


Abstract 

Statistical modeling and hypothesis testing of chemical-chemical interaction: a non-parametric 

approach 

In environmental studies, people are often interested in understanding how exposures to multiple 

chemicals affect cell survival. One of the key questions is understanding interaction between the 

chemicals and often understanding the direction of interaction is important. In the absence of known 

joint models, we take a nonparametric approach using Bernstein Polynomials to model the probability 

of cell survivals under multiple chemical effects and propose procedures for testing for interaction in the 

nonparametric setting. 

  We propose tests for the two most common forms of interaction, Bliss independence and Loewe 

additivity. To test for Bliss independence we use a two stage approach.  We first choose a best model 

using model selection and then use the “best” model to construct a likelihood ratio test for interaction. 

We use resampling methods to approximate the critical region of the test. We illustrate our 

methodology using a reconstructed designed experiment involving cytotoxicity from exposure to 

common chemicals in batteries such as Nickel, Cadmium and Chromium.  

  In the second part we generalize conventional parametric Loewe additive reference models to 

semiparametric and nonparametric zero interaction models. For the semiparametric model we use a 

one degree of freedom test for interaction that is analogous to classical one degree of freedom test in 

ANOVA. In the nonparametric approach we use procedures for likelihood ratio tests in non-nested 

model and investigate the performance of the test via simulation studies.  

The final part of the investigation deals with directional interaction. The Bernstein model is well-suited 

for testing for directional interaction in terms of the coefficients of the model. We propose a test for 

synergy/antagonism based on the fitted coefficients. In the Loewe additive model we use a contour 

based test to investigate directional interaction. We also discuss some future directions for the research. 
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Chapter 1

Introduction

In this dissertation we investigate the concept of statistical interaction under exposure

to a mixture of agents (e.g. chemicals, drugs). The main novelty is that we study

interaction in a non-parametric setting. In particular we propose non-parametric test

for interaction with possible extensions to tests for one-sided alternatives.

1.1 Motivation

The primary motivation of our investigation of robust forms of statistical interaction

comes from a chemical-chemical interaction problem. Throughout the dissertation

we will use the words agents, chemicals and drugs interchangeably. We introduce

the problem of nonparametric interaction in the context of the motivating example.

While the data set in the motivating example is proprietary, a description of the prob-

lem will suffice toward providing a general introduction to the problem of interest.

Nickel(Ni), Cadmium(Cd) and Chromium(Cr) are common metals found in battery

wastes. In environmental studies, people are often interested in how the mixtures of

chemicals, for example battery waste containing Ni, Cd and Cr, affect cell survival.

In this context, a particular question is whether chemicals in the mixtures acted inde-

1



CHAPTER 1. INTRODUCTION 2

pendently or did chemicals interact with each other in the mixtures, toward affecting

survival probability of cells which are exposed to the mixture? When chemicals act to-

gether interaction between agents can occur mainly in three different scenario. First,

the case of no interaction where the joint effect of the chemicals is an aggregate of

their individual effects. In the context of the cell survival example a version of no

interaction would mean the proportion of cell survival in the mixture is the product of

the proportion of cells would survive from exposure to each single chemical. Second

option for interaction is that there is a positive interaction or synergy between agents.

In synergistic interaction, the proportion of cell survived in the mixture is less than

the product of the proportion of cell survived from each single chemical exposure.

Synergy means that the mixture does more harm to the cells than when the effects

of the single chemicals are simply combined together or that the effect of the com-

bination is worse than the combination of the effects. Third option is that there is

a negative interaction or antagonism between agents. In antagonism, the proportion

of cells survived in the mixture is greater than the product of the proportion of cells

survived from each single chemical exposure. Antagonism implies that the mixture

does less harm than when the effects of the individual chemicals are simply combined

or that the toxic effects of agents works against each other. Interaction, especially

the direction of the interaction is of great interest in environmental studies. At low

dose individual chemicals may do little harm to the environment, but together the

mixture may cause great harm particularly when the number of chemicals in the mix-

ture increases. On the other hand, the mixtures may do less harm than the simple

addition of the individual effects due to negative interaction.

In laboratory experiments on cytotoxicity, scientists study cell survival when cells

are exposed to the effects of single chemical or mixture of chemicals under different

concentrations. Proportion of cells surviving after chemical exposure can not be mea-
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sured directly. To measure how many living cells are left after the chemical exposure,

scientists use instruments that measure the density of light going through the liquid

containing the cells that have been stained by some dye that adhere to dead cells. Due

to imperfections of the experiment, there is usually a lot of variation in the repeated

measurements. Calibration of the instruments is often difficult. Thus, typically the

data obtained on proportion of cell survival is convoluted with measurement error.

Using such data often begs careful postulation of models. Simple parametric models

are often used for convenience, ease of interpretation and understanding. However,

in experiments where no substantive prior knowledge is available, simple parametric

models may not be able to provide adequate fit to data. Using such model based

parametric analysis may lead to incorrect inference. For example, the number of

studies dealing with cytotoxic effect of mixture of battery waste materials are lim-

ited and also empirical analysis of the dose response relationship does not provide

conclusive evidence toward any particular parametric model. Using incorrect model

adversely affects the test for interaction which in turn will have an adverse effect on

inference on main effects. Thus, we propose to use flexible nonparametric model to

under stand the dose response of mixture and use the nonparametric set up to test

for interaction.

1.1.1 Motivating Data

While the data is proprietary, we provide basic description of the parameters of the

data/experiment to describe the type of data that we are going to deal with. Our mo-

tivating data are from Dr. Yue Ge’s lab in U.S. EPA. The data is from a controlled

toxicological experiment where cells in assays are exposed to mixture of different

chemicals at different concentrations or to individual chemicals at different concen-

tration. In this data set, there are three metals involved: Nickel, Cadmium and
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Chromium. Nickel has 8 different levels (0, 10, 30, 60, 75, 100, 130, 180, 240) [µM],

Cadmium has 8 levels (0, 3, 5.6, 7.5, 10, 11.5, 13, 15, 18) [µM] and chromium has 8

levels (0, 0.1, 0.3, 1, 1.8, 3, 4.2, 5.6, 10) [µM]. There are three data sets from exper-

iments where cells are exposed to individual metals, three data sets where cells are

exposed to combination of two chemicals and one data set containing all three chem-

ical effects. For each chemical combination, there are multiple concentration levels.

Each combination of chemical and concentration level has 6 repeated measurements.

The data set remarkably rich as has moderately large sample size given the nature of

the experiment. The data measures the ratio of the proportion of live cells after the

exposure to that before the chemical exposure. Since the data are obtained via an

indirect measurement process, the ratio are not restricted to the expected range of [0,

1]. There are several ratio of cell survival that goes above one or below zero. The fact

that the cell survival ratio is not strictly restricted to the range [0, 1] may also be due

to cell proliferation, an interesting phenomenon of stimulattion of cell division at low

doses that results in an increase in the total number of living cells after the exposure.

However, without prior model for cell proliferation or definitive information it is not

possible to separate the latent process from the measurement process. Figure 1.1

shows the cell survival ratio as a function of the chemical dose combinations. From

the plot of the data, it seems that interactions between the chemicals exist although

the general form of the interactions is not immediately clear. The marginal response

plots show smooth response functions that are probably adequately captured by con-

ventional parametric models. However, the joint structure is more complicated with

some plots showing multiple regions of stabilization and decrease. The question is how

can we model these cell survival curves under different chemical effects? How do we

statistically test if there is any interaction, especially the direction of the interaction?
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Figure 1.1: Scatter plot of response vs two metals mixture

Figure 1.2: Scatter plot of response vs single metal
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1.2 Literature Review of Interaction

The definition of interaction is different from discipline to discipline. For example, in

biology and genetics, chemistry and biochemistry, or in medicine and pharmacology,

the interaction is defined based on the mechanism of the action that is particular to

each discipline. In chemistry and biochemistry researchers are interested in chemical-

chemical interaction when in medicine or pharmacology scientists are concerned about

drug-drug interaction. In principle, chemical-chemical interaction is similar to drug-

drug interaction. From a statistical analysis perspective, what is important is not

necessarily the mechanism at the molecular levels, but rather the manifestation of

the outcome of the action of the agents. Interaction means the effect of two or more

agents adding together is not simply what one gets when one combines the effects of

the individual agent. However accurate understanding of interaction between agents

warrants a more definitive description of the concept.

In order to study interaction, particularly in toxicology experiments dealing with

mixtures of agents, one needs well established guidelines about the reference model

of no interaction. Only when one understands what constitutes no interaction, one

can analyze interaction as a departure from the reference model of zero interaction.

There are two most commonly used models for zero interaction: Bliss independence

and Loewe additivity.

Bliss independence assumes that the relative effect of an agent at a particular

concentration is independent of the presence of the other agent. For example, if

drugs A and B individually cause 50% growth inhibition, then Bliss independence

predicts that, in combination, drugs A and B decrease growth by 1 − 0.5 ∗ 0.5, or

75%. Positive or negative deviations from this prediction describe synergistic and

antagonistic interactions, respectively. Thus Bliss independence assumes that the

agents are mutually non-exclusive, in fact they cooperate and all of them can be
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active at the same time. In the simplest mechanical model where agents affect the

target through a specific path, under Bliss independence each agent will have its own

specific, independent interaction site. The concept was introduced by Bliss (1939) in

a seminal paper and later generalized and analyzed in many different context; see for

example Berenbaum (1977), Goldoni and Johanssen (2007).

Loewe additivity defines an agent to be non-interacting with itself. For example,

two drugs each can kill the cells but they differ the respective doses needed to kill

same amount of the cells. The first drug may need 100 mg to kill 50% cells while the

second drug may only need 25 mg. These are indicators of drug potency. The drug

that requires lower dose is said to have a greater potency than the other. The dose

ratio, in this case 100/25 = 4, called relative potency. This same relative potency

may or may not apply to all levels of effect for these two drugs. Let drug A, the

lower potency drug, the dose when it acts alone be A; for drug B to achieve the

same effect, let the dose needed be B. The relative potency R is A/B, a value

greater than 1. For a given mixture having the same effect, let a and b be the dose

of the respective constituents. Because these drugs are assumed to have a constant

relative potency(R), the mixture (a, b) can be expressed as an equivalent quantity

of either drug. If drug A is the reference drug, then the mixture dose satisfies the

relation a + Rb = A. Equivalently, the same mixture can be expressed in terms of

drug B : a/R + b = B. These two equations mean that the doses in the mixture

contribute to the effect in accordance with the individual drug potency, a situation

that is termed additive, or more specifically Loewe additive. Rearrangement of the

potency formula gives a more familiar form: a/A+ b/B = 1. This also describes the

isobolograms (Fraser 1870,1872) which are lines of equal activity and often used a

simple graphical tool for understanding violation of zero interaction model. Loewe

and Muischnek (1926) and Loewe (1953) used the isobolograms to define the reference
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model for zero interaction. Under Loewe additivity it is assumed that the agents have

mutually exclusive effect on the target, and at most one agent is active at any given

time. This corresponds to a common site of interaction where if the site is occupied

by one agent then the other has to wait.

There are several other approaches for understanding interaction between agents.

The reviews by Berenbaum (1989) Greco et. al (1995) provide excellent reviews

of the approaches. Another commonly used form of zero interaction model is the

median effect principle (Chou 2010) but we will focus on Bliss independence and

Loewe additivity in this research.

1.3 Statistical Concepts

Next we define some of the statistical concepts that are used in the dissertation. They

are well known concepts, but we include them for completeness.

1.3.1 Statistical Models for Interaction

Although our motivating data provides continuous response in the form of survival

ratio, intrinsically the data is based on binary responses of individual cells. Many of

the response variables in the toxicology experiments are binary. The seminal article

of Bliss (1939) deals with binary response as well. Thus, to provide some context to

our modeling framework we start with a description of binary response models. In

statistics literature, specially in biostatistical literature binary response models are as

indispensable as normal regression models. In toxicology, Bliss (1939) used a probit

model to describe the latent effect of chemicals. Bliss (1939) proposed transforming

the percentage of cells killed into a ”probability unit” (or probit) which is linearly

related to the current understanding of the probit model. The method introduced
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by Bliss (1939) was carried forward to probit analysis by Finney and Stevens (1948),

Finney (1952) and has been used heavily in toxicology experiments.

