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Measurement and Monitoring of the World’s
Forests: A Review and Summary of Remote
Sensing Technical Capability, 2009-2015

Matthew Fagan and Ruth DeFries *

Executive Summary

F orests are ecosystems of fundamental importance to humanity, yet we know little about the

global status of forests. We can make more current and informative maps of Mars than of the
Amazon basin or the Russian boreal forest. This gap in our knowledge arises from several sources,
including a historical shortage of tools to observe the entire globe; the lack of consistent global
initiatives on forests; balkanized, inconsistent recordkeeping; and the absence of a concerted and
systematic effort to inventory and monitor the world’s forests.

To understand the planetary carbon budget, it is imperative to generate accurate and reliable
estimates of global forest cover and the amount of biomass and carbon harbored by the planet’s
forests. Yet widespread uncertainties in forest measurements have hampered efforts to obtain this
basic scientific data. Indeed, the most significant weaknesses in estimates of the planetary carbon
budget derive from uncertainties about terrestrial ecosystems. Satellite-based estimates of forest
cover and biomass have begun to fill this need.

To measure forests worldwide, satellite imagery is a practical necessity. Aerial observations are
expensive at present and only cover small areas at a time. Ground measurements are also expensive
and are logistically challenging and spatially restricted. Neither aerial nor ground observations are
well suited to continuous measurement of the entire global forest. Satellite mapping is necessary to
detect deforestation and regrowth in remote tropical forests and to track the northern expansion of
boreal forests in a warming world. The greatest strengths of satellite-based measurements are their
unparalleled, unbiased measurements, their monthly to daily frequency, and—above all—their
synoptic nature. Satellites provide a general view of the whole Earth that is not possible with any
other forest measurement method.

Scope

We evaluate current and near-term (2009-2015) technologies for measuring and monitoring
global forests. We focus primarily on remote sensing (defined in this report as the analysis of
satellite and aerial imagery), because this technology meets the steep logistical challenge of
measuring the world’s forests in an accurate, repeatable, and inexpensive manner. We emphasize
the observations needed to provide accurate, basic measures of forest attributes for use by forest
scientists, decisionmakers, and the public. We also illustrate how the resulting data would address

* Matthew Fagan (mef2153@columbia.edu) is a graduate student in the Department of Ecology, Evolution, and Environmental
Biology at Columbia University. Ruth DeFries (rd2402@columbia.edu) is the Denning Professor of Sustainable Development in
the Department of Ecology, Evolution, and Environmental Biology at Columbia University.
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some of the most compelling questions that persist about our forests. Remote sensing can
ultimately help to answer these important questions:

e Where are forests being lost and gained?

e How are biodiversity and regional climates responding to forest loss and regrowth?

o How do forests affect the global carbon budget?

e How can forest management be improved by carbon markets and satellite technology?
e How will forests respond to climate change?

In this report, we evaluate the technical capacity of satellite imagery to measure and monitor
global forests. In particular, we examine satellite observations of forest area, volume, biomass, and
carbon. These measurements are fundamental to our understanding of the status and trends of
forests around the globe and to our grasp of the role that forests play in modulating global climate.
We evaluate current capacity and predict future capacity from expected satellite launches and
technological developments between 2009 and 2015. Our findings are summarized in the table on
page Vvi.

Current and Emerging Satellite Technologies

Satellite sensors are either passive or active. Passive sensors receive reflected optical and
thermal radiation from Earth’s surface. Although they are capable of obtaining very high-resolution
images and distinguishing among types of land cover (such as vegetation, bare soil, and snow), they
cannot penetrate cloud cover. Active sensors are less challenged by cloud cover because these
sensors emit radiation and measure the reflections from Earth’s surface. Active sensors can provide
a three-dimensional picture of the ground, although they cannot reliably render landscapes with
sharp changes in elevation, such as mountainous regions.

In general, satellite technology involves a combination of pixel resolution and image size, with
an increase in one dimension requiring a reduction in the other dimension. Coarse-resolution
satellites can generate images of very large areas, but the pixel resolution may be 1,000 meters (m).
Conversely, some sensors can render extremely high-resolution pictures—with pixel sizes less than
half a meter—but only over limited areas. Moderate-resolution satellites, such as those with a pixel
size of 30 m and an image width of 185 kilometers (km), are often seen as a good compromise for
land mapping. The Landsat system, sponsored by the United States, is the oldest and most popular
moderate-resolution sensor, but because of technical failures in the operating satellites, Landsat
imagery coverage is not currently global. Alternative sensors exist, but the planned launches of the
Landsat Data Continuity Mission (LDCM) and the European Sentinel-2 series of remote sensing
satellites are important for continued global land mapping.

The recent availability of free imagery from Landsat and the China-Brazil Earth Resources
Satellite (CBERS) missions has revolutionized global forest mapping and will continue to do so into
the future. Even with free or low-cost imagery, however, cost remains a critical parameter for
worldwide mapping. For example, the required processing capability is large because the volume of
imagery is enormous.

Satellite groups or constellations improve coverage by enabling more frequent, cloud-free
observations of any given point on Earth. Several of these constellations are currently in orbit, and
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more are planned. Geostationary satellites, stationed at some 22,000 miles above Earth (most
Earth-observing satellites are only a few hundred miles above Earth) can provide rapid and
repeated scans of a very large area. The pixel size obtained at a geostationary altitude is only about
2.5 km; by 2014, however, the resolution is expected to improve to approximately 1 km pixel size,
making it possible to monitor global vegetation at coarse-resolution in real time. High-resolution
(0.3-10 m pixel) sensors will continue to increase in number; these sensors do not acquire
continuous, cloud-free, worldwide coverage for forest mapping, but they are ideal for validating
estimates from moderate-resolution sensors.

Active sensors (synthetic aperture radar, known as SAR; and light detection and ranging laser,
known as LIDAR) are currently a small proportion of the satellite fleet, but will dramatically
increase in number and complexity in the next few years, making new types of analysis possible.
The first LIDAR satellite—the Ice, Cloud, and land Elevation Satellite (ICESat)—will be followed by
two others that can address issues in forest management. These other satellites are ICESat-II and
the U.S. Deformation, Ecosystem Structure and Dynamics of Ice satellite (DESDynlI). Two new SAR
satellites that are likely to launch between 2009 and 2015 will revolutionize mapping of forest
biomass. DESDynl will be the first combined SAR-LIDAR mission, and it will integrate the relative
strengths of SAR and LIDAR to create unparalleled measurements of ecosystem structure and forest
height. The European Space Agency’s planned BIOMASS satellite is a long-wavelength SAR,
specifically designed to penetrate forests and measure forest biomass in real time.

Although new satellite technology can revolutionize scientific monitoring and measurement of
Earth, it is not fail-safe. Satellites and satellite launches can, and do, fail. As a result, global forest
measurements need to be accurate and repeated over long time periods. And, at the end of their
operating lifetimes, usually after five to ten years or so, the satellites and sensors need to be
replaced to enable continued measurement and observation over time.

Remote Sensing and Global Forest Measurement

For any worldwide forest monitoring effort to succeed, there must be consensus on forest
definitions, past reference maps (so that change can be detected), and selected forest metrics. We
have chosen the Forest Identity (Kauppi et al. 2006) as an organizing principle for the central
metrics of this report. The Forest Identity relates four forest attributes (area, volume [density of
growing stock], biomass, and sequestered carbon) that provide a useful starting point for global
forest monitoring.

Current maps of forest area have medium to high accuracy.' Monitoring volume, biomass, and
carbon on a regional to global scale is possible with current technology but accuracy is lower (see
table on page vi). Similarly, we can develop past reference maps for forest area (maps of what an
area once looked like), but past reference maps for volume, biomass, or carbon will require
innovative reprocessing of old imagery. For forest area, “accuracy” is roughly defined as the
percentage of pixels in the remote sensing imagery that correctly identify land-cover type. For
forest volume, biomass, and carbon, accuracy refers to the match between predictions from remote
imagery and observed ground measurements.

Yn this report, the overall accuracy of satellite imagery analysis is designated by five standard adjectives: very high accuracy
(>90 percent), high accuracy (>80 percent), acceptable accuracy (>70 percent), low accuracy (50-70 percent), and poor
accuracy (<50 percent). Where alternative qualifiers (for example, “mixed”) are used, we provide the actual accuracy (say, 67
percent).
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Designing a satellite-based, worldwide forest monitoring system requires choices in budgeting,
processing logistics, sampling frameworks, and the collection of validation (or “ground-truth”) data
from forest inventories and high-resolution imagery. Collection of ground-truth data is typically
necessary as a means of determining the accuracy of remote sensing. These data are particularly
essential when attempting to estimate forest volume, biomass, and carbon using remote sensing
technology. Archiving and standardizing global ground-truth data for forests would be a significant
contribution to global forest science. Ground data, aerial imagery, and high-resolution satellite
imagery are expensive and require coordination in a sampling hierarchy for efficiency.

In current coarse-resolution world forest maps, forest area is measured with medium accuracy
as two classes (forest/nonforest) or categorized with low accuracy into homogenous forest types
based on leaf persistence (for example, evergreen forest). Recent improvements in classification
techniques and the combination of distinct types of satellite imagery (called imagery fusion) have
allowed moderate-resolution mapping of forest types with high accuracy (80-90 percent).
Currently, complete forest clearing can be detected with the highest accuracy.

