degrees of freedom = 15
LogLik = -64.6008
AIC = 135.2016
AICC = 137.3834
BIC = 137.3257

Here we can see that the covariate matrix X, constructed with the help of model.matrix,
contains an intercept in the first column and the variable Initial in the second column.
One difference to note between our output and the SAS PROC GLIMMIX output given by
OMSAS is that we have used n degrees of freedom to compute per-variable statistics, while
SAS GLIMMIX uses with n−2 degrees of freedom. The two produce very similar results unless
the sample size is very small. As in OMSAS, let us prepare some plots of the residuals based
on the MLE.

1 Beta.hat <- fit.out$theta.hat$Beta
2 y.hat <- X %*% Beta.hat
3 e <- y - y.hat
4
5 par(mfrow = c(2,2)) # Create a 2x2 plot container
6 plot(y.hat, e) # Predicted vs. residuals
7 hist(e) # Histogram for residuals
8 qqnorm(e) # Normal Q-Q plot with reference line added
9 qqline(e)

10 boxplot(e) # Boxplot for residuals

The plots are specified with a minimal number of decorations. Some differences can be seen
between our plots and those in Plot 2.1 of OMSAS. The latter feature different intervals for
the histogram, different shading options, and more descriptive labels. Of course, with more
work, the R plots can be decorated with these features as well.
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6.2 Analysis of Pyrethrins Data with Binomial Regression
The Pyrethrins data are analyzed in chapter 2, pp. 28–39 of OMSAS using binomial regression
models: first the logistic regression model (with logistic link), then the probit model (with
probit link). Binomial regression is an example of a Generalized Linear Model (GLM), a
generalization of linear regression which can model some kinds of non-Normal observations
such as categories and counts. Both the logistic and probit links can be fitted in R using the
glm function. First let us read the data.

> pyrethrins <- read.table("/home/araim/data/pyrethrins.dat", header = TRUE)
> tail(pyrethrins)

dose m t
6 140 469 400
7 160 550 495
8 180 542 499
9 200 479 450
10 250 497 476
11 300 453 442

In this example, t is considered a binomial response out of m trials, and the probability is
modeled as

Ti
ind∼ Bin(mi, pi), pi = G(β0 + β1 log(dose)),

where G is an appropriate inverse link function. There several equivalent ways to fit this
model using glm.

1 ## These give the same result
2 logit.out <- glm( cbind(t,m-t) ~ log(dose), data = pyrethrins, family = binomial )
3 logit.alt.out <- glm(t/m ~ log(dose), data = pyrethrins, weights = m, family = binomial)

> summary(logit.out)

Call:
glm(formula = cbind(t, m - t) ~ log(dose), family = binomial,

data = pyrethrins)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.65828 -0.51149 0.08672 0.46433 1.28430

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.3279 0.3429 -30.12 <2e-16 ***
log(dose) 2.4582 0.0747 32.91 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1529.2572 on 10 degrees of freedom
Residual deviance: 6.3585 on 9 degrees of freedom
AIC: 73.914

Number of Fisher Scoring iterations: 3

Notice that the log(dose) can be specified right in the model statement. The cbind(t,
m-t) statement creates an n × 2 matrix with number of successes in the first column and
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number of failures in the second column. The argument family = binomial carries out
a binomial regression rather than a linear (Normal) regression, which is the default. The
alternative syntax incorporates the number of trials m, perhaps less intuitively, by treating the
proportions t/m as responses and weighting them using weights = m. Note that glm assumes
Normality for the standardized estimates, while PROC GLIMMIX assumes the t distribution with
n− 2 degrees of freedom. We can specify the probit link instead as follows.

> probit.out <- glm( cbind(t,m-t) ~ log(dose), data = pyrethrins, family = binomial(link = "probit") )
> summary(probit.out)

Call:
glm(formula = cbind(t, m - t) ~ log(dose), family = binomial(link = "probit"),

data = pyrethrins)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.00507 -0.59772 0.00041 0.34960 1.57292

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.91393 0.18816 -31.43 <2e-16 ***
log(dose) 1.40900 0.04033 34.93 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1529.257 on 10 degrees of freedom
Residual deviance: 11.644 on 9 degrees of freedom
AIC: 79.2

Number of Fisher Scoring iterations: 4

OMSAS computes the quantity LD50, which is dose level at which the probability of death is
1/2. For both the logit and probit models, LD50 is computed as −β0/β1. We can calculate
an estimate in R as follows.

> Beta.hat <- coef(logit.out)
> printf("Estimate for LD50 under logit is %f", -Beta.hat[1] / Beta.hat[2])
Estimate for LD50 under logit is 4.201334
> Beta.hat <- coef(probit.out)
> printf("Estimate for LD50 under probit is %f", -Beta.hat[1] / Beta.hat[2])
Estimate for LD50 under probit is 4.197263

We can also produce similar residual plots as OMSAS using the logit model, keeping the
amount of decoration to a minimum. Several types of residuals are available from the resid
function. We select type = working to match the SAS analysis.

1 y.hat <- predict(logit.out)
2 e <- resid(logit.out, type = "working")
3
4 par(mfrow = c(2,2)) # Create a 2x2 plot container
5 plot(y.hat, e) # Predicted vs. residuals
6 hist(e) # Histogram for residuals
7 qqnorm(e) # Normal Q-Q plot with reference line added
8 qqline(e)
9 boxplot(e) # Boxplot for residuals
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6.3 Analysis of Ossification Data with Generalized Linear Overdis-
persion Models

The Ossification data in chapter 4, pp. 103–112 of OMSAS are used as an example of binomial
data with extra variation. The book considers several models using binomial, RCB, beta-
binomial likelihoods. While the binomial model is considered to be a GLM, RCB and BB are
said to be examples of Generalized Linear Overdispersion Models (GLOMs). RCB and BB
do not fit into the exponential family framework, therefore general procedures developed for
GLMs cannot be used with them. However, regressions can be linked to their parameters
without any conceptual difficulty. We can use the glm function in base R to fit binomial
regressions, and our numerical MLE framework can handle the others. First we will read the
data.

> ossification <- read.table("/home/araim/data/ossification.dat", header = TRUE)
> tail(ossification)

litter group oss size
76 76 PHT+TCPO 0 4
77 77 PHT+TCPO 0 6
78 78 PHT+TCPO 0 7
79 79 PHT+TCPO 6 6
80 80 PHT+TCPO 1 6
81 81 PHT+TCPO 1 7
> levels(ossification$group)
[1] "Control" "PHT" "PHT+TCPO" "TCPO"

The variable oss is considered to be a number of successes out of size trials. The variable
group is treated as a categorical covariate (whose posible values are shown by the levels
function) which influences the probability of success. Let PHTi = 1 if the ith subject received

45



the PHT treatment, and 0 otherwise. Similarly, let TCPOi be the indicator for TCPO. The
models under consideration will be:

• Logistic: Ti ind∼ Bin(mi, πi)
• RCB: Ti ind∼ RCB(mi, πi, ρ)
• BB: Ti ind∼ BB(mi, πi, ρ)
• RCB-Reg: Ti ind∼ RCB(mi, πi, ρi)
• BB-Reg: Ti ind∼ BB(mi, πi, ρi)

All models have a common regression on πi given by

g(πi) = β0 + β1TCPOi + β2PHTi + β3(TCPOi · PHTi)

The “-reg” models have an additional regression on the overdispersion parameter ρi given by

g(ρi) = α0 + α1TCPOi + α2PHTi + α3(TCPOi · PHTi)

First we transform the data to prepare for analysis. X will represent the matrix of covariates
for π and Z will represent the covariates for ρ.

1 tcpo <- ossification$group %in% c("TCPO", "PHT+TCPO")
2 pht <- ossification$group %in% c("PHT", "PHT+TCPO")
3 both <- ossification$group %in% c("PHT+TCPO")
4
5 X <- cbind(1, tcpo, pht, both)
6 colnames(X) <- c("Intercept", "TCPO", "PHT", "PHT+TCPO")
7
8 Z <- X
9

10 y <- ossification$oss
11 m <- ossification$size

The line ossification$group %in% c("TCPO", "PHT+TCPO") returns a vector containing
TRUE and FALSE, if the corresponding entry of ossification$group had value "TCPO" or
"PHT+TCPO". We first use the glm function to fit standard logistic regression. Notice that X
can be used in the model formula to specify the covariates.

