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We consider a coherent state of light propagating through an ensemble of two-level atoms where all the atoms
are initially in their ground state. In ordinary absorption, the transition of atoms to their excited state along
with the absorption of a photon will remove energy from the beam and attenuate the signal. Here we show that
post-selecting on those cases in which none of the atoms made a transition to the excited state can give even
more attenuation than would normally occur due to absorption. The same process can also produce amplification
when there is a sufficiently strong interaction between the photons and the atoms.
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I. INTRODUCTION

Post-selection and heralding are used in quantum optics for
a wide range of applications, such as linear optics quantum
logic gates [1–5], noiseless amplification [6–9] and attenu-
ation [10–12], and the quantum engineering of nonclassical
states [13–15]. Here we consider the effects of post-selection
when a coherent state of light (laser beam) propagates through
an atomic medium where all of the atoms are initially in their
ground state. Without any post-selection, the absorption of
photons and the corresponding transition of atoms to their
excited state will remove energy from the beam and attenuate
the signal.

We consider the effects of post-selecting on the case in
which all of the atoms are found in their ground state at the
end of the process as illustrated in Fig. 1. Since none of the
atoms made a transition, one might expect that the atomic
medium did nothing and that there should be no effect on the
statistics of the photon state. Somewhat surprisingly, we show
that post-selection of this kind can produce more attenuation
than normally occurs due to absorption. It can even produce
amplification under conditions where atomic saturation and
time-dependent effects become important.

This work was motivated in part by an earlier paper [12]
that showed that an optical parametric amplifier (OPA) can
function as a noiseless attenuator if no photons are found in
the output of the idler mode. Since the idler mode initially
contained no photons, it can be inferred that the OPA did
not emit or absorb any signal photons, since the signal and
idler photons are emitted or absorbed in pairs. Once again,
the OPA appears to have done nothing under these conditions,
but the post-selection process gives noiseless attenuation
nevertheless.

These effects can be understood from the fact that an
incident coherent state contains an uncertain number of pho-
tons. Those probability amplitudes in the initial state that
correspond to a relatively large number of incident photons
are more likely to produce a transition to the excited atomic
state and be rejected by the post-selection process. As a result,
the photon number distribution is shifted towards lower values
as illustrated in Fig. 2. Energy is conserved, even though the

expectation value of the photon number has changed with no
change in the energy of the environment.

The probability of success for the post-selection process
decreases exponentially for high-intensity coherent states,
where it becomes increasingly unlikely that no atoms will
have been excited. As a result, this technique is limited to
relatively weak input signals.

We describe our analysis methods in Sec. II, where the
density matrix of the system of atoms and photons is calcu-
lated with or without any post-selection. Section III presents
the results when the interaction is relatively weak, giving en-
hanced attenuation in the absence of any absorption. Section
IV considers the effects of relatively strong interactions that
can produce either attenuation or amplification. A summary
and conclusions are presented in Sec. V.

II. ANALYSIS METHODS

We first consider the effects of post-selection when a
coherent state interacts with a single atom, which illustrates
most of the phenomena of interest. The results will then be
generalized to an interaction with a larger number of atoms.

In the rotating wave approximation, the interaction be-
tween the photons and a single atom is described by the
Jaynes-Cummings Hamiltonian, which is given by

ĤI = h̄λ(â†σ̂− + âσ̂+) (1)

in the interaction picture [16,17]. Here λ is the coupling
constant between the light and an atom, which is proportional
to the atomic dipole moment, and the operators â and â†

annihilate or create a photon. The Pauli operator σ̂+ produces
an atomic transition from the ground to excited state, while σ̂−
does the reverse operation. The Hamiltonian of Eq. (1) gives
rise to a time evolution operator Û (t ) given as usual by

Û (t ) = e−iĤI t/h̄ = e−iλt (â†σ̂−+âσ̂+ ), (2)

where we have assumed that the interaction occurs over a time
interval t .
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FIG. 1. A coherent state of light is incident on an ensemble of
two-level atoms in which all of the atoms are initially in their ground
state (blue line). (a) Typical absorption in which some atoms are left
in their excited state (red line) due to the absorption of a photon,
which produces an attenuation of the beam of light. (b) Post-selection
on the case in which no atoms are found in their excited state
produces even more attenuation than does ordinary absorption.