With current technology, it remains difficult to distinguish primary forests from tree
plantations and older secondary forests in remote sensing images. It is also challenging to detect
forest degradation in which a forest is partially cleared by human activity. Significant progress on
these problems has been made in certain geographic regions, but accurate global forest maps with
multiple classes remain elusive. In the years between 2009 and 2015, we can expect to see
numerous improvements that promise to address many of these challenges. Some of the anticipated
advances include:

e hyperspectral satellites that produce imagery with great sensitivity across the
electromagnetic spectrum,

e improved revisit times from optical and SAR satellite constellations,
e improved algorithms for analyzing large amounts of remote imagery, and
e additional high-resolution and active imagery available for fusions.

Active and passive satellite imagery is sensitive to forest structure (both vertical and
horizontal), and forest structure can be used to estimate forest volume, biomass, and aboveground
carbon. Both SAR and LIDAR are directly sensitive to forest volume. SAR images tend to “saturate”
(or fail to penetrate) in dense forests but they can cover large areas. Conversely, LIDAR data do not
saturate but can only measure small areas. In open forests, stereo and high-resolution imagery can
also measure forest height and canopy structure and have the potential to aid LIDAR and SAR
measurements of forest volume and biomass.

Dense forests represent a challenge to satellite estimation of forest volume and biomass.
Scientists seek to overcome this challenge by several means. Three approaches have shown
medium to high accuracy when used in dense forests:

e long-wavelength SAR;

e measurements of forest canopy height using LIDAR or interferometric SAR (InSAR) sensors;
and

o fusions of active and passive imagery.
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Future satellite launches of LIDAR, long wavelength SAR, and InSAR sensors will significantly
improve estimates of biomass, forest volume, and carbon in the near term and may provide
information crucial to the development of a global, ground-level elevation model. If such a model
were available, scientists could create accurate, worldwide maps of forest height and, in turn,
generate global reference maps that estimate historical forest biomass as far back as the mid-
1990s.

Summary and Conclusions

It is possible to improve global measurements of forest area, structure, biomass, and carbon
using remote sensing technologies that are currently available or expected to be in use between
2009 and 2015 (see table on page vi). We are capable of generating highly accurate measurements
of forest area now; technical developments over the next six years will increase the frequency of
moderate-resolution forest imagery and improve our ability to analyze the data generated. These
developments will facilitate discrimination between forest types and the detection of temporal
changes. Refining the accuracy of coarse-resolution maps and developing an accurate moderate-
resolution, global forest map over the next several years could improve forest area measurements.
Such an effort would improve the quality of world forest maps tenfold; we could create moderate-
resolution world forest maps going back to 1975, as we have already done for the United States and
other countries. Historical maps would serve as baselines from which to measure and monitor
changes in forest area.

Today, forest volume, biomass, and carbon stocks can only be estimated conservatively and the
accuracy is extremely variable (see table on page vi) depending on the study and methods used—
although recent imagery fusions show promise. Integration with high-quality forest inventory and
LIDAR data is essential for improving biomass estimates from satellites. Worldwide collection of
forest inventory data is necessary to achieve acceptably accurate global estimates of forest volume,
biomass, and carbon from current satellite imagery. Future SAR and LIDAR satellite launches, such
as DESDynl, BIOMASS, and SAR constellations, are expected to achieve good to high accuracy in
mapping forest volume and biomass. However, it will be necessary to validate these estimates with
extensive ground-truth data and supplement them with historical reference maps of biomass. A
coordinated global effort is needed to achieve these objectives.

For decades, the only institutional effort to generate global forest measurements was the
inventory assembled by the Food and Agriculture Organization of the United Nations (FAO).
Despite the best efforts of the FAO, these estimates are widely recognized as inaccurate. Nations
self-report their forest inventories and differ in how they define forests as well as give technical
means, funding, and priority to the measurement. To fill gaps in data or reconcile conflicting data,
the FAO often must depend on untested assumptions, the chance of data aggregation errors, and
changes in the definition of what constitutes a forest. If we are to understand forest ecosystems—
and if we hope to understand the planetary carbon budget and the role that forests play in
modulating climate—we must improve our ability to measure and monitor forest volume, biomass,
carbon, and trends. Remote sensing has a strong track record in global forest measurement and
planned sensor launches offer even greater potential. A technical approach that integrates satellite
and ground-truth data—and an institutional means to implement it—will enable accurate, global
monitoring of the world'’s forests for the first time in history.
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Expected Improvements in Accuracy in Remote Sensing of Global Forest Identity

Identity Sensors Current (.2.009) Limitations Expected (2999_2015) Limitations
capability capability
Area Optical and | >80% accuracy Lack of detailed global >80% accuracy for Availability of free,
radar, for forest types. Current global maps of moderate-resolution
moderate forest/nonforest | coarse-resolution maps | nonforest and several imagery depends on a few
resolution maps at have more detail, but forest types, at key satellites (e.g. LDCM).
moderate ~65% accuracy.’ moderate resolution (30
resolution (~30— m).
50 m pixels).
Optical, >90% accuracy Many images are A global set of high- Difficulties in
high for needed to map large resolution images will standardization are likely
resolution forest/nonforest | areas:‘images are be gathered by 2015. to persist, limiting use for
maps.’ difficult to standardize global mapping.
for analysis.
Volume | Optical, 40-90% accuracy | See above. Accuracyis | See above. Regional See above.
high for forest volume | low in closed forests equations correcting for
resolution estimates. with tree canopy canopy overlap may be
overlap. developed.
SAR 50-95% Limited to low-biomass | >80% accuracy in dense, | Accurate volume
(Radar) accuracy; >80% forests; higher biomass | high biomass forests. estimates require the
is common for decreases accuracy. launch of a few key
forest volume. satellites.®
InSAR 30-80% accuracy | Lack of ground The amount/diversity of | A global ground elevation
(Radar- for forest volume | elevation data INSAR data will map may be difficult to
derived estimates (from prevents global forest increase.’ Processing develop.
height) forest height). height/volume innovations may create
estimation. ground elevation maps.
LIDAR 45-97% LIDAR sampling is Global sampling of Satellite sensors will be
(Laser- accuracy; >80% spatially limited, data forest and ground spatially limited; global
derived accuracy is intensive, and height will come from LIDAR coverage requires
height) common for expensive. new satellite sensors.’ expensive aerial
forest volume. platforms.
Biomass | Same sensors and accuracy as volume; estimated through correlation with ground-truth points.
Carbon | Same as biomass; estimated through a standard conversion from biomass, with minor inaccuracy (+/-8% max).

Notes: @ Forest types are general (e.g., deciduous forest) in global coarse-resolution maps (>200 m pixels). Their forest/nonforest accuracy is

70-80%.

b Currently, forest-type mapping accuracy for high-resolution imagery is similar to that of moderate-resolution imagery.

€ A very large number of expensive images are needed to create a global map (see Table 5). Global image coverage does not currently exist.

d advances in satellite technology and image processing will allow fusing of InNSAR and SAR for synergy in volume/biomass estimation.

€ These include DESDynl and BIOMASS. Innovations in processing SAR imagery from multiple satellites may also improve volume estimates.

f Global LIDAR sampling of forest volume will allow synergy with forest type maps for regional forest volume estimation.

8 Accurate ground-truth points from forest inventory data are critical to any effort to measure forests using remote sensing (see Section

5.1.5).
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Chapter 1. Forests, Their Measurement, and the Need for Global
Remote Sensing

Sometimes, if you stand on the bottom rail of a bridge and lean over to watch the river slipping
slowly away beneath you, you will suddenly know everything there is to be known.

-Winnie the Pooh

1.1 Current Needs for Forest Monitoring

Forest ecosystems are fundamentally important to humanity. They moderate the climate,
protect streams and soil, generate oxygen, supply wood and other products, provide beauty and
recreation, and house a treasure-trove of biodiversity. We depend on forests for their ecosystem
services—and have done so since the dawn of civilization. It is surprising, then, that we know so
little about the global status of forests. We can make more current and informative maps of Mars
than of the Amazon basin or the Russian boreal forest. There are several reasons for the gaps in our
knowledge:

e adearth (until relatively recently) of tools to observe the world on a global scale,

e ahistorical lack of interest in forests by the political and economic communities (with the
exception of timber companies),

e poor and inconsistent records of global forest cover, and
e an absence of a concerted effort to systematically inventory and monitor the world’s forests.

Maturing observation technologies and intense public interest in protecting and managing
forests make this the time to explore and better understand the world’s forests.

In this report, we evaluate current and upcoming (2009-2015) technologies for measuring and
monitoring global forests. We focus primarily on remote sensing (which we define as the analysis of
satellite and aerial images) because this technology meets the steep logistical challenge of
measuring the world’s forests in an accurate, repeatable, and inexpensive manner. Remote sensing
extends existing ground data to expand our understanding of forests beyond geographically
localized areas. Remote sensing is a rapidly developing field driven by technological advancements
in data gathering and processing and has already yielded many important discoveries in recent
decades about the changing Earth.

Many critical questions about the world’s forests remain understudied by forest scientists. We
focus on the observations needed to provide accurate, basic measures of forest attributes to inform
forest scientists, decisionmakers, and the public. We also illustrate how the resulting data would
address compelling questions that persist about our forests.

Which countries are gaining and losing forests, and why?

We begin with this simple question because it is often at the heart of public understanding of
the status of the world’s forests. For instance, loss of rainforest in tropical regions is often in the
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news. Yet at present, national statistics track only net changes in forest cover and hide forest loss in
countries undergoing reforestation and forest regrowth (Grainger 2008). In addition, country-
measured statistics on forest attributes have often been inconsistent and unreliable. As a result,
long-term changes are difficult to track (Waggoner 2009). It is clear that an increase in forest cover
after a long period of deforestation occurred in the United States and Europe in recent centuries
(Rudel et al. 2005). More recent forest transitions in temperate and tropical countries are disputed
because of uncertain forest statistics (Grainger 2008; Rudel et al. 2005). Improved and continued
global forest monitoring and careful analysis of archival remote sensing imagery would allow more
accurate forest measures.