> glm.out <- glm(cbind(y,m-y) ~ X -1, family = binomial)
> summary(glm.out)

Call:
glm(formula = cbind(y, m - y) ~ X - 1, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.6797 -1.5294 0.1009 1.5095 4.0580

Coefficients:
Estimate Std. Error z value Pr(>|z|)

XIntercept 0.8323 0.1365 6.097 1.08e-09 ***
XTCPO -0.8481 0.2239 -3.788 0.000152 ***
XPHT -2.1094 0.2505 -8.422 < 2e-16 ***
XPHT+TCPO 1.0453 0.4107 2.545 0.010921 *
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 393.81 on 81 degrees of freedom
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Residual deviance: 290.43 on 77 degrees of freedom
AIC: 409.78

Number of Fisher Scoring iterations: 4

Now let us fit the BB and RCB models without the additional regression on ρ. We specify a
number of additional parameters to match the SAS output of OMSAS. The estimates of π
are given for each of the four treatment groups:

πControl = G(β0), πTCPO = G(β0 + β1), πPHT = G(β0 + β2),
πPHT+TCPO = G(β0 + β1 + β2 + β3).

Also, the log-odds-ratio of PHT vs. Control is requested, both when TCPO is present and
absent. In our models, these log-odds-ratios are parameterized by β2 +β3 and β2 respectively.

1 var.names <- c(colnames(X), "rho", "Pi Control", "Pi PHT", "Pi TCPO",
2 "Pi PHT+TCPO", "Log-odds-ratio PHT vs. Control, TCPO Present",
3 "Log-odds-ratio PHT vs. Control, TCPO Absent", "rho.sq")
4 extra.tx <- function(theta)
5 {
6 list(Pi.control = plogis(theta$Beta[1]),
7 Pi.TCPO = plogis(sum(theta$Beta[1:2])),
8 Pi.PHT = plogis(sum(theta$Beta[c(1,3)])),
9 Pi.PHT_TCPO = plogis(sum(theta$Beta[1:4])),

10 log.odds.tcpo = theta$Beta[3],
11 log.odds.notcpo = sum(theta$Beta[3:4]),
12 rho.sq = theta$rho^2)
13 }
14
15 fit.rcb.x.out <- fit.rcb.x.mle(y, m, X = X, extra.tx = extra.tx, var.names = var.names)
16 fit.bb.x.out <- fit.bb.x.mle(y, m, X = X, extra.tx = extra.tx, var.names = var.names)

The results for the RCB model are given below, followed by the BB model, both of which
match closely to the OMSAS analysis.

> fit.rcb.x.out
Fit for model:
y[i] ~indep~ RCB(m[i], Pi[i], rho)
logit(Pi[i]) = x[i]^T Beta
--- Parameter Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Intercept 0.6392 0.2266 2.8204 0.0060 0.0003
TCPO -0.9456 0.3711 -2.5481 0.0127 5.367E-05
PHT -1.5291 0.3956 -3.8657 0.0002 4.795E-05
PHT+TCPO 0.6161 0.6678 0.9226 0.3589 0.0001
rho 0.5831 0.0417 13.9926 0.000E+00 -4.272E-05
--- Additional Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Pi Control 0.6546 0.0512 12.7741 0.000E+00 5.989E-05
Pi PHT 0.4240 0.0737 5.7510 1.517E-07 7.779E-05
Pi TCPO 0.2911 0.0634 4.5946 1.573E-05 6.456E-05
Pi PHT+TCPO 0.2280 0.0826 2.7623 0.0071 9.019E-05
Log-OR PHT vs. Control, w/TCPO -1.5291 0.3956 -3.8657 0.0002 4.795E-05
Log-OR PHT vs. Control, w/o TCPO -0.9129 0.5608 -1.6278 0.1074 0.0002
rho.sq 0.3400 0.0486 6.9963 6.856E-10 -4.982E-05
--
Degrees of freedom = 81
LogLik = -152.5267
AIC = 315.0534
AICC = 315.8534
BIC = 327.0257

47



> fit.bb.x.out
Fit for model:
y[i] ~indep~ BB(m[i], Pi[i], rho)
logit(Pi[i]) = x[i]^T Beta
--- Parameter Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Intercept 0.7043 0.2341 3.0087 0.0035 -0.0002
TCPO -0.7822 0.4017 -1.9474 0.0550 -0.0001
PHT -1.6917 0.4018 -4.2102 6.563E-05 -0.0001
PHT+TCPO 0.6769 0.6902 0.9808 0.3296 3.822E-05
rho 0.5808 0.0466 12.4609 0.000E+00 -3.082E-05
--- Additional Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Pi Control 0.6691 0.0518 12.9117 0.000E+00 -3.410E-05
Pi PHT 0.4805 0.0816 5.8870 8.548E-08 -7.051E-05
Pi TCPO 0.2714 0.0628 4.3211 4.376E-05 -5.811E-05
Pi PHT+TCPO 0.2511 0.0883 2.8434 0.0056 -7.222E-05
Log-OR PHT vs. Control, w/TCPO -1.6917 0.4018 -4.2102 6.563E-05 -0.0001
Log-OR PHT vs. Control, w/o TCPO -1.0148 0.5727 -1.7720 0.0802 -0.0001
rho.sq 0.3374 0.0541 6.2304 1.969E-08 -3.580E-05
--
Degrees of freedom = 81
LogLik = -153.2876
AIC = 316.5751
AICC = 317.3751
BIC = 328.5474

Now we proceed to fit the RCB-reg and BB-reg models. Following OMSAS, we report the π
and ρ2 values specific to each group.

1 var.names <- c(sprintf("X:%s", colnames(X)), sprintf("Z:%s", colnames(Z)),
2 "Pi Control", "Pi PHT", "Pi TCPO", "Pi PHT+TCPO",
3 "rho.sq Control", "rho.sq PHT", "rho.sq TCPO", "rho.sq PHT+TCPO",
4 "Log-odds-ratio PHT vs. Control, TCPO Present",
5 "Log-odds-ratio PHT vs. Control, TCPO Absent")
6 extra.tx <- function(theta)
7 {
8 list(Pi.control = plogis(theta$Beta[1]),
9 Pi.TCPO = plogis(sum(theta$Beta[1:2])),

10 Pi.PHT = plogis(sum(theta$Beta[c(1,3)])),
11 Pi.PHT_TCPO = plogis(sum(theta$Beta[1:4])),
12 rho.sq.control = plogis(theta$Gamma[1])^2,
13 rho.sq.TCPO = plogis(sum(theta$Gamma[1:2]))^2,
14 rho.sq.PHT = plogis(sum(theta$Gamma[c(1,3)]))^2,
15 rho.sq.PHT_TCPO = plogis(sum(theta$Gamma[1:4]))^2,
16 log.odds.tcpo = theta$Beta[3],
17 log.odds.notcpo = sum(theta$Beta[3:4]))
18 }
19
20 fit.rcb.xz.out <- fit.rcb.xz.mle(y, m, X = X, Z = Z, extra.tx = extra.tx, var.names = var.names)
21 fit.bb.xz.out <- fit.bb.xz.mle(y, m, X = X, Z = Z, extra.tx = extra.tx, var.names = var.names)