Of course, logit is another form of popular analysis for binary response data.

There are several other link functions that are used in statistical literature to describe

the relationship between a binary response and observed values of agents. Another

popular model that appears in toxicology dose response modeling is the Hill model.

The USEPA guidelines for benchmark dose rate uses the Hill model as a reference

model. Similar functions can be used as mean function in nonlinear regression model

for continuous responses whose true value is expected to be between 0 and 1. Our

motivating data falls in this category. As stated before, our objective is to move

beyond these simple parametric classes as develop a nonparametric framework that

is flexible and can adapt to unknown forms for dose responses as well as serve as a

platform for analyzing interaction. To this end we describe a popular nonparametric

class, the Bernstein class.

For a given function f on [0, 1], Bernstein polynomial is defined as

Bn(f ;x) =
n∑
r=0

f(
r

n
)

(
n

r

)
xr(1− x)n−r

for each positive integer n. There is a sequence of Bernstein polynomials correspond-

ing to each function f . A useful property of Bernstein polynomial is, if f is continuous

on [0, 1], its sequence of Bernstein polynomials converges uniformly to f on [0, 1]. This

property provides basis for modeling non-parametric classes of functions on [0, 1] by

their Bernstein approximations.

A common model for departure from the null interaction model of additivty is

the Tukey’s one degree of freedom of test for additivity (Tukey 1949). For developing

our alternative models, we use analogus concepts. However, in the nonparametric

set up, the alternative space is vast and a single degree of freedom departure from

no interaction may not capture all the intersting deviation from the zero interaction
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model.

1.3.2 Likelihood Ratio Test

Likelihood ratio test is a statistical test used to compare the fit of two models, one

of which (the null model) is a special case of the other (the alternative model). The

test is based on the likelihood ratio, which expresses how many times more likely the

data are under one model than the other. The likelihood ratio, or equivalently its

logarithm, can be used to compute a p-value, or can be compared to a critical value

to decide whether to reject the null model in favor of the alternative model.

Let X be data generated from a model f(X, θ), if we want to test the hypothesis

Ho : Θ, one could use the test Λ(θ) =
sup
θ∈Θ0

L(θ|data)

sup
θ∈Θ

L(θ|data)
, where L(θ|data) is the likelihood

of θ at a given sample data of size n. The test rejects H0 for small values of Λ(θ) or

equivalently large values of −2 log Λθ. Typically the critical values are obtained from

limiting distribution of the likelihood ratio statistic under an increasing n asymptotic

framework. However, when Θ is large dimensional but Θ0 is finite dimensional (e.g.

in semiparametric problems) or Θ0 is also large dimensional (e.g. nonparametric

problems) the standard asymptotic distributions may not hold. In semiparametric

problems, under mild assumptions Murphy and Van der Vaart (1997) and Banerjee

(2005) establish asymptotic distribution of −2 log Λθ. In fully nonparametric set up,

the tools for finding the LRT and its distribution is problem specific. There are several

different modifications including penalization and sieve methods that are used in the

literature.

1.3.3 Residual Bootstrap

Bootstrapping is a statistical method for estimating the sampling distribution of an

estimator by sampling with replacement from the original sample, most often with



CHAPTER 1. INTRODUCTION 11

the purpose of deriving robust estimates of standard errors and confidence intervals

of a population parameter like a mean, median, proportion, odds ratio, correlation

coefficient or regression coefficient. The sampling distribution we are interested is

−2logΛθ.

Residual bootstrap is convenient way of applying resampling procedures in the

regression context. The method is straightforward and involves estimating the resid-

uals from original sample and then sampling with replacement from these residuals

to create bootstrap samples. Properties of residual bootstrap, particularly under a

high number of parameters as in the present set up has been studied by Freedman

(1981), Bickel and Freedman (1983).



Chapter 2

Nonparametric Test of Bliss

Independence

In this chapter we build a flexible statistical test for checking if there is interaction

between agents when the response is obtained from exposure of bioassays to mixtures

of several agents. The particular form of interaction that we are interested in is Bliss

Independence. We start by describing a general model and the relevant aspects of

the nonparametric testing paradigm.

2.1 Nonparametric Modeling Chemical-Chemical

Interaction

We illustrate the methodology and the model, for example, with a two-agent inter-

action when an assay of living cells is exposed to a mixture of two of the common

chemicals found in battery waste, Cadmium (Cd) and Chromium (Cr) and where the

interest is in finding out whether Cd and Cr act independently. However, the methods

are easily extended to multi-agent models. Let x1 and x2 denote the dose levels for

12
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the two chemical agents. Hereafter we will scale the dose space of the two agents to

the unit square. This is possible because typically there is an upper bound on the

possible dose beyond which the survival rate is practically zero. Scaling makes the

doses unit free, an aspect that will help in generalizing conventional parametric mod-

els where the basic building blocks maybe unit free. Thus, unless otherwise specified

we assume throughout (x1, x2) ∈ [0, 1]2.

Let y(x1, x2) denote the response, i.e. the proportion of living cells, as observed

by indirect measurements in the laboratories when the cells are exposed to mixture

of chemicals at a dose combination (x1, x2). The response is inherently a continu-

ous variable with ideally restricted in the range [0, 1]. However, due to the indirect

measurement processes and due to error accrued during the measuring process, the

actual value of y could be outside the range. There are several established methods

for measuring cytotoxicity. The methods usually rely on staining of dead cell and the

living cells are counted by fluorescence and luminescence plate readers. Each method

has its advantage but none are without error. The errors may occur due to instru-

ment error (although that part is generally minimal), human error, other artifacts of

assays, or due to other natural phenomena such as cell proliferation or the dyes not

able to distinguish between dead cells and cells rapidly losing functionality. Some

are more prone to measurement error than other. While there maybe more advanced

methods available, compromise between accuracy and cost may lead to more error

prone methods being used. In essence, the measurement process does have a poten-

tially significant impact on the observed cytotoxicity and the variability due to the

measurement process may or may not be independent of the unobserved cytotoxicity.

Of course the case when the measurement error depends on the underlying true cyto-

toxicity is not an identifiable problem without further information about the nature

of relationship and is not discussed here. Hereafter we assume that the measurement
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error is independent of the true cytotoxicity and appears in an additive form.

A reasonable and convenient model for the response is

y(x1, x2) = µ(x1, x2) + ε(x1, x2) (2.1)

where µ(x1, x2) denotes the true survival rate, a quantity that is assumed to be

monotonically decreasing in either x1 or x2 and also bounded between zero and one.

While µ is range restricted, due to the measurement error model the response y is

not. Values of y can be below zero is borne out of the fact that the response may be

derived as the difference of two measuring process, each of which maybe subject to

error. Using the present context,

µ(x1, x2) = p(cell survival|Cd = x1, Cr = x2).

Similarly one can define the marginal survival rates as

µ1(x1) = p(cell survival|Cd = x1)

µ2(x2) = p(cell survival|Cr = x2)

Under the Bliss Independence assumption that states that there is no multiplica-

tive interaction between the agents, one expects the factorization

µ(x1, x2) = µ1(x1)µ2(x2). (2.2)

The possible alternatives to Bliss independence is either a two-sided alternative µ 6=

µ1µ2 or one-sided alternatives such as µ > µ1µ2 pertaining to antagonism or µ < µ1µ2

pertaining to synergy between the agents. Moreover, scientists maybe interested in

violation of the null hypothesis only over a smaller subset of the dose-space, e.g. lower

doses. In this chapter we only consider the broad two-sided global alternative to build

our test for interaction.

For testing the null hypothesis of bliss independence one could postulate a para-

metric model for µ and reduce the hypothesis to a null hypothesis about the value
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of the parameters. However, as in the example of battery chemical interaction, little

or nothing maybe known a priori about the joint behavior of the agents and using a

prespecified parametric form maybe misleading. In such situations, a more prudent

approach is to build a broad flexible model for the response and build the test un-

der the flexible model. To build a nonparametric model, one still has to account for

qualitative features of the survival rate function that maybe known beforehand. For

example, even though the general shape and form of the response curve maybe un-

known, other qualitative features maybe known: e.g., decreasing in either argument,

range restricted. In addition there maybe further special features, such as smoothness

of the model, that scientists maybe interested to incorporate.

As mentioned before, the function µ would generally be continuous. Thus broadly,

the parameter space can be considered a subset of the function space C([0, 1]2, an

infinite dimensional space. There are some constraints that are natural constraints

on the parameter imposed by the model and there are certain constraints that will

be imposed by the null hypothesis of no multiplicative interaction. The parameter

space for the problem is then

Θ = {µ(x1, x2) ∈ C[0, 1]2 : µ is decreasing in x1 and x2, 0 ≤ µ ≤ 1} (2.3)

is the infinite dimensional subset of C[0, 1] that satisfy the natural constraints that

are imposed on the model µ. Also, let

F = {µ(x1, x2) : ∃µ1, µ2 3 µ(x1, x2) = µ1(x1)µ1(x2) ∀x1, x2}

be the set of functions that satisfy the constraint of factorization under the Bliss

independence unll model. The null set is the set of functions

Θ0 = Θ
⋂
F . (2.4)

Note that the null set is an infinite dimensional set as well. Thus, both the null and

the alternative sets are infinite dimensional and care must be exercised in order to
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test the null aganist any alternative and conventional finite dimensional results might

not be applicable to this case.

Before we describe the model and the testing procedure we want to discuss the

general method that we will be employing for testing the nonparametric null hy-

pothesis that the true function µ ∈ Θ0. From a finite sample of size n it is not

reasonable to expect that one can differentiate between the classes of functions Θ0

and Θ−Θ0 effectively. Either space is too big. To build a feasible procedure we use

a sieve method in which the null and the alternative sets are replaced by a sequence

of approximating sets that increase (the sequences area not necessarily nested) to

desired null and alternative as n → ∞, but for each n provide a possible test that

distinguishes the approximating null from the approximating alternative with reason-

able power. In general, let Θ(n) be a sieve for the entire parameter set Θ. Then let

Θ0,n = Θ0

⋂
Θ(n) denote the working null space and let Θ1,n = Θ(n)−Θ0,n denote the

working alternative space. The objective will be to test µ ∈ Θ0,n against µ ∈ Θ1,n.

The sieve is assumed to satisfy the property limn→∞Θ(n) = Θ where the con-

vergence is in terms of set distances. Since in the present case the parameter space

is metrizable, the set distances will be based on the metric on the parameter space.

Thus, given a metric d(·, ·) on Θ, one could define the induced distance D(·, ·) between

Θ and Θ(n) as

D(Θ,Θ(n)) = inf
µ∈Θ,µn∈Θ(n)

d(µ, µn).

Thus, sieve is assume to satisfy the property:

Property C: Given any ε > 0, there exists Nε such that for every n > Nε we have

D(Θ,Θ(n)) < ε.

A common metric would be the sup distance given as

d(µ1, µ2) = sup
(x1,x2)∈[0,1]2

|µ1(x1, x2)− µ2(x1, x2)|.

It maybe sometimes helpful to describe the set convergence in terms of d neighbor-
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hood. A set Θε will be called an ε-neighborhood of a set Θ if for any µ ∈ Θ there

exists a function µε ∈ Θε such that d(µ(x1, x2), µε(x1, x2)) < ε As mentioned earlier,

the sequence of sets Θ(n) need not be nested.

To obtain such a sieve for Θ we use the Bernstein functions. As discussed in the

introduction, the Bernstein polynomials form a dense set in C[0, 1]2 and hence we can

obtain the desired sieve by approximating the class of joint and the marginal models

by Bernstein polynomials. Let

BJ1,J2(x1, x2) =

J1∑
j1=1

J2∑
j2=1

β
(12)
j1,j2

B(x1; j1, J1 − j1 + 1)B(x2; j2, J2 − j2 + 1) (2.5)

be a Bernstein polynomial of order (J1, J2) with vector of coefficients β(12) = (β
(12)
11 , . . . , β

(12)
J1,J2

).