How are forest loss, forest regrowth, and the replacement of forests by tree plantations affecting forest
biodiversity?

Remote sensing measurements of forest area indicate a decline in tropical forest area from at
least the 1980s onward, and forest regrowth has compensated for only some of the forest loss
(Mayaux et al. 2005; DeFries et al. 2002; Hansen et al. 2008b). Characterizing the response of
tropical biodiversity to deforestation and regrowth has been difficult because we lack extensive
data on the movement of forest species across fragmented landscapes and on the conservation
value of human-modified habitats (Chazdon et al. 2009; Gardner et al. 2008). Even the area of
tropical forest regrowth today is debated (Grainger 2008; Asner et al. in press) because of
difficulties in distinguishing regrowth and tree plantations (Sanchez-Azofeifa et al. 2009). In other
types of forests, evidence suggests that species-rich mature (old-growth) temperate forests are in
decline, but there is limited global measurement of the rate of this decline or of logging disturbance
in mature forests (FAO 2006; GOFC-GOLD 2008). Improved and systematically collected, well-
calibrated observations about forests will enhance our ability to monitor and understand these
changes. New remote sensing analyses of human-modified landscapes could set conservation
priorities and improve predictions of species persistence in modified landscapes.

How will changes in forest cover affect climate patterns, and how will forests respond to climate
change?

The idea that deforestation decreases rainfall is an old one (Marsh 1878), but it was difficult to
scientifically test the idea until the advent of climate circulation models and regional forest maps
(e.g., Malhi et al. 2009; Ramos da Silva et al. 2008). In Brazil, models predict that deforestation of
approximately 40 percent of the Amazon rainforest would result in a large decline in rainfall
throughout the basin and have notable consequences for agriculture in the eastern portion (Ramos
da Silva et al. 2008). In Canada, increases in boreal forest cover may actually increase regional
warming (Bala et al. 2007). Evaluating the effects of different patterns of deforestation on
precipitation requires detailed, updated forest maps in areas that often have high cloud cover and
rapid land-use change.

Forests will be a key indicator of change as climate change advances. Forests will continue to
undergo changes in phenology (the timing of leaf-out and leaf-fall), productivity, and flammability
(Goetz et al. 2005; Phillips et al. 2009). Coupled climate-carbon models predict a marked increase
in respiration in tropical forests with warming and drying, which may set in place a positive
feedback (Tian et al. 1998; Field et al. 2007). In the case of boreal and temperate forests, climate
change is expected to drive significant range shifts and forest expansion in high latitudes (Loehle
2000; MacDonald et al. 2008). Coordinated monitoring of forests would create a valuable record of
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the effect of climate change on natural systems and provide a warning indicator of sudden shifts,
such as changes in leaf water content before forest fires (Chuvieco 2008).

How do forests contribute to the global carbon budget and the “missing sink,” and how can forest
carbon be measured and valued to mitigate climate change?

Terrestrial ecosystems absorb carbon dioxide through vegetation growth and emit carbon
dioxide through metabolism and decay (respiration) and land-cover change (e.g., deforestation).
The amount of carbon stored in vegetation (its carbon stock) is roughly equivalent to the amount
stored in the atmosphere, and about 87 percent of the carbon in aboveground vegetation is stored
in forests (Houghton 2007; Le Toan et al. 2008). Strong evidence suggests that the terrestrial
ecosystem has functioned as a carbon sink for the last 25 years, taking up almost a third of
anthropogenic emissions (Canadell et al. 2007). However, the exact size and cause of this “missing
sink” is not well known because the uncertainty in carbon sink and emissions estimates is very high
(Canadell et al. 2007; Le Toan et al. 2008). Although evidence suggests a large carbon sink in the
regrowing forests in the Northern Hemisphere, sinks in the tropics may also be important (Fan et
al. 1998; House et al. 2003). Recent evidence suggests that this terrestrial “braking” on accelerating
human fossil-fuel emissions may be decreasing (Canadell et al. 2007), but without sound estimates
of its original size, it is difficult to project what impact losing the missing sink will have on global
climate change (Le Toan et al. 2008).

A range of 7 percent to 30 percent appears to characterize the role of forest destruction in
anthropogenic emissions (Canadell et al. 2007; IPCC 2007). There is intense interest in quantifying
forest carbon for an international trading framework on reduced emissions (Herold and Johns
2007; Olander et al. 2008; Gibbs et al. 2007). Extrapolating from ground-based plots
underestimates spatial variation in forest carbon (Houghton et al. 2001; Houghton 2005), and
ground data must be supplemented by accurate, real-time maps of forest area and biomass
(Waggoner 2009; Gibbs et al. 2007).

What is the impact of forest cover on streamflows and erosion protection?

Although it is commonly accepted that forests play a significant role in protecting watersheds,
there is relatively little evidence relating forest cover to flooding (Laurance 2007). Forest mapping
and monitoring is critical to relating land-use change to ongoing measurements of water quantity
and quality. Active areas of research include the effective width and continuity of riparian buffers
and the best configuration of regional forest cover to minimize soil erosion (Allan 2004). To
improve our understanding of hydrology, erosion, and forests, we need to obtain more detailed
measures of forest attributes and monitor forests in a systematic way to detect changes.

How can rapid fire-detection and other forest observations by satellite improve forest management
and certification?

Satellite technology is capable of revolutionizing the management of forest areas. Real-time fire-
detection systems could help combat wildfire and illegal clearing in remote forests, and high-
resolution imagery could improve monitoring and verification of forest management for
sustainable harvest and carbon sequestration (Davies et al. 2009; Souza and Roberts 2005a).
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1.2 A Brief History of Global Forest Measurement and Remote Sensing

Terrestrial ecosystems are the single greatest source of uncertainty in the global carbon budget
(IPCC 2007). The total area of the global forest, its trend in recent years, the amount of biomass and
carbon locked up in our forests—all these estimates, which would seem basic scientific knowledge,
are poorly known (Grainger 2008; Houghton 2005).

There is strong evidence that forests once covered many modern agricultural and arid
landscapes, but regular monitoring of global forest area did not begin until the twentieth century
(Williams 2008). The Food and Agriculture Organization of the United Nations (FAO) started
reporting information about global forests in 1948, publishing an inventory every five years until
1963, when the effort was halted because of poor tropical forest data (Grainger 2008). The FAO
published two assessments of global forest resources in the 1970s (Mayaux et al. 2005), then
resumed regular reporting in 1981. The organization published Forest Resource Assessments
(FRA) for 1980, 1990, 2000, and 2005 (Grainger 2008). FAO reports have been widely criticized for
inaccuracy (for example, see Waggoner 2009); errors in estimating forest area are attributed to
changes in definitions of forests, revisions of estimates based on conflicting data, unreliable
national inventory estimates, and data aggregation errors (Grainger 2008; Houghton 2005).
Historical FAO estimates of forest area are demonstrably assumption-dependent and do not exist
for some countries (Grainger 2008; Houghton 2005). As Waggoner (2009) points out, it is unclear
from FAO statistics whether global forest area is declining or growing.

Remote sensing of forests began in 1972 with the launch of Landsat, the first in a series of Earth
observations satellites in the Landsat program (DeFries 2008). The first continental scale maps of
land cover were produced by Tucker et al. (1985) and Townshend et al. (1987) from 4 kilometer
(km) resolution imagery from the Advanced Very High Resolution Radiometer (AVHRR) satellite,
followed by the first global land-cover map from DeFries and Townshend (1994) at 1 degree
resolution using AVHRR imagery. Loveland et al. (1999) produced a 1.1 km resolution global land-
cover map from AVHRR satellite imagery, followed by several global land-cover maps at 0.5-1 km
resolution (reviewed in Mayaux et al. 2005 and Achard et al. 2007). The highest-resolution global
land-cover map to date was produced in 2007 using data from Europe’s Medium Resolution
Imaging Spectrometer (MERIS) on the Environmental Satellite (Envisat) spacecraft (Bicheron et al.
2008). That map has a resolution of 300 meters (m).

In addition to these global mapping efforts, numerous satellite imagery studies have monitored
global forest area, especially in tropical areas (e.g., DeFries et al. 2002; Hansen et al. 2008b; Achard
etal. 2007; Mayaux et al. 2005). All satellite-based estimates have supported the FAQO'’s assertion
that net tropical forest area has been declining for the last three decades (Mayaux et al. 2005;
DeFries et al. 2002; Hansen et al. 2008b). For the 2000 FRA reports, the FAO sampled 10 percent of
the global forest using satellite imagery, but these data were insufficient for national estimation in
many countries (Tucker and Townshend 2000). For the 2010 FRA, the satellite observation effort
has been expanded globally to sample forest cover at latitudinal grid intersections (Mayaux et al.
2005). Because tropical deforestation is spatially concentrated near roads and agricultural
frontiers, this analysis will only capture national deforestation trends in larger countries (Achard et
al. 2007; Tucker and Townshend 2000).
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1.3 Diversity of Forest Types

The boreal, temperate, and tropical forests are estimated to contain about half of the terrestrial
carbon with the majority of forest carbon stored in forest soils. The amount of carbon stored in
forest soils varies by region because of temperature (see Table 1; Malhi et al. 1999). In boreal
forests, aboveground forest carbon is the tip of an iceberg of soil carbon; low soil temperatures and
forest shade slow decay and the release of soil carbon. The open boreal forest, which is composed of
conifers and a few species of deciduous trees, stretches across the northern high latitudes (Malhi et
al. 1999). Clouds, long northern winters, and short growing seasons make some types of satellite
observation of higher latitudes difficult (Kasischke and French 1997).

