


Abstract

Single-photon cross phase shifts and other single-photon nonlinearities have numerous ap-

plications in all-optical quantum information processing. Generating these nonlinearities

though can be difficult. This has been done previously using sophisticated experiment se-

tups, for instance using cold atoms optically trapped within the field mode of a high-finesse

cavity. Several groups have experimentally achieved single-photon phase shifts on the or-

der of π using these systems. However, nonlinearities weaker than this have important

applications as well. In this work we introduce and demonstrate the idea of using meta-

stable xenon gas in a high-finesse cavity to produce weak single-photon nonlinearities. Our

system is relatively simple and robust, avoids problems associated with the accumulation of

alkali atoms on mirror surfaces, and is capable of approaching the strong coupling regime

of cavity quantum electrodynamics. It can compete with the performance of state-of-the-

art cavity systems up to a single-atom cooperativity of roughly η ≈ 1. Beyond this, the

effects of atomic motion begin to play a larger role and improving the system performance

becomes more difficult.

After a brief introduction to the use of optical cavities and the spectroscopic prop-

erties of metastable xenon, we demonstrate the feasibility of our approach by reviewing two

proof-of-principle demonstrations performed in our lab. In these experiments, we measured

absorption saturation and cross-phase modulation using a cavity of moderately high finesse

F = 3,000. We found that nonlinear effects occurred at ultralow input power levels, prov-

ing that the presence of the cavity strongly enhanced the inherent optical nonlinearity of

metastable xenon. We close by reviewing our recent progress in building an improved cav-

ity system, which is expected to produce enhanced single photon cross phase shifts.
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Chapter 1

Introduction

Compared with many other branches of physics, the theory of the behavior of light is quite

elegant. In most day-to-day circumstances this behavior follows the relatively simple rules

of classical optics, which are very well understood. Within the last century though, since the

introduction of quantum mechanics, it has become apparent that these rules do not always

apply. Appropriately engineered optical fields are capable of manifesting the phenomena

of entanglement and quantum superposition in ways unexplainable by classical optics. One

particularly notable example is the use of photons to violate the famous Bell inequality [1–

3]. This and similar phenomena can be explained only by a new optical theory that follows

the rules of quantum mechanics. The work of the scientific community to develop this

theory and to examine its consequences led to the emergence of the field of quantum optics.

Quantum optics is the field of physics whose goal is the development of a more

complete understanding of the behavior of light and its interaction with matter when quan-

tum mechanical effects are taken into account. Initial research in this field was often driven

by purely scientific interests, but in recent decades several new technologies have also been

developed taking advantage of the quantum nature of light. Among these are systems for

performing provably secure long-distance communications [4–7], ideas for building all-
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optical quantum computers [8, 9], and ways of networking multiple quantum computers

together to share resources [10–12].

Quantum states of light are particularly useful for playing the role of what are called

“flying qubits,” i.e. physical systems in which bits of quantum information can be reliably

transmitted from one place to another. One intuitive way to do this is to encode a quantum

bit, or “qubit,” of information into the polarization of a single photon [11]. This can work

quite well when experiments are carefully designed and losses are tightly controlled. In

practical situations though there is a clear limit past which the use of single photons is no

longer useful. Say for instance that an attempt is made to transmit quantum information

by sending a single photon from point A (from a young lady named Alice) to point B (we

can call him Bob). If along the way the photon happens to be absorbed or scattered outside

of the transmission line, the attempted communication fails. This leads necessarily to an

exponential decrease in the rate of quantum communication as the distance between Alice

and Bob is increased [13, 14].

It is not too difficult to circumvent this problem if Alice can content herself sending

only classical information. In that case she could encode the information into macroscopic,

classical light pulses. These can be amplified with relatively little damage to the encoded

information. A series of amplifiers, placed along the optical transmission line all the way

from Alice to Bob, can make up for the scattering and absorption losses that the light pulses

experience during transmission. In this way the information has a much easier time making

it to all the way to Bob.

Single photons, however, cannot be amplified without destroying their unique

quantum-mechanical properties, and maintaining these properties is essential if they are

to be good carriers of quantum information. This preclusion of the use of amplifiers is one

of the core problems for quantum communications: without something in the communica-

tions channel that can function like an amplifier, the rate of transmitting quantum informa-
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tion drops off exponentially with increasing distance [15]. It is then natural to ask whether

there may be other quantum states of light that can be used to communicate quantum in-

formation, but for which the use of amplifiers doesn’t automatically destroy coherence.

Recent work by our group suggested that using phase-entangled coherent states might pos-

sibly work [16]. A coherent state is a quantummechanical representation of a classical laser

pulse. Since classical light can pass through an amplifier relatively unharmed, it seemed

not unreasonable to suppose that a pair of phase entangled classical light pulses might be

able to pass through with relatively little degradation as well.

The potentially far-reaching applications of this idea made it quite appealing to

our group as new research direction. Things became more difficult though when we started

to think about how to generate a pair of phase-entangled coherent states. The simplest

method required an extremely strong Kerr nonlinearity, so strong that a single photon in a

control pulse could impart a noticeable phase shift on a coherent state [16]. The subfield

of physics concerned with the production and application of single-photon nonlinearities

is called quantum nonlinear optics. As a result of the potential applications for quantum

communication our group began working in this field.

A great deal of work in quantum nonlinear optics has focussed on producing large

single-photon cross-phase shifts, on the order of π radians [17–19]. A system capable of

performing this task on-demand and with high fidelity would have numerous important

applications in quantum communications and optical quantum computation [8, 11, 20–22].

Large single-photon cross-phase modulation has been produced in a number of different

systems using quantum dots [23], single trapped atoms [12, 17, 24–26], clouds of cold atoms

[18, 19, 27], and artificial atoms [28]. Warm atoms have been used as well, and while warm

atom systems have some appeal for their relative experimental simplicity, results so far have

been comparatively modest [29].
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Many of these experimental works represent the best results achieved to-date,

using sophisticated, state-of-the-art systems designed and built by research groups with

decades of accumulated technical expertise in this field [17–19, 24, 26]. From the perspec-

tive of a relatively small research group with relatively little previous experience in this area

of work, the prospect of building a new quantum nonlinear optical system was a daunting

one. Typically, years of development and testing are required before such a system reaches

a point at which it can compete with the state-of-the-art.

Fortunately for our group though, several recent theoretical results have shown that

interesting and useful experiments in quantum information processing can be performed

with nonlinearities significantly weaker than what is typically sought. In addition to their

usefulness for generating phase entangled coherent states as discussed above, single-photon

cross-phase shifts on the order of ∼ 1 mrad could be useful for applications in photonic

quantum computing and quantum non-demolition measurement [9, 16, 30]. Single-photon

nonlinearities of roughly this size are commonly referred to in the literature as “weak non-

linearities.” Our group decided to pursue the development of a new system for performing

quantum nonlinear optics experiments using weak nonlinearities. Our goal was to build a

system that would be relatively simple and robust, compared with the sophisticated setups

cited above, but still capable of producing single-photon cross-phase shifts on the order of

∼1 mrad.

Many groups have used high-finesse optical cavities to increase the nonlinearity

of atomic media. This has been done with single trapped atoms and cold atomic clouds

[12, 17, 23–25]. Perhaps surprisingly, to the best of our knowledge high-finesse cavities

have never been used in conjunction with a simple warm atomic vapor. This has been the

case because most experiments in atom optics have used alkali atoms such as rubidium and

sodium. These elements have convenient spectroscopic properties and strong transitions,

but they are also highly reactive. They tend to adhere to optical surfaces and can quickly
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degrade their performance. As a result, it has simply not been possible to use warm vapors

with cavities of finesse greater than about 100 [31–33].

Our group has changed this. Rather than relying the alkali elements, we turned

to metastable noble gas atoms as our nonlinear media. Metastable xenon in particular has

optical properties similar to those of rubidium, but it is inert and does not damage sensitive

cavity mirrors. Using metastable xenon in a high-finesse cavity has allowed us to produce

optical nonlinearities at ultralow optical power levels with a relatively simple and robust

setup [34, 35].

This work will be devoted to a more detailed description of our proposed system

and of the results we have obtained with it so far. We begin in Chapter 2 with a brief in-

troduction to the field of cavity quantum electrodynamics (cavity QED). In Chapter 3 we

describe the spectroscopic properties of room-temperature xenon atoms, with an empha-

sis on those properties most relevant to the experimental work described in the following

chapters. Chapter 4 explains the design and construction of our first, proof-of-principle

high-finesse cavity system. Chapters 5 and 6 describe two of our most important exper-

iments using this system. In Chapter 7 we provide details of a new cavity that we have

recently built, which should bring our experiment into the regime of quantum nonlinear

optics with weak nonlinearities. We close with a brief summary in Chapter 8.
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Chapter 2

Optical Cavities andCavityQuantumElec-

trodynamics

2.1 Introduction to Optical Cavities

Cavity quantum electrodynamics, or cavity QED, is a subfield of quantum optics focused on

the study of the quantum mechanical interaction of light and matter inside of a high-finesse

cavity. The word cavity in this context refers to a device that stores electromagnetic energy,

whose operation depends on constructive interference between an input field and a stored

field. There are many ways to build a cavity, from superconducting cavities that operate in

the microwave regime [36] to optical whispering gallery mode resonators [37] and Fabry-

Perot (FP) cavities built from high-quality bulk mirrors [38]. We will concentrate on optical

Fabry-Perot cavities.

An illustration of a typical Fabry-Perot cavity is shown in Figure 2.1 (a). The de-

vice is made of a pair of mirrors, preferably highly-reflective mirrors with low absorption

and scattering losses. These mirrors are positioned facing each other as shown. Intuitively,

one would expect that an input light field incident on the cavity should simply be reflected.

6



Figure 2.1: (a) Diagram of a general spherical-mirror optical cavity. (b) Transmission as a
function of frequency for a typical ideal cavity.

However, assuming perfect, lossless mirrors it is possible for 100% of the input light inten-

sity to be transmitted through the cavity.

As already mentioned, this counter-intuitive behavior depends on the constructive

interference of the input light field with the field circulating inside the cavity. The system

transmits only at discrete set of optical frequencies. These frequencies occur at regular

intervals, separated by what is called the cavity’s free spectral range (FSR). A typical cavity

transmission spectrum is shown in Figure 2.1 (b).

The phenomenon of resonant transmission in an optical cavity can be understood

with a relatively simple classical wave analysis. We will assume for simplicity that our

cavity is built with plane mirrors, and that the input field is an infinite plane wave. When

the input field first strikes the front mirror of a high-finesse FP cavity most of the incident

intensity is reflected, but a small fraction is transmitted through the mirror. This transmitted

beam travels across the cavity, reflects from the opposite mirror, then returns to the front

mirror and reflects again. A small amount of the energy in the intracavity field leaks out

of the cavity through the mirrors during this round-trip, but when the mirrors are highly

reflecting and of high quality this loss is relatively small. Then during the following pass

there are two fields propagating together: one directly transmitted through the first mirror

and another that has already completed a full round trip inside the cavity. This process
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Figure 2.2: Illustration of resonant light transmission in an optical cavity.

repeats ad infinitum. In the limit of a long time after the input light is first turned on (as-

suming a continuous-wave input), the field amplitude within the cavity can be written as a

sum of an infinite number of component fields, each one having travelled back-and-forth

within the cavity a different number of times, as illustrated in Figure 2.2. This produces an

infinite geometric series, leading to a nice, clean result.

Ignoring losses due to absorption or diffraction, the transmitted field amplitude

from Figure 2.2 is

Et = t1t2Eie
iθ/2

∞∑
k=0

(
r1r2e

iθ
)k

=
t1t2e

iθ/2

1− r1r2eiθ
Ei, (2.1)

for mirrors with amplitude reflection coefficients r1 and r2, and transmission coefficients

t1 and t2. The parameter θ = 2nkd represents the phase accumulated by the beam during

one round trip inside the cavity, where n is the index of refraction of the intracavity medium

and k is the wavenumber of the input light. The transmitted intensity is then given by

It =
T1T2

1 +R1R2 − 2
√
R1R2cosθ

Ii, (2.2)
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where R1, R2, T1, and T2 are the reflectances and transmittances of the two mirrors, and Ii

is the input intensity. We have assumed that r1, r2, t1, and t2 are all real, since the inclusion

of the phases of these coefficients leads only to a constant offset in the value of θ. In the

special case of identical mirrors, the equation for the transmitted intensity reduces to

It =
T 2

1 +R2 − 2Rcosθ
Ii. (2.3)

The maxima and minima of the transmission function occur at θmax = m2π and θmin =

π +m2π, for any integerm. This leads to It,max = Ii and It,min = (1−R)2

(1+R)2
Ii.

The free spectral range of the cavity can be found from the condition that the

change of θ between two adjacent cavity transmission peaks is 2π: FSR = c
2nd

. The

full-width-at-half-max (FWHM) of the transmission peaks described in Eq. 2.3 is related

to the free spectral range by FWHM = FSR
F , where the quantity F is called the cavity’s

finesse. In the limit of highly-reflecting mirrors the finesse is given by

F =
π(R1R2)

1/4

1− (R1R2)1/2
. (2.4)

The finesse represents the number of round trips an intracavity field makes before its inten-

sity decays to a fraction e−2π of its original value.

Fabry-Perot cavities have a wide variety of applications. For instance, they are

convenient spectral filters, due to the strong frequency selectivity of their transmission pro-

files. Due to their sensitivity to slight changes in cavity length they can also be well suited

to the task of measuring very small displacements, of order ≪ 1µm. These applications

use the cavity transmission function as a measuring tool. In contrast, we are primarily in-

terested in these structures because of the effects they have on atoms and fields inside the

resonators themselves.
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As an initial example, let’s consider the amplitude of an intracavity field. For

simplicity we will assume for the remainder of this section that the mirrors are identical and

lossless. The maximum amplitude of the transmitted electric field can be found from Eq.

2.1:
Et =

t2eiθ/2

1− r2eiθ
Ei

|Et,max| = |Ei|,
(2.5)

where Ei is the input field amplitude. The intracavity field amplitude Ec is related to the

transmitted amplitude byEt = tEc. Hence themaximum intracavity field isEc,max = Ei/t.

For a high quality set of cavity mirrors, t can be as small as t =
√
.00001 ≈ 0.003. In this

case the field inside the cavity is 300 times stronger than it is at the input. This provides

a massive advantage for nonlinear optical processes. For instance, the efficiency of the

second harmonic generation process is typically proportional to the intensity of the driving

light field. Placing the nonlinear medium inside of a high-fiensse cavity could increase the

efficiency by up to a factor of 1/t2 ≈ 100,000 !

Consider another example: say we want to cause a weak light field to interact with

a single atom that we’ve managed to capture in an optical trap. We could try simply placing

the atom in the path of the field, but in that case the passing photons would each have only

a very small probability of interacting with the atom. If we were to place the atom within

a high quality cavity, however, the situation would be different. Taking the above value of

t2 ≈ 10−5, a photon inside a Fabry-Perot cavity would bounce back and forth between the

twomirrors on the order of 1/t2 ≈ 100,000 times before leaving the cavity. This would give

it 100,000 chances to interact with the atom, and as a result that interaction could become

roughly 100,000 times more likely to occur. This is the kind of application we want to

pursue.
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2.2 Transverse Mode Structure of a Fabry-Perot Cavity

The behavior of optical cavities discussed in Section 2.1 depends on the coherent super-

position of multiply-reflected versions of an incident field. The cavity and the input field

need to be oriented correctly for this superposition to occur. The above analysis assumed

that the input fields were infinite plane waves, and that the mirrors were infinitely large and

flat, and aligned with perfect precision. In practice of course this is never the case. For

a plane-mirror Fabry-Perot cavity finite beam diameters and mirror sizes lead inevitably

to diffraction losses. Consequently, FP cavities are typically constructed with spherical

concave mirrors.

A spherical mirror cavity has the advantage that, for a correct choice of the cavity

size and mirror curvatures, fields circulating within the cavity tend to be confined near

the optic axis. A cavity configuration which supports this confinement is called a stable

configuration, whereas one that does not support it is called unstable. The conditions for

the stability of a cavity configuration can be determined through a ray-tracing analysis [39].

We will skip the derivation for the sake of brevity, and simply state the stability criterion:

0 ≤
(
1 +

d

R1

)(
1 +

d

R2

)
≤ 1, (2.6)

where d is the distance between the centers of the mirrors, and R1 and R2 are their radii. In

this work we will consider only cavities in which the mirrors are identical. In that case this

relationship simplifies to

0 ≤
(

d

−R

)
≤ 2, (2.7)

where R is negative for concave and positive for convex mirrors. A symmetric, concave

spherical mirror cavity will always be stable as long as the distance between mirrors is not

more than twice the mirror radius of curvature.
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In order to couple light into the cavity we need to know the transverse intensity

distributions that correspond to the resonant modes. To constitute a transverse resonant

mode of a Fabry-Perot cavity, the field distribution needs to allow multiple reflections to

coherently interfere. This means that the shape of the distribution after propagating back-

and-forth across the cavity needs to exactly match the distribution of the field at the cavity

input. The Hermite-Gaussian modes satisfy this condition for a spherical mirror cavity

[40]. (The Laguerre-Guassian modes work as well, in the ideal case of perfect cylindrical

symmetry. Small imperfections in the geometry of themirror substrates can easily break this

symmetry though, in which case the observed mode structure will be Hermite-Gaussian.)

The derivation and themathematical forms of these modes can be found in reference [40], or

in a similar standard textbook on laser physics. When the intensity distribution of an input

field matches that of a particular transverse mode, interference occurs and the analysis of

Section 2.1 correctly describes the behavior of the cavity.

For applications in nonlinear optics it is generally best to use the mode with the

tightest beam confinement. Tighter confinement results in larger field amplitudes and hence

stronger nonlinearities. The fundamental or 0th-order mode is the most suitable for this

purpose. It is called the TEM00 mode. It is a simple 2-dimentional Gaussian intensity

profile, given by

I (r⃗) = I0

(
W0

W (z)

)2

e[−2(x2+y2)/W 2(z)], (2.8)

where W (z) is the radius of the beam at longitudinal position ‘z’ and W0 is the radius at

the beam waist (the location where the beam is narrowest). W (z) for a Gaussian beam is

given by

W (z) = W0

√
1 +

(
z

z0

)2

, (2.9)

where z0 is the Rayleigh range. The Rayleigh range is the longitudinal position at which the

wavefronts are most strongly curved, and it is given by z0 = πW0

λ
, with λ the wavelength

of the radiation [39]. These relationships are illustrated in Figure 2.3. Further details can
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Figure 2.3: Illustration of a Gaussian beam profile and phase wavefronts as a function of
longitudinal distance, z.

be found in any textbook on laser physics. The simple Gaussian shape of these modes is

fortunate for experimental implementations as it matches very well the field distribution

within a single-mode optical fiber.

2.3 Cavity QED and Quantum Nonlinear Optics

The regime of classical nonlinear optics is interesting in its own right, with many practical

applications, but we are more interested in the use of optical cavities in the field of cavity

QED. This field explores the interaction of quantum light fields with atoms, molecules, and

other quantum-sized objects inside optical cavities. In this regime, a classical wave analysis

is not sufficient to completely describe the dynamics. We need another, fully quantum

mechanical model.

We will start our development of this model by taking a look at the quintessential

cavity QED system: a single 2-level atom sitting motionless inside a single-mode optical

cavity. This model, though somewhat idealized, describes many real experimental systems

with a high degree of accuracy. Though most physically realizable cavities support a very

large number of modes, the 2-level atom inside the cavity has only one resonance frequency.

Interactions between the atom and the cavity will generally be very weak unless the cavity
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and atomic frequencies are quite close. Hence it is usually assumed that only one of the

cavity modes is tuned close enough to the atomic resonance to result in an appreciable

interaction, and all other modes are ignored.

As with all other quantum mechanical analyses, we begin by writing the Hamilto-

nian that describes this system,

Ĥ =
1

2
ℏωaσ̂z + ℏωcâ

†â+ Ê · µ̂

=
1

2
ℏωaσ̂z + ℏωcâ

†â+ ℏ
(
E â† + E*â

)
µ̂.

(2.10)

The â† and â are the raising and lowering operators for the cavity mode. The atomic res-

onance frequency is given by ωa, and ωc is the frequency of the relevant cavity mode. For

the sake of simplicity we have chosen to consider only one polarization. The Ê and µ̂ are

the electric field and atomic dipole moment operators, respectively. E and E* are the con-

stants of proportionality relating Ê to the creation and annihilation operators â and â† for

the electromagnetic field, respectively [41]. For a two-level atom the dipole operator has

the form µ̂ = µ12σ̂12 + µ*12σ̂21, where µ12 = ⟨1a| µ̂ |2a⟩, with |ia⟩ indicating an atom in

state i. The operators σ̂21 and σ̂12 take the atom from its ground state |1a⟩ to the excited

state |2a⟩ and vice versa, respectively. From here on we will use the notation σ̂ij ≡ |ia⟩ ⟨ja|

when referring to atomic operators. We use σ̂z for the atomic Pauli z operator, given by

σ̂z = σ̂22 − σ̂11. Substituting this into the above,

Ĥ =
1

2
ℏωaσ̂z + ℏωcâ

†â+ ℏ
(
E â† + E*â

)(
µ12σ̂12 + µ*12σ̂21

)
. (2.11)

As basis states we will use the eigenstates of the interaction-free part of the Hamil-

tonian, H0 = 1
2
ℏωaσ̂z + ℏωcâ

†â, consisting of the atomic ground and excited states along

with the photonic excitation number states. The state of the coupled atom-cavity system
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Figure 2.4: Conceptual diagram of the Jaynes-Cummings model for a 2-level atom in an
optical cavity. The parameter g describes the coupling rate between atomic and cavity ex-
citations.

can then be written as a product of the atomic and photonic parts: |ia, jc⟩ ≡ |ia⟩ |jc⟩, where

|jc⟩ indicates the state in which the cavity mode contains j photons.

Now we apply the rotating wave approximation. This approximation is valid as

long as the optical field is not extremely strong, and the relation |ωa − ωc| ≪ ωa + ωc is

satisfied. This allows us to neglect the so-called counterrotating terms, and we are left with:

Ĥ =
1

2
ℏωaσ̂z + ℏωcâ

†â+ ℏ
(
µ12E σ̂12â† + µ*12E* âσ̂21

)
. (2.12)

We will assume without loss of generality that µ12E is real and positive. Then µ12E and

µ*12E* can be absorbed into a new constant g, which describes the rate of coupling between

the cavity field and the atomic excitation. We now have

Ĥ =
1

2
ℏωaσ̂z + ℏωcâ

†â+ ℏg
(
σ̂12â

† + âσ̂21

)
. (2.13)

This Hamiltonian includes terms describing a free 2-level atom (1
2
ℏωaσ̂z) and a free single

mode of the optical field (ℏωcâ
†â), along with an interaction term ℏg

(
σ̂12â

† + âσ̂21

)
. The

interaction term causes excitations to be exchanged between the atom and the field. This is

the familiar Jaynes-Cummings model of quantum optics [42], illustrated in Figure 2.4.

There is a great mass of literature pertaining to the Jaynes-Cummings model, some

works calculating solutions for specific circumstances and initial conditions, others produc-
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ing generalizations and/or extensions of the model. For a couple of examples see [43–45].

Related experimental works include [46–48], and many others. We, however, are interested

primarily in the use of cavity QED as a tool for nonlinear quantum optics, so we will pass

over the grand majority of this literature and concentrate on the results most relevant to our

work.

In particular, there is one important result that can be straightforwardly derived

from the Hamiltonian of Eq. 2.12. We start by diagonalizing this Hamiltonian and calcu-

lating its normal mode energies. The Hilbert space of the Hamiltonian Eq. 2.12 is infinite

dimensional, as there is in principle no limit on the number of photons allowed in the cav-

ity mode. However, notice that the interaction term only links states with the same total

number of excitations. For example, this term can transform the state |1a, 1c⟩ into the state

|2a, 0c⟩, but it cannot transform either of these into the state |2a, 1c⟩.

Our next step is to write the Hamiltonian in matrix form. First we define the state

vectors as

|ψ⟩ = c1,0 |1a, 0c⟩+ c2,0 |2a, 0c⟩+ c1,1 |1a, 1c⟩+ c2,1 |2a, 1c⟩+ ...

+ c1,2 |1a, 2c⟩+ c2,2 |2a, 2c⟩+ c1,3 |1a, 3c⟩+ c2,3 |2a, 3c⟩+ ...

|ψ⟩ =
[
c1,0, c2,0, c1,1 c2,1, c1,2, c2,2, c1,3, c2,3, ...

]T
.

(2.14)

Writing the Hamiltonian in this basis, we see that it is block diagonal:

Ĥ = ℏ



−1
2
ωa 0 0 0 0 · · ·

0 1
2
ωa g 0 0 · · ·

0 g −1
2
ωa + ωc 0 0 · · ·

0 0 0 1
2
ωa + ωc

√
2g · · ·

0 0 0
√
2g −1

2
ωa + 2ωc · · ·

...
...

...
...

... . . .