Similarly, let

BJ1(x1) =

J1∑
j1=1

β
(1)
j1
B(x1; j1, J1 − j1 + 1) (2.6)

BJ2(x2) =

J2∑
j2=1

β
(2)
j2
B(x2; j2, J2 − j2 + 1) (2.7)

be the Bernstein polynomials of order J1 and J2 with coefficients β(1) = (β
(1)
1 , . . . , β

(1)
J1

)

and β(2) = (β
(2)
1 , . . . , β

(2)
J2

), respectively. We have suppressed the dependence on

the coefficients in the notation of the polynomials as it should be clear from the

context, but the main idea is to parameterize the class of functions in terms of their

coefficients. Let B denote the class of all Bernstein functions on [0, 1]2. Then the

parameter set is described in terms of the Bernstein expansions as ΘB = B
⋂

Θ, and

the null set is ΘB
0 = ΘB

⋂
F . The uniform approximation property of the Bernstein

polynomials imply that original parameter space can be obtained as a closure of the

spaces described by the Bernstein polynomials, i.e, ΘB = Θ and ΘB
0 = Θ0.

To be able to maneuver the parameter space in a flexible manner we need to

describe the space in terms of the coefficients, thereby projecting the problem from

the function space to the Euclidean space. To describe the problem in terms of the
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coefficients we will use the convention that β(12) ∈ ΘB means that the Bernstein

polynomial with coefficients β(12) belongs to ΘB.

For the Bernstein functions to form an appropriate sieve they have to maintain

the shape and range restrictions. Also, to satisfy the null of bliss independence,

the coefficients should be such that the joint factorizes in terms of the marginals.

Describing the factorization in terms of the coefficients while maintaining the shape

and range restrictions is an intractable problem. A sufficient hypothesis is that the

coefficients factorizes themselves and are decreasing. The sufficient hypothesis for

factorization is

Hβ
0 : β(12) = β(1) ⊗ β(2) for someβ(1) and β(2).

The condition that each member of the set ΘB is monotonically decreasing is too

complex to describe in terms of the coefficients β(12). A sufficient condition is that the

coefficients of the approximating Bernstein functions are decreasing in either indices.

However, this maybe too restrictive. Using a restrictive sufficient hypothesis will

make the tested null a very small subset of the intended null set and hence the test

will have poor power properties.

In order to have a feasible sieve we describe the shape restriction in terms of

the levels of the function restricted to a pre-determined grid. Fix a grid G(n) =

{(z1i, z2i), i = 1, . . . , g}. In fact we will use grid that is factorizable in the sense there

are marginal grids G1 = {z1i, i = 1, . . . , g1} and G2 = {z2i, i = 1, . . . , g2} such that

G = G1 ⊕G2. Hence, g = g1 ∗ g2.

The size of the grids g1, g2 will be allowed to increase with the sample size, but for

notational convenience we have suppressed the dependence on the sample size. We

will choose a sequence of grid that will satisfy the following property:

Property G: As n→∞, G = G(n) becomes dense in [0, 1]2 in the sense that given

any ε > 0, there exist N such that n > N implies for any (x1, x2) ∈ [0, 1]2 there exists
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(z1, z2) ∈ G(n) with max{|x1 − z1|, |x2 − z2|} < ε.

Considering the constrained space

ΘG = {µ(z1, z2) ∈ Θ : µ(z1, z2) is decreasing and restricted to [0,1] for (z1, z2) ∈ G}

i.e.,

ΘG = {µ(z1, z2) ∈ Θ :
∂

∂xj
µ(x1, x2)

∣∣∣
z1i,z2i

≤ 0, j = 1, 2, 0 < µ < 1 for (z1i, z2i) ∈ G}.

Because the function µ are continuous on the compact set, they are uniformly con-

tinuous and hence along with the property G, we have as n → ∞, ΘG → Θ. To

construct the sieve we thus focus on ΘG
⋂

ΘB. We well denote the set by ΘG
β to

emphasize the parameterization in terms of the coefficients. In terms of the approxi-

mating Bernstein sequence, because the function as well as the partial derivatives are

linear in the coefficients, one could translate the constraints to linear constraints on

the coefficients.

J1∑
j1=1

J2∑
j2=1

β
(12)
j1,j2

B(z1i; j1, J1 − j1 + 1)B(z2i; j2, J2 − j2 + 1) < 1, i = 1, . . . , g

−
J1∑
j1=1

J2∑
j2=1

β
(12)
j1,j2

B(z1i; j1, J1 − j1 + 1)B(z2i; j2, J2 − j2 + 1) < 0, i = 1, . . . , g

J1∑
j1=1

J2∑
j2=1

β
(12)
j1,j2

∂

∂x1

B(x1; j1, J1 − j1 + 1)
∣∣∣
z1i
B(z2i; j2, J2 − j2 + 1) < 0, i = 1, . . . , g,

J1∑
j1=1

J2∑
j2=1

β
(12)
j1,j2

B(z1i; j1, J1 − j1 + 1)
∂

∂x2

B(x2; j2, J2 − j2 + 1)
∣∣∣
z2i

< 0, i = 1, . . . , g.

(2.8)

Thus, the sieve can be elegantly written in terms of linear constraints on β(12),

ΘG
β = {β(12) : Aβ(12) ≤ b},
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where b is the 3J1J2×1 vector b = (1, . . . , 1, 0, . . . , 0, 0, . . . 0). Note that the dimension

and the size of the sieve is allowed to increase with sample size by letting the grid

size g depend on n and the order of the polynomials J depend on n as well.

Next we describe the null in terms of the sieve. Given that the joint model

factorizes under the null, we can describe the sieve in terms of the marginal model

Bernstein coefficients β(1) and β(2). The relevant hypothesis can be written in terms

of the coefficients

H0 : β(12) = β(1)⊗β(2) for some β(1) and β(2) vs H1 : @β(1) and β(2),3 β(12) = β(1)⊗β(2).

For j = 1, 2 consider the spaces

ΘGj = {µ1(xj) :
∂

∂xj
µj(xj)

∣∣∣
zji
≤ 0, 0 < µj < 1 for zji ∈ Gj}.

In terms of the Bernstein approximation, the spaces ΘGj can be uniformly approxi-

mated by Θ
Gj
β(j) where

Θ
Gj
β(j) = {

Jj∑
k=1

β
(j)
k B(xj; k, Jj − k + 1) : Ajβ

(j) < bj}

The matrix A1 and the vector b1 are obtained from the constraints that the marginal

model for the first agent is decreasing and range restricted on the marginal grid G1,

i.e.,

J1∑
j1=1

β
(1)
j1
B(z1i; j1, J1 − j1 + 1) < 1, i = 1, . . . , g1

−
J1∑
j1=1

β
(1)
j1
B(z1i; j1, J1 − j1 + 1) < 0, i = 1, . . . , g1

J1∑
j1=1

β
(1)
j1

∂

∂x1

B(x1; j1, J1 − j1 + 1)
∣∣∣
z1i

< 0, i = 1, . . . , g1 (2.9)

and the matrix A2 and the vector b2 are obtained similarly from the constraint that
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the marginal model for the second agent is decreasing and range restricted over G2

J2∑
j2=1

β
(2)
j2
B(z2i; j2, J2 − j1 + 1) < 1, i = 1, . . . , g2

−
J2∑
j2=1

β
(2)
j2
B(z2i; j2, J2 − j1 + 1) < 0, i = 1, . . . , g2

J2∑
j2=1

β
(2)
j2

∂

∂x2

B(x2; j2, J2 − j2 + 1)
∣∣∣
z2i

< 0, i = 1, . . . , g2 (2.10)

Letting β = (β(1), β(2)) then the sieve for the null set can be written in terms of β as

ΘG
0,β = {β = (β(1), β(2)) : Ajβ

(j) < bj, j = 1, 2}. (2.11)

In terms of the joint model coefficients, it is understood that the null is

{β(12) = β(1) ⊗ β(2) : (β(1), β(2)) ∈ ΘG
0,β}

which denotes the set of coefficient vectors that can be factorized and the correspond-

ing marginal models satisfy the restrictions over the marginal grids. Even though the

null is described via the (J1 + J2) dimensional vector β = (β(1), β(2)) with a slight

abuse of notation we will equivalently express the null as β = β(1) ⊗ β(2) ∈ ΘG
0,β.

Having set up the null and the alternative sets in terms of the sieve or the associ-

ated coefficient vectors, we proceed with the testing procedure. We will develop the

test based on a likelihood. Since the errors in the response are mostly measurement

errors, a reasonable distributional assumption is

ε(x1, x2) ∼ N(0, σ2).

Of course, one has to check into the validity of the distributional assumption. The

distributional assumption can be modified. In certain scenarios, heteroskedastic with

variance σ2(x1, x2) depending on the dose combination, maybe appropriate. One

should try to incorporate any additional information available about the errors into
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the distributional assumptions. There is much scope for debating and modeling the

measurement process. For the current investigation we choose the additive constant

variance normal model. Apart from being a common assumption about general mea-

surement errors, the motivating data sets did not provide evidence against such an

assumption.

The distributional assumption on the errors allows us to write down a log-likelihood

for the coefficients β (taken as β(12) in the unconstrained case and as β(1) ⊗ β(2) in

the null constrained case) as

`(β|data) = c− n

2
log(σ2)− 1

2σ2

n∑
i=1

(yi − µ(x1i, x2i))
2

where

µ(x1i, x2i) =

J1∑
j1=1

J2∑
j2=1

β
(12)
j1,j2

B(x1i; j1, J1 − j1 + 1)B(x2i; j2, J2 − j2 + 1),

and c is a constant. The associated likelihood will be denoted by L(β|data). The

likelihood immediately provides us a with a likelihood ratio test.

Λ(data) =

max
β∈ΘG0,β

L(β|data)

max
β∈ΘGβ

L(β|data)

where the denominator is the maximum of the likelihood over all possible J1J2 di-

mensional coefficient vectors of the two-dimensional Bernstein polynomials that make

the polynomials monotonically decreasing and range restricted over the grid G and

the numerator is over all possible J1J2 coefficient vectors that can be factorized as

β(1) ⊗ β(2) for some J1 dimensional vector β(1) and J2 dimensional vector β(2) such

that the one dimensional Bernstein polynomials described by β(1) and β(2) are mono-

tonically decreasing and range restricted over the grids G1 and G2, respectively.

The rejection rule based on the LRT at a nominal level α would be

Rα = {Data : Λ(data) < cα}
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where cα is a critical value defined as the lower α percentile of the distribution of

Λ(data). Typically, under mild assumptions on the model, for large sample size

−2`(β|data)
d−→ χ2

df for some degrees of freedom df when the null hypothesis is true.

Equivalently

Rα = {−2 log(Λ) ≥ χ2
df,α}

But under the increasing dimension and increasing complexity, it is not clear if the

large sample distribution is a good approximation to the distribution of −2 log(Λ). It

seems that there is convergence and a χ2 distribution is a reasonable fit, although the

degrees of freedom is not obvious from the results. Theoretical investigation is needed

in determining the correct value of the df for the limiting χ2 distribution. Without

any such definitive result, we propose to use a resampling method for approximating

the finite sample distribution of the LRT and thereby establishing the critical region.