> fit.rcb.xz.out
Fit for model:
y[i] ~indep~ RCB(m[i], Pi[i], rho[i])
logit(Pi[i]) = x[i]^T Beta
logit(rho[i]) = z[i]^T Gamma
--- Parameter Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
X:Intercept 0.5669 0.2455 2.3093 0.0235 0.0008
X:TCPO -0.8712 0.3924 -2.2204 0.0292 0.0005
X:PHT -1.8405 0.3413 -5.3931 6.691E-07 0.0007
X:PHT+TCPO 1.4055 0.7080 1.9852 0.0505 -1.846E-05
Z:Intercept 0.5160 0.2603 1.9821 0.0509 -0.0020
Z:TCPO -0.1909 0.4006 -0.4765 0.6350 -8.893E-05
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Z:PHT -1.8772 0.9942 -1.8882 0.0626 -0.0003
Z:PHT+TCPO 3.3734 1.1949 2.8231 0.0060 1.668E-05
--- Additional Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Pi Control 0.6380 0.0567 11.2542 0.000E+00 0.0002
Pi PHT 0.4245 0.0748 5.6766 2.070E-07 0.0003
Pi TCPO 0.2186 0.0405 5.3982 6.551E-07 0.0002
Pi PHT+TCPO 0.3231 0.1180 2.7384 0.0076 0.0004
rho.sq Control 0.3921 0.0763 5.1384 1.878E-06 -0.0006
rho.sq PHT 0.3371 0.0861 3.9145 0.0002 -0.0006
rho.sq TCPO 0.0416 0.0636 0.6547 0.5145 -0.0001
rho.sq PHT+TCPO 0.7408 0.1215 6.0961 3.508E-08 -0.0005
Log-OR PHT vs. Control, w/TCPO -1.8405 0.3413 -5.3931 6.691E-07 0.0007
Log-OR PHT vs. Control, w/o TCPO -0.4350 0.6203 -0.7013 0.4851 0.0006
--
Degrees of freedom = 81
LogLik = -143.9084
AIC = 303.8168
AICC = 305.8168
BIC = 322.9724

> fit.bb.xz.out
Fit for model:
y[i] ~indep~ BB(m[i], Pi[i], phi[i])
logit(Pi[i]) = x[i]^T Beta
logit(rho[i]) = z[i]^T Gamma
--- Parameter Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
X:Intercept 0.6822 0.2424 2.8136 0.0061 1.004E-05
X:TCPO -0.7616 0.4108 -1.8537 0.0674 -0.0001
X:PHT -1.9546 0.3433 -5.6942 1.924E-07 -6.801E-05
X:PHT+TCPO 1.2565 0.7173 1.7518 0.0836 8.751E-05
Z:Intercept 0.4200 0.2771 1.5156 0.1335 -0.0002
Z:TCPO -0.0257 0.4766 -0.0538 0.9572 0.0004
Z:PHT -1.6527 0.8882 -1.8606 0.0664 5.165E-05
Z:PHT+TCPO 2.5935 1.1336 2.2878 0.0248 6.586E-05
--- Additional Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Pi Control 0.6642 0.0541 12.2837 0.000E+00 2.238E-06
Pi PHT 0.4802 0.0828 5.8000 1.234E-07 -2.409E-05
Pi TCPO 0.2188 0.0415 5.2678 1.114E-06 -9.911E-06
Pi PHT+TCPO 0.3149 0.1155 2.7260 0.0079 -1.661E-05
rho.sq Control 0.3642 0.0800 4.5506 1.859E-05 -5.685E-05
rho.sq PHT 0.3568 0.1114 3.2018 0.0020 5.966E-05
rho.sq TCPO 0.0509 0.0666 0.7652 0.4464 -1.145E-05
rho.sq PHT+TCPO 0.6268 0.1535 4.0823 0.0001 8.491E-05
Log-OR PHT vs. Control, w/TCPO -1.9546 0.3433 -5.6942 1.924E-07 -6.801E-05
Log-OR PHT vs. Control, w/o TCPO -0.6981 0.6298 -1.1084 0.2710 1.950E-05
--
Degrees of freedom = 81
LogLik = -147.8976
AIC = 311.7951
AICC = 313.7951
BIC = 330.9507

6.4 Analysis of Hiroshima Data with Generalized Linear Overdisper-
sion Models

The Hiroshima data presented in chapter 5, pp. 130–138, of OMSAS are used as an example
of binomial data with extra variation, as well as to demonstrate the goodness-of-fit test for
binomial data with varying mi. The authors consider the RCB and BB models. We will also
consider logistic regression, the finite mixture of binomial regressions, and the Mixture Link
binomial model which was developed after OMSAS was published. First we read the data.
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> hiroshima <- read.table("/home/araim/data/hiroshima.dat", header = TRUE)
> tail(hiroshima)

m t t65d_gamma t65d_neutron
643 100 0 0 0
644 100 2 0 0
645 100 1 0 0
646 80 2 79 41
647 65 0 0 0
648 40 1 0 0

1 z <- scale(hiroshima$t65d_gamma + hiroshima$t65d_neutron)
2 X <- model.matrix(~ z + I(z^2))
3 Z <- model.matrix(~ z + I(z^2))
4 y <- hiroshima$t
5 m <- hiroshima$m
6 n <- length(y)
7 d <- ncol(X)

The total radiation dose (gamma + neutron) is considered as the covariate in this example,
and the scale function is used to standardize it so that it has mean 0 and standard deviation
1 across all subjects. Denote g = G−1 as the logit link function. We will consider the following
models:

Logistic: Yi ind∼ Bin(mi, πi),
g(πi) = β0 + β1zi + β2z

2
i ,

RCB-Reg: Yi ind∼ RCB(mi, πi, ρi),
g(πi) = β0 + β1zi + β2z

2
i ,

g(ρi) = γ0 + γ1zi + γ2z
2
i

BB-Reg: Yi ind∼ BB(mi, πi, ρi),
g(πi) = β0 + β1zi + β2z

2
i ,

g(ρi) = γ0 + γ1zi + γ2z
2
i

MixtureJ2: Yi ind∼ BinMix2(mi, pi1, pi2, π),
g(pi1) = β10 + β11zi + β12z

2
i ,

g(pi2) = β20 + β21zi + β22z
2
i

MixLinkJ2: Yi ind∼ MixLink2(mi, pi,π, κ),
g(pi) = β0 + β1zi + β2z

2
i .

Note that all models have a regression on the probability of success, and the two “-Reg”
models also have a regression on the overdispersion parameter. The glm function can be used
to fit the Logsitic model.

> glm.out <- glm(cbind(y,m) ~ X -1, family = binomial)
> summary(glm.out)

Call:
glm(formula = cbind(y, m) ~ X - 1, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-5.1038 -1.6474 -0.3271 0.5029 6.4331
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

X(Intercept) -3.09153 0.02452 -126.11 <2e-16 ***
Xz 1.23634 0.03409 36.27 <2e-16 ***
XI(z^2) -0.29878 0.01577 -18.95 <2e-16 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 66549.2 on 648 degrees of freedom
Residual deviance: 1723.5 on 645 degrees of freedom
AIC: 3327.4

Number of Fisher Scoring iterations: 5
> qq <- 3; n <- nrow(X)
> printf("AICC = %f", -2*logLik(glm.out) + 2*3*n / (n-3-1))
AICC = 3327.470059
> printf("BIC = %f", BIC(glm.out))
BIC = 3340.854464

Notice the model formula ∼X -1, which says to use X as the design matrix for the regression,
and not to include an additional intercept term. Next we will fit the RCB-Reg model using
the numerical MLE framework.

> fit.rcb.xz.out <- fit.rcb.xz.mle(y, m, X = X, Z = Z)
> fit.rcb.xz.out
Fit for model:
y[i] ~indep~ RCB(m[i], Pi[i], rho[i])
logit(Pi[i]) = x[i]^T Beta
logit(rho[i]) = z[i]^T Gamma
--- Parameter Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Beta1 -3.0699 0.0338 -90.8803 0.000E+00 0.0006
Beta2 1.3010 0.0444 29.2966 0.000E+00 -9.447E-05
Beta3 -0.3705 0.0244 -15.1551 0.000E+00 -0.0282
Gamma1 -2.3526 0.0965 -24.3778 0.000E+00 0.0391
Gamma2 0.9333 0.1569 5.9492 4.409E-09 0.0760
Gamma3 -0.2366 0.0565 -4.1906 3.168E-05 0.2122
--
Degrees of freedom = 648
LogLik = -1546.6120
AIC = 3105.2239
AICC = 3105.3550
BIC = 3132.0672

Here is the fit for the BB-Reg model.