. (2.15)
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It suffices then to diagonalize the Hamiltonian within the subspace of each block, taking

them one at a time. For the sake of illustration, we will assume now that ωa = ωc ≡ ω.

This means that, in the absence of the interaction term, states |1a, nc⟩ and |2a, (n− 1)c⟩ are

eigenstates of the Hamiltonian with identical energy. In the nth block (with n any integer

≥ 1), we have

Ĥblock n = ℏ

(n− 1
2

)
ω

√
ng

√
ng

(
n+ 1

2

)
ω

 . (2.16)

For the eigenstates and eigenenergies we find

|ψn,+⟩ =
1√
2
(|1a, nc⟩+ |2a, (n− 1)c⟩)

|ψn,−⟩ =
1√
2
(|1a, nc⟩ − |2a, (n− 1)c⟩)

λ± = ℏ
(
n− 1

2

)
ω ± ℏ

√
ng.

(2.17)

Notice that the interaction terms split the atom-cavity degeneracy. An interesting

consequence of the energy splitting can be seen by calculating the system evolution from

a given set of initial conditions. Assume that at time t = 0 the system is in state |ψ0⟩ =

|1a, nc⟩. Note from Eq. 2.17 that

|1a, nc⟩ =
1√
2
(|ψn,+⟩+ |ψn,−⟩)

|2a, (n− 1)c⟩ =
1√
2
(|ψn,+⟩ − |ψn,−⟩) .

(2.18)

Integrating the Schrödinger equation gives |ψ (t)⟩ = e−iĤt/ℏ |ψ0⟩. Setting |ψ0⟩ = |1a, nc⟩

we find

|ψ (t)⟩ = e−i(n−1/2)ωt

[
cos

(√
ngt

)
|1a, nc⟩ − i sin

(√
ngt

)
|2a, (n− 1)c⟩

]
. (2.19)
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Figure 2.5: Probabilities of finding the coupled atom-cavity system in either of the states
|1a, nc⟩ or |2a, (n− 1)c⟩ as a function of time. As time passes one quantum of energy is
continually swapped back-and-forth between the atom and the cavity.

At time t the system has probability cos2 (
√
ngt) of being found in state |1a, nc⟩, and prob-

ability sin2 (
√
ngt) of being found in state |2a, (n− 1)c⟩. One of the nc energy quanta in

the system continually flops back-and-forth between the atom and the cavity. This phe-

nomenon is referred to as “Rabi flopping” or “Rabi oscillation.” Such oscillations occur

any time a 2-level quantum system is driven near one of its transition resonances by an

external force or by coupling to another system. In our case the driving comes from the

atom’s coupling with the cavity field. Figure 2.5 illustrates the time evolution of the state

probabilities, given by Eq. 2.19.

Rabi oscillations are an interesting, but not a specifically quantum-mechanical phe-

nomenon. The unique quantum-mechanical part of the dynamics in this case comes from

the factor of
√
n in the splitting between the two eigenstates given in Eq. 2.17. For a classi-

cal system the scaling of the energy splitting between eigenstates goes as∼ ng, rather than

∼
√
ng. This facet of the Jaynes-Cummings model has been recognized as an important

signature of quantum dynamics [49, 50]. More recently it has also been shown that this can

also be a useful tool in quantum nonlinear optics.
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. .
 . 

. .
 . 

Figure 2.6: Energy level diagrams for (a) a generic system of macroscopic coupled oscil-
lators, and (b) a single atom coupled to a cavity as described in the text. Note that the
difference in energy of the split states in (a) is proportional to the number of excitations,
whereas in (b) the dependence is nonlinear.

Figure 2.6 shows energy level diagram for the system of a single atom in a cavity

as described above, and for a system composed of a macroscopic oscillator in a cavity

(the macroscopic oscillator could be, for instance, a atomic cloud made up of a very large

number of atoms). Consider the case in which each of these two systems is driven by a

classical light field. Tuning the frequency of the driving field to ωdrive = (ω − g), for

example, would couple the ground and lowest excited states, causing the system to undergo

transitions between them. In the classical case of Figure 2.6 (a), the driving field would

also couple into the lower state of the second excitation manifold, and of the third, and so

on. As a result the macroscopic oscillator would tend over time to evolve into an essentially

classical state with many excitations. In the case illustrated in Figure 2.6 (b) though, the

driving field is detuned by an amount δ =
(
2−

√
2
)
g from the transition between the first

and second excitation manifolds. This detuning suppresses the probability for the system

to absorb more than one excitation. As a result, driving a single atom cavity system with a

classical field tends to place the system in a single-excitation state. This single excitation

can then be coupled out through the cavity mirrors, allowing the system to function as a

true single-photon source [51–53].
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This may not sound like an impressive accomplishment. After all, a typical $2

light bulb produces on the order of 1019 photons per second. These photons are emitted

at random times with randomized quantum phases in what is called a thermal state. The

unique advantage of a single-photon source though is that, ideally, photons are controllably

produced one-at-a-time in a well-defined pure quantum state. These single-photon states

are extremely useful in many branches of quantum optics, but they are also notoriously

difficult to produce [54–62]. The ability to build a true single-photon source illustrates the

unique power of cavity QED for quantum nonlinear optics.

As an aside, another interesting consequence of the nonlinear dependence of the

splitting on excitation number is the presence of what are called “collapse and revival”

phenomena in the population dynamics. A fair amount of literature comprising theoretical

studies of this and similar phenomena was produced in the 1980’s and 90’s. For those

interested in learning about this topic a good place to start is [44].

2.4 Theoretical Description of Dissipation and Dephasing

A great quantity of valuable work has come from examining the Jaynes-Cummings model

of cavity QED, but the model itself cannot possible provide a complete description of a

real-world quantum system. In the real world, individual atoms and field modes are not

free to interact with each other uninterrupted for eternity. Over time they system will tend

to spontaneously relax to its ground state, either via atomic spontaneous emission into free

space outside of the cavity mode, or through photon loss at the cavity mirrors. Additionally,

realistic systems always interact in somemeasure with their surrounding environment, lead-

ing to entanglement between the simple quantum system and the highly complex dynamics

of the environment. A system that interacts with its environment in this way is called an

open quantum system. Entanglement between the system and its environment leads to the

loss of information regarding sensitive quantum correlations. This phenomenon is called
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Figure 2.7: Conceptual diagram for an open quantum system of a 2-level atom in an optical
cavity. The parameter g describes the coupling rate between atomic and cavity excitations.
The rate of photon loss due to atomic spontaneous emission is given by γ. The κ1 and κ2
are the loss rates due to transmission through or imperfections of cavity mirrors 1 and 2,
respectively. The total rate of loss from both mirrors taken together is κ = κ1 + κ2.

decoherence [63]. The effect of decoherence on a quantum system can be conceptualized

as a stochastic randomization of the relative phases of quantum states. Over time this effect

typically destroys the unique signatures of quantum mechanical dynamics.

Figure 2.7 illustrates a realistic cavity QED system subjected to the common

sources of dissipation and decoherence. The ability of such a system to perform useful

operations in quantum nonlinear optics is often characterized by a parameter called the

cooperativity [12],

η =
g2

2κγ
. (2.20)

A cavity QED system with cooperativity η ≫ 1 will be capable of producing strong non-

linear optical effects at the single-photon level, while a cavity with η ≪ 1 can be expected

to produce only very weak single-photon nonlinearities. Thus it has been the goal of many

research groups to build a cavity system with the largest possible value of η. This is accom-

plished by maximizing the coherent coupling rate g while keeping the dissipation rates κ

and γ at a minimum.

For the moment though our primary concern is not the mitigation of the effects

of dissipation and decoherence, but the proper description of them. To accomplish this

task we need to apply the density operator formalism to our work with cavity QED and the
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Jaynes-Cummings model. This formalism provides a more complete description of quan-

tum systems than the state vector approach used above. The above analysis can describe

the time evolution of quantum states when they and their relative phases can be known ex-

actly, i.e. when they are “pure” states. This works in the ideal world of theory, but in the

real world nonidealities and classical uncertainties need to be accounted for. The density

operator allows us to describes systems for which the the quantum state is not precisely

known.

Suppose we have an ensemble of identical systems for which the exact quantum

states are unknown. Suppose though that we know that each system has probability p1

of being in state |ψ1⟩, probability p2 of being in state |ψ2⟩, etc. The (p1, p2, ...) here are

classical probabilities, not quantum probability amplitudes. The density operator for this

ensemble is defined as

ρ̂ =
∑
k

pl |ψk⟩⟨ψk| . (2.21)

In an n-dimensional quantum system with the states written as column vectors of length n,

as in Eq. 2.14, ρ̂ can be written as an n×nmatrix. In this form it is often referred to as the

“density matrix.” The density operator is Hermitian, as clearly seen from Eq. 2.21.

Measurement results in quantummechanics are probabilistic in nature. As a result,

in order to obtain accurate information about the state of a quantum system one needs to

have access to a large ensemble of identical copies of the system. Having many copies

allows many measurements to be performed, and averages to be taken. Knowledge of the

density operator is sufficient to completely describe any such ensemble. That is, if any piece

of information about the state of a quantum system can be gained by any combination of

manipulations and measurements on an ensemble of identical copies, this same information

can be derived from the density operator.

A potential disadvantage of the density operator is that it can be difficult to properly

conceptualize, and that calculations using this more complete formalism are often signif-
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icantly more involved than they would be using Hamiltonian dynamics with pure states.

The great advantage of this more difficult formalism though is that it allows us to directly

describe interactions which gradually transform pure quantum states into classical mixtures

of states through decoherence.

The master equation describing the time evolution of the density matrix is com-

posed of two separate parts: a unitary part and a non-unitary part. The unitary part can

be derived by calculating the evolution of the states ψk using the Schrödinger equation,

iℏ ∂
∂t
|ψk (t)⟩ = Ĥ |ψk (t)⟩. The result is called the Von Neumann equation:

(
dρ̂

dt

)
U

= − i

ℏ

[
Ĥ, ρ̂

]
, (2.22)

where the brackets designate the commutator,
[
Ĥ, ρ̂

]
≡ Ĥρ̂−ρ̂Ĥ , and Ĥ is the Hamiltonian

for the system. The derivation of the non-unitary part is somewhat more involved, and again

we will simply skip to the result describing a single two-level atom in a cavity. We have

(
dρ̂

dt

)
NU

=− γ (σ̂21σ̂12ρ̂− 2σ̂12ρ̂σ̂21 + ρ̂σ̂21σ̂12)− ...

− κ
(
â†âρ̂− 2â†ρ̂â+ ρ̂â†â

)
,

(2.23)

where γ is the rate of atomic spontaneous emission into modes other than the cavity mode,

and κ is the rate of photon loss from the cavity [64]. Both atomic spontaneous emission

and photon loss from the cavity lead to an interaction between the quantum system and the

environment. Hence, in addition to leaking energy out of the system, these processes cause

decoherence. The two terms of Eq. 2.23 describe the energy relaxation process (i.e. their

action on ρ̂ performs the transformations |2a⟩ → |1a⟩, and |nc⟩ → |(n− 1)c⟩) and they

account for the decoherence associated with it.

In addition to this there are other, non-dissipative processes that produce dephasing

as well. For example, in gasses at sufficiently high densities collisions between atoms or
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molecules lead to additional decoherence. These effects are small in the vacuum environ-

ments used in our experiments, however, so for the remainder of this work we will neglect

this and all similar sources of decoherence. Adding Eqs. 2.22 and 2.23 we have [64]

dρ̂

dt
=− i

ℏ

[
Ĥ, ρ̂

]
− γ (σ̂21σ̂12ρ̂− 2σ̂12ρ̂σ̂21 + ρ̂σ̂21σ̂12)− ...

− κ
(
â†âρ̂− 2â†ρ̂â+ ρ̂â†â

)
.

(2.24)

This is the Lindblad master equation for ρ̂. It is valid within the Markov approximation, i.e.

when the environment effectively does not contain any record of the state of the quantum

system at previous times. We choose this form because of its relative simplicity, because it

is very widely used, and because it accurately describes the evolution of nearly all exper-

imental systems in quantum optics. Once the time evolution has been calculated and the

density operator has been found at time t, the expectation value for any observable Â at that

time can be calculated from ⟨
Â (t)

⟩
= Tr[ ρ (t)A ] . (2.25)

To further illustrate the density matrix formalism, we will now assume that the

intracavity fields are classical. The Hamiltonian and master equation for this case can be

found by replacing the electric field operator in Eq. 2.10 with the classical electric field

E (t) = E0e
−iωct + E*

0 e
iωct, and removing the terms that describe the evolution of the

field’s quantum state. We obtain

Ĥ =
1

2
ℏωaσ̂z +

(
E0e

−iωct + E*
0 e

iωct
)
· µ̂, (2.26)

where E (t) = E0e
−iωct is the complex amplitude of the classical light field. Analogously

with the quantum-mechanical case above, we assume without loss of generality thatE0 and
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µ12 are real and positive. Then applying the rotating wave approximation we obtain

Ĥ =
1

2
ℏωaσ̂z + µ12E0

(
eiωctσ̂12 + e−iωctσ̂21

)
. (2.27)

The master equation now is

dρ̂

dt
= − i

ℏ

[
Ĥ, ρ̂

]
− γ (σ̂21σ̂12ρ̂− 2σ̂12ρ̂σ̂21 + ρ̂σ̂21σ̂12) , (2.28)

since we no longer need to account for the evolution of the quantum state of the light field.

This master equation describes the evolution of a single 2-level atom under the influence of

a classical light field.

When written in its current form, the meaning of the non-unitary part of Eq. 2.28

may be difficult to conceptualize. It can bemademore transparent bywriting the differential

equations for each component of ρ̂ explicitly. We choose the basis in which the atomic

energy eigenstates are

|1a⟩ =
[
1 0

]T
|2a⟩ =

[
0 1

]T
,

(2.29)

in which case the density operator takes the form

ρ̂ =

ρ11 ρ12

ρ21 ρ22

 . (2.30)

The diagonal elements ρ11 and ρ22 indicate the probability of finding the atom in states |1a⟩

and |2a⟩, respectively. If the atom is measured in this basis it must always be found in one of

these two states, so we will always have ρ11+ρ22 = 1. It is a general property of all density

matrices that in any basis the sum of the diagonal elements is equal to 1, i.e. Tr[ ρ̂ ] = 1.

The off-diagonal elements of ρ̂ indicate the degree of quantum coherence present in the
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system between these two states. For our simple two-state model, a pure state with perfect

coherence would have |ρ12| = |ρ21| =
√
ρ11ρ22. Dissipation removes energy from the

system, causing it to evolve over time into a lower-energy state (assuming that there are no

thermal or other sources pumping energy back in). In our model this will tend to gradually

remove population from ρ22 and place it into ρ11. Decoherence effects on the other hand

leave the diagonal elements of ρ̂ unchanged but reduce the magnitudes of the off-diagonal

elements.

The equations of motion for the components of the density matrix can now be

written down from Eqs. 2.28 and 2.30:

ρ̇11 =i
E0µ12

ℏ
(
e−iωctρ12 − eiωctρ21

)
+ 2γρ22

ρ̇22 =− i
E0µ12

ℏ
(
e−iωctρ12 − eiωctρ21

)
− 2γρ22

ρ̇12 =iωaρ12 − i
E0µ12

ℏ
eiωct (ρ22 − ρ11)− γρ12,

(2.31)

with ρ21 = ρ
†
12 [65]. We see from this that, as expected, the dissipative process of atomic

spontaneous emission causes a gradual relaxation into the ground state, with population

being lost out of ρ22 at the rate 2γρ22. This process also causes decoherence that reduces

the magnitude of ρ12 at the rate |γρ12|.

We will analyze these results further and apply them to more specific experimental

situations in the chapters to come. For now, we leave our Hamiltonians and master equa-

tions and turn our attention instead to the spectroscopic properties of atoms. The theoretical

groundwork we have covered so far is hardly comprehensive, but it suffices as an introduc-

tion to the ideas and models that will be used throughout the remainder of this work.
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Chapter 3

Xe Spectroscopy and Level Structure

3.1 Overiew and Rationale for using Xe

Many experiments in atom optics make use of alkali atoms, including quite a few in our

own group [66–69]. These atomic species are very useful because they have large dipole

transition rates and resonances occurring conveniently within the near-infrared wavelength

range. This has allowed the research community to develop sophisticated laboratory sys-

tems by building upon the commercially available lasers and optics available in this segment

of the electromagnetic spectrum.

However, a room temperature vapor of alkali atomswould not be useful a nonlinear

mediumwithin a high-finesse cavity. In addition to interacting relatively strongly with near-

infrared light fields these atoms are also very chemically active (Cs, for example, explodes

on contact with water). When released into a vacuum chamber the gas atoms begin to

react with exposed surfaces, and stick to them. This contamination tends to degrade the

quality of exposed optical surfaces over time. Experiments passing light through an optical

nanofiber roughly 1cm in length and immersed in Rb vapor showed a gradual reduction

in transmission after only about 10 minutes of exposure. Heating the nanofiber during
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exposure improved the transmission considerably, but losses were still typically greater

than 50% [70]. This is certainly not an appropriate environment in which to place a pair of

expensive, high-quality cavity mirrors. The alkali atoms would quickly destroy them.

One possible solution would be to place the warm alkali atoms within a vapor

cell inside the cavity. In this case though reflection and scattering of light from the cell

windows limit the cavity finesse to on the order of ∼ 100. The behavior of such a system

can be described by the theory of classical optics (see, for example, Figure 2.6 (a) and the

accompanying discussion). This system can be useful for observing nonlinear effects such

as optical bistability, but quantum mechanical effects would not be noticeable [32, 33].

Noble gas atoms, on the other hand, are highly non-reactive and perfectly safe as

an environment for sensitive optics. The relative difficulty in this case is that the energy

difference between the ground and nearest excited states of noble gas atoms is very large.

It would take a photon in the vacuum ultraviolet (VUV) band to excite one of these transi-

tions, and equipment for emitting and manipulating VUV radiation is difficult to produce.

To avoid this difficulty we decided to use xenon atoms in a long-lived metastable state. The

choice of xenon over other noble gas atoms was motivated largely by practical consider-

ations. Metastable xenon has a strong set of transitions in the near-IR, and the transition

wavelengths are compatible with commercially available laboratory equipment. We will

return to these pragmatic details later in Chapter 4 when we discuss methods of populating

the metastable state. First though we need to understand some of the theory of the xenon

energy level structure.

3.2 Xe’s Electron Configuration

Any experimental work in atom optics requires some familiarity with the spectroscopy of

the atomic species being used. Many experiments make use of alkali atoms, as has been pre-
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Rb Xe 

Figure 3.1: Illustration of the relationship between electronic excitations in Rb and in Xe.
An electron excited from the valence band in Xe leaves behind a hole, illustrated here by
an open red circle. This hole in the valence band couples with the excited electron through
Coulomb forces and the spin-orbit interaction, leading to a complex energy level structure.

viously mentioned, and hence the spectroscopy of the alkali metals is relatively well-known

in the field of quantum optics. The Ph.D. thesis of Daniel Jones from our group provides a

helpful introduction to this topic [71]. We, however, need to know about the spectroscopy

of xenon, which differs from that of the alkali metals in several critical respects. The rela-

tionship between electronic excitations in rubidium (an example alkali atom) and in xenon

is illustrated in Figure 3.1.

In the electron configuration of a rubidium atom (or of any other alkali metal atom)

there is only 1 valence electron. In the ground state this electron sits in a p orbital with or-

bital angular momentum quantum number l = 1. The excitation of a rubidium atom into a

higher-lying energy state typically involves changes only in the state of this single valence

electron. To a good approximation the atomic excited state can be described by the state

of this electron only, and it is appropriate to label the states by referring to the electron’s

quantum numbers. These are the principal quantum number n, the orbital angular momen-

tum quantum number l, and the total angular momentum quantum number (including the

orbital and spin components) j [72].
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The configuration of a xenon atom, on the other hand, contains a completely full

5p6 valence shell. When one of the valence electrons is excited into a higher-lying orbital

it leaves behind a vacancy in the 5p shell. The vacancy has an additional set of degrees

of freedom which communicate with the excited electron via the Coulomb and spin-orbit

interactions. As a result the energy level structure is qualitatively different, and a different

spectroscopic notation is used. If we hope to understand the potential of Xe as an intracavity

nonlinear medium we need to understand this notation. We will begin by briefly reviewing

some important results from the theory of the atomic spectra of multi-electron atoms.

3.3 Spectroscopy of Multi-Electron Atoms

3.3.1 The Hamiltonian

The problem of the calculation of energy eigenstates and eigenvalues of multi-electron

atoms is an extremely difficult one. The Hamiltonian for such an atom is complicated

by the fact that, in addition to the Coulomb field due to the atomic nucleus, each electron

interacts with all other bound electrons as well. In general it is impossible or at least imprac-

tical to solve for the eigenstates of these systems exactly. To produce results that are both

quantitatively accurate and conceptually helpful, one needs to adopt some approximations.

The largest contribution to the Hamiltonian for bound, excited electrons comes

from the centrally-symmetric Coulomb potential produced by the nucleus and by all of

the inner electrons in closed shells. This contribution is typically used as an “unperturbed”

Hamiltonian for the system. Phenomena such as electrostatic interactions between unpaired

electrons, relativistic effects, and magnetic interactions between the various angular mo-

menta in the system are then accounted for using perturbation theory [73].
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It is fairly common to begin with a Hamiltonian similar to

Ĥ = Ĥ0 + Ĥes + Ĥso (3.1)

Ĥ0 =
∑
i

(
p̂2i
2m

+ U (r̂i)

)
Ĥes =

1

2
e2

∑
i ̸=k

1

r̂ik

Ĥso =
ℏ2

2m2c2

∑
i

1

r̂i

∂U (r̂i)

∂r̂i
l̂i · ŝi,

(3.2)

whereU (r̂i) is the centrally-symmetric potential,m the electronmass, e the electron charge,

r̂i the position operator for electron i, and r̂ik the operator for the distance between electrons

i and k. The operators l̂i and ŝi are the orbital and spin angular momentum operators for

electron i, respectively. Ĥ0 is the unperturbed Hamiltonian, Ĥes reflects the electrostatic

contribution, and Ĥso describes the spin-orbit interaction.

Note that Eq. 3.1 does not provide the complete Hamiltonian including all possible

corrections. We have ignored for instance the relativistic correction to the electron kinetic

energy, as well as the magnetic interactions between different electrons [73]. We will use

the Hamiltonian of Eq. 3.1 only to illustrate the relationships between the various common

forms of spectroscopic notation and their associated coupling schemes. For this purpose it

will suffice. If one wishes to perform detailed calculations of exact atomic level energies,

transition rates, etc., one should refer to the more complete discussion of refs. [72, 73].

Before moving on we would like to note that the magnetic interaction between

the atomic nucleus and the outer electrons, called the hyperfine interaction, has also been

neglected so far. It is very small compared to the spin-orbit and electrostatic terms of Eq.

3.1, but it will become important whenwe examinemeasurements of the xenon transmission

spectrum in Section 3.5.5. We will consider the effects of the hyperfine interaction in that

section.
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3.3.2 Eigenstates

Now we consider the problem of finding and describing the energy eigenstates of an atomic

system with a Hamiltonian like that of Eq. 3.1. In the idealized case of an atom with a

purely centrally-symmetric Hamiltonian Ĥ = Ĥ0, the energy of the system is completely

determined by the values of the principal and orbital angular momentum quantum numbers

n and l for each electron. For every l though there exist (2l + 1) possible values of ml,

the quantum number for the projection of orbital angular momentum onto the z-axis. Ad-

ditionally, for each ml their are two possible values for the z-projection of the electron’s

spin, with quantum numbersms = ±1
2
. Consequently, in this model each energy level has

a 2(2l + 1)-fold degeneracy. Application of perturbative corrections such as those of Eq.

3.1 lifts this degeneracy, splitting each energy level n, l into as many as 2(2l + 1) separate

sublevels.

For an electron state with definite n, l, ml, and ms we write |n, l,ml,ms⟩ ≡

|n, l⟩ |ml,ms⟩. Whatever the perturbing Hamiltonian, the eigenstate corresponding to each

sublevel of the level n, l will consist of some superposition of the various |ml,ms⟩ states.

For the purpose of conveniently labeling these states it is helpful to assign a unique set of

quantum numbers to each one, but it may not always be easy to see how these numbers

can be assigned systematically and in a sensible way. As a silly example, one could try to

imagine a reasonable system for labeling the states

|ψ1⟩ =
(
−.4179

∣∣∣∣1, 12
⟩
+ .7071

∣∣∣∣0, 12
⟩
− .2319

∣∣∣∣−1,−1

2

⟩
+−.5211

∣∣∣∣1,−1

2

⟩)
|ψ2⟩ =

(
.7530

∣∣∣∣1, 12
⟩
+ .1032

∣∣∣∣−1,−1

2

⟩
− .6498

∣∣∣∣1,−1

2

⟩)
|ψ3⟩ =

(
−.4179

∣∣∣∣1, 12
⟩
− .7071

∣∣∣∣0, 12
⟩
− .2319

∣∣∣∣−1,−1

2

⟩
− .5211

∣∣∣∣1,−1

2

⟩)
|ψ4⟩ =

(
−.2892

∣∣∣∣1, 12
⟩
+ .9390

∣∣∣∣−1,−1

2

⟩
− .1860

∣∣∣∣1,−1

2

⟩)
,
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where the ket |i, j⟩ indicates a state withml = i andms = j. Aside from simply assigning

each of them a randomly-chosen number 1 through 4, which is not very informative, it is

difficult to see how this should be done. Fortunately in most real-world cases atomic energy

eigenstates turn out to be at least approximately equal to the eigenstates of some specific set

of angular momentum operators. This provides an appropriate, if only approximate, system

for labelling the states. The set of operators that is most appropriate varies however from

one atomic species to another. It often varies among the levels of a single atomic species as

well, depending on the degree of excitation [72, 73].