Equation (2) can be rewritten in block matrix form as [16]

Û (t ) =
[
Ĉ(t ) Ŝ′(t )
Ŝ(t ) Ĉ′(t )

]
. (3)

Here we have chosen a basis for the atomic states |ψA〉 in
which

|ψA〉 =
(

cE

cG

)
, (4)

where cG and cE are the probability amplitudes for the ground
and excited states, respectively. The elements of the block
matrix in Eq. (3) are then given by

Ĉ(t ) = cos(λt
√

ââ†), (5)

Ŝ(t ) = −iâ† sin(λt
√

ââ†)√
ââ†

, (6)

Ĉ′(t ) = cos(λt
√

â†â), (7)

Ŝ′(t ) = −iâ
sin(λt

√
â†â)√

â†â
. (8)

Before the interaction begins, we assume a coherent state
|α〉 for the field and we also assume that the atom is in its
ground state. Since this is a pure state, the initial density
operator describing the system is given by

ρ̂(0) = ρ̂ p(0) ⊗ ρ̂A(0) =
[

0 0
0 ρ̂ p(0)

]
. (9)

Here ρ̂ p(0) = |α〉〈α| and ρ̂A(0) = |G〉〈G| are the initial
density operators for the electromagnetic field and the

FIG. 2. Origin of the increased attenuation due to the post-
selection process shown in Fig. 1. The probability amplitude cn in
the number state basis is plotted as a function of the photon number
n for a relatively weak interaction. The solid dots correspond to
an incident coherent state while the open dots represent the state
after the post-selection process. All of the probability amplitudes are
initially reduced, but those corresponding to larger values of n are
reduced more than those corresponding to smaller values of n. This is
because the interaction is stronger for large n and the atoms are less
likely to remain in the ground state and survive the post-selection
process. The final state has been renormalized, which is why the
probability amplitudes for small values of n are larger than they were
before the interaction.

atom, respectively. The interaction between the field and
the atom results in a time-evolved density operator ρ̂(t ) =
Û (t )ρ̂(0)Û †(t ). The new density operator is thus

ρ̂(t ) =
[
ρ̂11(t ) ρ̂12(t )
ρ̂21(t ) ρ̂22(t )

]
, (10)

with block matrix elements given by

ρ̂11(t ) = −Ŝ′(t )ρ̂ p(0)Ŝ(t ), (11)

ρ̂12(t ) = Ŝ′(t )ρ̂ p(0)Ĉ′(t ), (12)

ρ̂21(t ) = −Ĉ′(t )ρ̂ p(0)Ŝ(t ), (13)

ρ̂22(t ) = Ĉ′(t )ρ̂ p(0)Ĉ′(t ). (14)

We now consider two separate situations in which we either
apply post-selection based on the final state of the atom, or
we consider ordinary absorption in which the final state of
the atom is ignored. For the case of ordinary absorption, we
average over the atomic states by taking a partial trace. For
a bipartite system of this kind, the reduced density matrix
elements ρ ′

nm for the field after a partial trace over the atomic
states is given by

ρ ′
nm =

∑
μ

ρnμ,mμ. (15)

Here the index µ labels the two-level atomic Hilbert space.
The partial trace of Eq. (15) applied to the density matrix of
Eq. (10) gives

ρ̂ ′
p(t ) = ρ̂11(t ) + ρ̂22(t ), (16)
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which describes the results of ordinary absorption by the
atomic medium.

If, instead, we post-select on the case in which the atom is
found in its ground state after the interaction, the new density
matrix is found by projecting the original density operator
onto the atomic ground state using |G〉〈G|ρ̂(t )|G〉〈G| and then
normalizing. From Eq. (10), the resulting density operator for
the field alone is given by

ρ̂ ′′
p (t ) = ρ̂22(t )

Tr[ρ̂22(t )]
. (17)

Since all the terms in Eqs. (16) and (17) include only ρ̂11(t )
and ρ̂22(t ), we can ignore the off-diagonal terms. Using a Fock
(number) state basis to describe the photons, it can be shown
that the terms of interest are given by