> fit.bb.xz.out <- fit.bb.xz.mle(y, m, X = X, Z = Z)
> fit.bb.xz.out
Fit for model:
y[i] ~indep~ BB(m[i], Pi[i], phi[i])
logit(Pi[i]) = x[i]^T Beta
logit(rho[i]) = z[i]^T Gamma
--- Parameter Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Beta1 -3.0146 0.0445 -67.7443 0.000E+00 0.0205
Beta2 1.3594 0.0564 24.0898 0.000E+00 -0.0101
Beta3 -0.3449 0.0332 -10.3743 0.000E+00 -0.0222
Gamma1 -1.8610 0.0737 -25.2374 0.000E+00 -0.0053
Gamma2 0.7992 0.1109 7.2098 1.567E-12 0.0072
Gamma3 -0.1610 0.0525 -3.0659 0.0023 0.0060
--
Degrees of freedom = 648
LogLik = -1429.6054
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AIC = 2871.2107
AICC = 2871.3418
BIC = 2898.0541

For the BinMixJ2 model, in addition to the likelihood parameters, let us estimate βavg =
π1(β10, β11, β12) + π2(β20, β21, β22), the averaged coefficients weighted by the proportions in
each subpopulation. The averaged coefficients should intuitively be similar to the estimates
from MixLinkJ2, which is a more formal way of estimating the regression for the mixed
population.

1 # ------------------- Binomial Finite Mixture, J = 2 -------------------
2 X.g <- list(X, X)
3 extra.tx <- function(theta)
4 {
5 Beta.mat <- matrix(unlist(theta$Beta.g), 2, ncol(X), byrow = TRUE)
6 list(Beta.avg = t(Beta.mat) %*% theta$Pi)
7 }
8 fit.binmix.x.out <- fit.binmix.x.mle(y, m, X.g, extra.tx)
9 print(fit.binmix.x.out)

10
11 # ------------------- MixlinkJ2 -------------------
12 Beta.init <- coef(glm.out)
13 Pi.init <- fit.binmix.x.out$theta.hat$Pi
14 kappa.init <- 1.5
15 phi.init <- c(Beta.init, qlogis(Pi.init), log(kappa.init))
16 fit.mixlink.x.out <- fit.mixture.link.x.mle(y, m, X, J = 2, phi.init = phi.init)

> fit.binmix.x.out
Fit for model:
y[i] ~indep~ BinMix_2(m[i], p[i], Pi)
logit(p[i,j]) = x[i]^T Beta[j]
--- Parameter Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Beta.g.11 -2.4141 0.0619 -39.0195 0.000E+00 0.0055
Beta.g.12 1.3869 0.0599 23.1416 0.000E+00 0.0130
Beta.g.13 -0.3536 0.0261 -13.5424 0.000E+00 0.0018
Beta.g.21 -3.5394 0.0773 -45.8059 0.000E+00 0.0050
Beta.g.22 1.4240 0.0847 16.8147 0.000E+00 0.0307
Beta.g.23 -0.4414 0.0413 -10.6770 0.000E+00 0.0448
Pi1 0.3781 0.0469 8.0636 3.553E-15 -0.0011
Pi2 0.6219 0.0469 13.2607 0.000E+00 0.0011
--- Additional Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Beta.avg1 -3.1139 0.0408 -76.3716 0.000E+00 0.0039
Beta.avg2 1.4100 0.0591 23.8437 0.000E+00 0.0241
Beta.avg3 -0.4082 0.0281 -14.5285 0.000E+00 0.0284
--
Degrees of freedom = 648
LogLik = -1500.8893
AIC = 3017.7786
AICC = 3018.0039
BIC = 3053.5697

The MixLinkJ2 model requires a lot of computation to fit with the numerical MLE framework.
The estimates for π and βavg from BinMixJ2 should intuitively provide good starting values
for MixLinkJ2, to reduce the work needed by the optimization routine.

Beta.init <- fit.binmix.x.out$xi.hat$Beta.avg
Pi.init <- fit.binmix.x.out$theta.hat$Pi
kappa.init <- 1
phi.init <- c(Beta.init, qlogis(Pi.init), log(kappa.init))
fit.mixlink.x.out <- fit.mixture.link.x.mle(y, m, X, J = 2, phi.init = phi.init)
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> fit.mixlink.x.out
Fit for model:
y[i] ~indep~ MixLink_2(m[i], p[i], Pi, kappa)
logit( E(Y[i]) ) = x[i]^T Beta
Using method: imhof
Elapsed time: 126.250378 sec
--- Parameter Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Beta1 -3.0062 0.0441 -68.1105 0.000E+00 0.0032
Beta2 1.3655 0.0563 24.2719 0.000E+00 0.0171
Beta3 -0.3382 0.0314 -10.7670 0.000E+00 -0.0148
Pi1 0.3297 0.0176 18.7739 0.000E+00 -0.0003
Pi2 0.6703 0.0176 38.1740 0.000E+00 0.0003
kappa 1.6293 0.2487 6.5513 1.163E-10 0.0026
--
Degrees of freedom = 648
LogLik = -1433.3312
AIC = 2878.6624
AICC = 2878.7934
BIC = 2905.5057

We would also like to apply the GOF test to these models. Listing 4 shows the R code and
results for the GOF test under the BB-Reg, including a plot of the observed vs. expected
counts. The results for the other four models are not shown, but the code is similar. Table 1
gives a summary of the GOF results from the five models, along with AIC, AICC, and BIC.
The BB-Reg and MixLinkJ2 models give the best overall fit.
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1 # ------------------- BB-Reg -------------------
2 Beta.hat <- fit.bb.xz.out$theta.hat$Beta
3 Gamma.hat <- fit.bb.xz.out$theta.hat$Gamma
4 Pi.hat <- plogis(X %*% Beta.hat)
5 rho.hat <- plogis(Z %*% Gamma.hat)
6 f <- function(x,i) { d.beta.binom(x, Pi.hat[i], rho.hat[i], m[i]) }
7
8 gof.breaks <- c(seq(0, 0.1783, 0.0099), 0.1980, 0.2178, 0.2376, 0.2673, 0.3069, 1)
9 gof.bb.xz.out <- gof.binomial(y, m, f, gof.breaks, qq = ncol(X) + ncol(Z))

10
11 K <- nrow(gof.bb.xz.out$tab)
12 coords <- barplot(gof.bb.xz.out$tab[,"Ob"], names.arg = 1:K)
13 points(coords, gof.bb.xz.out$tab[,"Ex"], pch = 19)
14 title("GOF for Hiroshima Data with BB-Reg")

> gof.bb.xz.out
GOF for model:
function(x,i) { d.beta.binom(x, Pi.hat[i],
rho.hat[i], m[i]) }
--

Ob Ex
[0.0000,0.0099] 140 135.1971
(0.0099,0.0198] 107 109.9622
(0.0198,0.0297] 90 83.6866
(0.0297,0.0396] 52 59.8884
(0.0396,0.0495] 30 38.9632
(0.0495,0.0594] 32 29.3928
(0.0594,0.0693] 27 26.7869
(0.0693,0.0792] 33 19.3542
(0.0792,0.0891] 14 17.0632
(0.0891,0.0990] 13 14.3010
(0.0990,0.1089] 11 13.8918
(0.1089,0.1188] 11 10.8686
(0.1188,0.1287] 7 9.9161
(0.1287,0.1386] 8 9.1336
(0.1386,0.1485] 9 7.2917
(0.1485,0.1584] 8 6.9002
(0.1584,0.1683] 8 6.4359
(0.1683,0.1782] 6 5.3048
(0.1782,0.1980] 12 8.7917
(0.1980,0.2178] 5 7.4826
(0.2178,0.2376] 5 5.7533
(0.2376,0.2673] 7 6.5965
(0.2673,0.3069] 5 5.9168
(0.3069,1.0000] 8 9.1205
--
X = 19.3959
DF in [17, 23]
p-value in [0.306285, 0.678020]
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GOF for Hiroshima Data with BB−Reg

Listing 4: GOF code and output for Hiroshima data under BB-Reg model.