The correct set of operators and associated quantum numbers is typically deter-

mined through the use of coupling schemes that describe the relationships between the sizes

of the various perturbative corrections to the Hamiltonian Eq. 3.1. The key to understanding

the spectroscopic coupling schemes is to recognize that they exist primarily for purposes of

classification. Specifying relationships between the sizes of the various corrections allows

one to infer a set of quantum numbers that come close to describing the actual eigenstates of

the system. Thus the goal of a coupling scheme is not necessarily the calculation of exact

eigenstates, but the development of a reasonable and relatively systematic nomenclature

for referring to the states. Any scientist working in atomic and optical physics will bene-

fit from a basic understanding of the principles behind this nomenclature. For the sake of

background, then, we will briefly review the two most well-known coupling schemes, then

move on to describe the unique case of Xe and the other noble gases.

3.3.3 LS-Coupling

The first coupling scheme we will consider is called the LS-coupling approximation or the

Russell-Saunders approximation. In many cases the Coulomb interaction between outer

electrons is much stronger than the spin-orbit interaction. Typically this results when the

average distance between the excited electron and its nearest neighbors is relatively small,
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as is often the case with the lighter elements. In this approximation the perturbation of

Eq. 3.1 is applied in two steps. First the eigenstates and level energies are calculated by

treating the electrostatic term Ĥes as a perturbation on top of Ĥ0, and neglecting the spin-

orbit term Ĥso. Then a second round of perturbative calculations is performed on these

results to include small corrections due to the spin-orbit term. Clearly this approximation

is valid only when the terms in the Hamiltonian obey |Ĥ0| ≫ |Ĥes| ≫ |Ĥso|.

In the first step the states and level energies are calculated for Ĥ0 + Ĥes using

perturbation theory. We note that the Hamiltonian for the electrostatic interaction can be

written in terms of the operators l̂i · l̂k and ŝi · ŝk for two electrons i and k, where ŝi and l̂i

are the vector spin and orbital angular momentum operators for electron i [73]. From this

fact it is straightforward to show that the Hamiltonian aside from the spin-orbit term com-

mutes with the total orbital and spin angular momentum operators L̂ =
(
l̂1 + l̂2 + . . .

)
and Ŝ = (ŝ1 + ŝ2 + . . . ). So for this first step all levels with the same quantum numbers L

and S are degenerate in energy. Levels with differing L and S will have different energies.

The dependence of energy on L can be understood roughly speaking by noticing that the

value of L determines the relative orientations of the electron orbitals. The relative orienta-

tion influences the average distance between electrons, which in turn decides the effective

Coulomb potential energy for the state. The dependence of energy on S results from the

so-called exchange interaction. The exchange interaction takes into account the fact that

the overall wavefunction of an atom must be antisymmetric upon the exchange of any two

electrons, and it leads to energy splittings that depend on the relationships between electron

spins. In this coupling scheme a group of levels with a given L and S are commonly called

a “term”.

After the splittings between various terms have been calculated in this first step,

another step of perturbation theory is applied to include the comparatively small effects of

spin-orbit coupling. The relative orientations of spin and orbital angular momenta deter-

mine the energy corrections that account for this interaction. This relative orientation is
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largely determined by the total angular momentum, with operator Ĵ = L̂ + Ŝ and corre-

sponding quantum number J . As a result each termLS is split into a number of levels equal

to the number of allowed values of J . This number is given by the rules for the addition

of angular momenta: L + S ≥ J ≥ |L − S|. As long as the atom under consideration is

isolated with no preferred orientation, each level given by LSJ retains a degeneracy equal

the the number of allowed values of mJ , the quantum number for the z-component of the

total angular momentum. If the rotational symmetry were to be broken, for instance by ap-

plication of an external magnetic field, each level LSJ would be further split into (2J + 1)

sublevels with energies determined bymJ .

Atomic states in the LS coupling scheme are usually labeled using the notation
(2S+1)LJ . The number (2S + 1) is called the “multiplicity” of the state. In the case L ≥ S

the multiplicity is equal to the degeneracy of the level. The quantum number L is written

using common spectroscopic notation that has been adopted for historical reasons: L = 0

is indicated by the letter ‘S,’ L = 1 with the letter ‘P,’ etc., as detailed in Table 3.1. For

example, a state with L = 1, S = +1
2
, and J = 3

2
would be labeled 2P3/2. If the state

happens to have odd parity, this will often be indicated with a superscript ‘◦’ as in 2P ◦
3/2.

Absence of the ‘◦’ implies even parity. The symbol (2S+1)L is called the term symbol for the

LS coupling scheme. In combination with the electron configuration, the term symbol and

the value of J are sufficient to specify an atomic energy level with LS coupling [72, 73].
Table 3.1: Spectroscopic notation for the orbital angular momentum quantum
number L.

L = 0 1 2 3 4 5 ...
notation: S P D F G H ...

The LS coupling scheme produces a very clean description and concise notation

for atomic excited states, but the approximations involved are not always valid. Particularly,

as the atomic number of an atom increases the typical distance between the excited electron
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and core electrons increases as well. When this distance becomes large the approximation

of the LS-coupling scheme breaks down and a more appropriate means of describing the

atomic states must be found.

3.3.4 jj-Coupling

The LS coupling scheme is a good choice when electrostatic forces overpower the spin-

orbit interaction. It is sensible to assume that a similar approximation should be possible

in the opposite extreme, where the spin-orbit interaction dominates. In this extreme the jj

coupling scheme provides an appropriate description of atomic spectra.

As was previously discussed, using the Hamiltonian Ĥ = Ĥ0 the energy of an

atomic level depends only on the principal and orbital angular momentum quantum numbers

n and l for bound electrons, leading to a 2(2l + 1)-fold degeneracy for each level. As

before, small corrections such as the Ĥes and Ĥso of Eq. 3.2 are included by applying

successive rounds of perturbation theory. This time though the perturbative effects of the

two terms are calculated in the reverse order. The jj-coupling approximation is valid when

|Ĥ0| ≫ |Ĥso| ≫ |Ĥes|.

Calculation begins with the inclusion of the spin-orbit interaction. This leads to

an energy term that depends primarily on the relative orientation of an electron’s spin and

orbital angular momentum. For a given li, this relationship is determined by the value of ji

for electron i. For a single electron of course we can have either ji = li +
1
2
or ji = li − 1

2

(unless li = 0, in which case we must have ji = 1
2
). After the first round of perturbation

calculations the energy of an atomic level is specified by the values of n, l, and j for each

electron, and each level possesses a
∑

i (2ji + 1)-fold degeneracy.

When the second stage of perturbations is applied to include effects of electrostatic

interactions, the levels determined by niliji for each electron are further split based on the

total angular momentum J of all electrons together. The energy of each level is then deter-
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mined by the values niliji for each electron, and the value of J . States with two contributing

electrons are written as (j1j2)J , where the (j1j2) symbol is the term symbol used with the jj

coupling scheme. Terms with more than 2 contributing electrons require additional quan-

tum numbers to completely describe the state. As in the case of LS coupling the electron

configuration, term symbol, and value of J taken together describe an atomic energy level

[72, 73].

The LS and the jj coupling schemes are idealizations. No real atomic spectrum

exactly fits either of these descriptions. They do however provide a plausible basis for

describing and labeling the real atomic states. Still, there are some intermediate cases in

which neither the LS or the jj coupling description is appropriate. The noble gases, including

xenon, belong to this category. They require a separate coupling system.

3.3.5 jl-Coupling

For the excited states of xenon and the other noble gases the excited electron is on average

very far from the other electrons. Electrons in the atomic core, on the other hand, are

relatively close together. As a result electrostatic forces between these core electrons can

be quite strong. The spin-orbit interaction between the core electrons is typically weaker,

similar to the case of LS coupling. Both of these interactions are considerably stronger than

the electrostatic interaction between the core and the excited electron, as this electron is

rather far away. The spin-orbit interaction of the excited electron is then weakest of all.

These relationships constitute an intermediate regime between LS- and jj-coupling, neither

of which will work, so a new coupling scheme is needed. This new system is called jl-

coupling or jK-coupling [74].

We can state the conditions for the validity of this scheme in equation form, but

for this we must rewrite Eqs 3.1 and 3.2. The contributions Ĥes and Ĥso must be split into

two sets of terms: those referring to the excited electron and those referring to the core
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electrons. Additionally, for the jl-coupling scheme the electrostatic term must be further

separated into two parts, one caused purely by coulomb repulsion and another due to the

exchange interaction. The mathematical details are not relevant to our discussion, so we

will skip past them and simply refer to the Coulomb and exchange parts of the electrostatic

terms using the notation [Ĥes]C and [Ĥes]E , respectively. We have

Ĥ = Ĥ0 + Ĥcore
es + Ĥexc

es + Ĥcore
so + Ĥexc

so (3.3)

Ĥcore
es =

1

2
e2

core∑
i, k>i

1

r̂ik
, Ĥexc

es =
1

2
e2

core∑
i

1

r̂ij

Ĥcore
so =

ℏ2

2m2c2

core∑
i

1

r̂i

∂U (r̂i)

∂r̂i
l̂i · ŝi, Ĥexc

so =
ℏ2

2m2c2
1

r̂j

∂U (r̂j)

∂r̂j
l̂j · ŝj,

(3.4)

where the index j refers to the excited electron. The condition for the validity of the jl

coupling scheme is

|Ĥ0| ≫ |Ĥcore
es | ≫ |Ĥcore

so | ≫ | [Ĥexc
es ]C | ≫ |Ĥexc

so + [Ĥexc
es ]E |.

This condition is typically (and quite surprisingly) satisfied for excited states of noble gas

atoms [73, 74].

A calculation using the approximation of jl-coupling proceeds as follows. Begin-

ning with Ĥ0, one includes Ĥcore
es as a perturbation. The energy of the resulting system is

determined by the electron configuration along with the values of L1 and S1, the quantum

numbers for the total orbital and spin angular momenta of the atomic core. Next Ĥcore
so is

included, and these levels split depending on the value of J1, the total angular momentum

of the core. The coupling of [Ĥexc
es ]C is incorporated next, and splits each of these levels

depending on the orientation of the total core angular momentum relative to the orbital an-

gular momentum of the excited electron. This relationship is described byK, the quantum

number for the operator K̂ = L̂1+Ŝ1+l̂, where l̂ is the orbital angular momentum operator
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for the excited electron. Finally, the inclusion of Ĥexc
so + [Ĥexc

es ]E leads to a further splitting

depending on the relative orientations of K̂ and the excited electron’s spin ŝ. The value of

this last energy splitting is determined by J , the quantum number for Ĵ = L̂1+ Ŝ1+ l̂+ ŝ.

Table 3.2 provides a concise summary of the notation used with jl-coupling. This is the

notation commonly used to describe excited states of the noble gas atoms [72, 73].
Table 3.2: Summary of the spectroscopic notation used with the jl-coupling scheme.

Notation Meaning

2S1+1 (L1)J1 , l[K]J = description of an atomic level using jl-coupling

S1 = spin angular momentum quantum number for atomic core

L1 = orbital angular momentum quantum number for atomic core

J1 = total angular momentum quantum number for atomic core

l = orbital angular momentum quantum number for excited electron

K = quantum number for K̂ = L̂1 + Ŝ1 + l̂

J = total angular momentum quantum number for all electrons

These coupling schemesmight seem somewhat convoluted, and at times counterin-

tuitive. It may at first appear odd, for instance, that the inclusion of the spin-orbit interaction

in the jl coupling scheme leads to a coupling of the electron spin ŝ with K̂. After all, the

spin-orbit term Ĥexc
so as given in Eq. 3.4 indicates a coupling only between ŝ and l̂, whereas

K̂ includes the angular momenta of the inner core electrons as well. (The contribution from

[Ĥexc
es ]E couples ŝ with Ŝ1, but still one might not naively expect to develop any relation-

ship between ŝ and L̂1 through this term.) We must remember though that special rules

apply in the quantum-mechanical addition of angular momenta. In the jl coupling scheme

l̂ is coupled to L̂1 + Ŝ1 through the relatively strong term [Ĥexc
es ]C . Thus the state of the

system before inclusion of spin-orbit coupling is a complicated superpositions of states of

various ml, mS1 , and mL1 . Strictly speaking the addition of ŝ with l̂ would interfere with

this superposition state, and since the term [Ĥexc
es ]C is assumed to be much stronger than
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Ĥexc
so + [Ĥexc

es ]E in jl-coupling, this is not allowed to happen. As a result, poor helpless ŝ

is forced to couple with the only other angular momentum still left uncoupled, and this just

happens to be K̂. Beggars can’t be choosers.

3.4 Energy Level Structure of Xenon

In general, the complete description of an energy level in the jl-coupling scheme requires

the specification of the electron configuration along with the complete set of quantum num-

bers 2S1+1 (L1)J1 , l[K]J . In practice, however, transitions between levels typically involve

changes to the state of only the excited electron. As a result the level structure of a noble gas

atom can be divided into manifolds, with each manifold defined by the state of the atom’s

core electrons. This core state is described by the quantum numbers 2S1+1 (L1)J1 . In a noble

gas atom with only 1 excited electron the core has quantum numbers L1 = 1 and S1 = 1
2
,

so there are only two possible states for the core electrons: 2P ◦
1/2 and

2P ◦
3/2. Rather than

writing this term in its entirety for each excited state it is common to write only the state of

the excited electron nl[K]J , where n is the excited electron’s principle quantum number.

A prime is then used to indicate that the core is in state 2P ◦
1/2, otherwise it is assumed that

the core state is 2P ◦
3/2. This greatly simplifies the notation. Hence the notation 6s[3/2]◦2

indicates an excited state within the 2P ◦
3/2 manifold, whereas 6s

′[1/2]◦1 is a member of the

manifold 2P ◦
1/2.

Xenon has a rich level structure, but we will confine our discussion here to the lev-

els relevant for the experiments we describe in Chapters 4 through 6. Figure 3.2 illustrates

the energy levels of Xe that we will use, along with the dipole-allowed transitions amongst

them. It is fairly easy to find commercially available lasers and optics to work within the

wavelength range 700∼950 nm, so transitions in this range are very convenient to work
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Figure 3.2: Illustration of the excited energy levels of neutral xenon used in this work. Rele-
vant dipole-allowed transitions and their associated wavelengths are indicated with colored
arrows. Transitions with wavelengths in the near infrared are shown with red arrows, and
those with wavelengths in the ultraviolet with black arrows. Ultraviolet radiation is pro-
duced by transitions to the ground state 5p6, 1S, which lies much lower in energy than any
of the excited states. Distances between energy levels are not drawn to scale.

with in an optics laboratory. Notice however that the wavelengths of all transitions to/from

the ground state of xenon fall within the vacuum ultraviolet region of the electromagnetic

spectrum. There are not many sources and optical components available that work at these

wavelengths, so these transitions are by comparison very difficult to probe and control.

(Indeed, the vacuum ultraviolet region is so named because radiation of this kind cannot

propagate in air even over a very short distance. As an example, the rate of attenuation

of a 147 nm UV wave traveling through air is roughly 30% per micron! [75]) As a result

practical laboratory experiments are not possible using xenon atoms in their ground state.

Fortunately the lowest-lying excited state 6s[3/2]2 is metastable, meaning that

single-photon transitions between this state and the ground state are forbidden. The meta-

stable state has J = 2 while the ground state has J = 0. A single photon carries only

1 quantum of angular momentum, so a single-photon transition between these two states

would violate conservation of angular momentum. As a result this excited state has an ex-
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tremely long radiative lifetime of roughly 43 seconds [76]. The timescale for decay from

this state is so much longer than all other timescales in a typical experiment (usually on the

order of 10’s to 100’s of ns) that the decay process can usually be neglected. Hence the

6s[3/2]2 state acts like an effective ground state of the xenon atom. Once it is populated,

transitions to the adjacent levels shown in Figure 3.2 can be probed and manipulated for a

variety of experiments.

Beforemoving on to our experimental methods and results, it will be helpful to note

some of the practical characteristics of atomic transition lines in general and those of xenon

in particular. An atomic transition line between two energy levels is characterized by 3

parameters: the energy difference between levels, the rate at which the transition occurs, and

the probability for a given atom in the excited state to make this particular transition. The

energy differences for the transitions of interest to us can be inferred from the wavelengths

shown in Figure 3.2 using the relations ν = c/λ and ∆E = hν, where λ is the wavelength

of radiation associated with the transition and ν is the radiation frequency.

The rates of atomic transitions can typically be found in the published literature

or in the NIST Atomic Spectra Database [77, 78]. The rates can also be calculated a priori

from theoretical principles, though these calculations are in general quite laborious. The

results depend on matrix elements of the dipole operator between the relevant atomic states.

Since most of the time these states themselves are are known only approximately (see the

discussion of section 3.3 above), producing accurate results can be difficult.

The probability for an excited atom to make a given transition is determined by the

branching ratio for that transition. For a transition from a higher state |i⟩ to a lower state

|j⟩ the branching ratio is given by BR = Γij/Γi, where Γij is the rate for the transition

|i⟩ to |j⟩ and Γi is the combined rate for all decays from state |i⟩. The total decay rate

is given by Γi =
∑

j Γij , where the sum is taken over all of the possible final states. It

can also be found using Γi = τ−1
i , where τi is the radiation-limited lifetime of state |i⟩.
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The wavelengths, transition rates, and branching ratios for some of the transitions shown in

Figure 3.2 are given in Table 3.3 below.

Table 3.3: Transition rates, wavelengths λ, and frequencies ν for xenon transitions relevant
to this work [77–80]. Much of the data given in [78] is qualitative in nature and may not
necessarily be quantitatively accurate. The transition rates and branching ratios below are
derived in part from this data, and should be treated as educated guesses rather than exact
values. Wavelengths given are those measured in air, except for the 110 nmVUV transition,
which was measured in vacuum.

Transition λ (nm) ν (THz) Rate (MHz) Branching Ratio

8s[3/2]◦1 → 6p[3/2]2 853.010 351.356 0.72 ∼2/39

8s[3/2]◦1 → 5p6, 1S 109.972 2726.08 43* ∼1

8s[3/2]◦2 → 6p[3/2]2 862.424 347.520 1.5 3/25

6p[3/2]2 → 6s[3/2]◦2 823.163 364.095 29 10/11

6p[3/2]1 → 6s[3/2]◦2 840.919 356.408 1.0 4/5

6p[3/2]1 → 6s[3/2]◦1 916.265 327.100 .25 1/5

* Note that there is a discrepancy in the published data between the measured lifetime of the 8s[3/2]1 state
and its rate of decay into the ground state 5p6, 1S.

3.5 Spectral Line Shapes and Broadening Mechanisms

3.5.1 Fundamental Theory

It is one thing to state the energy levels, resonance frequencies, transition rates, etc., for

a given atomic species, and quite another thing to measure them. We will now begin to

round out the theoretical considerations of the preceding sections into an experimentally

robust picture of the behavior of xenon atoms and their excited states as they interact with

radiation. For this we begin by revisiting Eq. 2.31, which gives us the master equation

describing the interaction between a 2-level atom and a classical light field. We assume for
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now that our system consists of a large number of identical, non-interacting atoms. We will

first calculate the density matrix for one atom and then extrapolate to find the behavior of

the ensemble. It is convenient to make the substitutions

σ11 = ρ11, σ22 = ρ22, σ21 = ρ21e
iωpt. (3.5)

where ωp, is the angular frequency of the probe field. Then using the fact σ11 + σ22 = 1,

Eq. 2.31 can be rewritten:

σ̇22 − σ̇11 =− i
2E0µ12

ℏ

(
σ12 − σ*12

)
− 2γ (σ22 − σ11 + 1)

σ̇21 = i∆σ21 + i
E0µ12

ℏ
(σ22 − σ11)− γσ21,

(3.6)

where ∆ ≡ ωp − ωa, and ωa is the angular frequency of the atomic transition.

The evolution of a system under the equations 3.6 possesses two distinct time

scales. In the instant after the driving field has been turned on, the atom begins to respond

in a complicated way that may be difficult to calculate analytically. However after some

time this transient response dies away, and the system is left in a steady state. The length

of time required to reach the steady state goes as the inverse of the decoherence rate for the

system. In our case the requirement for the system to be in the steady state is t≫ 1/γ, and

in our work 1/γ is typically on the order of 50 ns. We assume for now that the laser field

interacting with the atom has been on much longer than 50 nanoseconds, and we neglect

the transient part of the dynamics. The solution to Eq. 3.6 in the steady state is

σ22 − σ11 =− ∆2 + γ2

∆2 + γ2 + 2Ω2

σ21 =
Ω(∆− iγ)

∆2 + γ2 + 2Ω2
,

(3.7)

using Ω ≡ E0µ12/ℏ [65]. For the remainder of this chapter we will assume that the driving

field is weak, in which case the terms Ω2 can be neglected.
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Now that we know the density matrix for a single atom we can calculate the rate at

which the atoms absorb incoming radiation. Absorption is governed by the imaginary part

of the susceptibility χ. The susceptibility in turn can be found using the relation

P (t) = ϵ0χE (t) (3.8)

where P (t) is the complex atomic polarization density and E (t) is the complex classical

electric field. The polarization density can be found by taking the expectation value of the

dipole operator,

Preal (t) ≡ P (t) + P * (t) = N ⟨µ̂⟩ = N Tr [ ρ̂µ̂ ] , (3.9)

whereN is the number of atoms per unit volume interacting with the light field. This leads

to

χ =
Nµ12

ℏϵ0E (t)
ρ21 =

Nµ12

ℏϵ0E0

σ21 = N
µ2
12 (∆− iγ)

ℏϵ0 (∆2 + γ2)
(3.10)

An optical field of frequency ωp traveling through the gas will be attenuated according to

the relation
I (L) = I0e

−ODh

ODh ≡ −2
ωp

c
Im [n] · L ≈ −ωp

c
Im [χ] · L,

(3.11)

where ODh is the optical depth of the gas, n =
√
1 + χ is the complex index of refraction

for the gas, and c the speed of light in vacuum. I0 the field intensity before entering the gas

and I (L) the intensity after traveling through the gas a distanceL. Figure 3.3 shows a plot of

the transmission vs. frequency for an 823 nm laser field tuned near the 6s[3/2]2 to 6p[3/2]2

xenon transition and passing through a gas of metastable xenon. The model parameters

were chosen to correspond roughly to the propagation losses after passing through a vacuum

chamber 5 cm in length, filled with metastable Xe atoms to a density of 109 1/cm3. This
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absorption profile is commonly called a Lorentzian line. For this lineshape, in the limit of

large |∆| the optical depth decreases proportionately with 1
∆2 .
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Figure 3.3: Calculated absorption spectrum for a gas of identical metastable xenon atoms.
In the limit of large |∆| the absorption rate falls off as 1

∆2 .

3.5.2 Homogeneous Broadening

We have just calculated the transmission spectrum expected from a gas of identical, non-

interacting metastable xenon atoms. In this case the intrinsic spontaneous decay rate of

excited atoms determines the width and shape of the absorption line. Spontaneous de-

cay is referred to as a “homogeneous broadening” mechanism. The fundamental feature

of a homogeneous broadening mechanism is that it effects all atoms or other quantum

emitters of a particular species in essentially the same way. The absorption spectrum

of an ensemble of quantum emitters is referred to as “homogeneously broadened” if the

shapes of the absorption lines are determined primarily by homogeneous mechanisms. The

Lorentzian functional form of the optical depth given in Eq. 3.11 is a common characteristic

of homogeneously-broadened systems.

There are other possible sources of homogeneous broadening in addition to sponta-

neous decay. These include for example collisions between atoms or between an atom and

a container wall, or the shortness of transit times as atoms fly at high speed through a small

optical mode volume [81]. These mechanisms cause absorption lines to become broader

and shallower (hence the term “broadening”) because they reduce the effective interaction
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time allowed for the coherent evolution of the atomic system. For the experiments that we

will describe in this work spontaneous decay will be the dominant homogenous broadening

mechanism, so we will neglect all other sources of homogeneous broadening.

3.5.3 Inhomogeneous Broadening

The derivation of Section 3.5.1 assumed that all metastable xenon atoms involved in the

interaction were identical. In a typical laboratory environment though this will not be true.

Most importantly, atoms in a room-temperature gas are always moving, each one with a

random speed and direction.