ρ̂11(t ) = e−|α|2 ∑
n,m

cn,m|n − 1〉〈m − 1|,
ρ̂22(t ) = e−|α|2 ∑

n,m
c′

n,m|n〉〈m|, (18)

where

cn,m = αnα∗m

√
n!m!

sin(λt
√

n) sin(λt
√

m),

c′
n,m = αnα∗m

√
n!m!

cos(λt
√

n) cos(λt
√

m). (19)

Inserting Eqs. (18) and (19) into Eqs. (16) and (17) gives
the explicit form of the final density operators for the two
cases of interest. In the case of an interaction with N atoms,
the constants cn,m and c′

n,m simply takes the pairs of sine
or cosine functions to the Nth power. These can be used to
calculate the expectation value of the properties of the system,
such as the mean number 〈n̂〉 of photons given by

〈n̂〉 = Tr[n̂ρ̂]. (20)

Here n̂ = â†â is the number operator. The mean photon num-
ber can be shown to be

〈n̂〉1 = |α|2 − e−|α|2
∞∑

n=0

|α|2n

n!
sin2(λt

√
n) (21)

for normal absorption, and

〈n̂〉2 = |α|2
∑∞

n=0
|α|2n

n! cos2(λt
√

n + 1)∑∞
n=0

|α|2n

n! cos2(λt
√

n)
(22)

for post-selection on no absorption. The mean photon number
will be used to quantify the amount of attenuation or ampli-
fication in the next two sections. The final density operators
can also be used to calculate a quasiprobability distribution
in phase space for the final field, as will be described in the
following sections.

The analytic results in Eqs. (21) and (22) were verified
numerically by calculating the time evolution of the density
matrix using Mathematica. The effects of an interaction with
a larger number of atoms was also calculated numerically.
For simplicity, we assumed that the photons interacted with

a series of N atoms one at a time. This illustrates all of
the features of interest, and a situation of this kind could be
realized experimentally by sending a narrow beam of light
through an atomic vapor with a sufficiently low density that
only a single atom passes through the beam at any given time.

In order to calculate the results of such a sequence of
interactions, the photons were assumed to interact with the
first atom as described by Eqs. (9) through (10). The reduced
density matrix of the field was then calculated by tracing over
the atomic states for ordinary absorption, or by projecting onto
the subspace corresponding to the ground state of the atom
for post-selection. The tensor product with the ground state
of the next atom was formed and the process was repeated
N times. The results were qualitatively similar to those from
an interaction with a single atom, except that the change in
the state of the field was much larger as would be expected.
The results of these calculations are discussed in the next two
sections for an arbitrary choice of N = 10.

A Taylor series expansion of Eqs. (21) and (22) can be
used to show that the post-selection and normal absorption
processes give the same amount of attenuation in the limit
of weak interactions or small coherent state amplitudes, as
will be evident in the examples considered in the following
sections.

The probability of success of the post-selection process can
be calculated by taking the trace of the unnormalized density
operators in Eq. (18). For an interaction with a single photon,
the probability of success can be shown to be

P1(t ) = e−|α|2
∞∑

n=0

αn

n!
cos2(λt

√
n). (23)

Extending this to an interaction with N atoms gives a
success probability of

PN (t ) = e−|α|2
∞∑

n=0

αn

n!
cos2N (λt

√
n). (24)

It can be seen that the probability of success decreases expo-
nentially for large values of |α|, and it is on the order of 10−3

for most of the examples discussed in the following sections.

III. WEAK INTERACTIONS AND ENHANCED
ATTENUATION

In this section, we will consider the case in which the
interaction between the field and the atoms is sufficiently
weak that there is negligible saturation of the excited atomic
states. Post-selecting on those events in which the atoms
remained in their ground state gives enhanced attenuation in
that case. In the following section, we will consider the more
complicated situation where the interaction is sufficiently
strong that atomic saturation and Rabi oscillations can play
an important role.

The strength of the interaction between the field and an
atom is characterized by the parameter r = λt , which appears
in the Hamiltonian of Eq. (1) and all of the subsequent results.
For simplicity, we will refer to r as the interaction strength or
coupling parameter.