The p-value for the GOF test is given as a range, based on two chi-square distributions
which form an upper and lower bound for the large sample distribution of X(θ̂). We can
find a specific p-value using the parametric bootstrap. Listing 5 gives the R code to carry
out the bootstrap procedure. Figure 2 plots the bootstrapped GOF test statistics. For the
bootstrapped p-value we obtain p.value.boot = 0.555. The parametric bootstrap can be
repeated for the other models as well, but note that it is significantly more time consuming
for the MixLinkJ2 model because of the work involved in computing the likelihood.
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Table 1: Model comparison statistics.

GOF
Model LogLik q AIC AICC BIC statistic df range p-value

Logistic -1814.189 3 3634.400 3327.470 3647.799 110.38 [17,20] < 10−13

RCB-Reg -1546.612 6 3105.224 3105.355 3132.067 63.96 [18,22] < 10−5

BB-Reg -1429.605 6 2871.211 2871.342 2898.054 19.40 [17,23] > 0.3063
BinMixJ2 -1500.889 8 3017.779 3018.004 3053.570 37.34 [15,23] < 0.0012
MixLinkJ2 -1433.331 5 2876.662 2878.793 2905.506 19.50 [18,23] > 0.3615

File: /home/araim/R/gof-parboot-hiroshima-bbreg.R
1 set.seed(1234)
2
3 # --------- Parametric bootstrap for GOF statistic ---------
4 # Uses MLE (Pi.hat, rho.hat) computed from the observed data
5 B <- 200
6 n <- length(y); d1 <- nrow(X); d2 <- nrow(Z)
7 gof.out <- gof.bb.xz.out
8 X.boot <- numeric(B)
9

10 for (b in 1:B)
11 {
12 printf("Starting bootstrap rep %d\n", b)
13 y.boot <- r.beta.binom(n, Pi.hat, rho.hat, m)
14 fit.boot <- fit.bb.xz.mle(y.boot, m, X, Z, phi.init = c(Beta.hat, Gamma.hat))
15
16 Beta.hat.boot <- fit.boot$theta.hat$Beta
17 Gamma.hat.boot <- fit.boot$theta.hat$Gamma
18 Pi.hat.boot <- plogis(X %*% Beta.hat.boot)
19 rho.hat.boot <- plogis(Z %*% Gamma.hat.boot)
20
21 f.boot <- function(x, i) { d.beta.binom(x, Pi.hat.boot[i], rho.hat.boot[i], m[i]) }
22 gof.out.boot <- gof.binomial(y.boot, m, f.boot, gof.breaks, qq = ncol(X) + ncol(Z))
23 X.boot[b] <- gof.out.boot$X
24 }
25
26 p.value.boot <- mean(X.boot > gof.out$X)
27 printf("Finished bootstrap. p.value.boot = %g\n", p.value.boot)
28
29 # --------- Plot the bootstrap dist’n of the GOF statistic ---------
30 pdf("gof-bbreg-boot-ecdf.pdf", width = 5, height = 5)
31 plot(ecdf(X.boot))
32 curve(pchisq(x, df = gof.out$df.low), add = TRUE, col = "red", lwd = 2)
33 curve(pchisq(x, df = gof.out$df.high), add = TRUE, col = "green", lwd = 2)
34 mynames <- c("ECDF of X.boot",
35 sprintf("chisq df = %d", gof.out$df.low),
36 sprintf("chisq df = %d", gof.out$df.high))
37 mycol <- c("black", "red", "green")
38 legend("bottomright", mynames, col = mycol, lwd = 2)
39 dev.off()

Listing 5: Parametric bootstrap for the GOF test statistic under BB-Reg model.
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Figure 2: Empirical CDF of bootstrapped GOF test statistics under the BB-Reg model.
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6.5 Analysis of Forest Pollen Data with Multinomial Overdispersion
Models

The Forest Pollen data are considered in chapter 7 of OMSAS on pp. 228–231 to demonstrate
two multinomial models with extra variation: RCM and DM. For this analysis we will use the
scoring framework developed in Section 4. First we will read the data.

> pollen <- read.table("/home/araim/data/forest-pollen.dat", head = TRUE)
> tail(pollen)

t1 t2 t3 t4
68 80 0 14 6
69 95 1 3 1
70 84 0 14 2
71 81 2 9 8
72 85 3 9 3
73 94 3 3 0

We can see that there are n = 73 multinomial counts with k = 4 categories. These correspond
to counts of pollen for four arbor types: pine, fir, oak and alder. Each observation has a
common number of trials m = 100. We will fit the RCM and DM models via the scoring
framework, but first let us exact the data into the necessary format.

> x <- t(as.matrix(pollen))
> m <- colSums(x)
> n <- ncol(x)
> Data <- list(x = x, m = m, n = n)

The k x n matrix x has n columns which represent the observations. In this example, for
both RCM and DM, we make use of the hybrid algorithm consisting of approximate scoring
iterations then Newton-Raphson iterations. This keeps the number of iterations from getting
too large, and gives more accurate standard errors than using approximate scoring alone. The
fitting of RCM is shown in Listing 6, while DM is shown in Listing 7. Notice here that π4,
the probability of observing alder, is not explicitly computed because it is not included in θ,
but could be computed as an extra quantity of interest if desired.
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> rcm <- rcm.scoring(k = nrow(x))
> theta.init <- c(1/4,1/4,1/4, 0.5)
> var.names <- c("Pi1", "Pi2", "Pi3", "rho")
> out.nr.hyb <- fit.family.nr.hybrid(theta.init, rcm, Data, var.names = var.names)
NR Hybrid: Doing Approx Scoring until warmup.tol = 0.0001
Approx Scoring: After iter 1: loglik = -730.042614, delta = Inf, estimates:
[1] 0.50657760 0.08533744 0.27684138 0.81698630
...
Approx Scoring: After iter 74: loglik = -534.217134, delta = 7.550291e-06, estimates:
[1] 0.86835346 0.01514326 0.08626722 0.08974689
NR Hybrid: Doing Newton-Raphson until tol = 1e-06
No hessian function was specified. Using a numerical one.
Newton-Raphson: After iter 1: loglik = -534.217134, delta = Inf, estimates:
[1] 0.86835528 0.01514305 0.08626789 0.08974337
Newton-Raphson: After iter 2: loglik = -534.217134, delta = 4.547474e-13, estimates:
[1] 0.86835528 0.01514305 0.08626789 0.08974338

> out.nr.hyb
Fit for model:
X[i,] ~ind~ RCM_k(m[i], Pi, rho)
--- Parameter Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Pi1 0.8684 0.0048 180.4764 0.000E+00 -1.210E-11
Pi2 0.0151 0.0016 9.7539 7.327E-15 -7.001E-10
Pi3 0.0863 0.0041 21.1720 0.000E+00 -3.617E-10
rho 0.0897 0.0111 8.0909 9.502E-12 -3.116E-10
--
Degrees of freedom = 73
LogLik = -534.2171
AIC = 1076.4343
AICC = 1077.0225
BIC = 1085.5961
Iterations = 76
Tolerance = 4.54747e-13

Listing 6: Code and results for forest pollen data under RCM model.
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> dm <- dm.scoring(k = nrow(x))
> theta.init <- c(1/4,1/4,1/4, 0.5)
> var.names <- c("Pi1", "Pi2", "Pi3", "rho")
> out.nr.hyb <- fit.family.nr.hybrid(theta.init, dm, Data, var.names = var.names)
NR Hybrid: Doing Approx Scoring until warmup.tol = 0.0001
Approx Scoring: After iter 1: loglik = -756.394254, delta = Inf, estimates:
[1] 0.58816376 0.02368668 0.26957957 0.69301450
...
Approx Scoring: After iter 23: loglik = -507.822166, delta = 9.676465e-05, estimates:
[1] 0.86211455 0.01642600 0.08879773 0.12798303
NR Hybrid: Doing Newton-Raphson until tol = 1e-06
No hessian function was specified. Using a numerical one.
Newton-Raphson: After iter 1: loglik = -507.822063, delta = Inf, estimates:
[1] 0.86211481 0.01642556 0.08879901 0.12783209
Newton-Raphson: After iter 2: loglik = -507.822063, delta = 2.242473e-10, estimates:
[1] 0.86211477 0.01642557 0.08879903 0.12783232