Table 1. Comparison of Estimated Area and Carbon Stocks of Forests at Different Latitudes

Latitude (forest type) Area Carbon density: Carbon Carbon stock: Carbon
(million vegetation density: soils vegetation Stock: soils
hectares) (tons/hectare) (tons/hectare) (gigatons) (gigatons)
High (boreal forest) 1,372 65 343 88 471
Middle (temperate forest) 1,038 57 96 59 100
Low (tropical forest) 1,755 121 123 212 216
Sum total 4,165 359 787

Source: Dixon et al. 1994.

The temperate forests, with shorter winters, encompass deciduous forests, conifer-dominated
forests, and forests of broadleaf evergreens in drier areas (Malhi et al. 1999). Widespread historical
clearing of temperate forests emitted significant amounts of carbon dioxide into the air from
biomass burning and disturbance to carbon-rich forest soils (Houghton 2007). The term “secondary
forest” describes forests that are regrowing after a disturbance, such as logging or fire. Much of the
recent carbon uptake in northern latitudes is believed to reside in secondary forests, which are
growing larger and storing soil carbon (Houghton 2005; Fan et al. 1998). Satellite observations
have difficulty detecting small changes in tree height and diameter in growing forests (Houghton
2005).

Highly biodiverse tropical forests cover a large band around Earth’s rainy equator and can be
classified by elevation (montane forests), tolerance (flooded forests, mangroves), and the length of
the dry season, which can be nonexistent (evergreen tropical rain forest) or several months long
(deciduous tropical dry forest). The most common forest type, tropical rain forest, is characterized
by tall trees (>30 m), dense canopies, and very high biodiversity (Malhi et al. 1999). Tropical forests
have been rapidly cleared in recent decades and about half of their carbon is stored in their living
mass, which is emitted when they are cleared (Malhi et al. 1999; DeFries et al. 2002). Tropical
forests evaporate (or transpire) immense amounts of water from their leaves. An estimated 50
percent of the rain in the Amazon basin is from transpiration (Salati and Vose 1984). The intense,
daily cloudiness of tropical forests blocks the view of many types of satellites and decreases the
frequency of clear, cloud-free images (Asner 2001; Olander et al. 2008).
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1.4 For Global Forest Measurement, Why Use Satellite Imagery?

To measure forests globally, satellite imagery is a practical necessity. Both aerial and ground
observations are expensive at present and only cover small areas at a time; ground measurements
are simply impossible over such a large land area (Houghton 2005; Patenaude et al. 2005).
Detecting rapid changes in the area of remote tropical forests (both deforestation and regrowth)
requires satellite mapping (Achard et al. 2007), as will detecting the northern expansion of boreal
forests in a warming world (MacDonald et al. 2008). The greatest strengths of satellite-based
measurements are their unparalleled, unbiased measurements, their monthly to daily frequency,
and—above all—their synoptic nature. Satellites provide a general view of the whole Earth that is
unavailable to any other forest measurement method. For example, satellite imagery is well suited
for detecting country-level deforestation in a REDD (reducing emissions from deforestation and
forest degradation) agreement (Olander et al. 2008), but also detects forest invasions of rangeland,
for example, or forest regrowth after the abandonment of farmland (Houghton 2005).

Satellites can measure forest quantities, like canopy chemistry or daily leaf phenology, that are
arduous or impossible to collect with ground crews (Ustin et al. 2004; DeFries 2008). Although
hand-collected forest data are often more accurate than satellite measurements at the point and
time the data are obtained, satellites collect data across broad areas, sampling the full range of
variation in forest metrics and capturing broad trends and dynamic change in the world’s forests
(Houghton 2005). As such, satellite data allow for integration across ground measurements,
extending them to the global forest. Put simply, satellite imagery measures forests on continental
scales, detects changes in forests that we do not expect or could not measure, and detects them in
real time.

1.5 Scope and Purpose

In this report, we evaluate the current and future technical capacity of satellite imagery to
measure and monitor global forests. Other researchers have provided extensive reviews of current
capacity (Andersson et al. 2009; Sanchez-Azofeifa et al. 2009; Herold et al. 2008; Olander et al.
2008; Achard et al. 2007; DeFries et al. 2007; Patenaude et al. 2006; Mayaux et al. 2005; Rosenqvist
et al. 2003), and we summarize their findings here. We also predict future capacity from expected
satellite launches and technological developments during 2009-2015. This time window effectively
captures in-development satellite technology (although satellites rarely launch on time) and allows
an in-depth look at how well we will be able to measure the world’s forests in the coming years.

The widespread uncertainties in current forest measurement make improvements in global
forest monitoring a scientific imperative. This report focuses on observations of forest area,
biomass, and carbon, addressing the capacity of satellite imagery to answer questions posed above
(Section 1.1). There are many characteristics of forests that are not well estimated globally and are
worth monitoring (Chuvieco 2008; Myneni et al. 2007; Gardner et al. 2007; Phillips et al. 2009),
including several that are important for answering individual questions above (e.g., fragmentation
and forest biodiversity). Forest area, biomass, and carbon are basic forest measurements that are
fundamental to answering scientific questions about forests (Kauppi et al. 2006). As such, they
represent a critical first step in global forest measurement.
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Chapter 2. Remote Sensing and Forest Measurement: An Overview

This chapter is intended as a brief introduction to remote sensing and an overview of current
and emerging sensor technologies—those already familiar with the topic should begin with section
2.4. Remote sensing is generally defined as observing and analyzing a distant target using
information from the electromagnetic spectrum (Jensen 2007). Remote sensing for forest
measurement is mainly conducted from airborne and satellite missions (Jensen 2007; CEOS 2009;
Patenaude et al. 2005; Olander et al. 2008). We use remote sensing in this restricted sense as
observations obtained from aircraft and satellites. In remote sensing terminology, the hardware
that obtains the observations is referred to as an instrument, or a sensor, and is mounted on a plane
or satellite. Remote sensing produces images of Earth’s surface for analysis and interpretation.
Analysis may range from qualitative observations from trained image interpreters to quantitative
measurements from complicated computer algorithms. By analyzing multiple images of the same
location, remote sensing detects land-cover change (modifications in the biophysical cover of
Earth) over time.

2.1 Comparing Satellite and Airborne Remote Sensing

Satellite- and airborne-mounted sensors differ dramatically in their altitude, image coverage,
costs, and spatial resolution. Spatial resolution is defined as the Earth area represented in one pixel
of a remote sensing image (see Figure 1 for a comparison of different resolution sensors). Airborne
sensors function at a much lower altitude than satellite sensors and as a result have a much smaller
image coverage, or swath, than satellite-mounted sensors. For example, aerially mounted sensors
have a swath of 5-11 km, whereas the coverage of satellite-mounted sensors is 15-3,000 km
(Appendix). Airborne sensors are also limited by fuel cost and range, crew logistics, weather, and
the need for national permission to fly and take images. Satellites orbit repeatedly around the
entire globe and their sensors image regardless of weather. Because of provisions in the 1967 U.N.
Outer Space Treaty (UNOOSA 2009), it is not necessary to obtain permission before taking satellite
images of any country. By contrast, overflight permissions are required for aerial sensors. As there
are no expenses for crew and fuel, satellites have much lower operational costs and can image
much larger areas for a fraction of the price of airborne missions (Patenaude et al. 2005; see Table 2
for a cost comparison).

Airborne missions do have some advantages over satellite missions. Airborne missions are
much cheaper to launch, because the sensor is the main expense in developing the mission. Satellite
missions, by contrast, cost hundreds of millions of dollars to construct and launch into orbit, and
unsuccessful launches do occur (Table 2). In addition, airborne missions often provide higher-
quality data than satellite missions. Because a sensor mounted on a plane is closer to the Earth, the
identical sensor will have higher resolution than if it were mounted on a satellite. Airborne
missions are also more flexible in their flight path and instrumentation than satellites. Satellites
must follow a fixed orbital path (see Figure 2a), but planes can time their missions to avoid cloud
cover. Updating instruments—say, to use new technology—is also easier for airborne missions than
on orbiting satellites. As a result, planes often carry newer sensor technology than satellites do.
Interest has been growing in unmanned aerial systems (UAS) for active sensors (see next section);
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unmanned systems have longer flight duration per mission and can fly at night but are more costly
to purchase and operate than equivalent satellite imagery (Swanson et al. 2009).

Figure 1. An Image Taken with Different Spatial-Resolution Sensors

Source: Short 2009.