To this end we use a residual bootstrap procedure. The main goal is to generate

the distribution of the test under the null hypothesis. We use the best constrained

(factorized) approximation to the data as the null model and generate replicates

of the data under constrained model by adding copies of errors to the constrained

model fit. To obtain the error replicates we resample (with replacement) from the

residuals obtained from the unconstrained fit. Since the Bernstein model is uniformly

converging to the true model regardless whether null hypothesis holds or not, the

unconstrained residuals are expected to mimic the true errors. The exact steps for

the residual bootstrap algorithm are as follows:

1. Fit both constrained and unconstrained models (i.e.the factorized null model

and the general model but both model having shape and range restrictions) and

get Λ(data).
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2. Let

µ̂c(x1, x2) =

J1∑
j1=1

J2∑
j2=1

β̂
(1)
j1
β̂

(2)
j2
B(x1; j1, J1 − j1 + 1)B(x2; j2, J2 − j2 + 1)

be the constrained fit where β̂(1), β̂(2) are estimated factors of β(12). Similarly

let

µ̂nc(x1, x2) =

J1∑
j1=1

J2∑
j2=1

β̂
(12)
j1,j2

B(x1; j1, J1 − j1 + 1)B(x2; j2, J2 − j2 + 1)

be the fit from the maximization of the likelihood when the coefficient vector in

not constrained to be factorizable as β(12) = β(1) ⊗ β(2). Also let enc(x1, x2) =

y(x1, x2) − µ̂nc(x1, x2) be the residuals from the unconstrained fit. Let enc =

(e(x11, x21, . . . , e(x1n, x2n)) be the residual vector from the unconstrained fit.

3. Generate bootstrap replicates by adding back unconstrained residual to con-

strained fit, i.e,

y∗(x1, x2) = µ̂c(x1, x2) + e∗nc(x1, x2)

where e∗nc is a sample of size n form the n dimensional vector enc and the

sampling is done with replacement. Let y∗ = (y∗(x11, x21, . . . , y
∗(x1n, x2n)) be

the entire replicate vector. We repeat the replication procedureB times for some

moderately large number B to generate B bootstrap replicates Y ∗1 , . . . , y
∗
2.

4. Generate Λ1, . . . ,ΛB as B bootstrap replicates of Λ based on the bootstrap

replicates Y ∗1 , . . . , y
∗
2.

5. Reject if Λ(data) < Λα where Λα is the lower α percentile of the sample

Λ1, . . . ,ΛB
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2.2 Numerical illustration

We investigated the properties of the testing procedure via a limited simulation study.

The number of Monte Carlo replications and the number of bootstrap replications

were both 200. The maximization was carried out using the constrOptim routine in

R. given the complex form of the likelihood function, Nelder-Mead search algorithm

was used for optimization and the maximum iteration was fixed at 2000.

The initial vectors for the constrained optimization was fixed at β(1) = (0.9, 0.5, . . . ,

0.5, 0.1) and β(2) = (0.9, 0.5, . . . , 0.5, 0.1), where the vectors where of appropriate

lengths. When the degree is equal to 2, the initial vector is chosen as (0.9, 0.1). The

initial value for the unconstrained optimization was done at β̂(1)⊗ β̂(2) where β̂(1) and

β̂(2) were the estimates obtained from the constrained estimation. The error standard

deviation was chosen to be a small value σ = 0.01 and a bigger value σ = 0.05.

To study the finite sample properties of the power function we generate data from

parametric alternatives that are within the parameter space. To this end we consider

a class of alternatives that is in the same spirit of Tukey’s one degrees of freedom

tests. the alternatives are of the form

βa = λβ0 + (1− λ)β∗

β∗ = ωβ(∗1) + (1− ω)β(∗2)

β0 = β(01) ⊗ β(02)

β(∗1) = β(11) ⊗ β(12)

β(∗2) = β(21) ⊗ β(22)

(2.12)

where the coefficient vectors β(01), β(11), β(21) are J1 × 1 vectors and the vectors

β(02), β(12), β(22) are J2 × 1 vectors. In addition we also consider alternatives of the
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form where β∗ in (2.12) is of the form

β∗ = β(2) ⊗ β(1)

and β(1) and β(2) are two pre-determined coefficient vectors of length J1 and J2.

Note that the class is not one dimensional since β(1) and β(2) are unspecified

nuisance parameters that are general vectors coefficients between 0 and 1. However,

the single parameter 0 ≤ λ ≤ 1 is the parameter that controls the alternative since

λ = 0 results in a null value where as λ > 0 provides departure from the null toward

the fixed alternative value β∗. The parameter ω in the first representation of β∗

determines how close is the alternative to the null. For example for omega close to 0

or 1, β∗ is again close to the null space since both ends of the segment over ω provides

a factorized model. Thus, even though λ is high, the model reverts back to the null

and thus the power is expected to be non-monotone when omega is close to zero or

one. The particular choice of β∗ highlights the difficulty in testing against a large

alternative space and when the null itself is a high dimensional set. There are many

directions from the initial null value where the path leads back toward the null set.

In the second choice of β∗ using the reverse factorization form β(2) ⊗ β(1), how close

the alternative is to the null will be determined by the entries of the vectors β(1) and

β(2) and the degree of difference in the orders J1 and J2. For example, regardless of

the entries, when the degrees are equal, β∗ belongs to the null set. Thus, the power

behaves in non-monotonic fashion with respect to λ with maximum power expected

when λ is far from the boundaries 0 and 1.

Example 1: The first example is a surface that is without any striking feature.

The coefficient vectors constituting the components on the model (2.12) are β01 =

(0.9, .6, .1), β02 = (0.9, .5). The coefficient for the alternative are β11 = (0.8, 0.7, .6), β12 =

(0.9, 0.01) and β21 = (.6, .3, .1), β22 = (.55, .45). Figure 2.2 shows the response surfaces

for different choices of λ and ω.
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(a) λ = 0 (b) λ = 0.1, ω = .5

(c) λ = 0.5, ω = .5 (d) λ = 0.9, ω = .5

(e) λ = 0.5, ω = 0 (f) λ = 0.9, ω = 0

Figure 2.1: Surfaces corresponding to example 2 for different choices of λ and ω. The

choice λ = 0 corresponds to the null value.
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Table 2.1 shows the power of the proposed test for different sample sizes and

different values for λ. The value of ω is held fixed at 0.5. The power increases

monotonically with λ and even for moderate sample size such as n = 64, the test has

100% detection at an alternative with λ = 0.3 the test maintains the nominal level

for moderate to large sample sizes. The average time for a single run with sample

size 100 was about 10 seconds in a standard laptop.

λ n = 64 n = 100 n = 400

0.00 0.07 0.04 0.05

0.03 0.09 0.10 0.30

0.05 0.13 0.14 0.49

0.07 0.19 0.28 0.74

0.10 0.28 0.46 0.94

0.20 0.67 0.88 0.99

0.30 1.00 1.00 1.00

0.40 1.00 1.00 1.00

0.50 1.00 1.00 1.00

0.60 1.00 1.00 1.00

0.70 1.00 1.00 1.00

0.80 1.00 1.00 1.00

0.90 1.00 1.00 1.00

1.00 1.00 1.00 1.00

Table 2.1: Power of the proposed test for different values of λ in the alternative model

described using the component vectors in Example 1 for different sample sizes and

σ = 0.01 and ω = 0.5.

Table 2.2 shows the power in the Example 1 set up when the error standard
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deviation is slightly bigger and equal to σ = 0.05. The power is slightly affected by

the increase in the error variance but still maintains the monotonic and rapid rise

with increase in λ.

λ n = 64 n = 100 n = 400

0.00 0.05 0.05 0.06

0.03 0.05 0.05 0.11

0.05 0.06 0.07 0.19

0.07 0.07 0.11 0.23

0.10 0.09 0.18 0.37

0.20 0.36 0.55 0.77

0.30 0.58 0.82 1.00

0.40 0.79 0.87 1.00

0.50 0.95 0.98 1.00

0.60 0.98 1.00 1.00

0.70 0.99 1.00 1.00

0.80 1.00 1.00 1.00

0.90 1.00 1.00 1.00

1.00 1.00 1.00 1.00

Table 2.2: Power of the proposed test for different values of λ in the alternative model

described using the component vectors in Example 1 for different sample sizes and

σ = 0.05 and ω = 0.5.

Example 2: The second example is also a surface that is without any striking feature

but does show slightly more curvature than those in Example 1. The coefficient vec-

tors constituting the components on the model (2.12) are β01 = (0.999, 0.8, 0.2, 0.001),

β02 = (0.999, 0.5, 0.45). The coefficient for the alternative are β11 = (0.999, 0.9, 0.6, 0.001), β12 =



CHAPTER 2. NONPARAMETRIC TEST OF BLISS INDEPENDENCE 30

(0.8, 0.1, 0.15) and β21 = (.6, .55, .5, .1), β22 = (.5, .4, .3). Figure 2.2 shows the response

surfaces for different choices of λ and ω.

From Figure 2.2 it seems that for a fixed ω, the departure from null is minimal

even for λ = 0.5. When λ is large and close to one, then the surfaces are quite

different. We know that in the case when λ = 0.9 and ω = .5 the surface is not

of a Bliss independence model. Table 2.3 shows the power of the proposed test for

different values of λ when ω = 0.5 and the error standard deviation is small and equal

to σ = 0.01. The test maintains the size very well, even for smaller sample sizes. The

values in Table 2.3 reaffirms the nature of departure of the parametric alternative

model from the null in terms of the single parameter λ. The surfaces for λ = 0 and

λ = 0.9 are visually different overall and for a small value of σ the power of the

test reaches almost one at λ = 0.9 for larger sample size such as n = 400. However

for smaller sample sizes, the observed values where the differences are significant are

sparse and are unable to distinguish the surfaces based on the differences over the

observed grid. For a sample of size n = 100 the power is 50-60% for large values of

λ. The lack of power is due to the nature of the nonparametric null and alternatives.

Even though the surface with λ = 0.9 and ω = 0.5 is visually different from the null

model with λ = 0 and also it is not a Bliss independence surface, it is not clear how

close it is to ”a” Bliss independence surface which need not be the one with λ = 0.

Table 2.4 shows the power for a larger error variance with σ = 0.05. The increase

in the error variance has a significant impact on the power of the test. Even at

n = 400, the power reaches only about 30% when testing an alternative with λ = 0.9.

This again highlights the problem with the large alternative space and the null space.

The surface at λ = 0.9, albeit visually different form the null model with λ = 0, may

very well be close to another factorizable Bliss independent surface. Even though

the error standard deviation is not very big in magnitude, the possible closeness of
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(a) λ = 0 (b) λ = 0.1, ω = .5

(c) λ = 0.5, ω = .5 (d) λ = 0.9, ω = .5

(e) λ = 0.5, ω = 0 (f) λ = 0.9, ω = 0

Figure 2.2: Surfaces corresponding to example 2 for different choices of λ and ω. The

choice λ = 0 corresponds to the null value.
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λ n = 64 n = 100 n = 400

0.00 0.04 0.05 0.05

0.03 0.05 0.06 0.09

0.05 0.07 0.08 0.10

0.07 0.08 0.10 0.14

0.10 0.10 0.13 0.15

0.20 0.13 0.17 0.24

0.30 0.18 0.25 0.23

0.40 0.22 0.29 0.32

0.50 0.24 0.31 0.42

0.60 0.28 0.32 0.47

0.70 0.34 0.37 0.51

0.80 0.37 0.43 0.66

0.90 0.40 0.52 0.81

1.00 0.45 0.65 0.99

Table 2.3: Power of the proposed test for different values of λ in the alternative model

described using the component vectors in Example 2 for different sample sizes and

σ = 0.01 and ω = 0.5.

the alternative to a null surface compounded with the increased variability of the

observed surface greatly limits the capability of the test to reject the alternative at

λ = 0.9. We feel that the constant error variance assumption is too severe particularly

because when the survival proportion is close to one or zero, the perturbation due to

the error is quite significant and has a serious impact on estimation.

Next we consider the case when ω = 0 for alternative values in Example 2. for

ω = 0, β∗ also belongs to the null region. Thus, the power is expected to non-
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λ n = 64 n = 100 n = 400

0.00 0.02 0.05 0.05

0.03 0.03 0.06 0.05

0.05 0.03 0.06 0.07

0.07 0.05 0.08 0.08

0.10 0.05 0.07 0.08

0.20 0.06 0.07 0.10

0.30 0.08 0.08 0.12

0.40 0.08 0.09 0.14

0.50 0.07 0.10 0.17

0.60 0.08 0.11 0.20

0.70 0.08 0.11 0.22

0.80 0.09 0.12 0.25

0.90 0.09 0.13 0.29

1.00 0.08 0.15 0.32

Table 2.4: Power of the proposed test for different values of λ in the alternative model

described using the component vectors in Example 2 for different sample sizes and

σ = 0.05 and ω = 0.5.

monotonic over the segment parametrized by λ. At either end, λ = 0 and λ = 1,

the parameter belongs to the null and hence the power is expected to be around the

nominal level of 5%. From Table 2.5 we see that indeed the power is around 5% for

either λ = 0 or λ = 1. The power reaches maximum of 1 in the middle of the segment

around λ = 0.5. Even for n = 64 the test has almost 100% power at λ = 0.5.