> out.nr.hyb
Fit for model:
X[i,] ~ind~ DM_k(m[i], Pi, rho)
--- Parameter Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Pi1 0.8621 0.0065 131.9555 0.000E+00 1.065E-07
Pi2 0.0164 0.0022 7.4052 1.834E-10 2.320E-07
Pi3 0.0888 0.0053 16.6813 0.000E+00 3.053E-08
rho 0.1278 0.0112 11.4478 0.000E+00 -1.679E-06
--
Degrees of freedom = 73
LogLik = -507.8221
AIC = 1023.6441
AICC = 1024.2324
BIC = 1032.8060
Iterations = 25
Tolerance = 2.24247e-10

Listing 7: Code and results for forest pollen data under DM model.
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6.6 Analysis of Diaper Data with Generalized Linear Overdispersion
Mixed Models

The Diaper data are considered in chapter 10 of OMSAS on pp. 356–365. They are used in
demonstrating binomial models with extra variation with random effects, namely RCB and
BB. Such models are GLOMs with random effects, and are referred to as Generalized Linear
Overdispersion Mixed Models (GLOMMs). Mixed effect RCB and BB models can be fit with
our numerical MLE framework, but we must do some additional work in programming the
likelihood so that the random effects are integrated out.

Note that the diaper dataset is simulated. OMSAS generates the data under RCB with
a random effect, then fits RCB to this version of the generated data. The process is then
repeated for BB. In this section, we will fit both models to the data generated under RCB.
Therefore the results obtained by fitting RCB will match OMSAS, but the ones obtained under
BB will be different. We now read the data.
> diaper <- read.table("/home/araim/data/diaper.dat", sep = ",", head = TRUE)
> tail(diaper)

SubjId Sequence Period Product X t m
795 398 BA 1 2 0 3 20
796 398 BA 2 1 1 0 20
797 399 BA 1 2 0 1 20
798 399 BA 2 1 1 0 20
799 400 BA 1 2 0 7 20
800 400 BA 2 1 1 5 20

In this example, a 2×2 crossover design is used to evaluate the quality of two diaper products,
comparing the probability of a leak. Subjects (babies) are assigned to one of two sequences:

• AB uses product A the 1st period and product B the 2nd period, and
• BA uses product B the 1st period and product A the 2nd period.

Let msij denote the number of diaper usages for the jth subject for the ith period in the sth
sequence. Sequence s = 1 corresponds to the AB group and s = 2 is the BA group. For the
AB group, i = 1 corresponds to product A and i = 2 corresponds to product B. On the other
hand, for the BA group, product B is used when i = 1 and product A is used when i = 2.
There are n = 400 subjects in the experiment, so that j = 1, . . . , 400. Of the msij diaper
usages, ysij leakages are observed. In this simulated example msij = 20 for all observations,
so we will use the notation m for simplicity. The data stucture is shown in Table 2.

Sequence Period 1 Period 2
AB y111, . . . , y11n y121, . . . , y12n
BA y221, . . . , y22n y211, . . . , y21n

Table 2: 2× 2 crossover design for diaper experiment.

We will consider fitting three binomial-type models with a subject-specific random effect
uj

iid∼ N(0, σ2
b ),

Ysij
ind∼ Bin(m,πsij), g(πsij) = β0 + β1xsij + uj,

Ysij
ind∼ RCB(m,πsij, ρ), g(πsij) = β0 + β1xsij + uj,

Ysij
ind∼ BB(m,πsij, ρ), g(πsij) = β0 + β1xsij + uj.
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Here, our covariate xsij is defined as the indicator for whether product B was currently in use;
that is,

xsij =


1 if s = 1 and i = 2,
1 if s = 2 and i = 1,
0 otherwise.

Fitting the binomial model is possible through the glmer function in the lme4 package.
> library(lme4)
> glmm.out <- glmer(t/m ~ X + (1 | SubjId), data = diaper, weights = m, family = binomial)
> summary(glmm.out)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [’glmerMod’]
Family: binomial ( logit )

Formula: t/m ~ X + (1 | SubjId)
Data: diaper

Weights: m

AIC BIC logLik deviance df.resid
3630.1 3644.2 -1812.1 3624.1 797

Scaled residuals:
Min 1Q Median 3Q Max

-3.2083 -0.7464 -0.5020 0.6306 3.4479

Random effects:
Groups Name Variance Std.Dev.
SubjId (Intercept) 2.631 1.622

Number of obs: 800, groups: SubjId, 400

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.80444 0.09883 -28.377 < 2e-16 ***
X 0.33956 0.05313 6.391 1.65e-10 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Correlation of Fixed Effects:
(Intr)

X -0.306
> confint(glmm.out)
Computing profile confidence intervals ...

2.5 % 97.5 %
.sig01 1.476215 1.7870490
(Intercept) -3.002895 -2.6148784
X 0.235568 0.4438659

Now we fit RCB and BB through our numerical MLE framework. The results are given
in Listings 8 and 9. We obtain confidence intervals for all parameters after computing the
estimates. Note that we have used 400 as the degrees of freedom, while OMSAS reports 399
degrees of freedom. This is justified by treating the (ys1j, ys2j) as bivariate observations from
n = 400 individuals. The code to fit the RCB and BB models is given as Listings 10 and 11.
We use the numerical MLE framework as in previous examples, where the likelihoods now do
the work of integrating over the random effect. This is done numerically using quadrature.
Notice that the likelihood is of the form

L(θ) =
∫ ∞
−∞

2∏
s=1

2∏
i=1

n∏
j=1

f(ysij | πsij, ρ,m, uj) N(uj | 0, σ2
b ) duj

=
2∏
s=1

n∏
j=1

∫ ∞
−∞

f(ys1j | πs1j, ρ,m, u)f(ys2j | πs2j, ρ,m, u) N(u | 0, σ2
b ) du,
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where f represents either the RCB or BB density and N(x | µ, σ2) is the Normal density.
Every subject requires evaluation of a univariate integral, where the integrand involves both
of his/her observations. We have used the statmod package to provide Q quadrature points
z1, . . . , zQ from Normal(0, σ2

b ) and corresponding weights w1, . . . , wQ. The integral for the
sth sequence of the jth subject can then approximated as

∫ ∞
−∞

h(u)N(u | 0, σ2
b )du ≈

Q∑
`=1

w`h(z`),

where h(u) = f(ys1j | πs1j, ρ,m, u)f(ys2j | πs2j, ρ,m, u).

1 source("/home/araim/R/fit-diaper-rcb-mle.R")
2 source("/home/araim/R/fit-diaper-bb-mle.R")
3
4 extra.tx <- function(theta)
5 {
6 list(sigma.b.sq = theta$sigma.b^2,
7 Pi1 = plogis(theta$Beta[1] + theta$Beta[2]),
8 Pi2 = plogis(theta$Beta[1]),
9 OR = exp(theta$Beta[2]),

10 rho.sq = theta$rho^2)
11 }
12
13 fit.rcb.mixeff.out <- fit.rcb.mixeff.mle(diaper, extra.tx, nGQ = 20)
14 fit.bb.mixeff.out <- fit.bb.mixeff.mle(diaper, extra.tx, nGQ = 20)
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> fit.rcb.mixeff.out <- fit.rcb.mixeff.mle(diaper, extra.tx, phi.init = phi.init, nGQ = 20)
> print(fit.rcb.mixeff.out)
Fit for model:
y[s,i,j] ~ind~ RCB(m[s,i,j], Pi[s,i,j], rho),
logit(Pi[s,i,j]) = x[s,i,j]^T Beta + u[j]
u[j] ~iid~ N(0, sigma.b^2)
Likelihood computed by Gaussian Quadrature with nGQ = 20
Elapsed time: 5.20 sec
--- Parameter Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Beta1 -2.5638 0.0939 -27.3163 0.000E+00 1.164E-05
Beta2 0.3771 0.0773 4.8802 1.533E-06 -0.0003
rho 0.3954 0.0150 26.3869 0.000E+00 7.262E-05
sigma.b 1.2672 0.0760 16.6806 0.000E+00 0.0006
--- Additional Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
sigma.b.sq 1.6059 0.1925 8.3403 1.332E-15 0.0015
Pi1 0.1010 0.0080 12.6159 0.000E+00 -2.754E-05
Pi2 0.0715 0.0062 11.4753 0.000E+00 7.729E-07
OR 1.4581 0.1127 12.9403 0.000E+00 -0.0005
rho.sq 0.1564 0.0119 13.1935 0.000E+00 5.744E-05
--
Degrees of freedom = 400
LogLik = -1577.7232
AIC = 3163.4464
AICC = 3163.5477
BIC = 3179.4123