In summary, airborne missions are relatively expensive to conduct and do not cover a broad
area but are flexible and can provide high quality data (Olander et al. 2008; Andersson et al. 2009).
Satellites can monitor a broad area less expensively and thus are viewed as the best way to measure
global forests remotely (Olander et al. 2008; Andersson et al. 2009; DeFries 2008; Sanchez-Azofeifa
et al. 2009). With approximately four billion hectares of forest area, any global effort to measure the
world’s forests will have to rely heavily on satellite-based remote sensing, with airborne data used
as a supplement in areas where satellite data are lacking in quality, coverage, or accuracy.
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Table 2. Cost Comparison of Airborne, Ground, and Satellite Data for Forest Inventory over the United

Kingdom
Monitoring Forest area Approximate Costs
(square
from remote .
sensin kilometers,
g kmz)
Ground Optical® Radar LIDAR (light
surveyb detection and
ranging laser)
Satellite Airborne Satellite or Airborne
Shuttle
~£0.10/km> ~£250/km>  ~£0.10/km’ ~£300/km’
Alberta Ground  Total UK 28,000 ~£3,500,000 Less than ~£7,000,000 Less than ~£8,400,000
Cover forest area ~£3,000 ~£3,000
Characterization plus
(AGCC) loss afforestation
from Article 3.3  and
D activities reforestation
(AR) since
1990
AGCC gains All UK forest 4,500 ~£307,000 Less than ~£615,000 Less than ~£738,000
from Article 3.3  area planted ~£1,000 ~£1,000
AR activities after
(forest growth December
only) 1989
AGCC gains All UK forest 19,245 ~£1,822,000 Lessthan ~£3,644,000 Lessthan ~£4,373,000
from Article 3.4  area planted ~£2,000 ~£2,000
FM activities after 1940°

(forest growth
only)®

Notes: Data for 2002. AGCC (aboveground carbon content); D (deforestation); AR (afforestation and reforestation); FM (forest

management).

a Costs, rounded to the £1,000, provide guidance only and are for image acquisition without processing. Costs are for acquiring one
dataset only (i.e., for forest to non-forest land cover change detection, at least two datasets are required).
b Medium resolution (15-50 m).
¢ Data collection only, no processing. Estimates based on costs for generating the Country Side Survey 2000,
http://www.cs2000.org.uk/ (Steve Smith, 2004, personal communication).
d Only if FM elected by the UK.
e Based on the assumption that all forests above 50 years of age have reached maturity and do not contribute significantly to the
carbon sink, i.e., trees planted in 1970 contribute "significantly" as a sink for 30 years after 1990.

Source: Patenaude et al. 2005.
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Figure 2a. Pointable Satellites Can Image Many Targets Off Their Orbit by Tilting Their Sensor

2008 CNES. Distribution SPOT Image Corp., USA. All rights reserved.
Note: The Pleiades satellite (20 km swath) is shown here.

Figure 2b. Satellite Constellation over Earth

Source: Image courtesy of NASA. Credit: Ed Hanka.
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2.2 Passive and Active Remote Sensing: An Overview

Remote sensing instruments come in two main varieties: passive and active. Passive sensors,
like cameras, receive reflected and emitted electromagnetic energy from the Earth, and include
optical and thermal sensors (Jensen 2007; see Figure 3). Active sensors aim electromagnetic
radiation, such as laser light or microwaves, toward Earth and read the reflected radiation,
operating much like a laser range finder or sonar (Jensen 2007, see Figure 4).

Figure 3. Comparison of Spectrums of Vegetation, Bare Soil, Snow, and Water
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Note: Note the strong increase in reflectance of near-infrared radiation by the pines and grasses, which is diagnostic of
vegetation.
Source: Short 2009.

Figure 4. Polarization of SAR Waves (HV example)

Source: Natural Resources Canada 2005.
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2.2.1 Passive Remote Sensors: Considerations and Limitations

Passive sensors can capture a wide range of the electromagnetic spectrum that comes from
Earth, from reflected visible light (0.4-0.7 micrometers, abbreviated as um) to reflected near-
infrared radiation (0.7-1.3 pm), reflected short-wave infrared (1.3-3 um), and emitted thermal
infrared (3-14 um). The electromagnetic radiation that sensors receive has already interacted with
the Earth’s surface (primarily through chemical absorption and physical scattering), so it contains
information about chemical and physical properties of the surface (Figure 3; Jensen 2007). For
example, passive sensors can distinguish vegetation, bare soil, snow, and water quite easily, all
based on their relative reflection across the electromagnetic spectrum (see Figure 3 for a partial
comparison). As a result, passive sensors excel at detecting changes in land cover (Hansen et al.
2008b; Cohen and Goward 2004; Asner et al. 2005), vegetation phenology (Myneni et al. 2007;
Soudani et al. 2008), and differences in ecosystem type (Patenaude et al. 2005).

Current passive sensors are not uniformly sensitive to all regions of the spectrum; they receive
most strongly in certain bands of the spectrum, which may be narrow (e.g., 0.415-0.42 pm) or
broad (e.g., 0.4-0.7 um). For example, a broadband sensor that received all visible light (0.4-0.7
pum) equally would image the Earth in black and white. By contrast, the Landsat multispectral
sensor has six bands of intermediate width that are spread from the visible (blue, green, red)
through near- and thermal-infrared wavelengths (see Figure 5 for a comparison of the bands of
different satellites). Hyperspectral sensors, a relatively new technology, have very high spectral
resolution and measure hundreds of narrow bands that are quite sensitive to chemical absorption

signatures (Figure 5).

Figure 5. Bandwidth of Multispectral versus Hyperspectral Satellites
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sensors have tens to hundreds of narrow bands and are able to produce a continuous spectrum.
Source: NASA 2009b. Graph by Robert Simmon.
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Passive optical sensors vary dramatically in their spatial resolution as well as their spectral
resolution. These sensors are classed as high resolution (images with pixels 0.4-10 m in width),
moderate resolution (10-200 m), or coarse resolution (>200 m) (Figure 1, Appendix). Because of
technological tradeoffs that are unlikely to change in the near future, the spatial resolution of
passive sensors is inversely related to the dimension of the swath they can capture (Andersson et
al. 2009; Rosengqvist et al. 2003; CEOS 2009; see Figure 6. At one extreme are the commercial high-
resolution satellites like GeoEye-1, which has a maximum resolution of 0.41 m and an image width
of 15.2 km. At the other extreme are the coarse-resolution sensors like AVHRR, which has a
resolution of 1.1 km and an image width of 3000 km. Some geostationary satellites can image the
entire Earth disc at 1 km resolution. (Geostationary satellites orbit at a high altitude above the
equator and are synchronized with Earth’s rotation, allowing them to operate as if fixed over one
point on Earth.) Moderate-resolution sensors split the difference between the two extremes.
Landsat 5, for example, has a resolution of 30 m and an image width of 185 km. Observing the
entire Earth using a high-resolution sensor is like using a telescope to observe the entire landscape
below a promontory—detail is high, but it takes a long time to see everything. In the same analogy,
using coarse resolution sensors to observe Earth is like viewing a landscape through binoculars.

Figure 6. Spatial Resolution, Cost, and Swath for Current Optical Satellite Sensors

Trade-offs in swath width and image
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Notes: All data is from the Appendix. Due to changing prices, cost is simply noted as free or not free (“cost”). Both axes are
logarithmic for display purposes. The red line highlights good performance among free sensors. Higher resolution sensors face
steep tradeoffs in smaller image swath.

For satellites, this tradeoff in spatial resolution and image size also extends, with exceptions, to
the time it takes for a satellite to image the same location on Earth (the return time). Polar-orbiting
satellites have an orbit that crosses both the Earth’s poles, allowing the spacecraft to image Earth in
successive north-oriented strips as the planet turns underneath the craft’s orbit (Figure 7a). By
orbiting at different speeds and angles, satellites generally space their observations to match the
width of their imaging window (Figure 7b). Coarse-resolution satellites, therefore, can image the
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entire Earth quickly and revisit the same location every few days. More moderate-resolution
satellites can take 10 to 20 days to revisit a location (see Appendix).
Figure 7a. Example of a Fixed Polar Orbit—Landsat satellite
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Source: Short 2009.

Figure 7b. Satellite Orbits are Spaced to Fit the Image Swath

M of limas asch PathPow & repeasirited o e Landian T ardhive,
[ 2 = [T} s L] -

Source: Short 2009.

The exceptions to the image size-return time tradeoff include unusual orbits, pointable
satellites, and satellite constellations. Some satellites have unusual orbits that allow frequent
revisits of certain locations; for example, geostationary satellites observe the same location in real
time. Pointable satellites can image the same spot from several orbits away by turning on their
sides (Figure 2a). Satellite constellations are groups of satellites that, when entrained in the same
orbit, fly over a location with great frequency (Figure 2b).
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Return time is very important to passive sensors, because clouds interfere with the reflection of
radiation. The only way for passive, satellite-mounted sensors to acquire a cloud-free image is to
return frequently enough to capture all of the landscape without clouds. This is especially true in
tropical areas, which are covered by clouds for most of the year (Asner 2001; Olander et al. 2008).

2.2.2 Active Remote Sensors: Considerations and Limitations

Active sensors emit electromagnetic radiation toward Earth, typically microwaves (known as
synthetic aperture radar, or SAR) or lasers (light detection and ranging, known as LIDAR), and then
receive the reflection of their emitted energy. Unlike passive sensors, active sensors are able to
penetrate clouds (although LIDAR is cloud-sensitive) and image during both day and night (before
daily convective cloud building). Active sensors thus have a major advantage in tropical areas
(Rosenqvist et al. 2003; Olander et al. 2008). In general, active sensors explicitly measure the three-
dimensional shape and texture of ecosystems but have difficulty with topography. In addition,
images from active sensors are typically more challenging to analyze than images from optical
images (Kasischke et al. 1997). Orbiting active sensors are increasing in number and complexity,
and most experts expect that analysis of SAR images, in particular, will become easier and more
common in the coming decade (Rosenqvist et al. 2003; CEOS 2009).