Table 2.6 shows the power properties for σ = 0.05. Again the increased variance

has a drastic effect on the power. The maximum power for n = 400 is only about



CHAPTER 2. NONPARAMETRIC TEST OF BLISS INDEPENDENCE 34

λ n = 64 n = 100 n = 400

0.00 0.04 0.05 0.05

0.05 0.11 0.19 0.35

0.10 0.19 0.32 0.92

0.20 0.07 0.11 0.99

0.30 0.22 0.99 1.00

0.40 0.36 1.00 1.00

0.50 0.98 1.00 1.00

0.60 0.56 1.00 1.00

0.70 0.44 0.98 1.00

0.80 0.26 0.50 1.00

0.90 0.21 0.23 0.95

0.95 0.13 0.13 0.31

1.00 0.05 0.06 0.06

Table 2.5: Power of the proposed test for different values of λ in the alternative model

described using the component vectors in Example 2 for different sample sizes and

σ = 0.01 and ω = 0.

24% for λ = 0.5. The argument about increased variability having a dire effect on

estimation particularly due to the distortion around the edges still holds. Probably

a model with error variance function of the response, e.g. σ2 = τ0 + τ1µ(1 − µ) for

some small background τ0 value and some τ1 value is more appropriate. Such models

are topics of future research.

Example 3: The third example is a surface that shows distinct features such as flat

regions and regions of sharp decline. The coefficient vectors constituting the compo-

nents on the model (2.12) are β01 = (0.9, 0.8, .5, .6, 0.01), β02 = (0.9, 0.4, 0.3). The co-
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λ n = 64 n = 100 n = 400

0.00 0.02 0.04 0.06

0.05 0.04 0.05 0.06

0.10 0.04 0.07 0.07

0.20 0.04 0.11 0.11

0.30 0.08 0.10 0.17

0.40 0.09 0.11 0.19

0.50 0.13 0.13 0.24

0.60 0.11 0.12 0.16

0.70 0.11 0.09 0.15

0.80 0.07 0.06 0.12

0.90 0.08 0.07 0.08

0.95 0.05 0.07 0.08

1.00 0.03 0.06 0.07

Table 2.6: Power of the proposed test for different values of λ in the alternative model

described using the component vectors in Example 2 for different sample sizes and

σ = 0.05 and ω = 0.5.

efficient for the alternative are β11 = (0.999, 0.9, 0.6, .002, 0.001), β12 = (0.8, 0.1, 0.15)

and β21 = (.6, .55, .5, .45, .1), β22 = (.5, .4, .3). Figure 2.2 shows the response surfaces

for different choices of λ and ω.

Table 2.7 shows the power for Example 3 for different values of sample sizes and λ.

The value of ω is 0.5 and σ = 0.01. Given the surface has more features, the power is

slightly less than that in Example 2 but still adequate even for smaller sample sizes.

The size is again preserved very well across sample sizes. Table 2.8 provides the power

for the same example for ω = 0. The power is near the nominal level at both ends
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(a) λ = 0, ω = .5 (b) λ = 0, ω = .5

(c) λ = 0, ω = .5 (d) λ = 0, ω = .5

(e) λ = 0, ω = .5 (f) λ = 0, ω = .5

Figure 2.3: Surfaces corresponding to example 4
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of the line segment parametrized by λ. However, for this example, the power hardly

rises in the middle of the segment. It could be that the combination of β0 and β(02)

gives rise to vectors that are nearly factorizable.

λ n = 64 n = 100 n = 400

0.00 0.05 0.05 0.05

0.05 0.07 0.08 0.12

0.10 0.13 0.15 0.21

0.20 0.17 0.22 0.30

0.30 0.21 0.31 0.69

0.40 0.37 0.57 0.94

0.50 0.54 0.77 0.99

0.70 0.89 0.98 1.00

1.00 1.00 1.00 1.00

Table 2.7: Power of the proposed test for different values of λ in the alternative model

described using the component vectors in Example 3 for different sample sizes and

σ = 0.01 and ω = 0.5.

2.3 Model Selection

To model the dose response using Bernstein polynomials, we have used the uniform

convergence property of the Bernstein. Thus, we have used a large enough degree such

that the approximation of the true model is adequate. Of course in finite sample situ-

ation there is a severe complexity cost for using large number of basis function. Thus,

to achieve reasonable approximation without sacrificing computational and statistical

efficiency we propose using conventional model selection procedure to determine the

degree for each sample.
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λ n = 64 n = 100 n = 400

0.00 0.05 0.05 0.05

0.05 0.07 0.07 0.07

0.10 0.08 0.09 0.11

0.20 0.09 0.12 0.14

0.30 0.10 0.15 0.17

0.40 0.12 0.16 0.19

0.50 0.12 0.18 0.22

0.70 0.11 0.14 0.18

1.00 0.06 0.06 0.05

Table 2.8: Power of the proposed test for different values of λ in the alternative model

described using the component vectors in Example 3 for different sample sizes and

σ = 0.01 and ω = 0.

We perform limited simulation study to first check the performance of the model

selection procedure in terms of how close the selected model is to the true model in

an average. We create data under the null model using two dimensional Bernstein

polynomials and performed the simulation experiment by varying sample size, the

degrees of Bernstein polynomials, the coefficients of Bernstein polynomials for a given

degree and also the relationship between the degree in the two direction of dose space,

e.g, equal degrees of Bernstein polynomials in either coordinate or different degrees

of Bernstein polynomials. The rest of procedure to perform the test is same as in the

previous section.

We vary sample size 100, 144, 225, 324 or 400. For degree 3 Bernstein polynomial,

we use coefficient vector c( .99, .66, .1) for simple cell survival curve, use coefficient

vector c( .99, .66, .88) for featured cell survival curve. For degree 4 Bernstein poly-
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nomial, we use coefficient vector c( .99, .66, .44, .1) for simple cell survival curve, use

coefficient vector c( .99, .66, .88, .1) for featured cell survival curve. For degree 5

Bernstein polynomial, we use coefficient vector c( .99, .99, .66, .44, .1) for simple cell

survival curve, use coefficient vector c( .99, .66, .88, .44, .1) for featured cell survival

curve. For degree 6 Bernstein polynomial, we use coefficient vector c( .99, .99, .80,

.66, .44, .1) for simple cell survival curve, use coefficient vector c( .99, .66, .88, .66,

.44, .1) for featured cell survival curve. For degree 7 Bernstein polynomial, we use

coefficient vector c( .99, .99, .80, .70, .55, .44, .1) for simple cell survival curve, use

coefficient vector c( .99, .66, .88, .70, .55, .44, .1) for featured cell survival curve. For

degree 8 Bernstein polynomial, we use coefficient vector c( .99, .99, .80, .70, .55, .44,

.22, .1) for simple cell survival curve, use coefficient vector c( .99, .66, .88, .70, .55,

.44, .22, .1) for featured cell survival curve.

• Equal dimension of two dimensional Bernstein data, with the true dimension

(3, 3), the possible fitted dimension are {J1, J2 ∈ (2, . . . , 5)}.

• Equal dimension of two dimensional Bernstein data, with the true dimension

(4, 4), the possible fitted dimension are {J1, J2 ∈ (2, . . . , 6)}.

• Equal dimension of two dimensional Bernstein data, with the true dimension

(5, 5), the possible fitted dimension are {J1, J2 ∈ (2, . . . , 7)}.

• Equal dimension of two dimensional Bernstein data, with the true dimension

(6, 6), the possible fitted dimension are {J1, J2 ∈ (2, . . . , 8)}.

• Equal dimension of two dimensional Bernstein data, with the true dimension

(7, 7), the possible fitted dimension are {J1, J2 ∈ (2, . . . , 9)}.

• Equal dimension of two dimensional Bernstein data, with the true dimension

(8, 8), the possible fitted dimension are {J1, J2 ∈ (2 . . . , 10)}.
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• Unequal dimension of two dimensional Bernstein data, with the true dimension

(3, 5), the possible fitted dimension are {J1, J2 ∈ (2, . . . , 7)}.

• Unequal dimension of two dimensional Bernstein data, with the true dimension

(4, 6), the possible fitted dimension are {J1, J2 ∈ (2, . . . , 8)}.

• Unequal dimension of two dimensional Bernstein data, with the true dimension

(5, 7), the possible fitted dimension are {J1, J2 ∈ (2, . . . , 9)}.

• Unequal dimension of two dimensional Bernstein data, with the true dimension

(6, 8), the possible fitted dimension are {J1, J2 ∈ (2, . . . , 10)}.

The best model is then selected based on smallest values of AIC (Akaike information

criterion), BIC ( Bayesian information criterion) or AICc (AIC with a correction for

finite sample sizes). AIC is defined as 2k − 2 ∗ ln(L), here L is the maximum value

of the likelihood function for the model, k is the number of estimated parameters in

the model. BIC is defined as −2lnL + +k ∗ ln(n). L is the maximized value of the

likelihood function of the model, k is the number of free parameters to be estimated,

and n is the sample size. AICc is AIC with a correction for finite sample sizes. The

formula for AICc is AICc = AIC+ 2k∗(k+1)
n−k−1

, n denotes the sample size and k denotes

the number of parameters. For each set of simulated parameter setting, we did 100

Monte Carlo replication.While fitting the model, we can use constrained or uncon-

strained Bernstein polynomials to select the best degree. We study both scenarios.

We study the properties of the model selection criteria by examining the differences

of the fitted degrees of Bernstein polynomial and the true degrees of Bernstein poly-

nomial. If the true degrees are (J1, J2) and the fitted degrees are J1,fit, J2,fit then we

look at the distribution of the qunatity (J1,fit − J1) + (J2,fit − J2) over the Monte

Carlo replications.
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Figure 2.4-2.7 shows the distribution of ∆ for the different scenarios investigated.

There are several points that one can make based on our experiment to find whether

the model selection procedure works in the present set up. The data were generated

under the null factorized model and hence for every case the fitted degree under

the constrained model is closer to the true degree than those for the unconstrained

model. In general, the BIC criterion does slightly better and has sharper peak

around the true dimension. As expected, with larger sample sizes, e.g 400, the fitted

degrees get closer to the true degrees. The model selection seems to be targeting

the essential features of the data. For example, in Figure 2.4(a), each marginal

curves are simple degree 3 curves and the constrained fit seems to essentially pick

that up. Figure 2.4(b)- (d), because some of the coefficients are small, the fitted

model has a tendency to use lower order polynomials. Whereas, in Figure 2.5, the

fit for dimensions equal to 4 is better since the curves have mode features. The

story is similar for the larger sample size. However, the model selection seems to

be sensitive to the assumption of Bliss independence since the unconstrained model

choice seemingly differs from the constrained model choice even when the null model

is used. More investigation is needed to fully understand the optimal use of model

selection procedure in conjunction with the testing procedure.