The velocities of independent gas atoms can each be divided into independent x-,

y-, and z-components, each of which constitutes an independent degree of freedom. The

distributions of the velocities in the x, y, and z directions obey Maxwell-Boltzmann statis-

tics. Modern lasers and detections systems are sophisticated enough that in this situation the

Doppler effect needs to be taken into account. From the perspective of an inertial observer

sitting in a lab, the Doppler effect causes the resonant energies of emitting and absorbing

atoms to shift depending on their velocities. If we choose our coordinates to have the z-axis

aligned with the optic axis of our measurement system, this shift is given by

δωa ≡ ωa − ωa,0 = βωa,0, (3.12)

where β = vz/c and vz is the z-component of the velocity of the atom in question. The

angular frequency of the atomic transition is ωa, and ωa,0 is the angular frequency of the

transition for an atom with vz = 0. Eq. 3.12 is valid to first order in β.

The z-components of the atomic velocities follow Boltzmann statistics, i.e.

P (vz) =
e−mv2z/(2kBT )

Z
, (3.13)
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where P (vz) dvz is the probability for an atom to have the z-component of its velocity

between vz and vz+dvz. We have used kB for Boltzmann’s constant, T for the temperature

in Kelvins, andm for the mass of a xenon atom. (Naturally-occuring xenon contains several

isotopes, each of which has a slightly different mass, but the difference is small enough that

we can neglect it here.). Z is the partition function given by Z =
∫∞
−∞ dvze

−mv2z/(2kBT ) =√
m

2πkBT
. Since vz = c

ωa
δωa, the Gaussian statistical distribution of atomic velocities leads

directly to a Gaussian distribution of transition frequencies:

P (δωa) =
c

ωa

√
m

2πkBT
· e−

mc2δω2
a

2ω2
akBT . (3.14)

For xenon atoms m = 2.18 · 10−25 kg, and at room temperature the standard deviation of

the above distribution is σδωa = ωa

c

√
kbT
m

= 2π · 167MHz.

The transition frequencies in our inhomogeneously-broadened, room-temperature

gas of xenon atoms are spread across a Gaussian distribution with a standard deviation of

167 MHz, centered on the frequency ωa = 2π · 364.095 THz. As a result, we cannot ex-

pect measured transmission spectra to look like the one calculated in the previous section

and shown in Figure 3.3. The width of the inhomogeneous distribution (∼ 340 MHz) is

much larger than the homogeneous linewidth (∼ 20MHz, as seen from Figure 3.3). Since

the inhomogeneous broadening mechanism dominates, it is a reasonable approximation to

describe the absorption line of our room-temperature xenon atoms using the Gaussian pro-

file of Eq. 3.14. The optical depth will be proportional to P (δωa), and the proportionality

constant can be determined from the condition that the integrated optical depths for the

homogeneous and inhomogeneous absorption profiles must be equal. I.e.,

∫ ∞

−∞
ODih d∆ =

∫ ∞

−∞
ODh d∆, (3.15)

where ODih is the optical depth including only inhomogeneous broadening, and ODh is

optical depth when including only homogeneous broadening as given in Eq. 3.11. This
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leads to

ODih =

√
π

2

NLωaµ
2
12

cℏϵ0σ
· e

−∆2

2σ2 . (3.16)

3.5.4 The Voigt Lineshape

Eq. 3.16 is accurate enough for most of our purposes, but a rigorous calculation of the

lineshape must include homogeneous and inhomogeneous broadening mechanisms simul-

taneously. The correct procedure for this is to convolve the Lorentzian optical depth func-

tion of Eq. 3.11 with the Gaussian distribution of Eq. 3.14. The result is called a Voigt

lineshape or Voigt profile. It is very frequently used in the description of atomic spectra.

The convolution cannot be carried out analytically without the use of advanced functions

[82]. Fortunately, many computer algebra systems contain easy-to-use implementations of

the Voigt profile. One need only know the linewidths of the constituent Lorentzian and

Gaussian contributions. In our case these linewidths are given by γ and σ, respectively.

Figure 3.4 shows the theoretical transmission spectrum of a room-temperature gas

of xenon atoms. The dashed red curves show the Gaussian profile derived by considering

only the inhomogeneous contributions to the broadening, and the solid blue curve shows

the Voigt profile which includes both homogeneous and inhomogeneous broadening mech-

anisms. For reference the dotted green curve shows the expected absorption from an equal

number of atoms when the Doppler effect is neglected, using Eq. 3.11. The parameters

used are the same as those used to produce Figure 3.3, but that the density of metastable

atoms was increased to 3 · 1010 1/cm3. The inclusion of Doppler broadening considerably

widens the transmission dip and reduces its depth proportionately, so this increase in the

density of atoms was necessary to produce a spectrum with noticeable absorption.

The Voigt and Gaussian profiles are nearly identical for small |∆|. As |∆| in-

creases though the exponential profile of the Gaussian function causes it to decay much

more quickly than the Voigt profile, as is evident in Figure 3.4 (b). Hence the inhomoge-
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Figure 3.4: Calculated absorption spectrum for a gas of room-temperature metastable xenon
atoms, neglecting hyperfine splitting. Part (a) shows the spectrum over a range of±5 GHz.
Part (b) shows the same spectrum with the x-axis zoomed in to smaller section to illustrate
the difference between the various lineshapes. In both plots the dashed red curve shows
the absorption line calculated using only the inhomogeneous broadening mechanisms, the
dotted green curve includes only homogeneous mechanisms, and the solid blue curve shows
the Voigt lineshape which includes both.

neous nature of the lineshape tends to dominate the system dynamics for small |∆| whereas

homogeneous effects dominate for large |∆|.

3.5.5 Hyperfine Splitting and Comparison with Measurements

Now that we understand the lineshapes that occur in typical atomic absorption spectra, we

are almost ready to compare theory with some experimental measurements. First though

we must revisit the topic of the hyperfine interaction briefly introduced in Section 3.3.1.

The hyperfine interaction is the name given to interaction of the magnetic dipole

and electric quadrupole moments of an atomic nucleus with the states of the bound elec-

trons. Typically the magnetic dipole part of the interaction is stronger, and for the present

qualitative discussion it will be sufficient to consider only this part. The interaction is simi-

lar in form to the spin-orbit interaction but is much weaker. Its size depends on the relative
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orientation of the total electronic angular momentum Ĵ and the nuclear angular momentum

whose operator is commonly denoted Î . This relative orientation is characterized by the

total angular momentum F̂ = Î + Ĵ , with quantum number F . Consequently the interac-

tion between Î and Ĵ leads to an energy splitting between states with differing values of F

[73].

Along with the presence of states with various values of F , one must also account

for the existence of multiple isotopes. Naturally-occurring xenon contains 9 stable isotopes,

summarized with their percent abundances in Table 3.4. Data for this table was taken from

[83]. The isotope number determines the size, shape, andmass of a xenon nucleus. Changes

between isotopes lead to slight alterations in excited state energies, on a level comparable

with that caused by the hyperfine interaction.
Table 3.4: Stable isotopes of xenon and percent natural abundances.

Isotope: 132Xe 129Xe 131Xe 134Xe 136Xe 130Xe 128Xe 124Xe 126Xe
%Abundance: 26.89 26.44 21.18 10.44 8.87 4.08 1.92 0.096 0.090

We now consider the the absorption spectrum of the 6s[3/2]◦2 to 6p[3/2]2 transi-

tion in xenon. The presence of hyperfine splitting leads to a multiplicity of resonances in

this spectrum. Figure 3.5 illustrates the allowed transitions between the various hyperfine

sublevels of the two involved states. Each of these allowed transitions leads to a sepa-

rate absorption resonance, so we should expect a measurement of the spectrum to contain

evidence of many absorption dips with varying intensities and frequency detunings.

Figure 3.6 shows the transmission spectrum of the 823 nm 6s[3/2]◦2 to 6p[3/2]2

xenon transition as measured in our lab. The spectrum can be verified by comparison with

references [84] and [85]. As expected it contains several distinct absorption dips. On vi-

sual inspection, the shapes and widths of the individual transmission dips seem to be well

described qualitatively by either the Gaussian or Voigt lineshapes derived above and shown

in Figure 3.4. There are however small quantitative discrepancies. Notice for instance that
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Figure 3.5: Illustration of the allowed transitions between the various hyperfine sublevels
of the xenon 6s[3/2]◦2 and 6p[3/2]2 states. The even isotopes all have I = 0, so hyperfine
splitting does not occur for them. Information for this figure was taken from p. 5 of [83].
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Figure 3.6: (a) Measured transmission of an 823 nm probe laser through a gas of meta-
stable xenon, as its frequency was scanned across the 823 nm resonance. For convenience
the transmission dips are labeled with the numbers 1 through 6, as shown. (b) Illustration
of the energy levels and frequencies involved in the measurement. The atomic transition
frequency is ωa = 364.095 THz, and the detuning parameter is defined ∆ = ωp − ωa.

while 21 separate hyperfine resonances exist for this transition (7 even isotopes plus 4 al-

lowed hyperfine transitions for Xe129 and 10 for Xe131), only 6 transmission dips are visible

in Figure 3.6.

In fact all 21 hyperfine transitions are present in the spectrum of Figure 3.6, but

broadening prevents some of them from being distinguished with a simple transmission

measurement. Figure 3.7 (a) shows the same measurement superposed with a set of Voigt
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lines calculated using the theory of Sections 3.5.1 through 3.5.4. Linewidthswere calculated

as before using the natural lifetime of the excited state and the Doppler broadening expected

in a room-temperature gas of xenon atoms. Depths of the calculated lines were adjusted to

match the experimental values, but otherwise no free parameters were used to achieve the

fits. The agreement is very good for most of the dips, but for dips 4 and 5 there is marked

disagreement.

This disagreement can be explained by reference to Figure 3.7 (b). This figure

superposes the measured spectrum on top of a line graph illustrating the strengths and fre-

quencies of each of the hyperfine components. Information for the various hyperfine tran-

sitions was taken from page 5 of [83]. Each of dips 4 and 5 is composed of one very strong

hyperfine transition component along with a number of weaker components close by. It is

easy to see that the presence of these other components could produce to the differences

between the measured lineshapes and the theory.

The strong agreement in Figure 3.7 (a) verifies our theory of atomic transition

line broadening, and we have developed a sufficient understanding of atomic spectra and

hyperfine splitting to serve as a background for the experimental work that follows. In the

next chapter we move from theory to application, as we discuss the technical requirements

and challenges associated with building our experimental apparatus.
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Figure 3.7: (a) Measured transmission spectrum of the 823 nm xenon transition, superposed
with Voigt absorption profiles calculated using the theory of Sections 3.5.1 through 3.5.4.
The agreement is very good for 4 of the dips, but the measured lineshapes of dips 4 and
5 are noticeably different from the theory. (b) Another copy of the measured spectrum,
superposed with a diagram showing the frequencies and relative strengths of the various
hyperfine components. Each resonance is marked with a vertical line. The height of the line
denotes the relative strength of that component, and its position along the x-axis indicates
its resonance frequency. Data on the strengths and frequencies of the hyperfine components
was taken from [83].
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Chapter 4

Experimental Methods

4.1 Overview

Cutting-edge work in experimental quantum optics requires a significant investment in

equipment, supplies, and time spent designing and assembling a laboratory system. In this

chapter we discuss the most important laboratory components and techniques that formed

the technical foundation for the experiments discussed in chapters 5 and 6. We begin with

a brief description of the vacuum system used in our work. We then describe methods used

for the production of metastable xenon (Xe*). We close this chapter with a description of

our experience using fiber-coupled vs. free-space optics, and a short review of some lessons

learned in handling and using sensitive high-finesse cavity mirrors.

4.2 Vacuum System

The vacuum chamber used in this work consisted of a standard 4.5” 6-way ConFlat (CF)

cube. Five of the cube’s ports were closed off with window flanges and blanks, while the

remaining port connected the cube with another chamber containing a capacitancemanome-
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Figure 4.1: Diagram of the vacuum system used in this work.

ter. The connection was accomplished using a flexible bellows flange to facilitate the easy

removal from and reattachment of the 6-way cube. A second valve linked this chamber

with our gas sources. These sources included tanks of naturally-occurring xenon and of

single-isotope 132Xe, along with a tank of naturally-occuring Helium for use as a buffer

gas. The delivery system for each gas cylinder included a pressure regulator to bridge the

gap between the extremely high pressure environment of the tank with the low pressure

vacuum system. Each pressure regulator was followed by an on-off valve used to stop gas

flow when needed, and a needle valve to regulate the flow. The gas sources section was

then connected to our vacuum turbopump (Varian TPS-Bench 9698212) though another on-

off valve. The system is illustrated in diagrammatic form in Figure 4.1, and a photo of the

laboratory setup is given in Figure 4.2.

4.3 Production of Metastable Xenon

The vacuum system described above was capable of removing atmosphere from our cham-

ber to pressures below 10−5 Torr, and filling it with any desired density of xenon gas. The
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Figure 4.2: Photo of our vacuum system in the laboratory.

next step in the development of our experimental system was to devise a means for exciting

xenon atoms into the metastable state. We investigated 4 separate methods of excitation:

a DC plasma discharge, an RF plasma discharge, a method based on optical pumping, and

a hybrid method incorporating optical pumping within an RF discharge. We will spend a

short time reviewing each of these techniques.

4.3.1 DC Discharge Production

One crude but effective method of populating the xenon metastable state is to simply pump

energy into the atoms randomly and incoherently. As highly-excited xenon atoms decay

back to the ground state a fraction of them branch to the metastable state 6s[3/2]2. Because

of its extremely long radiative lifetime (∼ 43 seconds) atoms in this level tend to stay

there for some time, and as a result the level accumulates a relatively large steady-state

57



DC plasma discharge 

cathode 

anode 

V- from high 
voltage source GND from high 

voltage source 

Figure 4.3: A DC discharge inside a xenon-filled vacuum chamber. A high voltage source
provides a large negative voltage V− through the red wire shown toward bottom, and ground
potential through the green wire shown at the right. The photo was made available by
courtesy of Todd Pittman.

population [86]. The incoherent pumping can be accomplished in a number of ways. Early

in our work with Xe* production, Todd Pittman in our group investigated the use of a DC

plasma discharge.

The discharge was produced by applying a very large voltage between two elec-

trodes inside a vacuum chamber filled with xenon gas. Once the applied voltage was strong

enough to overcome the work function of the cathode, electrons streamed from the cathode

to the anode, colliding randomly with xenon atoms along the way. A fraction of these colli-

sions resulted in an electronic excitation of a xenon atom, and a fraction of these excitations

resulted in the atom finally decaying into the metastable state. A photo of the DC discharge

system is shown in Figure 4.3.

The DC discharge system was capable of producing a reasonable density of meta-

stable xenon atoms, on the order of 1010 or 1011 1/cm3. However, the experiment encoun-

tered several other difficulties. For strong discharge intensities electrons tended to collide

with the anode with large kinetic energies, which often caused sputtering the anode mate-

rial onto optical surfaces inside the vacuum chamber. Optical components cannot survive

long in such an environment, so it was typically necessary to reduce the discharge intensity,
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resulting in a lower density of metastable atoms. Several other disadvantages of the DC

discharge system include difficulty in maintaining a stable discharge, and danger inherent

in the use of a high-voltage, high-current power source. More discussion can be found in

reference [87].

4.3.2 RF Discharge Production

It is also possible to produce a plasma discharge using a strong radio frequency (RF) field.

Equipment required includes an RF source (an inexpensive benchtop source is sufficient)

and an RF amplifier capable of providing at least several Watts of continuous power. These

sources can be used to drive a resonating wire coil designed to radiate the power into a gas

chamber, producing an RF plasma discharge in the chamber.

Figure 4.4 shows a schematic diagram of two possible methods for building the

wire coil circuit. One option is to is to inductively couple the source to a resonating tank

circuit composed of wire coils and capacitors. A coil of wire is an effective antenna at RF

frequencies, and the inductive impedance of the coils in the tank circuit can be offset by

incorporating a bank of capacitors to cancel it out at the desired frequency. This circuit

is illustrated in Figure 4.4 (a). Inductive coupling allows the source to drive significantly

greater current in the LC tank circuit than would otherwise be possible, depending on the

ratio of the number of coils in inductors L0 and L1. This can be advantageous when source

power is limited.

The second option, shown in Figure 4.4 (b), is to wire the RF source directly to

the resonating circuit. This is illustrated in Figure 4.4 (a). At the resonant frequency of the

LC circuit the current is limited by the power output of the source and the impedance of

the transmission line. Our transmission lines were 50 Ω BNC cables and our source used a

50 watt RF amplifier, so the maximum achievable current using this circuit in our lab was

roughly 1 A.
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Figure 4.4: The two RF circuit designs used for the radiating wire coil in our work with
RF discharge excitation. In (a) the RF source is inductively coupled to a resonating tank
circuit. This design has the potential to allow a very large current to flow through L1,
producing intense RF radiation inside the gas chamber. In (b) the source is wired directly
to the tank circuit. This design has the disadvantage that the maximum current is limited
by the impedance of the RF transmission line (in our case the line was a 50 Ω BNC cable),
but the circuit is simple and relatively easy to build.

We typically designed our RF discharge circuits to place the resonance near 150

MHz. The actual resonance frequency usually fell within±20MHz of this value. A variable

frequency source was used and its frequency was swept to locate the resonance. The inten-

sity of radiation emitted from the circuit scales directly with the current flowing through it,

so during normal operation the source frequency was kept fixed at the circuit resonance. For

our system the discharge tended to occur most easily when a large number of wire loops was

used, when the loop radii were about 3/4 the radius of our vacuum chamber windows, and

when the loops were positioned as close to the window as possible. Also, the precise value

of the circuit’s resonant frequency seemed to have little effect on the size of the discharge.

Figure 4.5 provides a laboratory photo of a discharge coil circuit of the first type

(a). It produced a stable discharge, but it also radiated a large amount of RF power into

the laboratory and surrounding environment. This stray radiation caused a great deal of

undesirable interference in many nearby pieces of laboratory equipment. Additionally, high

voltages across the wire loops made the circuit quite difficult to build. The wire had to

be wound very precisely to prevent any contact between adjacent conductors, since this

would short-circuit the radiating coil. Use of insulated wire did not help, as the voltages
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Figure 4.5: Laboratory photo of a circuit of type (a), consisting of a resonant tank circuit in-
ductively coupled to an RF source. The circuit is shown here producing a plasma discharge
in a vacuum chamber filled with xenon gas.

between loops were often strong enough to cause dielectric breakdown and arcing through

the insulation.

A metal cap can be used to house the circuit and to direct the radiated energy into

the gas chamber, where it would be largely dissipated in heating the gas. However, we found

that the already difficult task of winding the circuit coils became almost impracticable when

forced into the confined space of a metal cap. Consequently we began to design resonant

circuits using the simpler schematic of Figure 4.4 (b).

Figure 4.6 shows a pair of photos of a discharge coil built using the second design

(b). The image on the left shows the interior of an aluminum cap that was used to house the

circuit. Layers of Teflon and plastic insulated the cap from the high voltages present in the

coil. The image on the right shows the housing cap connected to our vacuum chamber and

producing a discharge in xenon gas. Our source provided enough power to produce a bright,

stable discharge with this circuit layout. Because of its relative simplicity this became our

standard circuit design for producing RF discharges.
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Figure 4.6: Laboratory photo of a circuit of type (b), consisting of a resonant tank circuit wired
directly to an RF source. The image on the left shows the circuit inside of its metal housing cap, and
the image to the right shows the system producing a plasma discharge in xenon gas.

The RF discharge techniques described in this section typically produced Xe* den-

sities of from 1010 to 1012 1/cm3, comparable to those achieved using a DC discharge. The

RF approach had the advantage though that it did not cause sputtering, hence it did not dam-

age sensitive optical components inside the vacuum chamber. Stray RF fields emitted by

the discharge circuit occasionally caused problems with other sensitive pieces of electronic

laboratory equipment, but the aluminum cap shown in Figure 4.6 largely mitigated these

effects.

4.3.3 All-Optical Production

The methods described in Sections 4.3.1 and 4.3.2 could be called “incoherent” excita-

tion methods, in that they use a brute-force mechanism to pump atoms into many different

excited states. It is also possible though to populate the metastable state wth coherent exci-

tation, for instance using laser fields tuned to a specific series of dipole-allowed transitions.

This method is called optical production [88].

Figure 4.7 illustrates the idea behind this excitation strategy. A direct transition

from the xenon ground state to the metastable state 6s[3/2]◦2 is dipole forbidden because
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Figure 4.7: Energy level diagram for all-optical production of Xe*. Red arrows indicate
transitions that must be actively driven. The 841 nm transition labeled with a black ar-
row occurs as a result of spontaneous emission. The relatively large branching ratio from
6p[3/2]1 to 6s[3/2]◦2 facilitates the buildup of population in themetastable state. The branch-
ing ratio was estimated using data found in [78].

of the difference of total angular momentum between the two states, ∆J = 2. Since these

two states also have opposite parity, an optical transition between them requires at least

3 photons. First a 147 nm vacuum ultraviolet (VUV) light source can be used to excite

ground state atoms into the 6s[3/2]◦1 state. A 916 nm laser can then transfers this population

to the state 6p[3/2]1. This state spontaneously decays to the metastable state 6s[3/2]◦2 with

a branching ratio of roughly 80%, and since the rate of radiative decay from this state is

extremely slow it can accumulate a large population.

The difficulty of implementing all-optical production comes from the need for a

147 nm radiation source. Light of this wavelength could be generated by frequency qua-

drupling a 588 nm laser. The efficiency of this process though is typically very low, so

the resulting 147 nm beam would be quite weak. Additionally VUV radiation is strongly

absorbed in air, so the final step of frequency conversion would need to take place under

vacuum [75]. This would significantly complicate the technical requirements of an experi-

mental system.
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Alternatively the required VUV light can be produced by a plasma discharge lamp.

These lamps use an electrical discharge to excite gas atoms in a vapor cell. Atoms excited in

the discharge radiate when they undergo spontaneous decay, which results in the emission

of light from the lamp. The frequency of the dominant atomic transition determines the fre-

quency of the emitted radiation. Xenon discharge lamps capable of producing narrowband

147 nm VUV light are commercially available.

We chose to attempt all-optical production using a xenon discharge lamp bought

from Resonance Ltd., and a Toptica DL Pro diode laser tuned to 916 nm. Though the

experiment was quite simple in theory several months were spent trying to find evidence of

Xe* production. We implemented various methods of measuring the presence of metastable

xenon in the system, but in the end we found no evidence at all that 147 nm photons emitted

from the lamp led to the production of Xe*. Thismay have been the result of a faulty lamp, or

of degradation of the MgF2 window connecting the lamp with our vacuum chamber (these

windows transmit VUV light reasonably well, but their transmission tends to deteriorate

over time). It seems likely that our discharge lamp simply did not provide enough 147 nm

photons to produce a measurable density of metastable atoms.

Figure 4.8 illustrates one of the difficulties encountered during this period. Note

from Figure 4.7 that without the 916 nm field it is not possible to excite the metastable

state using the all-optical method. We discovered at one point that our discharge lamp

was producing metastable atoms in our vacuum chamber, but that it did so without the

help of any 916 nm light. On closer examination we discovered that in these cases the

lamp was generating an RF discharge within our vacuum chamber. As far as we could tell,

the excitations to the metastable state were produced entirely by this secondary discharge.

Thus the discharge lamp added nothing to our system, since it only provided us with a more

expensive and less effective means of reproducing the results described in Section 4.3.2.

Shortly after this discovery we stopped pursuing all-optical production in favor of the other,

more convenient and more practical methods. We note before moving on that other groups
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Figure 4.8: Left: view of the VUV xenon discharge lamp from within our vacuum chamber
when the chamber had been evacuated. Right: the same view of the discharge lamp when
the chamber had been filled to 0.14 Torr with naturally-occuring xenon. Notice that in
comparison with the left image, the presence of a faint purple glow is evident in photo on
the right, near the discharge lamp window. This confirmed our suspicion that the lamp was
producing a secondary discharge within our vacuum chamber.

have succeeded in performing all-optical metastable production with other noble gas atoms

[88, 89], but to our knowledge this has not yet been done with xenon.

4.3.4 Optically-Enhanced Production

After the frustrations described in the previous section we began to look for alternative

ways of producing 147 nm photons. It occurred to us that any bright RF discharge in xenon

gas should produce these photons. Rather than using a relatively weak VUV lamp as a

source, we decided attempt optical production of Xe* atoms within one of our own RF

discharges. This study resulted in a publication which contains many of the details of our

implementation [90]. To minimize redundancy we will only briefly summarize them here,

adding a few qualitative comments along the way for the purpose of illustration. The reader

already familiar with reference [90] may wish to skip ahead to Section 4.4.
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Figure 4.9: Energy level diagram for the experimental demonstration of optically-enhanced
Xe* production.