The mean number of photons 〈n̂〉 left in the field after
an interaction with a single atom is illustrated in Fig. 3 as
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FIG. 3. A plot of the fraction F of the photons remaining on
average after a coherent state interacts with a single atom. The
black (solid) curve corresponds to ordinary absorption without post-
selection, while the results based on post-selection on the atomic
ground state are shown by the red (dashed) curve. It can be seen that
post-selection on those cases where no atomic absorption occurred
can give more attenuation than the usual atomic absorption process.

a function of the parameter r over a relatively small range
of values up to r = 0.4. For simplicity, the fraction of the
photons remaining is plotted instead of 〈n̂〉 itself. The initial
amplitude of the coherent state was arbitrarily chosen to be
α = √

10, which corresponds to a mean photon number of 10.
It can be seen that the post-selection process corresponding to
no atomic absorption can give significantly more attenuation
than is obtained from the usual absorption process for values
of r greater than approximately 0.2. The post-selected case
and the usual absorption process give equivalent absorption in
the limit of small r, as can be shown to be the case analytically.

The effects of the post-selection can be further illustrated
by plotting the Husimi-Kano Q function in phase space, which
is defined as [18,19]

Q(α) = 1

π
〈α|ρ̂|α〉. (25)

Here α is an arbitrary complex variable and |α〉 is a coherent
state with that amplitude. Figure 4(a) shows the Q function
for the case of ordinary absorption with no post-selection,
while Fig. 4(b) shows the results when post-selected on the
case when all of the atoms remained in the ground state.
These results correspond to N = 10 and r = 0.25, and were
calculated numerically as described in the preceding section.
It can be seen that the Q function is shifted closer to the origin
for the post-selected case in Fig. 4(b), which corresponds to
a lower intensity than is the case with no post-selection in
Fig. 4(a). The mean photon number corresponds to 〈n̂〉 = 5.88
for normal absorption and 〈n̂〉 = 4.92 for post-selection. It can
be seen that the post-selection process also produces a slight
distortion in the shape of the Q function, which means that the
process is somewhat nonlinear.

The probability of success for the post-selection process
can be calculated from Eqs. (23) and (24). The probability
of success under the conditions corresponding to Fig. 4 is on
the order of 10−3, while it becomes exponentially smaller for
larger coherent state amplitudes.

FIG. 4. A plot of the Q function of the field after an interaction
with N = 10 atoms and a coupling parameter of r = 0.25. (a) The
Q function for ordinary atomic absorption where there is no post-
selection. (b) The corresponding plot for post-selection on those
events in which none of the atoms made a transition to the excited
state. It can be seen that the post-selection process gives more
attenuation than the usual atomic absorption.

IV. STRONG INTERACTIONS AND AMPLIFICATION

Atomic saturation can become important when the cou-
pling parameter r is sufficiently large, and the atoms can
undergo Rabi oscillations as well for large values of r. This
results in a more complicated response of the field in which
the system oscillates between loss and gain, as can be seen in
Fig. 5.

Figure 5 shows the fraction F of the photons remaining as
a function of r as in Fig. 3, but for larger values of r up to 3.0.
It can be seen that the number of photons remaining at the
end of the interaction now oscillates as a function of r, with
certain values of r producing an increase in the mean photon
number rather than a decrease. This corresponds to a new kind
of gain mechanism that occurs in the absence of any atomic
transitions.

We have also investigated the effects of post-selecting on
the case in which all of the atoms are found in their excited
state instead of the ground state. The value of the fraction F
oscillates in a manner similar to that shown in Fig. 5, except
that the location of the maxima and minima are interchanged.
The physical origin of these effects will be discussed in
Sec. V.
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FIG. 5. A plot of the fraction F of the photons remaining on
average as a function of the coupling parameter r as in Fig. 3,
but plotted over a range of r where atomic saturation and Rabi
oscillations become important. Once again, the black (solid) curve
corresponds to ordinary absorption without post-selection, while the
results based on post-selection on the atomic ground state are shown
by the red (dashed) curve. It can be seen that the effect on the field
now oscillates between attenuation and amplification.