> confint(fit.rcb.mixeff.out)
--- Parameter CIs (level 0.950000) ---

Estimate SE Lower Upper
Beta1 -2.5637645 0.09385489 -2.7482750 -2.3792540
Beta2 0.3771336 0.07727798 0.2252118 0.5290553
rho 0.3954422 0.01498629 0.3659804 0.4249039
sigma.b 1.2672234 0.07596976 1.1178735 1.4165733
--- Additional CIs (level 0.950000) ---

Estimate SE Lower Upper
sigma.b.sq 1.6058552 0.192541308 1.22733583 1.98437450
Pi1 0.1009575 0.008002372 0.08522552 0.11668944
Pi2 0.0715072 0.006231394 0.05925683 0.08375758
OR 1.4580991 0.112678952 1.23658212 1.67961600
rho.sq 0.1563745 0.011852419 0.13307368 0.17967532
--
Degrees of freedom = 400
t-quantile = 1.965912

Listing 8: Estimates and confidence intervals for RCB random effect model applied to diaper
data.
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> print(fit.bb.mixeff.out)
Fit for model:
y[s,i,j] ~ind~ BB(m[s,i,j], Pi[s,i,j], rho),
logit(Pi[s,i,j]) = x[s,i,j]^T Beta + u[j]
u[j] ~iid~ N(0, sigma.b^2)
Likelihood computed by Gaussian Quadrature with nGQ = 20
Elapsed time: 5.60 sec
--- Parameter Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
Beta1 -2.4408 0.1000 -24.4115 0.000E+00 -0.0005
Beta2 0.3430 0.0858 3.9988 7.582E-05 -0.0004
rho 0.3474 0.0184 18.8632 0.000E+00 0.0003
sigma.b 1.1845 0.0824 14.3681 0.000E+00 0.0006
--- Additional Estimates ---

Estimate SE t-val P(|t|>t-val) Gradient
sigma.b.sq 1.4032 0.1953 7.1841 3.333E-12 0.0014
Pi1 0.1093 0.0092 11.9244 0.000E+00 -8.643E-05
Pi2 0.0801 0.0074 10.8726 0.000E+00 -3.448E-05
OR 1.4092 0.1209 11.6574 0.000E+00 -0.0006
rho.sq 0.1207 0.0128 9.4316 0.000E+00 0.0002
--
Degrees of freedom = 400
LogLik = -1635.1215
AIC = 3278.2430
AICC = 3278.3442
BIC = 3294.2088

> confint(fit.bb.mixeff.out)
--- Parameter CIs (level 0.950000) ---

Estimate SE Lower Upper
Beta1 -2.4407687 0.09998453 -2.6373295 -2.2442078
Beta2 0.3430266 0.08578207 0.1743865 0.5116666
rho 0.3473727 0.01841533 0.3111698 0.3835757
sigma.b 1.1845492 0.08244298 1.0224735 1.3466249
--- Additional CIs (level 0.950000) ---

Estimate SE Lower Upper
sigma.b.sq 1.40315679 0.195315537 1.01918356 1.78713001
Pi1 0.10931647 0.009167438 0.09129409 0.12733885
Pi2 0.08011625 0.007368623 0.06563018 0.09460231
OR 1.40920621 0.120884626 1.17155763 1.64685479
rho.sq 0.12066783 0.012793968 0.09551601 0.14581965
--
Degrees of freedom = 400
t-quantile = 1.965912

Listing 9: Estimates and confidence intervals for BB random effect model applied to diaper
data.
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File: /home/araim/R/fit-diaper-rcb-mle.R
1 library(statmod)
2
3 fit.rcb.mixeff.mle <- function(diaper, extra.tx, phi.init = NULL, nGQ = 20)
4 {
5 X <- model.matrix(~X, data = diaper)
6 d <- ncol(X)
7
8 Data <- list(y = diaper$t, m = diaper$m, X = X, n = max(diaper$SubjId))
9

10 if (is.null(phi.init))
11 phi.init <- c(rep(0,d+2))
12
13 theta.tx <- function(phi)
14 {
15 list(Beta = phi[1:d], rho = plogis(phi[1+d]), sigma.b = exp(phi[2+d]))
16 }
17
18 loglik <- function(phi, Data)
19 {
20 theta <- theta.tx(phi)
21 quad.out <- gauss.quad.prob(n = nGQ, dist = "normal", mu = 0, sigma = theta$sigma.b)
22 u <- quad.out$nodes
23 w <- quad.out$weights
24
25 ll <- numeric(Data$n)
26 eta.fixed <- Data$X %*% theta$Beta
27
28 # Each subject has two observations, which are consecutive in the dataset
29 # These correspond to the two periods of the experiment
30 for (j in 1:Data$n)
31 {
32 idx.p1 <- 2*j - 1
33 idx.p2 <- 2*j
34 mu.p1 <- plogis(eta.fixed[idx.p1] + u)
35 mu.p2 <- plogis(eta.fixed[idx.p2] + u)
36 GQ.points.p1 <- d.rcb(Data$y[idx.p1], Pi = mu.p1, theta$rho, Data$m[idx.p1])
37 GQ.points.p2 <- d.rcb(Data$y[idx.p2], Pi = mu.p2, theta$rho, Data$m[idx.p2])
38 GQ.points <- GQ.points.p1 * GQ.points.p2
39
40 ll[j] <- log(sum(w * GQ.points))
41 }
42
43 return(sum(ll))
44 }
45
46 start <- Sys.time()
47 fit.out <- fit.mle(phi.init, loglik, theta.tx, extra.tx = extra.tx, Data = Data)
48
49 fit.out$description <- paste0(
50 sprintf("y[s,i,j] ~ind~ RCB(m[s,i,j], Pi[s,i,j], rho),\n"),
51 sprintf("logit(Pi[s,i,j]) = x[s,i,j]^T Beta + u[j]\n"),
52 sprintf("u[s,j] ~iid~ N(0, sigma.b^2)\n"),
53 sprintf("Likelihood computed by Gaussian Quadrature with nGQ = %d\n", nGQ),
54 sprintf("Elapsed time: %0.02f sec", as.numeric(Sys.time() - start, units = "secs"))
55 )
56 return(fit.out)
57 }

Listing 10: Code to fit random effect RCB model to diaper data.
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File: /home/araim/R/fit-diaper-bb-mle.R
1 library(statmod)
2
3 fit.bb.mixeff.mle <- function(diaper, extra.tx, phi.init = NULL, nGQ = 20)
4 {
5 X <- model.matrix(~X, data = diaper)
6 d <- ncol(X)
7
8 Data <- list(y = diaper$t, m = diaper$m, X = X, n = max(diaper$SubjId))
9