2.4 Discussion

We have proposed a fully nonparametric procedure for testing Bliss independence in

two agent dose response models. The procedure seems to have the expected perfor-

mance of a nonparametric testing procedure. The size of the test is well maintained

across a variety of scenarios. There are several factors that affect the power proper-

ties of the test and the sensitivity of the test to these factors needs to be investigated

more thoroughly. Also, while the empirical evidence points to consistency of the test,
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theoretical justification needs to be established to show that at any given alternative,

the power of the test reaches one as sample size goes to infinity. The complexity of

the procedure depends on the size and spacings of observation grid as well as the grid

used to impose the constraints of monotonicity. The true relationship between these

complexities and the rate of convergence of the null distribution of the test needs to

be investigated and is a topic of future research.
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(a) (b)

(c) (d)

Figure 2.4: Density plot of difference of fitted dimension and true dimension of n=100,

equal dimension and simple curve. Solid line represents the constrained fit and dash

line represents unconstrained fit. Black line the model selection uses AIC criteria,

red line the model selection uses AICc criteria and blue line the model selection uses

BIC criteria.
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(a) (b)

(c) (d)

Figure 2.5: Density plot of difference of fitted dimension and true dimension of n=100,

equal dimension and curve with feature. Solid line represents the constrained fit

and dash line represents unconstrained fit. Black line the model selection uses AIC

criteria, red line the model selection uses AICc criteria and blue line the model

selection uses BIC criteria.
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(a) (b)

(c) (d)

Figure 2.6: Density plot of difference of fitted dimension and true dimension of n=400,

equal dimension and simple curve. Solid line represents the constrained fit and dash

line represents unconstrained fit. Black line the model selection uses AIC criteria,

red line the model selection uses AICc criteria and blue line the model selection uses

BIC criteria.
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(a) (b)

(c) (d)

Figure 2.7: Density plot of difference of fitted dimension and true dimension of n=400,

equal dimension and curve with feature. Solid line represents the constrained fit

and dash line represents unconstrained fit. Black line the model selection uses AIC

criteria, red line the model selection uses AICc criteria and blue line the model

selection uses BIC criteria.



Chapter 3

Nonparametric Test for Loewe

Additivity

3.1 Introduction

As mentioned in the introduction, the two most common forms of two-agent inter-

action are bliss independence and Loewe additivity. In this chapter we develop non-

parametric and semi-parametric tests for testing Loewe additivity. the motivation for

investigating nonparametric test is similar to those given in the Bliss independence

case. The response surface could have shapes that are not well approximated by

conventional models and also the departure of the alternative models from a null ref-

erence model may not be adequately characterized by a few parameters. Along with

Bliss independence, Loewe additive models as reference models for dose response sur-

face has a long history. However, the models are almost always parametric. Moreover

the emphasis has been on response surface modeling rather than building rigorous

statistical tests for departure from Loewe additivity. This investigation attempts to

fill the gap.

47
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3.1.1 Loewe Reference Model for Zero Interaction

The study of additivity in the combined effect of two or more agents often is done via

the interaction index. For a two agent situation, the interaction index (Berenbaum

1977) (at a particular effect E) can be defined as

I =
x1

X1

+
x2

X2

(3.1)

where (x1, x2) are the doses of the two agents that produced an effect of E when

the agents are combined and X1 and X2 are the marginal doses of the first and the

second agent, respectively, that are needed to produce the same effect. The premise

of te interaction index is that the left hand side should be independent of (d1, d2) if

the agents have zero interaction or in other words they act similarly. This quantifies

the ideas of additive effect studied through isobolograms, the lines of equal activity.

The isoboles are defined as

isbl(E) = {(x1, x2) : µ(x1, x2) = E} (3.2)

where µ(x1, x2) denote the effect when the agents are combined at dose x1 and x2. The

isoboles provide a simple graphical representation that conveys the idea of interaction

without any more involved mathematical concepts. It is argued that if the agents

have similar mechanism then their effects will be additive and the isobole should

be a straight line. The isoboles were introduced by Fraser (1870, 1872)) to study

antagonistic effect between agents. Later they were extended to the study of synergy

by Loewe and Muischnek (1926) and Loewe (1953). Loewe argued that a curved

isobole would indicate deviations from zero interaction. The idea was later quantified

by using a combined index (CI) equal to I in (3.1). For agents whose effects interact,
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the combined index (Chou and Talalay 1983) would show the nature of interaction as

CI


< 1 synergy

= 1 additive

> 1 antagonism

(3.3)

The combined index is used is conjunction with parametric response surface methods

to perform statistical analysis of two-agent interaction. One of the most common

model that parametrizes the departure from zero interaction in the combined index

using a single parameter is the Greco model (Greco et. al 1995). Specifically, The

Greco model uses the Hill model (REF) as the marginal dose response model for the

two agents and combines them through the interaction index. In order to describe

the Greco model we describe the Hill model first. The Hill model for an effect E at

a dose D is

E = E0 +
Emax − E0

1 + ( X
ED50

)−γ
(3.4)

where E0, Emax are the background and maximum effects, respectively, and ED50 is

the dose at which the effect is 50% of the max effect and γ is the Hill coefficient which

controls the shape and the asymptote of the sigmoidal model. From the Hill model,

the dose needed for reaching an effect of E is X = ED50

(
E−E0

Emax−E

)−1/γ

. The Greco

at.al 1995) model using the Hill model as the marginal response model is a solution

to

1 =
x1

ED50,1

(
E−E0

Emax−E

)1/γ1
+

x2

ED50,2

(
E−E0

Emax−E

)1/γ2
+

τx1x2

ED50,1ED50,2

(
E−E0

Emax−E

)1/2γ1+1/2γ2
.

(3.5)

The model is a popular model but the it is still a parametric model and flexibility is

limited by the specific parametric form. IN particular, the marginal model need not

be adequately represented by a Hill model. Moreover, the departure from the null

interaction model need not be of the specific form given by the model. Figure 3.1
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shows the isobols for a typical Greco model for two different values of τ . The red

line shows the isobol for τ = 0 and the black line shos that for τ = −0.5, a value

representing antagonism.

Figure 3.1: Loewe additive line and synnergistic isobol under Greco model

We will use the Greco model due to its simplicity and interpretability as our

building block and generalize it to have nonparametric features.

3.1.2 A nonparametric Loewe additive reference model

The marginal models in the Greco model or any analogous parametric model are

typically a Hill model or one of the variants of Hill model. The models are always low

dimensional parametric model. While the models do capture many of the essential

features they rely on the sigmoidal shape of the dose response. There is no scientific

reason for the dose response, albeit monotonic, to have a sigmoidal shape. In particu-

lar, the dose response may show multiple regions of flat response or sharp rise. Thus,

we let the marginal model of dose response to be nonparametric and model it using

Bernstein polynomials. However, the linear zero interaction model is inherently a

model over the positive half plane, since it is not possible for the linear equal activity

lines to hold over a range of effects over a compact dose space except for the trivial

linear dose response form. Therefore, it is necessary to rescale the compact dose set
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using a scaling function, which could be any monotone function mapping [0, 1] to

[0,∞). Let L(·) be such a scaling function. For our implementation we will choose

the function to be L(x) = −log(1− x).

The zero interaction reference model for marginal response function µ1(X1) and

µ2(X2) and joint response µ(x1, x2) over a dose space D = R+ × R+ can be written

as

1 =
x1

µ−1
1 (E)

+
x2

µ−1
2 (E)

where µ−1
1 (E) is the inverse function giving the dose at which the effect is E when

agent one is used by itself, µ−1
2 (E) is the inverse function giving the dose at which

the effect is E when agent two is used by itself, and (x1, x2) are dose on the isobole

{(x1, x2) : µ(x1, x2) = E}.

For our application, we have to generalize the idea of no interaction measured via

linear isoboles over the positive half plane to a definition of zero interaction over the

unit square. Let the marginal dose response models will be µj(Xj) and let the joint

dose response function be µ(x1, x2). Then the zero interaction interaction model over

the unit square is defined as

1 =
L(d1)

L(µ−1
1 (E))

+
L(d2)

L(µ−1
2 (E))

(3.6)

where {(x1, x2) ∈ [0, 1]2 : µ(x1, x2) = E}. The fact that isoboles are straight lines in

the no interaction model is not necessarily true even in the unbounded dose space.

For example, Grabovsky and Tallarida (2004) report that when one of the agent is

partial agonist then the isoboles can be curved. However, in the bounded dose space

the idea of straight line isoboles severely limits the definition of no interaction. That

is why we use a rescaling function and define the straight line Loewe additivity in

the transformed space. The next two figures show the response surface for models

generated using (3.6) in the following two examples:
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Example 4: The first example has marginal models described by Bernstein poly-

nomials of degree 2 and 2. The coefficients are given by β(1) = (0.9, 0.01) and

β(2) = (0.9, 0.1). The model is simple and the surface does not show any special

features. The surface satisfy the monotonicity and range restriction. In Figure3.3

the isoboles are parallel although they are curved due to the boundedness of the dose

space.

Example 5: The marginal models are given by Bernstein polynomials of order 5 and

3. The coefficients are β(1) = (0.9, 0.8, 0.5, 0.6, 0.01) and β(2) = (0.9, 0.4, 0.3). Note

that the coefficients are non-monotonic, but the marginal response models satisfy

monotonicity properties. For this example, the Loewe additivity lines or isoboles (in

the bounded space) are not necessarily parallel. This is due to the shape of the surface

which exhibits a significant shoulder like feature. Figure 3.2 shows the surface and

the isoboles.

(a) surface (b) isoboles

Figure 3.2: A Bernstein based Loewe additive model surface and associated isoboles

at level Γ ∈ {0.1, 0.2, . . . , 0.9}
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(a) surface (b) isoboles

Figure 3.3: A Bernstein based Loewe additive model surface and associated isoboles

at level Γ ∈ {0.1, 0.2, . . . , 0.9}

Throughout the chapter we will assume that agents are Loewe additive if they

satisfy (3.6). For modeling purpose we assume that µj’s do not belong to any specific

parametric family and model them using Bernstein polynomials with monotonicity

and range constraints. Thus, we assume µj(Xj) is well approximated by some BJj(Xj)

where BJ(X) is the Bernstein function defined in (2.7). Let the inverse dose response

functions be B−1
Jj

(E). As before, we let the degree to be an increasing function of the

sample size and we construct a sieve by choosing a grid over which the polynomials

are constrained to be monotonic. The grid is allowed to become dense in the dose

space with increasing sample size.

3.2 A semiparametric test for Loewe additivity

To test for additivity one could allow the alternative class to be fully nonparamet-

ric. In general, any class of functions that includes the linear function would work.
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However, before investigating the fully nonparametric alternative, we first investigate

lower dimensional departures from the zero interaction model. Specifically, we could

entertain a Tukey one degree of freedom type test by extending the null interaction

model using a model similar to Greco et. al (1995). One could specify and one degree

interaction model based on a single interaction parameter

1 =
L(x1)

L(µ−1
1 (E))

+
L(x2)

L(µ−1
2 (E))

+
τL(x1)L(x2)√

L(µ−1
1 (E))L(µ−1

2 (E))

However, as in the Greco model, a single degree interaction term may not be sufficient

for modeling many forms of interaction surfaces, particularly when some parts of the

dose space exhibits positive interaction while other parts show negative interaction.

nevertheless, a single degree interaction term can used in a semi-parametric framework

to test for Loewe additivity against directional alternatives. The main advantage

being higher power for testing alternatives belonging to the class while having enough

flexibility in modeling the marginal response functions.

To develop the test once again we need a sieve to overcome the increasing com-

plexity of the problem. To construct the sieve we use the Bernstein approximation

to the marginal models. Let the marginal models we parametrized by vectors β(1)

and β(2) that restrict the model to the sieve (2.11) given in the previous chapter. To

be precise the sieve for the entire parameter set (β(1), β(2), τ) is ΘG
0,β × R where the

interaction parameter τ is allowed to have any real value.

To test for interaction we test H0 : τ = 0 versus H1 : τ 6= 0. To test for directional

departures we could use one sided alternatives. We discuss directional tests in more

details in the next chapter. We use a likelihood ratio test to test the nested models,

one without the restriction τ = 0 and one with the restriction. The form of the

likelihood ratio test is

Λ(data) =

sup
(β(1),β(2))∈ΘG0,β

⋂
{τ=0}

L(β(1), β(2), τ)

sup
(β(1),β(2))∈ΘG0,β

L(β(1), β(2), τ)
(3.7)
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The critical region for a test with nominal level α will be

Rα = {Data : Λ(data) < cα}

where cα is the lower α percentile of the distribution of Λ(data). While the test is

based on a nested class with a single additional restriction under the null hypothesis, it

is not clear if the standard asymptotics hold. This is because the marginal models are

still nonparametric and the asymptotic convergence is over the constructed sieve. We

follow a resampling method similar to the previous chapter to construct the critical

region.