Figure 4.9 illustrates the energy level diagram used in this experiment. The trans-

mission of an 823 nm laser tuned to the 6s[3/2]◦2 to 6p[3/2]2 transition was used to mea-

sure the density of Xe*. The detunings of the lasers from atomic resonance are defined as

∆c = ωc − ωa,c and ∆p = ωp − ωa,p. Here ωc and ωp are the angular frequencies of the

916 nm control and 823 nm probe beams, respectively. The parameters ωa,c and ωa,p rep-

resent the angular frequencies of the atomic 6s[3/2]◦1 to 6p[3/2]1, and 6s[3/2]◦2 to 6p[3/2]2

transitions, respectively.

The operation of this excitation scheme may be qualitatively understood as fol-

lows. First an RF discharge was applied in a gas of xenon atoms, transferring a large num-

ber of atoms into many different excited states. As these states decayed back to ground a

fraction of them branched through the metastable state 6s[3/2]◦2, resulting in an accumu-

lated population there. However, many other branching chains passed instead through the

state 6s[3/2]◦1. Atoms in this state rapidly decayed to ground and emitted a 147 nm photon.

Each of these emitted VUV photons had a relatively high probability of undergoing near-

resonant scattering by another xenon atom. At relatively high gas densities the mean free

path of these photons is small enough that their propagation through the chamber resembles
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Figure 4.10: Diagram of the experimental system for performing optically-enhanced pro-
duction of Xe*.

a random walk [88]. Hence in addition to metastable excitations, the discharge produced a

large number of 147 nm photons, which diffused outward through the xenon gas.

Next a laser field was applied and tuned to the 916 nm transition, transferring

the 6s[3/2]◦1 state population to the 6p[3/2]1 state. This state preferentially decays to the

6s[3/2]◦2 state, so the net result of the application of the laser was an increase in the density of

metastable atoms. It is worthwhile to note that the 6s[3/2]◦1 state population in this method

was produced by a combination of direct excitation from the discharge, decays from higher-

lying atomic states, and absorption of 147 nm photons emitted by other xenon atoms.

Figure 4.10 illustrates the experimental setup used to implement this excitation

method, and to measure the resulting density of Xe*. Two Toptica DL Pro tunable diode

lasers were used, one tuned to 916 nm to implement our excitation method and the other

tuned to 823 nm to measure the optical depth of the 6s[3/2]◦2 to 6p[3/2]1 transition. A

HighFinesse WSU30 wavelength meter continuously monitored the frequencies of both

beams. The two fields were coupled into a common single-mode (SM) optical fiber to

assure good mode matching, and sent through an RF discharge in our xenon-filled vacuum

chamber. DetectorsD1 andD2 were used to monitor the power of the 823 nm beam and to

measure its transmission through the chamber. The experiment consisted in measuring the

transmission of the 823 nm field for various values of the 916 nm input power and of the

detunings ∆c and ∆p.
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Figure 4.11: Measured absorption spectrum of the 823 nm 6s[3/2]◦2 to 6p[3/2]2 transition
in xenon when the 916 nm control beam was turned off (red curve) and when it was turned
on at our maximum available power of ∼ 4 mW (black curve).

Figure 4.11 shows the main result of this investigation. The absorption spectrum

of the metastable xenon atoms was measured by sweeping the frequency of the probe field

across the xenon 6s[3/2]◦2 to 6p[3/2]2 transition resonance.The black curve in Figure 4.11

shows the spectrum measured with the control beam turned off. This spectrum matches

the measurements shown in Section 3.5.5. The absorption of this curve was caused by Xe*

produced in the RF discharge. The red curve shows the spectrum as it appeared when the

control beam was switched on. Application of the 916 nm field increased the density of Xe*

by roughly a factor of 11 [90].

The increased metastable density possible with the optically-enhanced method

may be particularly useful in situations which require a large Xe* density but can only

tolerate a relatively weak discharge. This might be the case if, for instance, excess heating

by the discharge tends to disrupt a sensitive piece of equipment located nearby. Optical

enhancement could then be used to compensate for the lower Xe* densities achievable by a

weaker discharge.
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Figure 4.12: Photograph of the experimental system as of July 10, 2015. The setup included
several dozens of fibers and fiber-coupled components.

4.4 Fiber-Coupled Optical Components

For decades experiments in optics have been performed using bulk laboratory optical el-

ements - i.e. cube beam splitters, Glan-Thompson polarizers, lenses, mirrors, etc. More

recently however, the success of optical fiber in the telecommunications industry has led to

a wide range of advances in fiber optical technology. As of this writing most commercially

available optical components can be bought in either the more traditional bulk free-space

variety or in a fiber-coupled form. As a result it has become possible to build most of one’s

experimental optical system within fiber.

Research groups and experimental systems tend either to follow the traditional ap-

proach of using free-space optical elements or to depend more exclusively on fiber-coupled

elements. Our group at UMBC has opted to focus on the use of fiber. Consequently, the ex-

perimental systems used in this work were built almost entirely of single-mode (SM) fiber

and fiber-coupled components. Figure 4.12 shows a photo of the laboratory system used to

perform the measurements of Chapter 6, as an illustration of a typical setup.
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Fiber-coupled experimental systems have the important advantage of increased

modularity and interchangeability. For instance, an experimenter might build a complete

optical system, and subsequently decide that it should be altered by the addition of one more

component. If the experiment was built in fiber it would suffice to disconnect the relevant

fiber couplings in the system and reconnect them to the new element. In contrast, insertion

of an additional component into a system built with free-space bulk optics typically requires

very careful placement and tedious realignment of all the affected elements. The use of

fiber-coupled components can significantly reduce the amount of time and effort required

to build and troubleshoot an experiment. However, it carries a set of disadvantages as well.

The most important of these include bend-induced birefringence, time-dependent changes

in refractive index, and spurious back-reflections.

Bend-induced birefringence occurs whenever an optical fiber is strained in a direc-

tion orthogonal to the fiber axis. Fibers are made of glass. Glass is an amorphous substance

without any well-defined crystal shape or preferred orientation, so it is not intrinsically

birefringent. Bending of an optical fiber though introduces strain into the glass and breaks

the material’s natural isotropy. The result is an induced birefringence, with the strength

of birefringence depending on the degree to which the fiber has been bent. On one hand

this phenomena has been exploited to design fiber polarization controllers (FPC’s), which

are essentially fiber-based versions of variable optical waveplates. On the other hand, if

bending is not very carefully controlled (and this is essentially impossible in a laboratory

environment), SM fibers tend to scramble optical polarization states in an unpredictable

way. This scrambling can be un-done through the use of an FPC, but as laboratory temper-

ature and air currents change throughout the day the polarization state must be periodically

monitored and corrected. This may need to be done once every couple of hours, depending

on the sensitivity of themeasurements being performed. Thus the obstacles of bend-induced

birefringence can be overcome, but this often requires additional planning and labor.
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In addition to bend-induced birefringence, time-dependent index changes can also

cause problems. The refractive index of an optical fiber undergoes small changes over

time, due to changes in temperature and other ambient conditions. Most of the time these

changes are too small to pose any concern, but they need to be taken into account in the

construction of fiber-based interferometers. For example fiber-based Mach-Zehnder inter-

ferometers tend to be unstable, as the difference between the refractive indices of the two

arms varies randomly over time and washes out the interference. Active phase stabilization

can counteract the problem to a great degree, but it also adds to the complexity of an exper-

iment setup. Sagnac interferometers on the other hand are relatively stable, since the field

amplitudes in both arms travel through the same length of fiber.

A further difficulty common in the use of fiber is the presence of back-reflections

from fiber surfaces. The capacity of SM fiber to couple light of various frequencies into a

common single mode is one of its most appealing advantages as a laboratory tool. Coupling

light fields from one fiber to another can be difficult because of the strict mode-matching

requirements. Commercially-available FC/PC connectors though are carefully polished and

follow tight tolerances that make the process quite easy. Connecting two of these fibers

is nearly as simple as connecting electrical cable. A side-effect of the careful polishing

though is that light reflected from a fiber tip couples back into the fiber with relatively high

efficiency. In a large optical setup with dozens of fibers these back-reflections can occur in

many places at once. Taken together these reflecting surfaces comprise a complicated series

of low-finesse, nested Fabry-Perot cavities. The presence of these spurrious Fabry-Perots

(FP’s) in an optical beam path leads to undesirable intensity fluctuations in the transmission

spectrum of an experimental system. Tomakematters worse, variations in the fiber’s optical

index cause this spectrum to shift over time.

Figure 4.13 illustrates the effects of low-finesse FP’s along an optical fiber. The

image on the left shows an oscilloscope plot of the transmission spectrum of an optical

cavity of moderate finesse, measured using a fiber-based optical system. The plot was
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Figure 4.13: Oscilloscope traces showing the transmission of a tunable laser as its frequency
was swept across a range of roughly 500 MHz. The image on the left shows the spectrum
measured under normal circumstances. The photo on the right shows the transmission after
measures were taken to eliminate a spurious Fabry-Perot from the beam path.

generated by scanning the frequency of an input laser over a range of roughly 500 MHz

and observing the output on a standard photodetector. The spectrum includes a broad peak

several hundreds of MHz wide superimposed with a series of small, fast oscillations. The

smaller oscillations are the result of a low-finesse FP occurring between fiber end-faces. In

many cases these oscillations constitute a systematic error mechanism for the measurement

system, and they need to be eliminated or compensated for.

It is generally possible to eliminate these undesirable Fabry-Perot effects by using

angled FC/APC fiber connectors. The faces of these connectors are polished at an angle

so that back-reflections scatter out of the fiber. The image on the right side of Figure 4.13

shows a measurement of the same spectrum made after one fiber connector had been re-

placed with an angled FC/APC version. The spurious FP oscillations were eliminated. In

theory the use of angled connectors solves the problem of spurious back-reflections. In

practice though our laboratory was stocked with many flat FC/PC-connectorized compo-

nents and relatively few components with angled connectors. As a result we encountered

these spurious oscillations onmany occasions. Wewill revisit this problemwhenwe discuss

our initial measurements of light absorption in a xenon-filled cavity, in Section 5.6.
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4.5 The Proof-of-Principle Optical Cavity

4.5.1 Cavity Design

The high-finesse optical cavity was the most important component of our experimental sys-

tem, and the most sensitive. The work described here was our group’s first experience with

high-finesse Fabry-Perot cavities, so we decided to begin with a relatively simple and sta-

ble design. Experiments performed using this cavity would function as proof-of-principle

demonstrations. Once this was done, we planned to produce weak single-photon nonlinear-

ities by simply building an improved cavity and incorporating it into the remainder of the

experiment. This first cavity consisted of a pair of superpolished dielectric mirrors placed

d = 2.5 cm apart, with radii of curvature R = 2.5 cm. A cavity with d = R is referred to

as a confocal cavity, since the foci of the two mirrors fall on the same point. The mirrors

were purchased from the company Advanced Thin Films, located in Boulder, CO. The re-

flectivities of the mirrors were roughly R = 99.9%, giving our cavity a finesse of about

3, 000. The free spectral range was FSR = 6.0 GHz and the linewidth was δf ≈ 1.5Mhz.

The width of the fundamental mode at the beam waist was roughly 120 µm.

The prospect of handling high-finesse cavity mirrors was initially a intimidating

one. Mirrors used in state-of-the-art Fabry-Perot cavities are often so sensitive that the

presence of a single microscopic dust particle on the mirror face can destroy the cavity. In

practice though we found our 99.9% reflecting mirrors to be quite robust. Each of our cav-

ities was assembled in air, taking care only to avoid touching the mirror surfaces. Cavities

that were to be left in the lab outside of vacuum were kept in a sealed plastic bag or cov-

ered with tin foil, and this seems to have been sufficient protection. Several other groups

use mirrors with reflectivities of roughly 99.999%. These are quite a bit more sensitive, but

they can reportedly be assembled and stored in air with little risk as well (thanks to Dr. Luis

Orozco from the University of Maryland, College Park for this piece of advice). Our group
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Figure 4.14: Diagram of the nickel block used to house the cavity mirrors.

has recently built a cavity with mirrors of this quality, and it is currently being tested. In

Chapter 7 we review some of our recent progress along these lines.

Figure 4.14 shows a diagram of the nickel block that was used to hold the cavity

mirrors. Piezoelectric elements (piezos) are often used to mount cavity mirrors, since they

allow fast active tuning of the separation distance d. In our case though the RF discharge

used to produced Xe* posed a danger to any piezos in our vacuum chamber. The presence of

an ionized gas in the chamber could facilitate arcing between the piezo’s electrodes, which

would destroy the piezos and probably damage our cavity mirrors as well. As a result we

decided to control the separation between mirrors through temperature. Nickel, rather than

stainless steel, was chosen for the cavity housing because of its high thermal conductivity

(90.9 W
m·K ) and coefficient of thermal expansion (13.0

µm
m·K ).

The block was designed using the Solid Edge software package. A cylindrical

design was chosen to allow the block to be quite large, for better thermal stability, and still

to fit easily inside the vacuum chamber holes for mounting. A pair of rectangular “wings”

were machined into the top of the block with insets for the mirrors, and with a small hole

drilled through the center of each inset to leave space for light to couple into the cavity.

74
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Figure 4.15: Photograph illustrating the mounting of the cavity on a vacuum feedthrough
flange within the vacuum chamber. The image shows the assembled system before integra-
tion into our 4.5” vacuum cube.

Separate screw holes provided anchor points for springs that held the mirrors in place. The

springs were shaped by hand from stainless steel shim stock using pliers and tin snips.

Figure 4.15 illustrates the process of integrating the cavity system with our vac-

uum chamber. After the mirrors were installed, the cavity block was mounted on a copper

vacuum feedthrough flange. The feedthrough provided mechanical support as well as ther-

mal contact with the cavity. The flange was placed on a custom-built aluminum pedestal

before being mounted within our vacuum chamber. A copper disk was custom-machined

to fit around the bottom end of the feedthrough rod and glued in place using a thermally-

conducting epoxy (Electrodag 5810). Heaters and thermistors were then glued into the

disk, as shown in Figure 4.16. This allowed us to monitor and control the temperature of

the feedthrough rod and of the cavity block. A temperature change of only a fraction of a

degree C was enough to sweep the cavity transmission spectrum by a full FSR. Figure 4.17

shows the completely assembled cavity inside an RF discharge within the vacuum chamber.
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Figure 4.16: Photograph of the copper disk used to control the temperature of the vacuum
feedthrough rod. The thermal contact between the feedthrough rod and the cavity block
allowed us to control the cavity temperature using these heaters.

springs 

RF discharge 

cavity mirror 

Figure 4.17: Photo of the completed cavity within an RF discharge in the vacuum chamber.

4.5.2 Early Work with the Cavity

After the cavity was assembled considerable time was spent looking for the transmission

modes. Figure 4.18 (a) shows a sample of the cavity transmission spectrum as it appeared

soon after being first observed. In the confocal configuration, the resonant frequencies of

all higher-order transverse modes either coincide with exactly or fall halfway between the
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(a) (b)

Figure 4.18: (a) Oscilloscope trace of cavity transmission spectrum as seen soon after its
first finding. (b) Transmission spectrum as seen when alignment was improved to reject all
modes other than the fundamental. For both (a) and (b), the blue (upper) trace shows the
transmission through a commercial etalon used as a reference and the yellow (lower) trace
shows the high finesse cavity transmission. Distance along the x-axis is proportional to the
change in frequency of the probe light field.

fundamental mode frequencies. If a cavity is nearly but not exactly confocal the higher-

order modes are slightly detuned, with the size of the detuning increasing linearly with

mode number. In the case of relatively poor optical alignment a train of peaks appears in

the transmission spectrum, as in Figure 4.18 (a). The fundamental mode lies at one end of

the train with the other modes trailing away from it. This allowed an iterative adjustment

process to isolate the fundamental mode, resulting in a transmission spectrum closer to the

one in Figure 4.18 (b).

As an aside, we note that the potential for some confusion exists in the definition of

the free spectral range of an exactly confocal cavity. When coupling intomultiple transverse

modes simultaneously, the peaks in the transmission spectrum of such a cavity occur at

frequency intervals of c
4nd

. However this is simply a result of coupling into multiple modes.

The free spectral range for a given transverse mode is still FSR = c
2nd

, as described in

Section 2.1.

Figure 4.19 illustrates a serious problem discovered soon after our initial observa-

tion of the cavity’s fundamental mode. On-resonance transmission through the cavity was

not constant in time but varied chaotically, often on timescales of a few seconds. During
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(a) (b)

Figure 4.19: (a) Oscilloscope trace of cavity transmission spectrumwith good coupling into
the fundamental mode. (b) The same spectrum observed approximately 30 seconds earlier.
In both (a) and (b) the yellow (lower) trace shows the high finesse cavity transmission. The
fundamental mode transmission peak clearly visible in (a) had almost disappeared in (b).

some trials the spectrum remained quite stable for a whole day, while on other occasions it

was nearly impossible to align the cavity input beam because of the chaotic instability.

Much time was spent attempting to understand the chaotic transmission variations.

Several possibilities were suggested, but no progress was made until it was observed that

bending or disturbing the optical fibers in the experiment tended at times to aggravate these

variations in the cavity transmission. This suggested that something outside of the xenon-

cavity system might have been responsible for the instability. Thus far these tests had all

been performed with 853 nm light. When we began soon after this to probe the cavity

transmission using a different laser at 823 nm, we found the instability to be even worse.

Figure 4.20 illustrates the cavity transmission instability as observed with the 823

nm laser. For this test the laser intensity was split with a fiber coupler before being sent to the

cavity, and a detector was used to monitor the intensity at the unused coupler output. Figure

4.20 shows both the unused coupler output and the cavity transmission. The cavity peak

was deformed with sharp intensity jumps. We expected variations in the output intensity at

the unused coupler also, because of spurious FP’s present in our fiber system as described

earlier in Section 4.4. It was surprising though to see that sharp jumps also occurred in
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(a) (b)

Figure 4.20: (a) Oscilloscope trace of cavity transmission spectrum when probed with the
823 nm laser. (b) The same spectrum observed approximately 5 seconds later. In (a) and
(b) the yellow (upper) trace shows the cavity transmission and the blue (lower) trace shows
the laser intensity as observed before passing through the cavity. The pink and green traces
were not used. In both (a) and (b) the peak contained sharp jumps in transmission, each of
which occurred at exactly the same point as a smaller jump in the observed laser intensity,
suggesting a correlation between the two.

the transmission through the unused output, lining up exactly with the ones observed in the

cavity.

Figure 4.21 shows the results of another test. Our High-Finesse wavelength me-

ter was used to monitor the frequency tunable diode lasers being used to probe the cavity

transmission. An optics system was assembled in which the user could choose between ex-

tinguishing the laser beam at an attenuator or allowing it to pass on to the rest of the setup.

The setup contained a number of fiber-to-free-space interfaces that reflected a fraction of

the beam back into the laser head. Thus the effect of these back-reflections could be quickly

toggled on and off, and the difference observed. Figure 4.21 shows frequency as a function

of time for the 853 nm laser used in this setup. At t = 0, back-reflections were suppressed

and the frequency behaved normally. At t ≈ 17 seconds the attenuation was removed and

back-reflections were allowed, leading to mode-hopping of the laser frequency. Reflections

were suppressed again at t ≈ 45 seconds and the frequency behavior returned to normal.
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Figure 4.21: Frequency of 853 nm laser as a function of time, relative to a fixed reference.
Back-reflections were suppressed for 0 < t < 17s and for 45s< t < 55s, and allowed for
17s< t < 45s. The frequency behaved normally when back-reflections were blocked, but
showed numerous small mode hops when reflections were allowed.

From Figure 4.21 it was clear that light reflections coupling back into the laser

diode caused frequency instability. It manifested itself in mode hops and in unpredictable

narrowing and/or broadening of the laser linewidth. The instabilities were small, on the

order of 1 to 2 MHz, but since our cavity linewidth was only 1.5 MHz they noticeably

distorted the appearance of the transmission peak.

Because of 30 dB of optical isolation built into our laser, the back-reflected light

coupling into the laser diode was about 50 dB weaker than the outgoing beam. It was

difficult to believe that back-reflections of such small amplitude could cause such a perva-

sive problem. However, continued testing repeatedly confirmed our suspicions. Finally we

bought and installed an additional 30 dB of optical isolation into each laser, and the cavity

transmission instability disappeared.
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Chapter 5

Ultra-Low Power Absorption Saturation

5.1 Overview

With the laser instabilities of Section 4.5.2 resolved, the xenon-cavity system was ready

to perform experiments in nonlinear optics. As a preliminary step we used this proof-of-

principle cavity system to measure ultra-low power absorption saturation on the 6s[3/2]2 to

6p[3/2]2 transition of metastable xenon. This allowed us to demonstrate the strength of the

nonlinearity achievable with this system. The reader familiar with reference [34] should

note that, while some of the content in this chapter was drawn from that work, considerable

new material has been added as well.

5.2 Absorption in a Cavity

The saturation behavior of an atomic medium within a high-finesse cavity is markedly dif-

ferent from that of the same mediumwithout the cavity, because of the interaction of atomic

absorption with the resonant nature of the cavity. In a single-pass configuration (i.e. with

no cavity), attenuation of a light field traveling through an absorbing medium results simply
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Figure 5.1: Diagram illustrating our Fabry-Perot cavity and the parameters relevant to criti-
cal coupling. Intracavity optical losses arise both from absorption by Xe* atoms λ and from
transmission through the output mirror t2.

in a reduction of the transmitted field intensity. In a cavity however, absorption leads also

to a redistribution of the remaining field energy.

We saw in Section 2.1 that an on-resonance field incident on optical cavity tends to

couple into a cavity, while an off-resonant field does not. This occurs because efficient cou-

pling depends on constructive interference between the input field and the field circulating

within the cavity. Thus the amount of light coupled depends on the condition of resonance,

and also on the relative amplitudes of the interfering fields. These relative amplitudes are

influence by the relationships between the various intracavity loss mechanisms.

Figure 5.1 illustrates the parameters relevant to the description of efficient cavity

coupling. Perfectly efficient coupling occurs when the loss inside the cavity, including the

transmission of the output mirror, is equal to the transmission of the input mirror. Such a

cavity is referred to as being “critically coupled” [91, 92]. Using the notation of the figure

the condition for critical coupling is t1 = t2 + 2λ. For the cavity used in our work t1 ≈ t2,

so critical coupling should occur only in the absence of absorption losses.

Thus the losses induced by the presence of metastable xenon atoms in our cavity

should have the effect not only of attenuating the intracavity field, but also of spoiling the

cavity coupling. We can see precisely how this occurs by repeating the derivation of Section
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Figure 5.2: Cavity transmission plotted vs. the lossα in a single pass through the intracavity
medium.

2.1 and including absorption losses. The result is a more general version of Eq. 2.2:

It =
T1T2α

1 +R1R2α2 − 2
√
R1R2αcosθ

Ii, (5.1)

where α = 1− λ is the fraction of optical intensity transmitted after a single pass through

the intracavity medium. On-resonance (θ = 0) this becomes

It =
T1T2α(

1− 2
√
R1R2α

)2 Ii. (5.2)

Figure 5.2 shows a plot of Eq. 5.2 for a cavity similar to ours with mirror reflectivities of

R1 = R2 = 0.999. The transmitted intensity depends on absorption losses in a highly non-

linear way. As a result a detailed comparison of cavity measurements with a standard model

for absorption saturation would be somewhat more complicated and less transparent than

what is typically seen in the literature. The purpose of performing our absorption satura-

tion measurement though was to demonstrate the strength of the optical nonlinearity in our

system, not necessarily to provide a detailed description of the saturation mechanism. For

this purpose it was sufficient to simply measure the input power levels at which saturation

effects began to take place.
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5.3 Experiment Setup

Figure 5.3 provides an overview of the design for the optics and control electronics used in

the experiment. The cavity block was cleaned using common UHV techniques and placed

into the vacuum chamber. The chamber was pumped with a turbopump down to a pressure

of approximately 10−6 torr, then filled with approximately 0.1 torr of naturally-occurring

xenon and 0.9 torr of helium buffer gas. A frequency-stabilized diode laser (Toptica DL

100 pro design) was tuned to 823 nm, and the output was coupled into an optical fiber and

split using a fiber coupler. The additional signal was fed into our precision wavelength me-

ter (HighFinesse WSU30) to continually monitor the laser frequency. The field was then

further divided into a high-power and a low-power beam, with the intensity in each arm

controlled by in-line fiber optic attenuators. The high-intensity beam was required to satu-

rate the absorption while locking the laser frequency to the cavity transmission peak, since

there was very little transmission through the cavity at low intensities when on resonance

with the atomic transition. The low intensity beam was then used to perform the actual

experiment.

Switching was accomplished using a set of fiber-coupled optical switches, Thor-

labs models OSW 12-830-E and OSW 12-780-E. These switches offer a 60 dB rejection

ratio with roughly 1.5 dB of insertion loss and switching times on the order of 1 ms. Two

photodetectors D1 and D2 monitored the optical intensity in the high power and low power

arms before the beam passed through the cavity. A third fiber-coupled switch was used

at the cavity output to choose between a fast photoreceiver to measure the high-intensity

transmission (D3) and a more sensitive detector to measure the low-intensity signal (D4).