The effects of atomic saturation on the post-selection pro-
cess can be seen in more detail in the plot of the Q function
in Fig. 6. These results correspond to a coupling parameter of
r = 0.45, which gives the maximum amount of attenuation. It
can be seen that the center of the Q function has been moved
closer to the origin as in Fig. 4. The mean photon number was
found to be 〈n̂〉 = 2.72 for normal absorption and 〈n̂〉 = 1.04
for post-selection. In this case, the probability of success is
P10 ∼ 10−4, which is lower than before since it is less likely
for all the atoms to remain in their ground state when the
strength of the interaction is increased.

The Q function is plotted in Fig. 7 for a value of r = 0.6,
which corresponds to the maximum amplification. In this
case, the mean photon number was found to be 〈n̂〉 = 2.39
and 〈n̂〉 = 19.15 with and without post-selection, respectively.
This corresponds to nearly a factor of two increase in the
photon number as compared to the initial value, or an intensity
gain of 2. This post-selection process is not equivalent to a
true noiseless amplifier [6] due to the distortion in the shape
of the Q function, but it may still have some advantages
over a conventional amplifier as will be discussed below.
Surprisingly, the probability of success for the conditions of
Fig. 7 is ∼ 10−3, which is larger than that for the maximum
attenuation shown in Fig. 6.

Figure 8 shows the fraction F of photons remaining as a
function of the amplitude |α| of the incident coherent state.
Here the coupling parameter was held constant at r = 0.25.
It can be seen that there is no significant difference between
the post-selected and ordinary absorption cases in the limit of
small |α|, as can be shown to be the case analytically. There is
also no difference between the two cases in the limit of large
|α|. This can be understood from the fact that sufficiently large
photon numbers will give rapid Rabi oscillations between the
two atomic states. This corresponds to saturated absorption
where the ground state and excited state are nearly equally
populated and post-selection has very little net effect.

It is also interesting to investigate the effects of the post-
selection process for nonclassical states, such as a squeezed

FIG. 6. The Q function of the output state for a strong coupling
parameter (r = 0.45) that gives the maximum attenuation of the
signal. (a) Normal absorption, where a small amount of distortion
in the quasiprobability distribution is visible. (b) The results of post-
selection, which gives more attenuation than is the case for normal
absorption. The value of α was once again chosen to be

√
10 and

N = 10.

coherent state. This can be calculated using the probability
amplitude cn for a squeezed coherent state in a basis of number
(Fock) states, which is given by [20]

cn = A

(
1
2 eiθ tanh s

)n/2

√
n! cosh s

Hn

{
γ√

eiθ sinh (2s)

}
. (26)

Here α is the amplitude of the initial coherent state while

γ = α cosh s + α∗eiθ sinh s, (27)

A is a normalization constant dependent on γ , s is the squeez-
ing parameter, and θ specifies the angle of squeezing.

Figure 9 shows the Q function of a squeezed coherent state
before and after a post-selection process that produces ampli-
fication as in Fig. 8. These results correspond to a squeezing
parameter s = 0.2 and an amplitude of α = √

10. It can be
seen that amplification still occurs, although the amount of
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FIG. 7. The Q function of the output state for a coupling param-
eter (r = 0.6) that gives amplification. (a) Normal attenuation. (b)
Results of post-selection, which gives a net amplification for this
value of r. Substantial distortion of the Q function can be seen here
as in Fig. 6.

amplification is significantly less than for the coherent state
shown in Fig. 8. The amount of squeezing also appears to
be increased, which is another indication that the process is
nonlinear.

V. DISCUSSION AND SUMMARY

We have shown that post-selection on the ground state of
an ensemble of atoms can give either increased attenuation or
amplification of an incident coherent state, depending on the
strength of the interaction between the atoms and the field.
This is a somewhat surprising result, since one might have
expected that the atomic medium would have no effect if there
are no atomic transitions.