Synthetic Aperture Radar (SAR)

SAR systems emit microwaves and measure the strength of signal return, also known as
backscatter. The strength of the SAR backscatter depends on how it interacts with the surface
vegetation and the topography of the landscape. In forested areas, most of the SAR signal reflects off
water-containing biomass (Kasischke et al. 1997) before reaching the ground. Unlike two-
dimensional passive sensors, in which the reflection from a bare mountain appears the same as the
reflection from a flat desert, the emitted energy of active sensors responds to the three-dimensional
shape of landforms and ecosystems (Rosenqvist et al. 2003; Figure 8). In mountainous areas, SAR
signal reflection is dominated by interactions with topography, and the vegetation signal is harder
to analyze due to black shadows and areas of strong, false returns from topography (Jensen 2007;
Rosengvist et al. 2003; Figure 8).

Several adjacent bands of SAR microwave radiation are in use, and large variation exists in
center wavelength between the X-band (~3 centimeters, or cm), C-band (~5.6 cm), L-band (~25
cm), P-band (~65 cm), and VHF (1-15 m) microwave radars (Kasischke et al. 1997; Patenaude et al.
2005). These differences in wavelength affect how the SAR radiation interacts with soil moisture
and the water content of vegetation. Shorter wavelengths (e.g., C and X band) tend to be more
strongly reflected by smaller structures like twigs and thin branches at the top of a forest canopy, so
the majority of the shorter wavelength backscatter does not penetrate very far into a forest. Longer
wavelengths (e.g., L-, P-, and VHF-band) tend to be more strongly reflected by larger structures like
trunks. The strength of SAR backscatter from vegetated areas is often correlated with the amount of
woody biomass in that area (Dobson et al. 1995b; Kasischke et al. 1997). However, SAR bands X
through P all tend to achieve maximum signal return (saturate) at increasing levels of biomass
(Figure 9). The C and X bands saturate at lower thresholds of woody biomass because most of the
shorter-wavelength SAR radiation is reflected from the top of dense canopies.
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Advanced SAR sensors can emit and receive radiation with defined polarizations. Although
natural microwaves undulate in all directions as they propagate, it is possible for SAR systems to
emit and receive microwaves that only propagate in vertical or horizontal angles (Figure 4). This
increases the ability of SAR sensors to measure the roughness and structure, or texture, of the land
surface (SAR texture is more strictly defined as the variability in backscatter return over a defined
area). For example, open fields may reflect more horizontally polarized microwaves than an
irregular forest canopy (Jensen 2007). Newer SAR sensors can have very high spatial resolution
(e.g., 1 m), but it is often necessary to degrade resolution to remove random “speckle” errors by
averaging across four or more pixels. Practically, this means that SAR resolution will always be
between three and four times lower than specified (Rosenqvist et al. 2003).

Figure 8. Difference between Passive (top) and Active (bottom) Sensor Sensitivity
to Topography on a Mountain Island
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Note: Note the shadows and response to topography in the black-and-white SAR image.
Source: Short 2009.
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Figure 9. Saturation of SAR at High Forest Biomass
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Note: This graph shows the saturation of SAR backscatter from the L-band (dark line, top), P-band (gray, bottom), and VHF-band
(light gray, middle) over a forest in Landes, France. In this study, L- and P-band sensitivity to increasing biomass is limited after
100 Mg/ha; other studies have achieved higher sensitivity by combining polarizations.

Source: Le Toan et al. 2004.

It is possible to obtain exact measurements of distance to Earth by using two or more SAR
sensors that receive signals from the same target. This is known as interferometry, and it operates
on the same principles that an owl uses to determine sound direction and distance. With two
separated SAR sensors, the backscatter signal does not arrive at the exact same time or strength at
each sensor. Differences between the paired SAR signals can be used to determine the angle and
distance of the target relative to the sensor (Balzter 2001). There are two types of interferometry:
repeat-pass interferometry, by which two sensors image the target at different times and angles;
and spatial interferometry, by which two sensors separated by a baseline distance image the target
at the same time. Interferometric SAR (InSAR) data can be gathered from two images on different
days (e.g., from satellites flying in a known orbit or formation) or from a sensor specifically built to
contain two SAR sensors.

Using SAR interferometry, passive stereo imaging, or LIDAR (discussed below), it is possible to
produce a three-dimensional map of Earth ’s surface, called a digital elevation model (DEM), that is
accurate to less than a meter of error. The first global DEM was produced in 2000 by the Shuttle
Radar Topography Mission (SRTM), in which a C- and X-band InSAR sensor was mounted on the
space shuttle (Jensen 2007). This DEM is degraded for military reasons from 30 to 90 m pixels
outside the United States, and in forests with moderate or higher biomass, it confuses tree-canopy
height for the ground (Bourgine and Baghdadi 2005; Kellndorfer et al. 2004).
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Correcting SAR images with accurate, ground-level DEMs greatly improves backscatter
interpretation and allows direct forest height measurement using interferometry (Ticehurst et al.
2004; Kellndorfer et al. 2004). The development of a global, ground-level DEM for forested regions
would enable a significant advance in the ability of SAR to measure forests (Kellndorfer et al. 2004;
Bourgine and Baghdadi 2005).

Light Detection and Ranging (LIDAR)

LIDAR systems emit coherent light and measure the timing of signal return from the Earth’s
surface. They are essentially laser altimeters, or range finders, that measure the distance to targets
with great precision by timing how long an emitted laser takes to reflect off the ground target
(Dubayah et al. 2000). The targets that LIDAR samples are small areas called footprints, and the
lasers reflect from foliage and woody biomass as well as from the ground surface. Current LIDAR
systems differ from SAR systems in that they sample footprints at discontinuous intervals, rather
than receive wave reflections from entire landscapes (Figure 10). Interpolation between LIDAR
sampling footprints is necessary to generate vegetation canopy maps or DEMs (Lefsky et al. 2002b;
Figure 11a). The resolution of this technology depends on the sampling density of LIDAR footprints.

Figure 10. Potential LIDAR sampling footprints for the U.S. Deformation, Ecosystem Structure, and
Dynamics of Ice Satellite (DESDynl) mission

Note: Example footprints are dots indicated on t
along the red lines.
Source: Oberto et al. 2008. Courtesy of NASA.

LIDAR systems differ in their footprint size, firing frequency, and the information recorded from
the laser pulse. There are currently two main types of LIDAR systems: small footprint, discrete-
posting systems; and large footprint, waveform-recording systems (Lefsky et al. 2002b). A third
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experimental type, flash LIDAR, scans large areas and receives returns in a similar fashion to SAR
(Swanson et al. 2009). Because this type is experimental, we will not discuss it further in this
report.

Small-footprint LIDARs sample small areas (submeter width) at high density (multiple
footprints per meter, Figure 11a). They record single or multiple return times, or posts, from the
returned laser pulse (e.g., first return, last return, and/or the peak laser returns, Figure 11a). A
large number of small-footprint LIDAR measurements allow creation of very realistic maps of bare
areas and the tops of vegetated canopies (Lefsky et al. 2002b; Figure 11b). Small-footprint LIDAR
pulses are able to penetrate to the ground through dense vegetated canopies only if they are spaced
very closely (Clark et al. 2004b). The large number of closely spaced footprints required to image a
forest canopy currently limits small-footprint LIDAR to aerial surveying of small swaths (e.g., 5 km;
Swanson et al. 2009; Dubayah et al. 2000).

Figure 11a and b. Returns from Small-Footprint LIDAR
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The first graphic (a) shows discrete returns from a small-footprint LIDAR image, with each footprint along a transect ordered

and represented as a dot. The second image (b) is an oblique view of all of the discrete point LIDAR returns; elevation is
indicated by color.

Source: Images courtesy of ImageTree Corp.

Figure 11c. Example Waveform from a Large-Footprint LIDAR

Laser Pulse

Groungd 'y
Reflection

&d Laser enerqgy
1)

Note: The graph on the left-hand side of Figure 11c indicates the actual waveform data collected by the sensor, and the image is
illustrative of the interactions taking place.
Source: Courtesy of the Jet Propulsion Laboratory, NASA.

It is possible to record more information from each laser pulse, and large-footprint LIDARs use
laser pulses large enough to penetrate individual tree canopies (e.g., 10-30 meters in diameter,
Figure 11c). From each footprint, the first laser return indicates the top of the vegetated canopy, the
last laser return indicates the ground elevation (Lefsky et al. 2002b), and the amount of returned
energy per time indicates the height and area of the reflecting surfaces. By displaying the
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distribution of signal returns by return time, LIDAR systems create a waveform image of the
vegetation structure and topography at the sampling point (Figure 11c). LIDAR waveforms are used
to create highly accurate, three-dimensional models of actual forest structure; forest height,
aboveground biomass, and other quantities can be estimated from large-footprint LIDAR (Lefsky et
al. 2002b; Dubayah et al. 2000).

The utility of LIDAR for forest mapping is only limited by the width and density of
footprints. At wide intervals, significant interpolation is necessary to estimate forest height or
underlying topography. Accuracy is lower in heterogeneous areas (Hudak et al. 2002). While small-
footprint, aerial LIDAR typically samples a small area very intensively, large-footprint, aerial LIDAR
may sample 25 m footprints spaced at 50 m intervals. LIDAR missions must balance footprint
width, number, and spacing to measure large areas accurately. Aerial LIDAR systems are commonly
used in both scientific and commercial forest measurement; these primarily are small-footprint
sensors, which despite their limited image swath have impressive detail over imaged forests
(Figure 11b).