A Labview routine running on a laptop computer controlled the laser frequency and the

switch states, and oversaw the data collection. The interface between the computer and the

laboratory hardware was accomplished using a National Instruments data acquisition mod-
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Figure 5.3: Overview of experiment layout to measure absorption saturation in the 6s[3/2]◦2
to 6p[3/2]2 transition of metastable xenon. Variable attenuators and fiber-coupled switches
allowed the system to switch quickly between high-intensity for finding the cavity reso-
nance and low-intensity for probing xenon absorption. The experiment was implemented
using mostly fiber-coupled optics. They are illustrated here as bulk components for the sake
of clarity.

ule (DAQ), model number USB 6251. The DAQ communicated with the computer via a

USB (universal serial bus) connector.

Figure 5.4 illustrates the Labview program used to run the experiment. In hind-

sight, the program may have been simpler if implemented using another language, for in-

stance Matlab or C++. One source of repeated frustrations was the need for data types and

variables to be explicitly defined separately in each subroutine. If for instance we needed

to change an array variable by adding one additional element, it was necessary to make the

change not only in the main program file but in every connected subroutine as well. As a

result, maintaining and modifying the program became quite difficult. Workaround solu-

tions were added to the program one by one, and its complexity gradually increased to the

point illustrated in the figure.

Additionally, Labview’s documentation is not as easily accessible or as transparent

as is the documentation of comparable software packages such as Matlab. National Instru-

ments (NI), the developer of Labview, keeps a repository of example Labview programs as
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Figure 5.4: Overview of the Labview program used to control the experiment. The main
routine is shown at the center of the image, with each of the constituent subroutines ex-
panded around it. Because of the complexity of the system the programming interface
became quite cumbersome, as is easily seen here.

an aid in learning the language. So far though we have found these not to be particularly

helpful. In our experience they offer easy solutions for specific problems, but without ex-

plaining the reasoning behind the design. Hence the program development process for our

group consisted in a great deal of trial and error, with various sections of Labview example

files cut-and-pasted into our code and crudely stitched together.

National Instruments developed the Labview software and also manufacturered

our DAQ modules. They designed the Labview software and DAQ hardware to work

together, so interfacing our computer with the DAQ was relatively easy. Because pro-

gramming in Labview can be quite cumbersome though, it may be advantageous for future

students to invest some time learning to interface our DAQ’s with a different software lan-

guage. (It may also be the case that, once properly acquainted with the language, program-

ming in Labview is not particularly difficult. The author recognizes that he may well have

quite a lot to learn in this subject, and would be happy to receive any relevant advice!)
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Locking the laser to the cavity resonance was accomplished by first scanning the

laser frequency over a predefined range and finding the point of maximum cavity trans-

mission. If the maximum exceeded a given threshold value the Labview program marked

the frequency as the location of the cavity resonance. Hysteresis in the control of the laser

frequency made it necessary to then repeat the scan several times, each time reducing the

scanning range by roughly a factor of 2. This was done until the program had isolated the

resonance frequency to within a window of 10 ∼ 20MHz.

5.4 Lock-and-Measure Method

In our first attempts at this measurement we followed a 2-step approach, alternatively per-

forming the frequency locking and then making a measurement. First the the switches were

set to use the high-power beam path of Figure 5.3 and the cavity transmission peak was

located through the procedure described above. The laser frequency was then held fixed

at the location of the resonance. Next the program began switching rapidly between the

high-power and low-power paths while measuring transmission through the cavity. The

high-power beam saturated the xenon atomic transition, hence it experienced negligible

absorption within the cavity and could be used as a transmission reference. A normalized

measurement of the xenon-cavity transmission was obtained by taking the ratio of the trans-

mission values measured using the high-power versus the low-power beam paths. After

taking data for about 300 ms the program switched back to the high-power beam path and

re-established the laser frequency lock. The process was repeated until the desired amount

of data had been collected.

Figure 5.5 shows a sample oscilloscope trace of the cavity transmission during the

measurement segment of the 2-step process just described. On the left side of the image the

double peak in the cavity transmission spectrum indicates that the control program had just

performed a frequency sweep across the resonance. After determining that the resonance
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Figure 5.5: Oscilloscope trace of the cavity transmission during the locking and measure-
ment phases of the 2-step lock-and-measure process.

had been located with sufficient accuracy the program switched to the measurement mode.

This took roughly 100ms, as seen in the figure. The alternating rectangular pulses that fol-

low in the high-power and low-power reference channels indicate that during measurement

the beam was being switched back-and-forth between high-power and low-power modes,

as expected. The switching times were limited by the latency inherent in software-defined

control and by the use of a USB computer interface.

While in measurement mode the program was not able to re-lock the laser to the

cavity. Over the course of the measurement the laser and cavity frequencies tended to drift.

The effects of this on the results shown in Figure 5.5 are pronounced. Within 200 ms of

the beginning of the measurement phase the cavity transmission had degraded to roughly
1
2
of its initial value. This corresponds to a frequency drift of roughly 1MHz. The drifting

was chaotic and unpredictable, and as a result the two-step process was not able to produce

reliable measurements of the cavity transmission.

The lock-and-measure process could have be successful if the control software

worked on a faster timescale. This may have been possible using a different control ar-

chitecture. Field-programmable gate arrays (FPGA’s) are commonly used for control and
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data acquisition in sophisticated quantum optics setups. Experimental operations can be

performed on these devices at frequencies on the order of MHz [26, 93, 94]. However, be-

cause of our group’s limited experience with FPGA’s they seemed not to be the best choice.

The ready availability and relative ease of use of the NI DAQ made them a more appealing

alternative.

5.5 Frequency Sweep Method

Given the limitations of our experiment software interface, we decided to pursue another

measurement method that did not require high-speed controls. Rather than measuring trans-

mission with the laser frequency “parked” at the cavity resonance, the new implementation

performed measurements by scanning across the full cavity transmission line. The program

first completed the frequency locking procedure described in the Section 5.3. After a lock

was obtained two more scans were performed, first with the high-intensity beam and then

the low-intensity probe beam. A normalized measurement of the cavity transmission was

made by taking the ratio of the maximum transmissions measured at the two power lev-

els. We found that the data produced using this method was consistent and repeatable, so

we began making measurements of the 823 nm absorption spectrum of intracavity xenon

atoms.

To perform the measurements, the Labview control program was executed and the

temperature of the cavity was varied to cause the cavity resonance to slowly drift across the

metastable xenon absorption spectrum. Because of the frequency locking routine the laser

followed the frequency drifting of the cavity. Measurements of the optical frequency and

the cavity transmission were acquired continuously throughout the scan.

89



5.6 Initial Measurements

We began by making a measurement of the transmission spectrum of our xenon-filled cav-

ity, using the frequency sweep method. A sample set of raw data is plotted in Figure 5.6.

Part (a) shows the transmission measurements made of the probe beam using detector D3.

The 6 absorption dips of Figures 3.6, 3.7, and 4.11 appeared again, as expected, but with

significant distortion. The distortion was caused by spurious Fabry-Perot cavities within

our fiber-coupled optical system, as discussed in Section 4.4. Part (b) shows transmission

measurements of the high-power reference beam using detector D4. The sinusoidal varia-

tion of the transmission measured at this detector also indicates the influence of at least one

undesired Fabry-Perot in our fiber-optical system. The measurement was taken over the

course of roughly 30 minutes. Small variations in ambient conditions caused the FP spec-

trum to shift over time, evidenced by a partial washing out of the sinusoidal oscillations in

several places.

Part (c) of Figure 5.6 shows the result of taking the ratio of the two data sets,

D4/D3. The spurious FP effects disappear, and the shape of the absorption spectrum agrees

with what we have seen in previous chapters. A significant amount of noise persists though,

with the noise amplitude roughly 10% of the signal size. This was probably the result of

technical noise, i.e. chaotic variations in the frequency and/or linewidth of our laser system.

Locating the maximum transmission of our cavity resonance to within 10% required a laser

frequency stability of±300 kHz. It is quite possible that our laser was not more stable than

this, particularly taking into account the observations described in Section 4.5.2.

It is worthwhile to comment on one more interesting feature in the spectrum of

Figure 5.6 (c). Several of the absorption dips in this spectrum show a slight decrease in

the apparent optical depth at the very center of the dip, taking on the appearance of a very
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Figure 5.6: Raw data from absorption measurements using intracavity xenon atoms. Given
are: (a) measurements of the weak probe beam taken by detector D3, (b) transmission of
the high-power reference beam seen by detector D4, and (c) the ratio of two transmission
measurements, D4/D3. Oscillations caused by spurious FP’s within the fiber-based exper-
iment system are evident in the data of (a) and (b), but largely disappear when the ratio of
the two datasets is taken as in (c).

narrow upward-pointing transmission spike. This feature was not present in any of our

earlier results taken without the help of the cavity, such as those shown in Figure 4.11.

Consider for a moment one of the absorption dips shown in Figure 5.6 (c), say dip

3. Let’s say that a light field detuned from this transition by+100MHz is traveling from the

first to the second cavity mirror. It interacts most strongly with the atomic velocity group

that happens to be Doppler shifted by exactly +100MHz. After reflecting from the second

mirror though the Doppler shifts of the atomic velocity groups are reversed, from the field’s

perspective. Hence the forward- and backward-propagating field components effectively

interact with 2 separate atomic ensembles. This is true unless the field is tuned very close to

resonance, in which case the forward- and backward-propagating components both interact

primarily with atoms that have near-zero longitudinal velocity. Thus an on-resonance field
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effectively sees only half as many atoms as does a field that is detuned from resonance, and

as a result the on-resonance field finds the intracavity medium slightly easier to saturate.

This leads to a small increase in transmission, as was observed. Note that this phenomena is

closely related to the Lamb dip commonly used in saturated absorption spectroscopy [95–

97]. Obviously the effect observed here only occurs in optical systems with standing wave

geometry, such as a that of a Fabry-Perot cavity.

5.7 Results and Discussion

Satisfied that our measurements were sufficiently accurate and consistent, we moved on to

measure absorption saturation. To accomplish this we repeated the measurement process

outlined in Section 5.5 several times using different probe field intensities. Figure 5.7 shows

the experimental results obtained using probe beams with power levels of 0.5, 2 and 19 nW.

The data show a significant increase in the relative transmission when the probe power

was changed from 0.5 to 2 nW. This change in transmission as a function of input power

indicated a nonlinear optical effect taking place. In contrast, if there were no nonlinearity

present in this system the three curves represented by the data in Figure 5.7would lie directly

on top of one another.

As a technical aside, we note that the nonlinear effects observed here could have

been caused by saturation of the atomic transition, by optical pumping, or by a combination

of the two [98]. Optical pumping occurs when the state excited by the probe field decays to

one or more energy levels other than the initial state. These additional levels can be different

hyperfine components of the initial state, or entirely separate states. For example, a probe

field tuned to dip 3 of the 823 nm xenon absorption spectrum at 364.094 THz couples the

F = 7/2 hyperfine sublevel of 6p[3/2]2 in 131Xewith theF = 7/2 sublevel of 6s[3/2]◦2 [83].

The level 6p[3/2]2, F = 7/2 can decay to any of the states 6s[3/2]◦2, F = 7/2; 6s[3/2]◦2,

F = 5/2; or 6s[3/2]◦1, F = 5/2. Only population in sublevel 6s[3/2]◦2, F = 7/2 however
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Figure 5.7: Absorption data for intra-cavitymetastable xenonwith input power levels of 0.5,
2, and 19 nW. From the 2 nW to the 19 nW levels the absorption was dramatically reduced,
indicating a saturation nonlinearity. Most of the signal noise was caused by Fabry Perot-
type interference effects along the beam path and will be suppressed in future experiments.
[figure taken from reference [34]]

contributes to absorption of the probe field, since the other levels are far detuned. Hence

a decay to either of states 6s[3/2]◦2, F = 5/2 or 6s[3/2]◦1, F = 5/2 results in a decrease

in the optical depth of the Xe* atoms. The effects of this phenomenon increase with the

length of time that atoms are allowed to interact with the probe, and with the intensity of

the probe field. A more detailed discussion of the interplay between optical pumping and

atomic saturation can be found in references [68] and [71].

Because of the narrow beam width of the field in our cavity (∼ 120 µm), atoms

traveling at typical thermal speeds passed through the field mode in only a few 100’s of

ns. As a result the effects of optical pumping were significantly smaller than they would

have been for a wider-diameter beam. Rough calculations indicated that optical pumping

and atomic saturation effects should begin to occur in our cavity at roughly the same power

levels. Thus the saturation effects evident in Figure 5.7 were likely caused by a combination

of these two mechanisms working together.
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5.8 Conclusions

The increase in transmission with increasing input power shown in Figure 5.7 indicates

saturation effects occurring at nanowatt power levels. If a similar experiment had been

performed without the help of a cavity, nonlinear effects should not have been observed

until probe power levels reached orders of µW. This indicates that the use of our cavity,

with a finesse of 3,000, resulted in an enhancement of the nonlinearity of Xe atoms by

roughly 3 orders of magnitude.

Saturation effects occurring at these low power levels indicate the high nonlinear-

ities possible with our xenon-cavity system [34]. Also the relative simplicity of this experi-

ment using atomic vapor is an advantage compared with the complexity of other, trap-based

approaches for producing strong optical nonlinearities [99–103]. This work helped us to

convince ourselves of the feasibility and the practical advantages of doing nonlinear optics

with xenon gas in a cavity. Having accomplished this, the natural next step for our project

was the measurement of cross-phase modulation in the cavity. This would provide a more

direct means of comparing our cavity’s performance with that of other sophisticated cavity

QED systems. It would also demonstrate the degree of improvement required for a similar

cavity to be able to produce sizable single-photon cross-phase shifts.
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Chapter 6

Ultra-Low Power Cross-Phase Modula-

tion

6.1 Overview

We have demonstrated the ability of our xenon-cavity system to produce nonlinear optical

effects with ultra-low input power levels. In this context absorption saturation is an inter-

esting effect from a scientific perspective, but many practical applications depend on other

nonlinear processes such as cross-phase modulation. Single-photon cross-phase shifts, in

particular, have a wide range of applications in quantum optics and quantum information

processing [8, 9, 30, 104, 105]. The finesse of our proof-of-principle cavity was not high

enough to produce cross-phase shifts at the single-photon level, but the demonstration of

cross-phase modulation in using macroscopic fields still constituted a significant step to-

ward this goal.

Here we review our experimental demonstration of cross-phase modulation using

our xenon-cavity system. As with Chapter 5 some of the work described in this chapter

95



has been previously published [35], though we have taken the liberty of including many

additional experimental and theoretical details.

6.2 Cross-Phase Modulation with Xenon

Producing a cross-phase shift requires a system with two separate field frequencies. One

field is typically chosen to be the control while the other is used as a probe. There are

several ways in which an atomic medium can provide the nonlinear mechanism in such an

interaction. A two-level diagram such as the one used in the experiments of the previous

chapter, and shown in Figure 3.6, could accomplish this [38]. This setup has the disad-

vantage though that the control and probe fields must be very close together in frequency,

making it difficult to distinguish between them at the detection side of an experiment. Ad-

ditionally, the probe field in such a configuration interacts with the atomic medium even

when the control is absent, and as a result it suffers absorption losses. These difficulties can

be overcome by using a 3-level diagram.

Figure 6.1 shows the energy level diagram used in our cross-phase shift experi-

ment. The probe in this diagram is tuned near the 853 nm 6p[3/2]2 to 8s[3/2]◦1 transition.

This is very far detuned from the lower transition 6s[3/2]◦2 to 6p[3/2]2, so this transition

does not lead directly to absorption of the probe. In the absence of a control field the probe

passes straight through the xenon gas without being noticeably affected. If however the

823 nm control field is turned on and tuned close to the lower transition, the state 6p[3/2]2

accumulates population. This population is free to interact with the probe through the tran-

sition from 6p[3/2]2 to 8s[3/2]◦1. If the detunings are chosen properly the presence of the

the control field produces a cross-phase shift on the probe. For convenience we label the

atomic states |1⟩, |2⟩, and |3⟩ in order of increasing energy, as shown in the figure.
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Figure 6.1: Energy level diagram used for producing cross-phase shifts with metastable
xenon gas in a cavity. A 3-level system allows the 823 nm control and 853 nm probe fields to
be widely separated in frequency. The probe field in this configuration does not suffer from
absorption, except for a small amount of 2-photon absorption that occurs in the presence of
the control.

Use of the 3-level diagram of Figure 6.1 has the additional advantage that the two

wavelengths are relatively close together. As a result, when the 823 nm and 853 nm fields

counterpropagate through the atomic medium the 2-photon transition is essentially unaf-

fected by Doppler broadening. The Doppler width of the |1⟩ to |2⟩ transition is roughly 440

MHz. In contrast, the effective Doppler width of the |1⟩ to |3⟩ transition in the counter-

propagating configuration is only ∼ 16 MHz, due to the 3.6% difference between the two

wavelengths.

Within the standing-wave geometry of a Fabry-Perot cavity the two fields effec-

tively spend half of their time copropagating and half counterpropagating. For cases in

which the fields copropagate, Doppler broadening washes out the 2-photon transition and

essentially nothing happens. Thus the results when using a standing-wave field geometry

are nearly identical to those of an experiment with counter-propagating fields, but that the

nonlinear interaction occurs at one-half the rate [35].

The strength of the nonlinearity in this system depends on the rates at which the two

transitions occur. These rates are governed by the dipole matrix elements µ21 and µ32 for the
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transitions |1⟩ to |2⟩ and |2⟩ to |3⟩, respectively [106]. We calculated the transition dipole

moments using lifetimes and branching ratios taken from [78], aided by the results of some

two-photon absorption measurements performed in our lab. We found µ21 = 7.6 × 10−30

Coulomb-meters (Cm) and µ32 = 1.2× 10−30 Cm. For a point of comparison, these dipole

moments are of roughly the same size as those of commonly used transitions in Rb.

6.3 Design of the Experiment

The measurement of a phase shift is in general somewhat more difficult than that of an

absorption rate. Standard photodetectors see only the time-averaged intensity of an incident

light field, so phase information must be gleaned through interferometry. Additionally,

because applications of cross-phase modulation typically depend on operation in a pulsed

rather than in the continuous-wave (CW) regime, we wanted to implement the phase-shift

measurement using pulses. The sensitive timing control necessary for this placed additional

demands on the experiment.

As our system was to be built using fiber-coupled components, when designing

our interferometer we needed to take into account the small changes in refractive index that

occur in optical fiber. As mentioned in Section 4.4, it is possible to compensate for these

index variations with active phase correction. We however chose to circumvent the problem

by using a Sagnac interferometer.

Figure 6.2 illustrates the design of the system used for this experiment. Optical

pulses from the control and probe lasers were combined and sent into a Sagnac interferom-

eter containing the cavity. Upon striking the beam splitter at the Sagnac loop input, each

control and probe pulse was split into two counterpropagating pulses. The loop geome-

try and pulse timings were then adjusted such that only one of the two counterpropagating

probe pulses received a cross-phase shift in the cavity.
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Figure 6.2: Conceptual diagram of the system for measuring the cross-phase shift. Homo-
dyne detection was used to measure interference between two probe pulses counterprop-
agating within a Sagnac loop. An extra 150 m fiber delay line was used to separate the
two pulses of each pair. The timing between control and probe fields was carefully chosen
so that only one of the counterpropagating probe pulses received a cross-phase shift in the
cavity.

This was accomplished by inserting an extra 150m of optical fiber into the loop. A

light pulse takes about 700 ns to travel through this length of fiber. The counterclockwise-

propagating control pulses were timed to reach the cavity at the same time as the clockwise-

propagating probe pulses, resulting in a phase shift. The counterclockwise-propagating

probe pulses, on the other hand, passed through the cavity 700 ns later and were not phase

shifted. These latter probe pulses functioned as a local oscillator. Interference between

the probe and local oscillator pulses was then measured using homodyne detection at the

interferometer output ports, as shown in the figure.

The experiment was built using optical fiber and fiber-coupled components. Two

tunable diode lasers (Toptica DL pro) were tuned to 823 and 853 nm to produce the control

and probe beams, respectively. Each laser field passed through an EOSpace GHz fiber-

coupled amplitude modulator, which was used to cut the beam into pulses with durations of

30 ∼ 60 ns. The Sagnac loop was made with polarization-maintaining (PM) single-mode

fiber, to more easily maintain the polarization of the fields interacting with Xe atoms in the

cavity. A time-dependent phase modulator, also from EOSpace, was placed in the Sagnac

loop as well. This was used to impart a 90◦ shift on one but not both of the counterpropagat-
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ing pulses, maximizing the sensitivity of the output interference pattern to any additional

small relative phase shifts. With the inclusion of this extra time-dependent phase, the signal

received at the balanced detector was directly proportional to the measured phase shift. Our

balanced detector was a Thorlabs model PDB420A, with a bandwidth of 75MHz.

Figure 6.3 shows an oscilloscope trace of some calibration measurements made

using the setup we just described. Probe pulses were sent into the Sagnac loop containing

the cavity with a repetition rate of 200 kHz, and an oscilloscope with a 10 Gs/s sampling

rate was used to monitor the balanced detector output. The scope images shown in the

figure were produced after accumulating data from more than one thousand repetitions of

the experiment. Noise in the signals is represented by the thickness of the scope traces.

The top trace in the figure shows the output of the balanced detector. The trace below that

shows the electrical signal sent to the amplitude modulators for switching the probe field

on and off. No phase shifts were produced during this test run, but interference between

pulses transmitted through the cavity and back-reflections within the system produced a

small signal at the balanced detector. Since the cavity was located far away from the center

of the Sagnac loop, back-reflections from the two sides of the cavity also produced small

detector signals, but at different times. The x-axis in the figure spans a time interval of 5

µs.

6.4 Optical Amplifiers to Improve SNR

The signal to noise ratio (SNR) for measuring mrad phase shifts with the simple measure-

ment system described above was quite poor, roughly on the order of 10−3. A practical

implementation of the experiment needed some means to effectively amplify the signal re-

ceived at the balanced receiver.
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Figure 6.3: Oscilloscope traces of balanced detector output during a calibration test of the
experimental apparatus illustrated in Figure 6.2. The top trace shows the output of the
balanced detector. The trace second from the top shows the electrical signal sent to the
amplitude modulators controlling the probe field. Transmission through the cavity resulted
in a small detection signal received at the locations indicated in the figure. Back-reflections
from the cavity surface also produced small detection events. In both cases the signal was
swamped by the detector noise.

The interference signal between two beams as measured by the balanced detector

was proportional to
√
IsigILO, where Isig and ILO are the intensities of the signal and local

oscillator beams. The maximum possible signal intensity in our experiment was limited by

the need to avoid saturation of the xenon atoms. For the local oscillator beam however there

was no such restriction. Increasing the power carried in this beam by a factor of 103 relative

to the probe would increase the interference signal by the factor 101.5 ≈ 30. Incorporating

optical coupling losses and losses due to reflection from the cavity, roughly 300 mW of

power was required at the signal source to allow this increase in the local oscillator strength.

Our only available means of reaching such a high optical power was through the use of

optical amplifiers.

Most optical amplifiers can produce at most 20 dB of amplification. We needed

roughly 30 dB, so we chose to use two Thorlabs TPA850P10 tapered amplifiers in series.
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Figure 6.4: Diagram of the optics used to couple light from a Thorlabs tapered amplifier
into single-mode polarization-maintaining (PM) optical fiber.

This proved to be technically challenging. The amplifier emission was produced in a free

space mode with a highly non-Gaussian profile, so efficiently coupling the field into fiber

was quite difficult. The mode profile also varied as a function of distance away from the

amplifier output facet, and as a result the best possible coupling into single-mode fiber

was possible only with the fiber placed roughly 20 cm away. Free-space isolators needed

to be placed immediately after the amplifier output facets to prevent damage from back-

reflections. A half-wave plate was also required for each amplifier, to ensure proper polar-

ization of the output. Finding an effective way to fit the necessary isolators, waveplates,

and alignment mirrors within a 20 cm length limit was challenging. Figure 6.4 illustrates

the setup that was finally successful. Figure 6.5 provides a photo of the physical setup in

the laboratory.

Figure 6.6 shows a series of images taken of an amplifier’s transverse mode profile

at various distances from the output facet. We had removed the plastic housing and the

focusing optics from a commercially available webcam, and we used the leftover ccd array

to take the images (thanks to Todd Pittman for devising this apparatus). The photos were

taken using a very weak seed beam so as to avoid damaging the detector. At a distance of

roughly 20 ∼ 30 cm this resulted in relatively efficient coupling to single-mode fiber. The

efficiency achieved in our setup was 32%, resulting in slightly more than 300mWof optical

power coupled into in the fiber. Without the amplifiers the maximum available power was

about 1 mW.

102



isolator 

amplifiers 

waveplate mirrors 

Figure 6.5: Laboratory photo of the optics used to couple light from a Thorlabs tapered
amplifier into PM fiber.
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Figure 6.6: CCD images of the mode profile of an amplifier’s emission, taken at various
distances from the output facet. A very weak pump was used to seed the amplifier for these
images, to avoid damaging the detector.