The origin of the increased attenuation for relatively small
values of the coupling parameter r is illustrated in Fig. 2. The
attenuation is dependent on the fact that the initial number of
photons is uncertain. An event in which no atoms have made a
transition to the excited state is less likely to occur for number
states |n〉 with relatively large values of n, since the matrix

FIG. 8. A plot of the fraction F of photons remaining as a
function of the input amplitude |α| after interaction with a single
atom with a coupling strength r = 0.25. As before, the black (solid)
curve shows normal absorption and the red (dashed) curve shows
post-selection. We see that the two curves converge in the limit of
both small and large |α|.

elements for the absorption of a photon are proportional to√
n. As a result, large values of n are less likely to appear in

the post-selected state and the values of cn are reduced more
for large n than they are for smaller values of n as illustrated
by the open dots in the figure. This effect reduces the mean
number of photons after the state is renormalized.

The origin of the amplification that occurs for certain
values of r can be understood from the fact that the atoms
will undergo Rabi oscillations when the coupling parameter is
sufficiently large. In that case, components with larger values
of n may be closer to completing a full Rabi cycle back to
the ground state, since the matrix element is larger for large
values of n. This means that components with large n will
now be more likely to give rise to a post-selected state with an
atom in the ground state than is the case for smaller values of
n, which will not have completed a full Rabi oscillation. As
a result, the mean photon number will be increased for those
values of r rather than decreased. This mechanism explains
the resemblance between the oscillatory behavior seen in
Fig. 5 and typical plots of Rabi oscillations [17].

The post-selection process does not physically add or
remove any photons or energy from the system. Instead, it re-
distributes the probability amplitudes for the various numbers
of photons within the initial uncertainty in n. Since this effect
is dependent on having an uncertain number of photons, there
would be no attenuation or amplification due to post-selection
for an incident number state.

Post-selection is generally a nonlinear process, and the
results of this approach are not in general equivalent to linear
absorption or gain. This can be seen in the distortion of the
Q function in Figs. 6, 7, and 9, as well as the nonlinear
dependence on |α| in Fig. 8.

We have not yet discussed the question of how such a
post-selection process could be performed experimentally.
In principle, an auxiliary field could be used to probe the
state of the atoms, but that would involve making separate
measurements on each of the atoms. That approach would
only be practical for a relatively small number of atoms. A
more feasible approach for somewhat larger numbers of atoms
would be to use an array of detectors to observe any secondary
photons that are subsequently emitted by atoms left in the
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FIG. 9. A squeezed coherent state amplified using the post-
selection process illustrated in Fig. 1. (a) The initial squeezed coher-
ent state with α = √

10, θ = 0, and s = 0.2. (b) The state following
post-selection on the atomic ground states for N = 10 and r = 0.6 as
in Fig. 7.

excited state. Experiments of that kind may be feasible using
a nanofiber where the interaction region is relatively small and
could be focused on a set of detectors, for example.

The probability of success for the post-selection process
decreases exponentially for large coherent state amplitudes.
With α = √

10 the probability of success is typically ∼10−3

for most of the situations considered here. As a result, this
technique is limited to relatively weak coherent states in any
practical applications.

Amplification of this kind may have some benefits when
applied to quantum superposition states, such as Schrödinger
cats. If a conventional amplifier, such as an OPA, is used to
amplify a superposition state, there will be some amount of
quantum noise in the output due to vacuum fluctuations in
the input to the idler mode. We recently showed that there
will be an additional source of decoherence due to which-path
information is left in the output idler mode [21], and this can
often be much more of a problem than the amplifier noise. The
amplification process described here eliminates any which-
path information left in the environment and it is therefore
capable of amplifying Schrödinger cat states with much
less decoherence than an OPA. Post-selecting on an atomic
medium may have practical advantages over other forms of
noiseless amplification [6–9] due to its relative simplicity,
especially for coherent states with relatively large numbers of
photons. The distortion seen in Fig. 9 would occur for both
components of a Schrödinger cat and it should not reduce the
amount of interference between the two components of a cat
state [21] as a result.

In summary, we have shown that increased attenuation of a
coherent state by an atomic medium can occur in the absence
of any actual absorption. This counterintuitive result is some-
what similar to our earlier work on noiseless attenuation using
an OPA [12]. Optical amplification instead of attenuation can
also occur for certain values of the coupling parameter r.
These results are of fundamental interest and they represent
a potentially useful method for optical amplification. This
approach may be of practical use in quantum communications
or quantum sensor systems that utilize macroscopic quantum
superposition states.
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