Because of the distance of satellites from the Earth and the amount of area the satellite are
designed to cover, satellite-based LIDAR missions are large footprint and widely spaced between
orbital swaths (e.g., 50 m footprints spaced at 1-3 km intervals) (Oberto et al. 2008; NASA 2009a;
Figure 10). There is currently only one satellite-mounted LIDAR sensor, ICESat GLAS (the
Geoscience Laser Altimeter System, carried on the Ice, Cloud and Land Elevation Satellite), and
although its large footprint (~65 m) was not explicitly designed for forest measurement, the
mission is being used to estimate forest biomass and improve DEMs (NASA 2009a; Nelson et al.
2009). Follow-on missions to this LIDAR mission are being planned, but the missions are likely to
have short lifetimes of only three to five years because the lasers burn out after a set number of
uses (NASA 2009a).

2.3 Putting It All Together: Remote Sensing Fusion

Remote sensing for forest measurement uses measured quantities (e.g., canopy greenness
and radar backscatter) to estimate other quantities of interest (leaf water content, forest biomass).
Incorporating more than one source of remote sensing data, known as image fusion, typically
improves estimates of forest properties. These estimates can also be improved by including
information from geographically referenced datasets organized using geographic information
systems (GIS; Figure 12a). For lack of a better term, we define the integration of remote sensing and
GIS data as “GIS fusion.” GIS fusion is standard practice in remote sensing. Image fusion has only
recently increased in prevalence. Both practices greatly increase the power and utility of remotely
sensed data.
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Figure 12a. Example of GIS—Remote Sensing Fusion

Note: Undisturbed forests (green grid) can be mapped by overlaying GIS data on road networks (blue) onto a satellite-derived
forest map.
Source: GOFC-GOLD 2008.
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Figure 12b. Example of Image Fusion

Note: In this case, a lower-resolution color Satellite Pour L’Observation de la Terre (SPOT) image is being fused with a higher-
resolution SPOT panchromatic image, in a type of coarse-fine image fusion known as pan-sharpening. Notice the boat wakes
that appear only in the higher-resolution panchromatic and fused images.

Source: Short 2009.
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2.3.1 Image Fusion

Satellite imagery from two or more sensors can be combined to create a single image (or
dataset) with higher resolution and/or utility (Treuhaft et al. 2003; Walker et al. 2007; Roy et al.
2008; Dalponte et al. 2008; Saatchi et al. 2007). All types of images can be fused. Fusion refers to
the creation of new maps by combining data from overlapping images (Figure 12b). The two most
common types of fusions are active-passive and coarse-fine, but the potential for image fusion is
limited only by available data.

Passive and active sensors measure very different quantities about Earth’s surface and differ in
uses. Because a passive sensor measures reflectance from surfaces with different physical and
chemical properties, the sensor measures light absorption by green, photosynthesizing leaves. The
degree of light absorption by photosynthezing leaves is a proxy for estimating forest productivity
(the rate of biomass production). An active sensor can estimate secondary forest biomass by
measuring the three-dimensional structure of forests. Because productivity is positively correlated
with biomass in low-biomass forests (Keeling and Phillips 2007), fusing a passive image with an
active SAR image yields better estimates of productivity and biomass than either image by itself.

For passive sensors, current limits on data storage and the capability of sensors mean that no
one sensor can simultaneously maximize pixel resolution, spectral resolution (number of bands),
and area of coverage (Andersson et al. 2009; Jensen 2007). Thus, it is difficult to cover large areas
with high-resolution imagery without having to “mosaic” (or combine) thousands of diverse images
taken at different times (Andersson et al. 2009; Figure 13). Each image must be corrected for
differences in solar illumination and atmospheric haze, and such correction is often difficult. One
way to improve the resolution of wide-swath sensors is to fuse high-resolution imagery with coarse
resolution imagery. In pan-sharpening fusion, the high-resolution imagery is used to increase black-
and-white (panchromatic) detail in the coarser color image (Figure 12b; Qian et al. 2007). In
training fusion, high-resolution images are used to correct the estimates of the coarser resolution
imagery in an iterative process. Both of these methods can dramatically improve the resolution and
utility of coarser-resolution imagery (Qian et al. 2007; e.g., Hansen et al. 2003).

2.3.2 GIS Fusion

Fusing GIS data with remote images is routine (e.g., Jensen 2007). Use of GIS allows
organization and display of datasets with exactly known geographic locations (geo-referenced
data). These locations can be ground derived (e.g., city building datasets) or taken directly from
remotely sensed imagery (e.g., road, land cover, or DEM datasets). Integrating GIS data with remote
sensing imagery makes new analyses possible (e.g., roads and logging; Asner et al. 2006) and can
improve estimates from remote sensing data (e.g., climate and biomass; Baccini et al. 2004). Geo-
referenced data are used regularly to quantify and improve the accuracy of remote sensing analyses
and predictions in a process known as ground-truthing. Ground-truth data are high accuracy data
used to evaluate, or validate, the accuracy of maps derived from satellite imagery. These data are a
crucial component of remote sensing (see Section 3.1.3). The increasing integration of GIS and
remote sensing has facilitated display and communication of satellite imagery between scientists
and for the public, as witnessed by the explosive growth in mapping in society and the widespread
use of Google Earth, Microsoft’s Bing Maps, and other products.
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Figure 13. Mosaic of Moderate-Resolution Landsat 7 Images

Source: Image courtesy of U.S. Geological Survey Global Visualization Viewer (GLOVIS).

2.4 An Overview of Current and Near-Term Earth-Observing Technology

There are many Earth-observing satellites (EOS) currently in orbit, both active and passive,
including approximately 110 nonmilitary satellites (UCS 2009). There are about 75 distinct sensor
types focused on observing the Earth’s surface with coarse or higher (<1.5 km) spatial resolution,
and these are the subject of this section.

Between 2009 and 2015, we expect approximately 87 additional surface-focused EOS to be
launched, many of them bearing new types of sensors. The majority of EOS are not commercially
owned, but many national agencies sell their imagery at commercially competitive prices. The
Appendix summarizes the characteristics of current and expected EOS. We divide the sensors into
five categories: high-resolution passive sensors (<6 m), moderate-resolution passive sensors (6-
150 m), coarse-resolution optical sensors (>150 m), active sensors, and future (2009-2015)
satellite sensors. We discuss other miscellaneous EOS and notable airborne sensors only briefly.
When an individual sensor spans categories depending on its mode or band, we place it in the more
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dominant category for that sensor. We gathered all of the data and specifications on satellites from
the sources noted in the Appendix and publicly available websites.

2.4.1 Current Sensor Technology

Multispectral passive satellites make up the vast majority of EOS and have been increasing in
spatial resolution, spectral resolution, and return frequency in recent years. Spatial resolution has
increased in moderate-resolution satellites, but the advent of high-spatial resolution, pointable
commercial satellites has changed the cost and availability of high-resolution imagery. These
increases in spatial resolution have often come at the cost of image swath (see Figure 6), but
technology is improving overall, as illustrated by the wide swath but moderate resolution of the
Disaster Monitoring Constellation (DMC). There are a few hyperspectral satellites currently in
operation (e.g., the U.S. Moderate Resolution Imaging Spectroradiometer (MODIS), the Hyperion
instrument on the U.S. Earth Observing Mission-1, and the Compact High Resolution Imaging
Spectrometer (CHRIS) on the European Space Agency’s Project for On-Board Autonomy (PROBA)
spacecraft), but in general most satellites measure between one and 12 bands (Appendix). Several
notable coarse-resolution satellite constellations have been in operation for decades, including
AVHRR and GOES, the U.S.-launched Geostationary Operational Environmental Satellites. The
recent launching of more moderate- to high-resolution constellations, such as MODIS, the DMC
series, and the RapidEye series, is dramatically changing return times for forest measurement
(Appendix). Whereas Landsat produces images once every 16 days, and cloud-free images in some
areas only occur once a year (Olander et al. 2008; Asner 2001), the DMC series has daily imaging
capability (see the Appendix).

Recent and upcoming SAR sensor launches will increase the number of active sensors in orbit.
Modern SAR satellites have higher and more flexible spatial resolution, greater image swath
flexibility, and more polarization modes than previous satellites (see the Appendix). Japan'’s
Advanced Land Observing Satellite (ALOS), which includes an L-band sensor with four polarization
modes, has been used for global forest cover mapping since its launch in 2007 (Olander et al. 2008).
There is only one functioning land-observing LIDAR satellite. The biggest barrier to widespread
usage of active sensors remains the technical difficulty of processing SAR data, but the cost of SAR
data, although equal to some optical sensors, is also a barrier to global mapping (Patenaude et al.
2005).