3.2.1 Numerical illustration

To investigate the power of the proposed test we performed a limited simulation

experiment. The sample sizes considered were again n = 64, 100, 400 corresponding

to equally spaced square grids with 8, 10 and 20 points. The number of Monte Carlo

replications were 500 while number of bootstrap replications were 200. To implement

he inverse quantile of the monotone Bernstein function we used a grid search with grid

spacing equal to 0.01. The response surface were solved from the interaction index

equation using R root solving routine. We consider the two examples discussed in

the previous section. One of the surface is monotonic without any particular feature

and the isoboles are all parallel. The other is with a pronounces shoulder and has

isoboles that are not parallel.

The regular parametric models are expected do well in the first example while

in the second example the fit is expected to be inadequate. The marginal Bernstein

functions are chosen to have degree equal or one more than the true value. The

performances are similar and only the case with fitted degree more than the true

degree is reported.
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Table 3.2.1 shows the power of the one degree of freedom test for Example 4

for different values of sample size and interaction parameter τ . The error standard

deviation is fixed at σ = 0.02. The test is slightly oversized with size getting closer to

the nominal level with increasing sample size. The power is not symmetric in terms

of departure in the direction of synergistic interaction and antagonistic interaction.

The synergistic interaction correspond to positive values of τ and for such values the

power is slightly less than a corresponding negative value associated with antagonism.

However, in either direction power functions exhibit the expected increase in terms

of departure degree and sample size. The test reaches power of one even for values

of τ as small as ±0.3 for a sample of size 100. The empirical evidence points toward

consistency of the test.

τ n = 64 n = 100 n = 400

-1.00 1.00 1.00 1.00

-0.50 0.69 1:00 1.00

-0.30 0.60 0.99 1.00

-0.20 0.56 0.94 0.99

-0.10 0.41 0.76 0.80

-0.05 0.23 0.55 0.71

0.00 0.08 0.07 0.06

0.05 0.34 0.77 1.00

0.10 0.51 0.99 1.00

0.20 0.89 1.00 1.00

0.30 0.99 1.00 1.00

0.50 1.00 1.00 1.00

1.00 1.00 1.00 1.00

Table 3.2.1 shows the power of the one degree of freedom test for Example 5 for
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different values of sample size and interaction parameter τ . The test maintains the

size well for this particular example. The power is again not symmetric in terms of

departure in the direction of synergistic interaction and antagonistic interaction. In

the direction of synergistic interaction , the power rises more slowly than in the an-

tagonistic direction. However, in either direction power functions shows the expected

increase in terms of departure degree and sample size.

α n = 64 n = 100 n = 400

-1.00 0.88 1.00 1.00

-0.50 0.71 0.95 1.00

-0.30 0.65 0.78 1.00

-0.20 0.44 0.66 1.00

-0.10 0.29 0.54 0.87

-0.05 0.16 0.28 0.65

0.00 0.05 0.04 0.05

0.05 0.29 0.51 1.00

0.10 0.44 0.98 1.00

0.20 0.79 1.00 1.00

0.30 0.97 1.00 1.00

0.50 1.00 1.00 1.00

1.00 1.00 1.00 1.00

3.2.2 Discussion

The one degree of freedom test shows the expected high power in the direction of

alternative. Interestingly, the power is higher in the direction of antagonism than

in the synegystic direction. The test performs well even for surfaces with multiple
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features that are not necessarily captured by parametric forms, such as the Greco

model.

3.3 A nonparametric test for Loewe Additivity

In order to have a fully nonparametric test, one could let the alternative model vary

over all possible response surfaces. Of course, a nonparametric class that includes

the Loewe additive model in the interior of the class is ideal because then a nested

sequence can be formed and conventional likelihood ratio test may be carried out in

a manner similar to the previous chapters.

Throughout this section we will assume that the scaling function is fully known

and fixed. The analysis of course will depend on the scaling function and sensitivty

of results to the choice of scaling function is a topic of future investigation. To obtain

a nonparametric class one could think of the response surface as a function of the

two dose reduction ratios, L(x1)

L(µ−1
1 (E))

and L(x2)

L(µ−1
2 (E))

and form a function class in two

variables on the positive half plane that includes the function (x + y) as a special

case. However, given that the standard likelihood ratio asymptotic theory no longer

necessarily holds in the infinite dimensional case, the advantage of the nested model

maybe not substantial over a general alternative. Also, since we have already explored

the general Bernstein formulation for the response surface over the unit square, we

choose to model the alternative using general Bernstein surface only with range and

monotonicity restrictions. From the asymptoic uniform approximation property of

the Bernstein class, the null is included in the closure of the class. However, for

a given approximation the null set of Loewe additive functions are not embedded

in the Bernstein class. Thus, the hypothesis testing problem is that of nonnested

alternatives.

There is a substantial literature on non-nested model testing starting with Cox
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(1961,1962),Atkinson (1970), Pesaran (1974) and Pesaran and Deaton (1978). Several

authors have looked at non-nested regression models in particular, which is analogous

to our present problem. The literature on non-nested linear regression (linear and

nonlinear) include work by by Davidson and MacKinnon (1981), Fisher and McAleer

(1981), Dastoor (1983), Deaton (1982), Sawyer (1983), Gourieroux, Monfort, and

Trognon (1983), and Godfrey and Pesaran (1983), Gourieroux and Monfort (1995)

and Smith (1992). Using likelihood ratio test for comparing nonnested models has

been looked in by Voung (1985). In particular, Voung (1989) establish the asymptotic

distribution of the LRT in the non-nested case. We apply Voung’s method to develop

the test in the present context.

Consider again the sieves ΘG
0,β and ΘG

β for the constrained cases and the uncon-

strained case in the previous chpater. The only difference is that the sieve in the

constrained case is being used in conjunction with the Loewe additive model. The

LRT is

Λ(data) =

sup
(β(1),β(2))∈ΘG0,β

L∗(β(1), β(2))

sup
β(12)∈ΘGβ

L(β(12))
(3.8)

where L∗ denotes the likelihood obtained using the Loewe additive model (3.6) and

L is the likelihood obtained from the two dimensional Bernstein model without any

restriction on the coefficients other than monotonicity and range restriction over the

grid. Clearly, the likelihoods are not nested. In such situation Voung (1989) showed

under mild regularity condition that

n−1/2Λ(data)− E0( → N(0, ω∗2)

where the variance ω∗2 can be consistently estimated by

ω̂2∗ = n−1

n∑
i=1

[`∗i (β
(1), β(2))− `i(β(12))]2 − [n−1

n∑
i=1

(`∗i (β
(1), β(2))− `i(β(12)))]2
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where `∗i and `i are the log-likelihood for the ith observation under the Loewe model

and under the Bernstein model. We use a t-like test

T = n−1/2Λ(data)/
√
ω̂2∗ (3.9)

and reject based on the asymptotic critical value. The critical region will be

Rα = {Data : T > zα/2}

where zα2 is the upper α/2 normal percentile.

Since our models are only asymptotically nested it not clear whether the normal

limit is achieved by the likelihood ratio. Nevertheless, we designed a simulation

experiment to first get an understanding about the convergence of the distribution of

the LRT. The data generating model is the Greco-type model in the previous section.

The specific model is the one in Example 5 with sample size is n = 64 and sign = 0.02..

The alternative models are generated by varying τ form -0.5 to 0.5. Figure 3.4 shows

the distribution of the LRT (based on 200 Monte Carlo samples) in the null case

(τ = 0) and in two moderately far alternatives given by τ = −0.5 and τ = 0.5. The

distribution of the LRT in the alternative case shifts significantly to the left of the

null distribution and hence it is expected to have high power for such alternative

values. Figure 3.5 provides the comparative study of the null distribution and the

alternative distributions at τ = −.2 and τ = 0.2. Even though the alternatives are

not far from the null, the alternative distributions have shifted to the left indicating

that there will be adequate power in the testing procedure. Figure 3.6 and Figure 3.7

show that same thing but the impact of the sample size is clear. The histograms are

much tighter, the null is close to having a mean of 0 and standard deviation equal to

one and the alternative distributions have moved further away from the null. Thus,

empirically it seems that with increasing sample size, the power of the test will go

up. Table 3.2.1 provides numeric values of the power of the test (3.9). It is clear that
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the power increases as the model moves away from null and for larger sample size.

The test is severely oversized for n = 64 but the size is close to the nominal level for

n = 100.

3.4 Discussion

We have proposed two tests for Loewe additivity. The first one is a semiparametric

test and has good performance against local alternatives. The second test is fully

nonparametric which uses the non-nested LRT distribution theory. One could use a

resmapling based procedure in the non-nested case as well.
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Figure 3.4: Distribution of the test statistics under different values of the interaction

parameter for n = 64. The dark gray histogram corresponds to τ = 0 or the null

value, the red corresponds to τ = −.5 or moderate antagonism and the light blue

corresponds to τ − 0.5 or moderate synergy.



CHAPTER 3. NONPARAMETRIC TEST FOR LOEWE ADDITIVITY 63

Figure 3.5: Distribution of the test statistics under different values of the interaction

parameter for n = 64. The dark gray histogram corresponds to τ = 0 or the null value,

the red corresponds to τ = −.2 or limited antagonism and the light blue corresponds

to τ − 0.2 or limited synergy.
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Figure 3.6: Distribution of the test statistics under different values of the interaction

parameter for n = 100. The dark gray histogram corresponds to τ = 0 or the null

value, the red corresponds to τ = −.5 or moderate antagonism and the light blue

corresponds to τ − 0.5 or moderate synergy.
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Figure 3.7: Distribution of the test statistics under different values of the interaction

parameter for n = 100. The dark gray histogram corresponds to τ = 0 or the null

value, the red corresponds to τ = −.2 or limited antagonism and the light blue

corresponds to τ − 0.2 or limited synergy.
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τ n = 64 n = 100

-0.50 1.00 1.00

-0.45 1.00 1.00

-0.40 1.00 1.00

-0.35 1.00 1.00

-0.30 0.99 1.00

-0.25 0.96 0.99

-0.20 0.87 0.93

-0.15 0.53 0.75

-0.10 0.27 0.35

-0.05 0.18 0.19

0.00 0.16 0.06

0.05 0.16 0.05

0.10 0.18 0.08

0.15 0.25 0.37

0.20 0.36 0.52

0.25 0.46 0.76

0.30 0.55 0.89

0.35 0.63 0.95

0.40 0.72 0.99

0.45 0.81 1.00

0.50 0.93 1.00



Chapter 4

Future work

There are several important directions in which the proposed methodology can be

extended. In this chapter we discuss some preliminary formulation for future research

projects.

4.1 Directional testing

One of the main emphasis of future investigation will be to describe tests that are

consistent for one-sided alternatives. To this end, we define procedures that consider

directional departure from the null under both the bliss independence model and also

the Loewe additivity model. The test are defined both globally (entire dose space)

and locally (subset of interest).

4.1.1 Bliss independence

In the previous chapter we demonstrated that the Bernstein model is capable of mod-

eling the response function for a variety of shapes. We now develop a method based

on the Bernstein model for testing one sided interaction, e.g. synergy or antago-

nism when the null hypothesis is Bliss independence. Let the marginal response at

67
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dose levels x1 and x2 be µ1(x1) and µ2(x2), respectively. Also let the response at a

combined dose (x1, x2) be µ(x1, x2). Then a synergystic behavior at the dose level

(x1, x2) would mean that µ(x1, x2) < µ1(x1)µ2(x2) and similarly an antagonistic be-

havior at the given dose level would mean µ(x1, x2) > µ1(x1)µ2(x2). In other words,

in presence of synergy one would expect a more dire effect from a dose combination

that you would expect if the chemicals worked independently with no multiplicative

interaction. Similarly, in presence of antagonistic behavior one would expect a one

chemical to mitigate the adverse effect of the other chemical, thereby increasing the

probability of cell survival under the combination dose. The response will we said to

have synergy over a region R of dose combinations if µ(x1, x2) < µ1(x1)µ2(x2) for all

(x1, x2) ∈ R.