After adding the amplifiers to our setup we needed to attenuate the clockwise-

propagating probe pulses, to prevent them from saturating the cross-phase shift. This was

done by placing an optical isolator in the Sagnac loop. The clockwise-propagating probe

passed through the isolator in the reverse direction and was attenuated by 30 dB, while

the counterclockwise propagating local oscillator was not attenuated. Also the inclusion
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of the isolator eliminated one out of the two cavity back-reflected pulses typically seen

in experiment trials. Compare for example the measurements of Figure 6.3 above (taken

without an isolator) with those of Figure 6.7 or Figure 6.8 below (for which the isolator was

used).

6.5 Noise from Back-Reflections

The addition of optical amplifiers into our fiber-based system led to a wide variety of techni-

cal problems. The amplitude modulators used to create our optical pulses were susceptible

to damage if used with optical power levels above 5 mW. Clearly it would not have been

suitable to use them to modulate the 300 mW field produced at the amplifiers. Initially we

tried using these modulators to control the amplifier seed beam only, hoping that if the seed

field were pulsed, the amplifier output would follow the same temporal shape.

Figure 6.7 illustrates the performance of our measurement system under these con-

ditions. Part (a) of the figure shows a conceptual diagram illustrating the laboratory layout.

Part (b) shows the behavior of the measured homodyne signal when amplitude modulators

were used to switch the field seeding the amplifiers. Use of the amplifiers greatly improved

the measurement signal strength, but introduced a great deal of noise as well. The problem

of this setup was that it allowed amplified spontaneous emission (ASE) to couple into our

optical system. Back-reflections within the fiber optical beam path then caused the ASE to

overlap with and obscure our measurement pulses.

Figure 6.8 (a) shows our solution to this problem. In addition to the amplitude

modulators switching the amplifiers’ seed field, we included a Pockels cell after the ampli-

fiers. This allowed us to switch the amplifier output on and off with an extinction ratio of

roughly 20 dB. With this addition the ASE noise was reduced to an acceptable level, as can

be seen in the oscilloscope trace in part (b) of the figure.
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Figure 6.7: (a) Illustration of the optics used in the laboratory to produce the probe field
pulses. An amplitude modulator was used to switch the seed laser on and off. (b) Oscil-
loscope trace of the balanced detector reading for this system. The output of the balanced
detector is shown in the top trace. The remaining traces may be ignored. Compared with
the results shown in Figure 6.3 the addition of the amplifiers here produced a larger signal,
but also a great deal more noise. The noise was caused by amplified spontaneous emission
(ASE) from the amplifiers.
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Figure 6.8: (a) Illustration of the updated optics for producing the probe field pulses. An
amplitude modulator was used to switch the seed laser on and off, and a Pockels cell was
used to switch the amplifier output. (b) Oscilloscope trace of the balanced detector reading
during a test of this system, where the output of the balanced detector is shown in the top
trace. The ASE noise evident in Figure 6.7 had been removed. During detection of the
cavity transmitted pulses though, a large amount of noise remained.

Soon thoughwe discovered that ASEwas not the only prominent noise source. The

Pockels cell seemed to be leaking a small amount of narrowband light as well. Because of

interference with strong local oscillator pulses a very small leakage of narrowband light at

the probe frequency produced a great deal of noise. This can be seen in Figure 6.8 (b). As

one would expect, the noise amplitude was largest at the points of overlap with the cavity
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Figure 6.9: (a) Optics used to produce the probe field pulses with minimized leakage of
narrowband probe light. The addition of an extra amplitude modulator in front of the am-
plifiers limited the leakage. (b) Oscilloscope traces of the balanced detector reading during
a system test run. The output of the balanced detector is shown in the top trace. Noises
were small enough that phase shift measurements were possible.

transmission and reflection pulses. The amplifiers produced this narrowband emission even

when the amplitude modulator shown in Figure 6.8 (a) was used to shut off the seed laser.

The amplitude modulator’s extinction ratio was roughly 30 dB.

Figure 6.9 illustrates our final solution. Using two fiber-coupled modulators in

series reduced the narrowband leakage rate and removed the interference noise. Part (b) of

the figure shows an oscilloscope trace obtained during a trial run of this system with the

control field turned off. These trial runs were accomplished in two-step iterations. During

the first step a normal phase-shift measurement was performed. In the second step the

measurement was repeated, but with the time-depended phase modulator applying an extra

90◦ phase shift. The two separate measurement results are clearly distinguishable in the

cavity transmission signal in Figure 6.9 (b). Test runs such as this were used to calibrate

the homodyne detector’s sensitivity to a given phase shift.

However, the oscillating shape of the cavity transmission signal in Figure 6.9 indi-

cated that some interference noise was still present. This interference was probably caused

by very weak back-reflections within our fiber-coupled optical system, and it seemed to be

unavoidable. Fortunately the characteristic timescale for variations in the amplitude of this
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noise was on the order of seconds. To remove the noise our phase shift measurements were

performed using a two-step method. First a normal cross-phase shift measurement was per-

formed, then the measurement was repeated several microseconds later but with the control

field turned off. The balanced detector signals obtained in these two runs were subtracted

to remove the noise.

After the additions and modifications described in this section, our experimental

system was ready to take measurements. Before moving to discuss the process of perform-

ing the experiment, in the next section we briefly mention a few remaining details of our

laboratory setup and the computer control system.

6.6 Laboratory Setup

Figure 6.10 provides a detailed diagram of the laboratory layout for our experiment. After

passing through the amplitude modulators used to produce nanosecond pulses, each laser

field was fed to a pair of photodetectors, labeled D1 and D2 in the figure, to monitor the

beam intensities and to ensure proper biasing of the modulators. The frequencies of both

fields were also continuously monitored using our high-precision wavelength meter. To

facilitate high-speed frequency locking of the lasers, two high-bandwidth photodetectors

D3 and D4 measured the transmission of the beams through the cavity. Relatively high

intensities of the two beams were required in order to produce a sufficiently large signal

at the detectors. To accomplish this, the control beam was divided into two separate paths

using a set of fiber-coupled optical switches (Thorlabs OSW12-830E and OSW12-780E),

as was done previously in our measurement of absorption saturation. A variable attenuator

was added to one of the paths for the low-intensity measurements, while the higher intensity

in the other path was used to periodically lock the laser frequency to the cavity.
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Figure 6.10: Diagram of experiment layout for the cross-phase shift measurement. The
setup followed the basic operating principle illustrated in Figure 6.2, but with additional
components included to accomplish frequency locking and to improve the signal-to-noise
ratio. Note that while the system is illustrated with bulk free-space components for sim-
plicity, most of the experiment was implemented within optical fiber.

Noise from the back-reflection signals evident in part (b) of Figures 6.7, 6.8, and

6.9 was eliminated through the use of a nanosecond analog-to-digital converter (FAST

ComTec 7072) in combination with our fast balanced photoreceiver. These allowed the

system to sample the cross-phase shift signal while ignoring the reflected pulses. The data

collection system operated at a repetition rate of 200 kHz using high-speed nuclear instru-

mentation module (NIM)-bin electronics. An average over approximately 105 such mea-

surements was used to estimate the cross-phase shift due to the presence of the control

beam.

As described in Section 5.3, a Labview program on a laptop computer controlled

the laser frequencies and data acquisition. Two National Instruments DAQ’s, models USB

6251 and USB 6363, communicated with the laptop through a USB connector to interface

the laboratory equipment with the computer. The cavity’s temperature and resonance fre-
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quency were controlled separately with an external heater and a variable voltage source, as

discussed in Section 4.5.1.

The control system used an analog of the “lock-and-measure” method described in

Section 5.4. The system first located two cavity resonances close to the control and probe

field frequencies, andmatched the laser frequencies to them. Then the lasers were held fixed

at those frequencies while the measurement was performed. This method failed to produce

consistent results in Section 5.4 because of the slow response time of our software-defined

control routine, and the relatively fast rate of laser frequency drifting. The laser frequency

tended to drift at rates of roughly ∼1MHz/s, and coupling to the cavity degraded quickly

in that experiment because of the narrow cavity linewidth of 1.5 MHz. The phase shift

measurements we are describing here thoughwere implemented using optical pulses of 30∼

60 ns. The linewidths of these pulses was on the order of 15 MHz, so the cavity coupling

efficiency was much less sensitive to small ∼ 1 MHz frequency drifts. We found that it

was quite possible to maintain consistent coupling efficiency throughout the experiment, as

long as the rate of change of the cavity resonance frequency due to temperature variations

was kept below ∼1MHz/s.

6.7 Frequency Tuning

The measurement required careful control of the detunings between cavity and atomic res-

onances. Achieving this was quite difficult, as the experiment required that one cavity

resonance to be located close to each of the |1⟩ to |2⟩ and |2⟩ to |3⟩ transition frequencies

at the same time. A good cavity frequency control system for this experiment should have

two degrees of freedom to separately control the two resonance frequencies. Tuning of the

cavity’s temperature though provided us with only one degree of freedom.

109



The difficulty of independently controlling the two cavity resonance frequencies

can be more easily described with a change of variables. Using fc and fp for the frequencies

of the control and probe field modes, respectively, we let x ≡ fc + fp and y ≡ fc − fp.

The coefficient of thermal expansion of nickel is roughly αL = 13 · 10−61/◦C. Thus an

increase dT in the block’s temperature led to a proportionate increase in the cavity length,

dL = αLLdT . For an 823 nm control field it takes roughly nc ≈ 30,400 wavelengths to

span the length of a 2.5 cm cavity. If the cavity length were to increase by dL, the wave-

length of the field would need to increase by dλc = dL/nc in order to maintain resonance.

Thus the frequency of the 823 field would be forced to change by dfc = − 2πc
λ2
cnc
dL. The case

was similar for the 853 nm probe. The result was that a cavity temperature change of dT

produced a shift in x of dx = (−9.3 GHz/◦C) dT . Because of the slight wavelength differ-

ence between our control and probe fields changing the cavity temperature also produced a

small shift in y, dy = (−160MHz/◦C) dT .

Independent, simultaneous control of the two detunings x and y was accomplished

in the following way. First the cavity temperature was tuned to place x near the desired

value. The value of y was then checked. Typically y would be found to be ∼ 1000MHz or

more away from the desired value. Next the cavity temperature was changed by ∆T such

as to increase (decrease) x by exactly 12 GHz. This resulted in a change in y of magnitude

roughly 210MHz, with the same sign as the change in x. The 823 and 853 nm lasers were

then each tuned 6 GHz lower (higher) to match cavity resonances one free spectral range

away. The net result of this process was that x was left unaltered while y was changed by

±210MHz.

By repeated application of this procedure y could be scanned to within ∼ 210

MHz of any desired value. The primary source of difficulty in the laboratory was the time

required to complete the operation. Figure 6.11 shows the response of a cavity resonance

frequency after a delta function pulse was applied to the heaters. The response time of

this system to thermal inputs from the heaters was on the order of 30 minutes. To avoid
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Figure 6.11: Plot of the frequency drift of a cavity resonance after receiving a delta function
heating pulse. The cavity recovered from the effects of the pulse after roughly one hour.

overshooting it was typically necessary to perform a given tuning control task in iterative

steps separated by intervals of 30 ∼ 60 minutes. Thus the initial temperature tuning at the

beginning of a day of data taking often required multiple hours.

The task of frequency tuning was further complicated by the presence of an RF

discharge in the vacuum chamber during experiment runs. The plasma discharge was often

more effective at changing the cavity temperature than our heaters were. To compensate,

when the experiment was not running we used the heaters to stabilized our cavity at a rela-

tively high temperature of near 60∼80 ◦C. Before beginning an experiment the detunings

were adjusted using the procedure outlined above, and then the heater power was reduced

by 2 ∼ 4 watts. After ∼ 10 minutes the cavity temperature would begin to fall. The RF

discharge was then applied, and its power was adjusted to stabilize the cavity temperature

and restore the frequency detunings. Hysteresis and a high degree of nonlinearity in the

response of the discharge to a change in the input RF power level made this process quite

difficult. Additionally, the lock-and-measure control method required that the drifting rate

of the cavity resonance frequency be kept below ∼±1 MHz/s during the measurement. It

was often necessary to make iterative adjustments to the RF discharge and heater power

levels to achieve the desired detuning values, discharge intensity, and temperature stability.
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Figure 6.12: Data from our initial phase shift measurements. There is no evidence in this
data of a cross-phase shift signal. The chaotic variations evident in the data were probably
caused by small, spurious back-reflections within our fiber-coupled optics.

With roughly 15∼ 30 minutes required for each iteration, the initial tuning process often

required half of a day or more of work.

A tuning control system that required this much setup time was not ideal, but it did

accomplish its task. Before long we were ready to take our first phase shift measurements.

6.8 Searching for the Signal

Figure 6.12 shows some of the data acquired during our first 1∼ 2 weeks of making mea-

surements. The data shown in the figure exhibits some interesting, chaotic behavior. One

particularly optimistic, and perhaps relatively naive, member of our group (not to men-

tion any names!) initially hoped that the fluctuations in this and similar data sets might

contain indications of a phase shift signal. Eventually though we were forced to conclude

that this behavior was caused by residual back-reflections in our fiber optics. These back-

reflections produced slowly-varying noise, with changes occurring in time scales on the

order of seconds or minutes. As a result these spurious signals occasionally resembled

genuine measurement results.
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With some slight disappointment we decided to take one step back frommeasuring

phase shifts, and to examine more carefully the spectroscopic properties of our metastable

xenon atoms. The frequency of the 853 nm transition illustrated in Figure 6.1 is documented

in the literature [78], but only with precision of roughly±2 GHz. To the best of our knowl-

edge, the hyperfine structure of this transition was previously not well documented. We

decided to take some time away from the phase shift experiment so as to search for and

study this transition by making two-photon absorption measurements of metastable Xe in

free-space. The measurement apparatus would be comparatively simple, and the results

would help us a great deal in finding the phase shift signals we had been looking for.

Figure 6.13 illustrates the experimental setup used for these measurements. Our

823 and 853 nm lasers were coaligned using SM fiber and sent through the vacuum cham-

ber. The fields were set up in a counterpropagating configuration to mitigate the effects

of Doppler broadening on the two-photon absorption spectrum. We did not use the cavity

for these measurements. We modulated the amplitude of the 823 nm control field at a rate

of roughly 25 kHz using an EOSpace modulator, and used a lock-in amplifier to monitor

the transmission of the the 853 nm probe. The use of the lock-in amplifier allowed this

system to measure absorption losses of less than 0.01% with very high SNR. To perform

the measurements, first the control field was tuned close to one of the six 823 nm xenon

absorption dips. The 853 nm probe frequency was then swept over several GHz across the

frequency range where two-photon absorption was expected to occur. Tuning the control

field to a different absorption dip resulted in coupling between a different set of hyperfine

components, which then produced a different two-photon absorption spectrum. We mea-

sured this spectrum using several of the 823 nm xenon absorption dips and several values

of the control field detuning.

Figure 6.14 shows two samples of measured two-photon absorption spectra. Be-

cause of the use of counterpropagating control and probe fields the two-photon spectrum

was essentially Doppler-free. This is evident in the narrower widths of the absorption dips
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Figure 6.13: Experiment setup for two-photon absorption measurements. Counterpropa-
gating 823 and 853 nm fields passed through the xenon RF discharge inside our vacuum
chamber. The fields passed straight through the chamber without coupling into the cavity.
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Figure 6.14: A sample of our two-photon absorption measurement results. Measurements
were taken with the 823 field tuned to (a) dip 2 and (b) dip 5.

in the figure, compared for example with those of the single beam measurements recorded

in Figure 5.7. This data provided us with precise measurements of the frequencies and

the relative transition rates for the various hyperfine components of the xenon |2⟩ to |3⟩

transition. The results informed us as to the precise combinations of control and probe field

frequencies at which cross-phase modulation would occur, and they allowed us to determine

which hyperfine components would produce the strongest phase shifts.

Finding the best candidate hyperfine component was not quite as simple though

as simply choosing the one for which the two-photon absorption rate was strongest. It was

important to avoid cases which would allow competition between two or more components.
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For example, it initially seemed like a good idea to tune the control field near dip 4 of the

823 nm xenon absorption spectrum (see Figure 3.6) because of the strong absorption there.

However, Figure 3.7 indicates that this dip was composed not of a single transition but of

many different hyperfine components packed closely together. A control field tuned near

dip 4 would couple to all of these components simultaneously. It was not possible for more

than one component to contribute to cross-phase modulation at any given time. Coupling

the control field tomany hyperfine components at once would simply result in higher optical

losses, and would reduce the measured phase shift.

Given these considerations, the best hyperfine components for producing phase

shifts were those arising from dips 1 and 6 of the 823 nm spectrum (refer to Figure 3.6).

These had the disadvantage that they were the smallest absorption dips in the spectrum, but

their frequencies were well separated from the other hyperfine components.

6.9 Cross-Phase Shift Measurement

We then returned to our phase shift measurement, tuning our control field to dip 1 of the

xenon 823 nm spectrum and using the strongest available two-photon hyperfine component.

Simultaneously monitoring the laser frequency control system, the stabilization of the am-

plitude modulators and Pockels cell, and the cavity temperature and RF discharge intensity

was a demanding task. Within a couple of weeks though we found our first verifiable phase

shift measurements.

Figure 6.15 (b) shows a sample of the data from one of our most successful initial

phase shift measurement runs. For comparison, part (a) of the figure reproduces the data

from a two-photon absorption measurement performed on the previous day. The phase

shift signal occurred at almost exactly the same frequency as the two-photon absorption

resonance, confirming that this phase shift was caused by the interaction of our two light
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Figure 6.15: (a) A two-photon absorption measurement of the hyperfine component used
for the phase shift measurement. (b) Phase shift measurement data. The amplitude of the
measurement indicates that the maximum phase shift was roughly 5 mrad. Note that the
two-photon absorption dip occurred at the same frequency as the phase shift. The data sets
of (a) and (b) were taking about one day apart.

fields with metastable xenon atoms in the cavity. There was a slight frequency alignment

mismatch of∼20MHz between parts (a) and (b) of the figure. This was probably caused by

slow drifts in the wavemeter calibration or by changing conditions in RF discharge within

the vacuum chamber.

Not all of the measurement runs produced data as clean as that of Figure 6.15 (b).

The same slowly-varying noise terms that produced the chaotic behavior evident in Figure

6.12 were still present, and in several runs the data was distorted significantly. Figure 6.16

shows data from another measurement run. The unusual features in this data were probably

caused by spurious 823 nm control pulses back-reflected from the cavity. These pulses

reached the detector at the same time as the measurement signals.

We added a pair of narrowband 853 nm optical filters in front of our balanced

detector to remove the effects of back-reflected control pulses. Figure 6.17 shows the results

of one measurement performed after the filters were installed. Attenuation loss at the filters

reduced the amplitude of the measured signal by roughly a factor of 4, but the spurious

noise had been eliminated.
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Figure 6.16: Data from another phase shift measurement run. The spurious feature that
sets this data apart from the results of Figure 6.15 was probably caused by back-reflected
823 nm control pulses. Placing a pair of 853 nm narrowband optical filters in front of the
balanced detector ports eliminated the noise, as shown in Figure 6.17.
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Figure 6.17: Phase shift data recorded after the inclusion of a pair of narrowband 853 nm
optical filters to remove back-reflected control pulses from the detection events. The signal
strength was reduced because of attenuation at the filters, but the noise had been removed
as well.

6.10 Theoretical Description

In order to properly understand our experimental results, it was important to develop a

theory capable of describing the nonlinear interaction between the intracavity control and

probe fields in our system. This interaction can be described using a semiclassical method
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based on the analysis of Section 2.4. We will begin here with the Hamiltonian describing

the evolution of a 3-level atom interacting with two classical fields,

Ĥ = ℏ
3∑

i=1

ωiσ̂ii + µ21Ec

(
eiωctσ̂12 + e−iωctσ̂21

)
+ µ32Ep

(
eiωptσ̂23 + e−iωptσ̂32

)
. (6.1)

This is a straightforward extension of Eq. 2.27 to the case of a 3-level atom. Here µij indi-

cates the dipole matrix element for the atomic |j⟩ to |i⟩ transition, and ωi the energy of the

atomic level |i⟩. Ec and Ep represent the control and probe field amplitudes, respectively.

The atomic operators are defined σ̂ij ≡ |i⟩ ⟨j| , as in Section 2.3. To include the effects of

atomic spontaneous decay we needed to use the master equation. Assuming that each atom

is a closed 3-level system, the master equation can be written

dρ̂

dt
=− i

ℏ

[
Ĥ, ρ̂

]
− Γ21

2
(σ̂21σ̂12ρ̂− 2σ̂12ρ̂σ̂21 + ρ̂σ̂21σ̂12)− ...

− Γ32

2
(σ̂32σ̂23ρ̂− 2σ̂23ρ̂σ̂32 + ρ̂σ̂32σ̂23) .

(6.2)

We have used Γ21 and Γ32 for the atomic spontaneous transition rates of the |2⟩ to |1⟩ and

|3⟩ to |2⟩ transitions, respectively. The equations of motion for the density matrix elements

are

ρ̇11 =Γ21ρ22 − iΩ21

(
e−iωctρ12 − eiωctρ21

)
ρ̇22 =− Γ21ρ22 + Γ32ρ33 + iΩ21

(
e−iωctρ12 − eiωctρ21

)
− iΩ32

(
e−iωptρ23 − eiωptρ32

)
ρ̇33 =− Γ32ρ33 + iΩ32

(
e−iωptρ23 − eiωptρ32

)
ρ̇12 =− Γ21

2
ρ12 + iω12ρ12 − iΩ21e

iωct (ρ11 − ρ22)− iΩ32e
−iωptρ13

ρ̇23 =− 1

2
(Γ32 + Γ21) ρ23 + iω23ρ23 + iΩ21e

−iωctρ13 + iΩ32e
iωpt (ρ33 − ρ22)

ρ̇13 =− Γ32

2
ρ13 + i (ω23 + ω12) ρ13 + iΩ21e

iωctρ23 − iΩ32e
iωptρ12 ,

(6.3)

where we have used Ω21 ≡ µ21Ec

ℏ and Ω32 ≡ µ32Ep

ℏ . We have also assumed, without loss of

generality, that Ω21 and Ω32 are both real and positive.
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Real xenon atoms are open systems, i.e. it is possible for the levels |2⟩ and |3⟩

to decay to states outside of the 3-level structure considered here. These decays have the

effect of gradually removing population from the system over time. The RF discharge

in our vacuum chamber counteracted this effect by continually pumping atoms back into

the metastable state. In the case of continuous-wave (CW) excitation it would have been

important for a theoretical treatment to account for both of these effects. Our system though

used pulsed excitation. As a result the theory needed only to describe the system dynamics

over time intervals of < 1 µs. Simulations using the full theory showed that over such

short timescales, any effects of the open system dynamics were negligible. For the sake of

simplicity we neglect these effects for the remainder of our treatment.

Nowwe need to account for the effects of inhomogeneous broadening. This can be

done using a Monte Carlo simulation by introducing a collection ofNd frequency offsets δck

and δpk for the first and second atomic transitions, respectively, where k ∈ {1, 2, 3, ... , Nd}.

Incorporating these into the analysis leads to a set of Nd master equations, one for each

velocity class.

In the standing wave geometry of our cavity, each field can be expressed as a sum

of two traveling waves propagating in opposite directions. In this configuration the Doppler

shift of an atomic resonance as seen by one traveling wave is the opposite of that seen by

the wave traveling in the other direction. As a result, each atomic velocity class is Doppler

shifted upward from the perspective of one field and downward from the perspective of the

other. Assuming that the two field components are equal in magnitude, this effect can be

included by making the following substitutions in Eq. 6.3:
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e−iωct →
(
e−iω+

c,kt + e−i(ω−
c,kt+θc)

)
eiωct →

(
eiω

+
c,kt + ei(ω

−
c,kt+θc)

)
e−iωpt →

(
e−iω+

p,kt + e−i(ω−
p,kt+θp)

)
eiωpt →

(
eiω

+
p,kt + ei(ω

−
p,kt+θp)

)
.

(6.4)

We have used ω+
c,k = ωc + δck, ω

−
c,k = ωc − δck, ω

+
p,k = ωp + δpk, and ω−

p,k = ωp − δpk. The

phases θc and θp account for the arbitrary relative phase between the counter-propagating

field components. This leads to the rather cumbersome set of master equations

ρ̇11,k =Γ21,kρ22,k − iΩ21,k

[(
e−iω+

c,kt + e−i(ω−
c,kt+θc)

)
ρ12,k −

(
eiω

+
c,kt + ei(ω

−
c,kt+θc)

)
ρ21,k

]
ρ̇22,k =− Γ21,kρ22,k + Γ32,kρ33,k + ...

+ iΩ21,k

[(
e−iω+

c,kt + e−i(ω−
c,kt+θc)

)
ρ12,k −

(
eiω

+
c,kt + ei(ω

−
c,kt+θc)

)
ρ21,k

]
+ ...