10 if (is.null(phi.init))
11 phi.init <- c(rep(0,d+2))
12
13 theta.tx <- function(phi)
14 {
15 list(Beta = phi[1:d], rho = plogis(phi[1+d]), sigma.b = exp(phi[2+d]))
16 }
17
18 loglik <- function(phi, Data)
19 {
20 theta <- theta.tx(phi)
21 quad.out <- gauss.quad.prob(n = nGQ, dist = "normal", mu = 0, sigma = theta$sigma.b)
22 u <- quad.out$nodes
23 w <- quad.out$weights
24
25 ll <- numeric(Data$n)
26 eta.fixed <- Data$X %*% theta$Beta
27
28 # Each subject has two observations, which are consecutive in the dataset
29 # These correspond to the two periods of the experiment
30 for (j in 1:Data$n)
31 {
32 idx.p1 <- 2*j - 1
33 idx.p2 <- 2*j
34 mu.p1 <- plogis(eta.fixed[idx.p1] + u)
35 mu.p2 <- plogis(eta.fixed[idx.p2] + u)
36 GQ.points.p1 <- d.beta.binom(Data$y[idx.p1], Pi = mu.p1, theta$rho, Data$m[idx.p1])
37 GQ.points.p2 <- d.beta.binom(Data$y[idx.p2], Pi = mu.p2, theta$rho, Data$m[idx.p2])
38 GQ.points <- GQ.points.p1 * GQ.points.p2
39
40 ll[j] <- log(sum(w * GQ.points))
41 }
42
43 return(sum(ll))
44 }
45
46 start <- Sys.time()
47 fit.out <- fit.mle(phi.init, loglik, theta.tx, extra.tx = extra.tx, Data = Data)
48
49 fit.out$description <- paste0(
50 sprintf("y[s,i,j] ~ind~ BB(m[s,i,j], Pi[s,i,j], rho),\n"),
51 sprintf("logit(Pi[s,i,j]) = x[s,i,j]^T Beta + u[j]\n"),
52 sprintf("u[s,j] ~iid~ N(0, sigma.b^2)\n"),
53 sprintf("Likelihood computed by Gaussian Quadrature with nGQ = %d\n", nGQ),
54 sprintf("Elapsed time: %0.02f sec", as.numeric(Sys.time() - start, units = "secs"))
55 )
56 return(fit.out)
57 }

Listing 11: Code to fit random effect BB model to diaper data.
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7 Notes on R Programming

7.1 Debugging
Debugging is an integral part of writing nontrivial programs. It is a rare occurrence to write
code that works correctly in all circumstances on the first attempt. We often find that our new
program produces errors or warnings, or gives an answer which appears incorrect. Sometimes
the problem is difficult to pinpoint; errors may occur only in some random samples, and we
may not be totally certain that an answer is incorrect. A few basic debugging techniques can
help us track down the sources of these issues.

• Develop code “interactively”. It is easy in R to write a few lines of code, run them, and
examine the output. Doing this can help to prevent many obvious errors, and to quickly
put together a working program.

• Use print statements to report important values. This is especially useful for longer
programs that cannot be run interactively. For example, to see how the optimization
is working on one of our loglik functions, we may want to print the result before
returning it.

1 loglik <- function(phi, Data)
2 {
3 theta <- theta.tx(phi)
4 ll <- sum( d.rcb(Data$y, Pi = theta$Pi, rho = theta$rho, m = Data$m, log = TRUE) )
5 printf("Pi=%f, rho=%f, ll=%f\n", theta$Pi, theta$rho, ll)
6 return(ll)
7 }

> n <- 100; m <- 20
> Pi <- 1/2; rho <- 1/4
> y <- r.rcb(n, Pi, rho, m)
> fit.rcb.mle(y, m)
Pi=0.500000, rho=0.500000, ll=-314.103046
Pi=0.500250, rho=0.500000, ll=-314.104756
Pi=0.499750, rho=0.500000, ll=-314.101440
Pi=0.500000, rho=0.500250, ll=-314.228695
Pi=0.500000, rho=0.499750, ll=-313.977602
...

In some cases, it may be appropriate to leave print statements in code for informational
purposes, even after debugging is complete.

• R has an interactive debugger which can step through a program while it is running.
There are several ways to start the debugger. For example, we can ask R to invoke the
debugger any time a particular function is called. Note that this can be any function
in R, not necessarily only ones that we have written. Suppose we want to use the
debugger when the optim function is called. This can be accomplished by the command
debug(optim).

> debug(optim)
> fit.rcb.mle(y, m)
debugging in: optim(par = phi.init, fn = loglik, method = "L-BFGS-B", control = list(fnscale = -1,

trace = 0), hessian = TRUE, Data = Data)
debug: {
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fn1 <- function(par) fn(par, ...)
... [optim function contents are shown] ...
}

Now the program is paused and we can look around using regular R commands.

Browse[2]> ls()
[1] "control" "fn" "gr" "hessian" "lower" "method" "par" "upper"
Browse[2]> print(control)
$fnscale
[1] -1

$trace
[1] 0

Browse[2]>

Note that changes made to your workspace (e.g. changes to variables) within the debug-
ging session may be discarded after exiting the debugger. We can stop the debugger by
entering the command Q, or step to the next line of code by entering n. The debugger
will continue to start each time optim is called in our current R session, until we enter
undebug(optim).

• Another way to invoke the debugger is to put a browser call in your program. R starts
the debugger when it encounters this statement.

1 f <- function(x)
2 {
3 z <- t(x) %*% x
4 browser()
5 return(z)
6 }

> x <- c(1,2,3)
> f(x)
Called from: f(x)
Browse[1]> ls()
[1] "x" "z"
Browse[1]> x
[1] 1 2 3
Browse[1]> z

[,1]
[1,] 14
Browse[1]> Q

For more information about debugging in R, a useful web page is www.stats.uwo.ca/
faculty/murdoch/software/debuggingR.

7.2 Writing Efficient R Code
It is very easy to write slow programs in R, but it is also possible to write efficient code
by the following principle. Many R functions are implemented in C and are themselves very
efficient. Take the sum function as a very simple example. You will see a huge performance
improvement by calling sum on a large vector of numbers, rather than adding the numbers
yourself in a loop.
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> x <- rnorm(1000000)
> start <- Sys.time()
> y <- sum(x)
> Sys.time() - start
Time difference of 0.001904726 secs
> print(y)
[1] -298.7991

> start <- Sys.time()
> y <- 0
> for (i in 1:1000000) {
+ y <- y + x[i]
+ }
> Sys.time() - start
Time difference of 0.8191297 secs
> print(y)
[1] -298.7991

Notice that the loop is several orders of magnitude slower than sum. Functions like apply are
popular among R programmers because they help to avoid loops, but they exhibit the same
performance issues because they are essentially doing the same thing as a loop. Many of
the core computations, such as matrix algebra, are written in C and therefore give excellent
performance if you can leverage them.

7.3 Interfacing with C Code
Sometimes it is not possible to write pure R code to make efficient use of the core R functions,
as suggested in Section 7.2. In this case, you may want to consider writing your function in C
with an R interface. This requires some work, but provides an efficient R function which can
be called like any other R function. An example is given in the OverdispersionModelsInR
package; see the find.vertices function which is used in computing the Mixture Link
binomial density. The package Rcpp is also available to simplify manipulation of R objects
(e.g. matrices and vectors) in C/C++.

7.4 Parallel Computing
Sometimes the performance of a program can be greatly improved by splitting it into pieces
which can run simultaneously. This is the approach taken in parallel programming. Modern
computers often have multiple processor cores. Some institutions host large scale parallel
computers with hundreds or thousands of processor cores. The authors’ institution hosts such
a machine, through the High Performance Computing Facility (HPCF, www.umbc.edu/hpcf).

R supports parallel programming through packages developed by the community. The snow
package provides a master/worker paradigm through constructs such as a parallel version of
apply, where the master doles out tasks to workers. The pbdR package provides an MPI
paradigm where parallel processes are peers and communicate with each other to carry out
a job. The RHIPE package provides a map-reduce (Hadoop) paradigm, which has become
extremely popular for working on very large distributed datasets. More options for high
performance and parallel computing are discussed at cran.r-project.org/web/views/
HighPerformanceComputing.html.

Some information about getting started with parallel R (especially snow and pbdR) on the
HPCF computing cluster is provided at
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www.umbc.edu/hpcf =⇒ “Resources for HPCF Users” =⇒ “R”.

Also see the tutorial (Raim, 2013) on pbdR. These materials can serve as illustrative examples
of R on a high performance computing cluster; however, some procedures are specific to the
HPCF environment and may be different for your cluster.

7.5 Making a Package
R users can create packages containing code and data. This provides a convenient method for
sharing your work with the general R community, a group of colleagues, or just to organize your
own code for yourself. In this document, we have walked through some of the development
of the OverdispersionModelsInR package. To learn how to create your own package, a
good starting place is (Leisch, 2008).
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