4.1.2 Testing at low dose combination

In many applications, the scientists are interested in testing for synergy/antagonism

at relatively lower levels of the dose combination. The primary reason is that in

nature, humans are generally exposed to lower doses. Also at higher doses the cell

survival probabilities are usually very small with or with any interaction and hence

of no practical interest. Thus, we first concentrate on the lower region of the dose

space R = {(x1, x2) : 0 < x1 < U1, 0 < x2 < U2}, where U1, U2 are appropriately

chosen constants. The first important observation is that the terms in the Bernstein

expansion that contribute most to the low doses are the first few terms. Thus, to

capture multiplicative interaction we would consider departure in the coefficients of

the initial terms from those in the null factorisable model.

Consider the null space Θ0 = {(β(12) ∈ [0, 1]J1J2 : β(12) = β(1)⊗β(2) for some β(1) ∈

[0, 1]J1 , β(2) ∈ [0, 1]J2}. We will develop a low degrees of freedom test for testing

departure from in this null in the low dose region. The alternatives that we consider
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for antagonistic behavior are in

ΘA = {β(12) ∈ [0, 1]J1J2 : ∃ β(1) ∈ [0, 1]J1 , β(2) ∈ [0, 1]J2 , 0 ≤ λ1,1, . . . , λd1,d2 ≤ 1,

such that β
(12)
ij = (1− λij)β(1)

1 β
(2)
j + λij, 1 ≤ i ≤ d1, 1 ≤ j ≤ d2,

and β
(12)
ij = β

1)
i β

(2)
j if i > d1 or j > d2} (4.1)

Similarly, the alternatives for synergistic behavior are in

ΘS = {β(12) ∈ [0, 1]J1J2 : ∃ β(1) ∈ [0, 1]J1 , β(2) ∈ [0, 1]J2 , 0 ≤ λ1,1, . . . , λd1,d2 ≤ 1,

such that β
(12)
ij = (1− λij)β(1)

1 β
(2)
j , 1 ≤ i ≤ d1, 1 ≤ j ≤ d2,

and β
(12)
ij = β

1)
i β

(2)
j if i > d1 or j > d2} (4.2)

Typically, the departure df (d1d2) will be allowed to increase with the sample

size n, but at a slower rate than the degree of the model J1J2. Note that when

λij = 0, 1 ≤ i ≤ d1, 1 ≤ j ≤ d2 then the corresponding β(12) is factorisable and belongs

to the null. Thus, if we denote the full parameter space as ΘA = ΘA
β(1),β(2),λ

to denote

the parameterization through the quantities β(1), β(2) and λ = {λ1,1, . . . , λd1,d2}, then

ΘA
β(1),β(2),0 = Θ0,

the null space. Similarly define for the synergistic alternatives.

The number of parameters in the full model is J1 +J2 +d1d2 and in the null model

is J1 +J2. For illustration, we describe the test and the procedure for the antagonistic

alternatives. Everything can be translated to tests for synergy instead of antagonism

by replacing ΘA by ΘS. Let ΘM denote the sieve as in the first chapter, consisting of

all functions in C[0, 1]2 with negative partial derivatives at the grid. Then a likelihood

ratio test for antagonism at low doses, i.e.,

H0 : β(12) ∈ Θ0 vs H1 : β(12) ∈ ΘA −Θ0,
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is given by

Λ(data) =

max
β(12)∈ΘM

⋂
Θ0

L(β(12)|data)

max
β(12)∈ΘM

⋂
ΘA

L(β(12)|data)

Note that the proposed test is somewhat of the same flavor as Tukey’s one df test

in the parametric set up. Here we are considering low dimensional directional alterna-

tives and letting the dimension of the departure from null to also increase slowly with

the sample size. Computation of the LRT can done by using optimization routines

that allow linear constraints. For the numerator, the maximization is the same as

that of the constrained optimization in the previous chapter. For the denominator,

the optimization is now over the parameters β(1), β(2) and λ, all of which satisfy linear

constraints, and the linear constraints associated with the monotonicity assumption

over the sieve can now be written as linear constraints involving both the β and the

λ parameters.

Typically, −2 log Λ(data)→ χ2
d1d2

which will allow us to set the critical region as

C = {data : −2 log Λ(data) > χ2
d1d2,α

}.

However since the dimension and complexity of the model are increasing with sample

size, we resort to resampling methods to obtain better finite sample approximation

to the distribution of −2 log Λ(data). The resampling algorithm is analogus to the

nondirectional case and can be implemented in R. We plan to investigate the power

properties of the test.

4.1.3 A global test for synergy/antagonism

If one is interested in testing for global effect of one-sided interaction, then following

the previous section a more general alternative space can be described. First we

describe the intuition behind the formulation. Consider the combined effect µ(x1, x2)

and the assumed joint effect µ1(x1)µ2(x2) under the assumption of no multiplicative
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interaction. If there is global antagonistic effect, then the difference ∆(x1, x2) =

µ(x1, x2)−µ1(x1)µ2(x2) is also a smooth positive function on the domain [0, 1]2. Hence

we can model the difference function using a lower order Bernstein polynomial, e.g.

∆(x1, x2) =

K1∑
k1=1

K2∑
k2=1

η(12)B(x1, k1, K1 − k1 + 1)B(x2, k2, K2 − k2 + 1).

Thus, under the null hypothesis the response is

µ(x1, x2) =

J1∑
j1=1

J2∑
j2=1

β
(1)
j1
β

(2)
j2
B(x1, j1, J1 − j1 + 1)B(x2, j2, J2 − j2 + 1),

and under the alternative

µ(x1, x2) =

J1∑
j1=1

J2∑
j2=1

β
(1)
j1
β

(2)
j2
B(x1, j1, J1 − j1 + 1)B(x2, j2, J2 − j2 + 1)

+

K1∑
k1=1

K2∑
k2=1

η(12)B(x1, k1, K1 − k1 + 1)B(x2, k2, K2 − k2 + 1)

However, in order to have identifiability of the parameters, one would want the factor

representation to be maximal, that is the factorisable part of µ(x1, x2) has to be the

largest factorisable function that is completely below µ(x1, x2) Once, that is ensured

through the parameterization then a similar likelihood ratio test can be used to test

the global alternative of antagonism.

H0 : η = 0 H1 : η > 0,

where the last expression mean at least one component of η is positive. Here note

that the β parameters are again playing the role of nuisance parameters. Typically,

the df for the difference function K1K2 will be small, but will be allowed to slowly

increase with the sample size.

The likelihood ratio based test is then defined in a similar manner as in the

previous cases. We plan to investigate the properties of the test both numerically

and theoretically.
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4.2 Loewe Additivity

Under the assumption of Loewe additivity, the associated isobole will have a particular

form as shown in Figure 4.1. The main intuition of developing the test for one-sided

interaction based on isoboles is as follows: If there is synergy between the agents then

a mixture will be more potent than the sum of individuals and hence the survival rate

will drop below E for smaller dose levels than those required under no interaction.

Hence, the isobole for E will be inside the isobole under Loewe additivity. Such an

isobole is shown in the Figure 4.1. Under antagonistic behavior, the chemicals will

mitigate each others effects and hence a the survival rate at the dose combination

along the Loewe additivity line will be higher. Hence the E isobole will lie outside

(away from the origin) the Loewe additivity line and is shown in Figure 4.1.

Figure 4.1: Isoboles for synergy and antagonism.

For a given situation, the interaction pattern may be more complicated than

simple synergy or simple antagonism. The mixture maybe synergistic in some parts

of the dose space and antagonistic in other parts of the dose space. Thus, for a given
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effect E, the isoboles need not lie entirely on one side of the Loewe additive line. The

pattern maybe as shown in Figure 4.2 where the red line is the true isobole and the

thick line is the Loewe additive line. Thus, the true isobole for effect E intersects the

Loewe additive line at effect E at a dose combination which is not on the boundary of

the dose space. The intersecting isoboles generate two areas, TS and TA. In general,

when the curves intersect multiple times, TA will be the union of areas to the left of

the Loewe additive line between the line and the true isobole and TS will be the union

of areas to the right of the Loewe additive line between the line and the true isobole.

Intuitive, to test there is synergy against the null that there is no synergy one should

test TS > 0 versus TS = 0. However, as in equivalence testing, the alternative needs

to be changed to an interval hypothesis to be able to have a valiid testing procedure.

Thus we propose to test the hypothesis for synergy as

H0 : TS > δS versus H1 : TS < δS, (4.3)

where the value of δS is prespecified and has to be determined by external consider-

ations. Similarly the hypothesis for checking if there is antagonism is

H0 : TA > δA versus H1 : TA < δA. (4.4)

Of course the estimated isobole and the Loewe additive lines will be slightly dif-

ferent from the true ones. However, under a consistent model one would expect that

with increasing sample size the isoboles to converge to their respective true values.

The estimated areas T̂S and T̂A are going to be used for testing. The test for synergy

would reject in favor of synergistic interaction if the value of T̂S is small. That is the

critical region for the test of synergy is

RS,α = {Data : T̂S < cS,α}

where cS,α is the lower 100(1−α)% percentile of the distribution of TS under the null

TS = δS. The value could be obtained by resampling. Similar the critical region for
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the test for antagonism will be

RA,α = {Data : T̂A < cA,α}

where cA,α is the lower 100(1−α)% percentile of the distribution of TA under the null

TA = δS.

In the above we have suppressed the dependence of the quantities on the effect

E for notational convenience but in reality TS = TS,E and TA = TA,E. If the interest

lies in a range of effects, then we could do multiple hypothesis testing. Suppose the

scientist area interested in testing one-sided hypothesis for E ∈ [EL, EU ]. The area

statistics TS,Ek and TA,Ek can be then used to perform the multiple testing procedure

or max{TS,E1 , . . . , TS,EK} can used depending on the nature of the problem. Since

the isoboles area not necessarily equally spaced and also the area inside the Loewe

additivity lines are different for different values for E, one could use a weighted test

TwS == max{w1TS,E1 , . . . , wKTS,EK}.

An intuitive choice for the weight would be the area within the Loewe additivity line

(area of the triangle whose perimeters are the two axes and the Loewe additivity

line). This area can be easily computed and hence the weighted test statistic can be

computed. the critical region can be define again in an analogus manner for test for

synergy and antagonism.

4.3 Theory: Consistency of Test

Given that the parameter space is infinite dimensional, it makes sense to investigate

the properties of the tests in a large sample set up. An obvious question in this regard

is whether the LRT is consistent, i.e. given an alternative value, does the power of the

test tend to one as sample size increases to infinity. In general there are no universal
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Figure 4.2: dose response when both sunnergy and antagomistic behavior are present

in the dose space.

method of establishing consistency of tests in an increasing dimensional set up. There

are several papers that establish the consistency of the ML estimators in regression

set up with increasing number of variables. The consistency of the LRT will generally

follow from that of the estimators and we intend to investigate this route.

4.4 Semiparametric and other extensions

Another interesting way of formulating the test without sacrificing on flexibility is to

use a semi-parametric form for µ. Let S denote a class of survival functions on [0, 1]

and let Φ be a known link from R to [0,1]. Then one could model µ as

µ = S(Φ(β1x1 + β2x2 + β12x1x2)),

and one could use the Bernstein class to approximate S thereby making the Bernstein

approximation the nuisance parameter and making the parameter β12 the interaction
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parameter of interest. A likelihood based approach can be again used to perform the

test.

An yet another option for building the test is to use a parameterized copula to

model the the response function in terms of survival functions where the parameters

of the copula will be parameterized to show departure from the null model, i.e. the

product copula. Consider a class of copula parameterized by a single parameter γ

such that the class includes the product copula as a special case for γ = 0,

µ = Cγ(F1(x1), F2(x2)).

The one-dimensional survival functions are then treated as nuisance parameters. Then

the relevant hypothesis of interest in γ = 0 and can be tested in a likelihood frame-

work.

4.5 Real data analysis

Finally, while the project started with the motivating data on battery waste, we

have analyzed the data in the present thesis because it is proprietary data. We

would definitely work toward implementing the proposed methods on real data to

understand the advantages and disadvantages of nonparametric schemes in real data

situation.
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