− iΩ32,k

[(
e−iω+

p,kt + e−i(ω−
p,kt+θp)

)
ρ23,k −

(
eiω

+
p,kt + ei(ω

−
p,kt+θp)

)
ρ32,k

]
ρ̇33,k =− Γ32,kρ33,k + iΩ32,k

[(
e−iω+

p,kt + e−i(ω−
p,kt+θp)

)
ρ23,k − ...

−
(
eiω

+
p,kt + ei(ω

−
p,kt+θp)

)
ρ32,k

]
ρ̇12,k =− Γ21,k

2
ρ12,k + iω12,kρ12,k − iΩ21,k

(
eiω

+
c,kt + ei(ω

−
c,kt+θc)

)
(ρ11,k − ρ22,k)− ...

− iΩ32,k

(
e−iω+

p,kt + e−i(ω−
p,kt+θp)

)
ρ13,k

ρ̇23,k =− 1

2
(Γ32,k + Γ21,k) ρ23,k + iω23,kρ23,k + iΩ21,k

(
e−iω+

c,kt + e−i(ω−
c,kt+θc)

)
ρ13,k + ...

+ iΩ32,k

(
eiω

+
p,kt + ei(ω

−
p,kt+θp)

)
(ρ33,k − ρ22,k)

ρ̇13,k =− Γ32,k

2
ρ13,k + i (ω23,k + ω12,k) ρ13,k + iΩ21,k

(
eiω

+
c,kt + ei(ω

−
c,kt+θc)

)
ρ23,k − ...

− iΩ32,k

(
eiω

+
p,kt + ei(ω

−
p,kt+θp)

)
ρ12,k ,

(6.5)

with one master equation for each velocity class k. The fact that each transition is driven by

fields at two distinct frequencies makes this system quite difficult to solve. To simplify the

problemwe assume that the rightward- and leftward-traveling 823 nm control fields interact
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with independent ensembles, allowing us to remove one of the two control field terms in

Eq. 6.5. In doing this we neglect the coherent dynamics unique to atomic systems driven

with bichromatic fields. These dynamics are quite interesting, but are beyond the scope of

our treatment here [107–109].

The remaining system contains two sets of interaction terms, one describing a

Doppler-free two-photon transition with counterpropagating control and probe fields, and

the other describing a Doppler-broadened two-photon interaction with copropagating fields.

For small detunings close to a two-photon resonance the Doppler-free part of the interaction

dominates, so we neglect the much smaller Doppler-broadened part. After these approxi-

mations the master equations simplify to

ρ̇11,k =Γ21,kρ22,k − iΩ21,k

(
e−iω+

c,ktρ12,k − eiω
+
c,ktρ21,k

)
ρ̇22,k =− Γ21,kρ22,k + Γ32,kρ33,k + iΩ21,k

(
e−iω+

c,ktρ12,k − eiω
+
c,ktρ21,k

)
− ...

− iΩ32,k

(
e−iω+

p,ktρ23,k − eiω
+
p,ktρ32,k

)
ρ̇33,k =− Γ32,kρ33,k + iΩ32,k

(
e−iω+

p,ktρ23,k − eiω
+
p,ktρ32,k

)
ρ̇12,k =− Γ21,k

2
ρ12,k + iω12,kρ12,k − iΩ21,ke

iω+
c,kt (ρ11,k − ρ22,k)− iΩ32,ke

−iω+
p,ktρ13,k

ρ̇23,k =− 1

2
(Γ32,k + Γ21,k) ρ23,k + iω23,kρ23,k + iΩ21,ke

−iω+
c,ktρ13,k+

+ iΩ32,ke
iω+

p,kt (ρ33,k − ρ22,k)

ρ̇13,k =− Γ32,k

2
ρ13,k + i (ω23,k + ω12,k) ρ13,k + iΩ21,ke

iω+
c,ktρ23,k − iΩ32,ke

iω+
p,ktρ12,k .

(6.6)

From this point, the δck should be chosen at random from a Gaussian distribution

with a width of 440MHz, corresponding to the Doppler width of the 823 nm Xe transition.

The probe field frequency offsets should be given by δpk = 0.964 × δck. Each value of δck

represents a distinct velocity class of Xe atoms.

Next we move into a new basis that rotates along with the driving fields. Let

σ12,k ≡ ρ12,ke
−iω+

c,kt, σ23,k ≡ ρ23,ke
−iω+

p,kt, and σ13,k ≡ ρ13,ke
−i(ω+

c,k+ω+
p,k)t. For consistency
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in notation we will use σii,k ≡ ρii,k, with i ∈ {1, 2, 3}. After the substitution the equations

of motion become [65]

σ̇11,k =Γ21σ22,k − iΩ21 (σ12,k − σ21,k)

σ̇22,k =− Γ21σ22,k + Γ32σ33,k + iΩ21 (σ12,k − σ21,k)− iΩ32 (σ23,k − σ32,k)

σ̇33,k =− Γ32σ33,k + iΩ32 (σ23,k − σ32,k)

σ̇12,k =− Γ21

2
σ12,k − i∆kσ12,k + iΩ21 (σ22,k − σ11,k)− iΩ32σ13,k

σ̇23,k =− 1

2
(Γ21 + Γ32)σ23,k − i (δk −∆k)σ23,k + iΩ21σ13,k + iΩ32 (σ33,k − σ22,k)

σ̇13,k =− Γ32

2
σ13,k − iδkσ13,k + iΩ21σ23,k − iΩ32σ12,k .

(6.7)

We have used ∆k ≡ ω+
c,k − ω21 and δk ≡ ω+

c,k + ω+
p,k − ω21 − ω32, as illustrated in Figure

6.1.

Eq. 6.7 describes the evolution of an ensemble of Doppler-broadened metastable

Xe atoms interacting with the classical control and probe fields in the cavity. Next we must

account for the evolution of the intracavity fields. Figure 6.18 illustrates the model used

to describe the time evolution of the control and probe fields within the cavity. We first

assume a field amplitude Ei (t) just inside the left cavity mirror propagating towards the

right, using the index i ∈ {c, p} to indicate the control and probe fields, respectively. Say

we wait just long enough to allow the wavefront of this field to propagate back-and-forth

across the cavity exactly once. After this the field amplitude will be

Ei (t+ τi) = tE0
i (t) + r2e−βi+iϕiEi (t) . (6.8)

We have used r and t for the amplitude reflection and transmission coefficients of the mir-

rors, E0
i (t) for the input field amplitude, and τi for the time required by the field to make

one round trip within the cavity. The parameters βi and ϕi indicate the attenuation and

122



t, r Xe* 

intracavity field 

E0
i(t) 

t, r 

Ei(t) 

Ei(t + τi) 

		

		

Figure 6.18: Illustration of the time evolution of a wavefront of the intracavity field. Start-
ing at time t the field makes one round trip within the cavity, and receives modifications to
its amplitude and phase from interactions with metastable Xe atoms and from reflections
off of the mirror surfaces. These modifications combine with the contribution of the field
at the cavity input E0

i (t) to give the new value of the field at time t + τi, where τi is the
time required for a single round-trip.

phase shift imparted by interaction with the Xe atoms, and are given by

βi =
ωiτi
2

Im{χi}

ϕi =
ωiτi
2

Re{χi},
(6.9)

where ωi is the angular frequency of the field. For an ensemble of atoms the susceptibilities

are given by

χc =Nv
µ∗
21σ21 (t)

Ec (t)

χp =Nv
µ∗
32σ32 (t)

Ep (t)
,

(6.10)

where Nv is the volume number density of metastable xenon atoms [65]. Assuming that τi

is small, we can approximate the time derivative of Ei (t) by the finite difference Ėi (t) ≈

[Ei (t+ τi)− Ei (t)] /τi. We find

Ėi (t) ≈
[
tE0

i (t) +
(
r2e−βi+iϕi − 1

)
Ei (t)

]
/τi. (6.11)

The susceptibilities couple the field evolution of Eq. 6.11 with the evolution of the xenon

atoms given in Eq. 6.7. This system of coupled differential equations describes the inter-

action of the cavity fields with an ensemble of inhomogeneously broadened Xe atoms.
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Equations 6.7 and 6.9 - 6.11 were solved numerically to simulate the expected

measurement outcome. The calculation from this point forward proceeded in finite time

steps. For each step the evolution of the density matrices for each atomic velocity group

was calculated separately, along with the evolution of the fields. The values of χc and χp

were then calculated by averaging over the density matrices of all velocity groups, and were

stored in memory for the next step. This process was repeated until the full system evolution

had been calculated to the desired evolution time, typically on the order of 500 ns.

Figure 6.19 shows a sample result of a single run of the numerical simulation. Part

(a) on the left shows the calculated control and probe field intensities transmitted through

the cavity. The occupation probabilities of atomic states |2⟩ and |3⟩ are shown as well. The

evolution of the transmitted intensity for the control and probe fields possess two separate

segments. The first segment represents the buildup period as the field amplitude accumu-

lates due to constructive interference between the input light and the field in the cavity.

During this segment the intensity increases quadratically with time. This lasts for the dura-

tion of the input pulses (30 ns for the control and 60 ns for the probe, in the current example).

Once the input pulses reach their end the intensity begins to fall off exponentially, with the

rate of decay given by the cavity lifetime 1
κ
≈ 80 ns. Because the simulation was run using

a large value of ∆, the population of state |2⟩ closely follows the control field intensity.

The behavior of the state |3⟩ population is similar, but with the addition of Rabi oscillations

with a period of roughly 200 ns. These relatively slow Rabi oscillations are the result of the

small two-photon detuning of δ ≈ 5MHz used in the simulation.

Part (b) of Figure 6.19 shows the intensity of the transmitted probe pulse along

with its phase. While the phase shift accumulates within the cavity over time, the intensity

of the transmitted probe field falls rapidly after the onset of the exponential cavity decay.

As a result the SNR for measurements taken after t = 100 ns tend to be small. In light of

this fact, our measurements in the laboratory were taken with t < 100 ns.
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Figure 6.19: Results from a sample run of the numerical simulation used to predict phase
shift measurements. (a) Control and probe field transmitted intensities calculated at the
cavity output mirror, along with the occupation probabilities of the first and second atomic
excited states as a function of time. (b) Intensity and phase of the transmitted probe field.
The dashed red curve in (b) shows the size of the signal that would be seen by a homodyne
detector measuring these results. For all curve the point t = 0 marks the time at which the
60 ns probe pulse first strikes the cavity.

6.11 Results and Conclusions

Figure 6.20 plots a set of phase shift measurement data alongside the results of a theory

simulation. The theory results used a typical set of experimental parameters. The durations

of the probe and control pulses were chosen to be 60 and 30 ns, respectively, to match the

values used in the experiment. The atomic decay and transition rates, dipole moments, and

measurement acquisition time used in the calculations were also the same as those in the

experiment. The effective density of metastable Xe atoms and the delay time between the

control and probe pulses were varied within the experimental uncertainties to give the best

fit between the simulation and the measured data. Agreement between the two was quite

good.

The maximum cross-phase shift of 5 mrad in Figure 6.20 was achieved using 5

fJ control field pulses. This corresponded to the presence of roughly 18, 000 control field

photons within the cavity. Thus for this measurement the cross-phase shift per control field
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Figure 6.20: Phase shift measurement and theory results. The red dots represent laboratory
measurements, and the solid blue curve shows the result of a theory simulation using the
method described in Section 6.10.

photon was roughly 0.3 µrad. This per-photon phase shift was not large enough to perform

interesting experiments in quantum nonlinear optics. Remember though that this was an

initial, proof-of-principle demonstration of ultralow power cross-phase modulation using

xenon in a cavity. The phase shifts produced here demonstrate the effectiveness of using a

high-finesse cavity to enhance the inherent optical nonlinearity of xenon atoms. They were

not large enough to be practical for single-photon nonlinear optics, but were far larger than

what would have been produced in the absence of the cavity.

The work described in this and the preceding chapter shows that absorption satura-

tion and cross-phase modulation can be performed in our xenon cavity system with optical

power levels far below what could usually be expected for nonlinear optics experiments

with warm vapors. At this point in our project the proof-of-principle cavity system had

fulfilled its purpose. To reach the regime of weak single-photon nonlinearities it remained

only to improve the cavity itself.
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Chapter 7

New Cavity System

7.1 Overview

In the previous chapters we demonstrated that the use of metastable xenon vapor inside

a high-finesse cavity leads to very large optical nonlinearities, with the presence of a few

thousand photons producing measurable changes in the optical properties of the system.

The nonlinearities we have seen in this work so far, however, were too weak to be useful

for experiments in quantum nonlinear optics. Reaching this regime required an improved

cavity. The new cavity needed to have higher finesse and shorter length. We wanted also

to achieve faster frequency tuning control by using piezoelectric elements rather than tem-

perature control. In this chapter we describe the new cavity system that was built to meet

these needs.

7.2 Design Considerations

Increasing the finesse of a cavity has the effect of reducing κ, the rate of photon loss from

absorption, scattering, and transmission at the mirrors (see Figure 2.7 for reference). How-

127



ever, it leaves g and γ unchanged. Reducing the cavity length d leads to the confinement

of intracavity photons within a smaller volume, effectively increasing in the magnitude of

the electric field produced by a single photon. This results in an increase in the coherent

coupling rate g. At the same time though, decreasing d reduces the amount of time required

for wavefronts of the intracavity field to traverse the cavity. This leads to an increase in

κ. Thus, in order to increase the coherent coupling rate g of a Fabry-Perot cavity system

without also increasing dissipation, one must simultaneously increase the cavity’s finesse

and reduce its length proportionately.

In order to reach the strengths of nonlinearities required for single-photon nonlin-

ear optics, our new cavity system needed to have a cooperativity of η ≈ 1. The finesse

required for this was on the order of 100,000 to 300,000. We purchased a new set of mirrors

from OptoSigma Corporation, with reflectivities designed for R = 99.9985%. Mirrors of

this quality should produce a cavity with a finesse greater than 200,000.

The smallest achievable cavity length for our system was limited by the need for

double-resonance with a two-photon transition, like the transition diagram illustrated in

Figure 6.1. We generated a spreadsheet file enumerating all values of the cavity length d

that supported a normal mode resonant with the 823 nm transition in Xe, from d ≈ 20 µm

to d > 3mm. We then searched the list for any values of d that simultaneously supported a

second resonant mode within ±2 GHz of one of the Xe transitions available from state

6p[3/2]2. After scouring the Xe transitions catalogued in the NIST database of atomic

spectra (reference [78]) we found one which would allow our cavity to satisfy the criterion

of double resonance with a length of only d ≈ 300 µm. The resulting 3-level diagram is

illustrated in Figure 7.1.

A cavity with such high finesse and short length is extremely sensitive to slight

changes in d. For the cavity to function properly, the amplitude of mechanical vibrations

must be kept below 0.01 Å. This is less than 1/10 the diameter of a hydrogen atom! Vibra-
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Figure 7.1: Energy level diagram to be used for producing cross-phase shifts in the new
cavity. The 862 nm 6p[3/2]2 to 8s[3/2]2 transition has a more favorable branching ratio
than the 853 nm transition of Figure 6.1.

tions caused by ambient sounds and air currents largely disappear once the cavity is placed

under vacuum. Vibrations within the floor of the room can be more problematic. These

can be mitigated though by mounting the vacuum system on a floating optical table, and by

designing the cavity mount to damp the remaining vibrations as far as possible.

In designing the new cavity our group benefited greatly from the excellent work

done in the research group of Jeff Kimble at CalTech [110, 111]. The designs of our new

high-finesse cavity and its mounting systemwere based largely on successful cavity systems

developed by that group.

7.3 The New Cavity

Figure 7.2 illustrates the construction of the new cavity mount. The cavity was supported

by two solid copper blocks, each seated on a Viton o-ring to help dampen vibrations. These

were mounted on a 4.5” ConFlat vacuum flange. On top of the copper supports, a stainless

steel block served as a baseplate for the cavity mirrors. Two steel mounting plates were

then mounted on the base. The mounting plates were free to slide along the surface of the
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Figure 7.2: Series of 4 photographs illustrating the design of the new cavity mount.

baseplate to facilitate easier alignment of the mirrors. Once aligned the plates could be

tightened down with screws, as in the photo.

Figure 7.3 shows a closeup of the cavity itself. A piezoelectric shear stack was

glued into the top of each of the movable mounting plates (not visible in the figures) to

tune the cavity frequency. A steel mirror holder was glued onto each of these piezos, and

a mirror was mounted in each holder and held in place with a viton-tipped set screw. This

allowed for easy changing of the cavity mirrors without the need to disassemble the mount.

The mirror substrates were 3 mm in diameter at the center, and tapered down to a diameter

of 1.5 mm at the mirror faces. The taper allowed the mirrors to be placed closer together

than would otherwise have been possible.
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Figure 7.3: Closeup view of the cavity mirrors.

With this cavity we were able to align an input laser to the fundamental transverse

mode, and to begin making some stability measurements. In the process though several of

our mirrors were damaged. Images of the cracked mirrors are provided in Figure 7.4. The

steel mirror holders and set screws were simply too rough on the delicate glass substrates.

We attempted to make the mounting process gentler, by handling and tightening the mirrors

more carefully, but this did not help. In addition, it proved difficult to align the mirrors

with this mounting system. Transverse alignment could be accomplished by adjusting the

positions of the movable mounting plates. To adjust the vertical alignment though we were

forced to insert thin strips of metal shim stock underneath one or the other of the mounting

plates. As this was our only means of adjusting both the heights and the vertical orientations

of the mirrors, the process of achieving a good alignment was extremely tedious and time

consuming. After several weeks spent on this and similar tasks, we decided to design a new

mount that would be easier to align and gentler with the mirrors.
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Figure 7.4: Mirrors damaged after mounting in the steel mirror holders.

7.4 Redesign of the New Cavity

Our primary purposes in redesigning the cavity mount were to achieve greater ease of align-

ment and less frequent damage of the mirrors. Both of these goals could be accomplished

simultaneously by mounting the mirrors with glue, rather than using metal holders and set

screws. Though the use of glue makes it more difficult to remove and replace the mirrors,

it is very common in state-of-the-art cavity QED systems used by other groups [111, 112].

In the new design, each cavity mirror was mounted on a pair of ceramic v-grooves.

A shear piezo plate was sandwiched between each pair of v-grooves for cavity tuning. Holes

were drilled through the v-grooves to allowwire leads to connect to the top and bottom elec-

trodes of each piezo plate. Tiny steel springs were inserted into these holes. The insulation

of each piezo wire lead was then glued within the “v” of the associated v-groove, and a

length of bare wire was coiled into the v-groove hole. The tiny spring was pressed by the

coiled wire lead on one side and by the piezo electrode on the other, maintaining electrical

contact between them. A pair of custom stainless steel caps were then designed to fit over

the v-groove assemblies, to protect them from the RF discharge. Holes were drilled through

the cap walls to allow optical fields to couple into the cavity.
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Figure 7.5: Photo of the redesigned cavity mount, during the process of aligning themirrors.

Figure 7.5 illustrates the procedure for the initial alignment of the cavity mirrors.

First the v-grooves and piezo plates were glued together with Torr Seal epoxy and left to

set overnight. The v-groove assemblies were then fastened with clamps to a pair of 3-axis

translation stages. The two mirrors were carefully set within the v-grooves, and a small

drop of Torr Seal was added to fasten each mirror in place. While the glue on the mirrors

was still drying, small adjustments to the mirror positions were made using the translation

stages. The small drops of epoxy attaching the mirrors to their v-grooves allowed the mirror

orientations to be adjusted slightly by carefully prodding the mirror substrates. Iterative

adjustments to the orientations were made, and the relative orientation was checked by

moving the mirrors very close together and viewing them underneath a strong magnifying

lens. The risk of damaging the mirrors with this procedure was relatively low, since the

curvature of the mirror surfaces prevented them from coming into direct contact [111]. See

Figure 7.6 for an illustration.

When a good alignment was achieved Torr Seal was used again to fasten the v-

groove assemblies in place on top of the cavity mounting plates, as shown in Figure 7.7.

The setup was then left for the glue to set overnight. Once the Torr Seal had set the clamps

were removed and the cavity was ready for use.
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Figure 7.6: Closeup photo illustrating the relative orientations of the mirrors after initial
alignment.

mirrors 

Torr Seal 

Torr Seal Torr Seal epoxy coiled wire lead 

Figure 7.7: Photo of the cavity mirrors and their supporting structure. The stainless steel
caps protecting the piezos from the discharge had been removed to allow the v-groove as-
semblies to be seen.
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After aligning the cavity wemeasured its finesse and found it to be roughly 80,000.

This is a factor of 3∼4 lower than what we would like. We expect though that with a few

weeks of testing, and perhaps with some extra attention taken to careful handling of the

mirrors, we should be able to bring the number up to at least 200,000. This will allow our

cavity system to produce single-photon optical nonlinearities with sizes large enough to be

useful for applications in quantum information processing with weak nonlinearities.
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Chapter 8

Conclusion and Summary

In this work we have introduced a new apparatus for producing weak single-photon nonlin-

earities, based on the use of metastable xenon vapor as a nonlinear medium within a high-

finesse optical cavity. It has been the purpose of this document to describe this new system,

explain its importance, and relate several proof-of-principle experiments that demonstrated

its effectiveness. We also included some details regarding a new cavity systemwhich should

produce even stronger nonlinearities. We close here by reviewing the highlights of the pre-

vious chapters.

In Chapter 1 we introduced the basic principles of quantum communication, and

discussed the challenges associated with its performance over a lossy channel. We briefly

discussed recent work in the field of quantum nonlinear optics, as it relates to this and

similar problems. We then introduced our new system for producing weak single-photon

nonlinearities using metastable xenon in a cavity.

Chapter 2 reviewed some technical details associated with the use of optical cav-

ities, and reviewed the basic theory of cavity quantum electrodynamics (cavity QED). We

introduced the well-known Jaynes-Cummings Hamiltonian and investigated some of the

particularly interesting dynamics that occur in single-atom cavity systems. Then we de-
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scribed the important concepts of dissipation and dephasing in cavity QED, leading to the

master equation formalism for the density matrix of an open quantum system.

In Chapter 3 we examined the important question of the spectroscopic properties

of Xe atoms. We reviewed the basic theory behind the coupling schemes most commonly

used in the description of atomic spectra, and we used the jl coupling scheme to describe the

energy level structure of atomic Xe. After this we discussed the shapes of atomic absorp-

tion lines resulting from homogeneous and inhomogeneous broadening mechanisms and

from hyperfine splittings. A comparison of our theoretical results with an experimentally-

measured absorption spectrum of the 823 nm 6s[3/2]◦2 to 6p[3/2]2 transition in Xe demon-

strated good agreement.

In Chapter 4 we described the technical details of our first proof-of-principle cavity

system. After an overview of the vacuum system we discussed our methods of exciting

Xe atoms into the metastable state, including DC and RF discharges and optical pumping

techniques. We also detailed the design and construction of the cavity itself, calling attention

to a few of the most prominent technical challenges we encountered while using it.

Chapter 5 recounted an experimental demonstration of ultralow-power absorption

saturation using this cavity system. In this experiment we demonstrated the advantages of

using a high-finesse cavity to dramatically enhance the strength of the optical nonlinearities

inherent in Xe atoms. We began with a note on the relationship between critical coupling

of a cavity QED system and the intracavity absorption. We then described our laboratory

system and experimental methods for this measurement. The results shown in Section 5.7

demonstrate that absorption saturation effects began to take place with input probe field

power levels of nW. A similar experiment in free space would have observed the same

effects occurring with power levels of µW, indicating that the use of our cavity resulted in

an enhancement of the nonlinearity of Xe atoms by a factor of roughly 1,000.

137



Chapter 6 described our measurement of cross-phase modulation using the cavity.

After explaining the physical mechanism for producing the cross-phase shift, we reviewed

some of the details of the experimental apparatus used and the steps taken to achieve a

good signal-to-noise ratio in the final measurement. We then developed a theoretical model

to predict the outcomes of experiment runs, with inhomogeneous broadening accounted

for using numerical Monte-Carlo simulations. Our measurement results showed that our

system produced cross-phase shifts of 5 mrad using 5 fJ control field pulses.

In Chapter 7 we reviewed our recent progress in building a new cavity system, with

higher finesse and faster frequency control. We described two designs for the mounting

system to support the cavity mirrors. The first one found some success, but was difficult

to align and unkind to the delicate high-finesse mirror substrates. The second system was

a marked improvement, being relatively straightforward to assemble and align. We have

measured the cavity finesse to be about 80,000, and hope with a few weeks of work to

improve it by another factor of 3∼4.

Low-power optical nonlinearities are extremely useful in optical science, and

single-photon nonlinearities are an important tool in many applications of optical quantum

information processing [8, 11, 20–22]. Experimental systems commonly used to produce

such strong nonlinearities often rely on optically cooling and trapping individual atoms or

clouds of atoms [12, 17–19, 24, 25, 27]. In this work we have shown that metastable xenon

vapor in a high-finesse cavity can can serve as a relatively simple and robust setup for pro-

ducing very strong optical nonlinearities. Further work with our newest cavity should result

in a system capable of producing weak single-photon nonlinearities useful for quantum in-

formation applications [9, 16, 30].
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