From the standpoint of global forest measurement, the most significant recent advance in
remote sensing analysis is economic, not technological. As of early 2009, the U.S. Landsat archive
(1972-2009) became freely available, enabling global and temporal analysis on moderate-
resolution imagery (Olander et al. 2008). The regional China-Brazil Earth Resources Satellite
(CBERS) archive (1999-2009) of imagery is also now free in most developing countries (GOFC-
GOLD 2008; Powell et al. 2007). Currently, these two free imagery series offer the highest
resolution coverage per dollar, and they have a good temporal record (Figure 6). In conjunction
with other free MODIS and AVHRR data, it is now possible to survey global forests daily with
coarse-resolution images and create moderate-resolution forest maps with monthly to annual
frequency. The Landsat Data Continuity Mission, or LDCM (and the upcoming Landsat 7 imagery
mosaics, see below), will continue this free data policy and make it possible to develop a long-term,
global record of land use and land cover (Loveland et al. 2008).
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Coarse-Resolution Passive Sensors

Coarse-resolution passive sensors have a pixel size of 200-1,500 m, receive radiation in the
optical through thermal range, and have image swaths ranging from 360 km to the full Earth disk
(Figure 6, Appendix). It would take between 14 and 40 AVHRR or 25-80 MODIS images to cover the
13.4 billion hectare (ha) global land area (estimates are inexact for coarse-resolution images that
include land and water; Table 3). Because coarse-resolution is useful for monitoring weather and
climate, many coarse-resolution sensors are parts of large constellations. For example, the AVHRR
sensor constellation included 12 satellites between 1978 and 2009, including several satellites
operating simultaneously (Jensen 2007). Although many coarse-resolution sensors only have a few
visible or near-infrared bands at resolutions too coarse to detect most land-cover change, the very
high repeat times make these sensors ideal for monitoring phenology, fire, and other ephemeral
events. The advent of “moderate” coarse sensors (e.g.,, MODIS, MERIS, 250-300 m) has improved
global land-cover mapping (Herold et al. 2008). A recently launched hyperspectral coarse-
resolution sensor mounted on the Indian Microsatellite (Interactive Multisensor Snow and Ice
Mapping System Hyper-Spectral Imager, IMS HySI) has potential for land-cover mapping as well
(Appendix).

Coarse-resolution sensors are mounted on both polar-orbiting satellites and geostationary
satellites. Although geostationary satellites image the entire Earth disk in real time, current sensors
are ultracoarse (>1.5 km) in resolution and only the GOES series is described here as an example in
the Appendix. There are several long-term, similar geostationary satellites series supported by the
United States (GOES), Europe (Meteostat), Russia (Elektro), and China (FY-3 and -4).

Table 3. Costs of Imagery for Wall-to-Wall Sampling of the Global Land Area

Satellite sensor Sensor type (pixel Number of images Price per km? (in Estimated total
size) required US$, 2009) cost

MODIS Coarse-resolution 25-80 Free SO
(250-1,000 m)

Landsat 7 ETM Moderate- 3921 Free, formerly S0, formerly
resolution (28.5 m) $0.02 in 2008 $2,683,700

GeoEye-1 High-resolution 580,787 $25 (for a basic $3,354,625,000
(1.65m) image of Europe)

ALOS Phased Coarsest-resolution | 1096 $0.0017 $230,075

Array type L-band | mode (100 m)

SAR (PALSAR)

Note: Created from Appendix 1 for selected sensors; the number of required images is an estimate based on the 134,184,000
km? global land area (see text). Prices change; these estimates are for 2009. ALOS PALSAR would likely be degraded to 400 m
resolution for accuracy.

Moderate-Resolution Passive Sensors

Moderate-resolution (10-200 m pixel) passive sensors can receive optical through thermal
radiation and have image swaths ranging from 60-890 km (Figure 6, Appendix). [t would take
approximately 3,921 Landsat images to cover the global land area Table 3. There are currently five
major moderate-resolution satellite series: Landsat, the Satellite Pour L'Observation de la Terre
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(SPOT), CBERS, the Indian Remote Sensing (IRS) satellites, and the DMC series (Achard et al. 2007;
Powell et al. 2007). In addition, China, Argentina, Thailand, and Russia all support individual
moderate-resolution satellites, but it is unclear whether China’s data are available to the public.
Additionally, there are several experimental moderate resolution satellites, most notably the
hyperspectral Hyperion and CHRIS sensors, and these have shown promise for hyperspectral
imaging as a means of distinguishing land covers (Ustin et al. 2004).

The Landsat series (satellites 1-7, 1972-present; Jensen 2007) is the workhorse for global land-
cover analysis. Unfortunately, Landsat 5 is only transmitting data in regions with ground stations,
and Landsat 7 had a scan-line failure in 2003 that caused black stripes to appear in the sides of its
images. The United States Geologic Survey (USGS) is working to mosaic Landsat 7 images to correct
the scan-line problem, but the next Landsat is not due to be launched until 2012 (Loveland et al.
2008). A continual record of global land cover requires filling the 2003-2012 Landsat data gap.
There are several possible approaches. The Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER, launched in 1999) is a moderate-cost satellite that has near-global coverage
(Jensen 2007). SPOT (1-5, 1986-present; Jensen 2007) is a satellite series with global coverage but
data are relatively expensive to purchase (Figure 6). The CBERS series (three satellites, 1999-
present; Jensen 2007) is a growing constellation of satellites with free imagery, but the imagery is
focused over Brazil, China, and most recently, Africa. The IRS series (seven satellites, 1988-present;
Jensen 2007) is a large, long-running constellation with global image coverage available at some
cost. Finally, the DMC series is a constellation of satellites from different countries in the same
orbit; images from daily overflights are providing an important commercial backup to Landsat
(GOFC-GOLD 2008).

High-Resolution Passive Sensors

High-resolution (0.3-10 m pixel) passive sensors receive optical through near-infrared
radiation and have image swaths ranging from 11 to 70 km (Figure 6, Appendix). There have been a
number of commercial and national launches since the first high-resolution satellite, IKONOS,
launched in 1999, and these additions to the fleet of EOS have led to the formation of commercial
high-resolution constellations. These constellations include high-resolution instruments operated
by several U.S. companies, including GeoEye and DigitalGlobe. One of the challenges of using high-
resolution imagery for global forest mapping is that approximately 580,787 GeoEye-1 images are
required to cover the global land area (Table 3). Most of the high-resolution satellites have five
bands; four narrow bands in the visible and near-infrared, and one higher-resolution panchromatic
band that can have sub-meter resolution (for national security requirements, pan resolution is
actually degraded to 0.5 m on U.S. commercial satellites). There have been several recent launches
of solely panchromatic sensors with primary applications in defense and mapping. Most high-
resolution sensors are pointable, decreasing their effective return time from, for example, 26 days
to three days. This results in spotty global coverage, particularly for forests, as the coverage is often
concentrated in densely populated and less cloudy areas. The recent development of cheap
microsatellites that can be launched as a constellation (e.g., RapidEye) or as an on-demand sensor
(e.g., the U.K.’s microsatellite, TopSat) could dramatically increase the global coverage and return
time of high-resolution sensors (Kramer and Cracknell 2008).
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Active Sensors

Active sensors (SAR and LIDAR) currently make up a small proportion of land-observing
satellites; there are approximately nine SAR sensors and one LIDAR sensor in orbit (Appendix).
Active sensors have resolutions ranging from 1-1,000 m and image swaths ranging from 10-500
km; it would take approximately 1,096 ALOS images to cover the global land area. In the last
decade, SAR satellite technology has improved to four polarity options and variable resolution
(with smaller swaths at higher resolutions) in different imaging modes. Until 2006, all publicly
available SAR satellites carried C-band sensors (Jensen 2007) except for the L-band Japanese Earth
Resources Satellite (JERS-1) mission that ran from 1992-1997, the short-lived Seasat (L-band) and
Almaz (S-band) missions, and the brief SRTM and Shuttle Imaging Radar (SIR) -A, SIR-B, and SIR-
C/X shuttle missions. The Canadian RADARSAT series has been gathering C-band SAR imagery
since 1995, and the Envisat ASAR has been gathering C-band as well since 2002. The most recent
satellite launches, ALOS (L-Band), TerraSAR-X, X-band), and Constellation of Small Satellites for
Mediterranean Basin Observation (COSMO-SkyMed, X-band), have increased the diversity of SAR
bands in orbit. ALOS provides global coverage, TerraSAR-X is the first satellite in an interferometric
constellation, and COSMO-SkyMed is a microsatellite SAR constellation with a variety of modes.
When evaluating the spatial resolution of SAR satellites, given in the Appendix, it is important to
remember that their effective resolution after speckle averaging will be three to four times more
coarse, approximately 50-100 m.

The first ground-measuring LIDAR altimeter, ICESat, was launched in 2004 and a follow-on is
planned. While the swaths ICESat measures do not cover the entire land surface, the instrument has
provided useful information for modeling ice, elevation, and forest structure (NASA 2009a).

2.4.2 Expected Sensor Technology, 2009-2015

Future satellite launches will fill current data gaps, provide follow-on missions, populate
constellations, and provide new functionality. The diversity of countries with satellites in orbit will
increase with new satellites from Spain, Turkey, Taiwan, the United Arab Emirates (UAE), Sweden,
Ukraine, Malaysia, and Nigeria. The majority of launches will come from China, the United States,
countries in the European Union, Argentina, and India, with notable smaller contributions from
Brazil, Russia, Canada, and Japan (Appendix).

Among follow-on missions, the LDCM, CBERS-3, and the ultrahigh-resolution GeoEye-2 merit
mention for their advanced technology. Both national and commercial high-resolution optical
missions will continue to increase in number as microsatellite technology lowers the costs of
production (CEOS 2009; Olander et al. 2008; Kramer 2008). Several new SAR constellations are
planned (TerraSAR, Sentinel 1, RADARSAT, ALOS, and Satélite Argentino de Observaciéon Con
Microondas, or SAOCOM-1 series). The Sentinel-2 series, a moderate-resolution optical
constellation, is also planned. There will be several new moderate-resolution hyperspectral sensors
(Environmental Mapping and Analysis Program, or EnMap; Hyperspectral Infrared Imager,
HyspIRI; Technology Experimental Satellite Hyperspectral, TES-HYS; Satélite de Aplicaciones
Cientificas F (SAC-F), and Prisma). Most notably, of the 87 or so land-observing missions planned
between 2009 and late 2015, 25 will mount SAR sensors, two will mount LIDAR, and one will
mount both—a dramatic increase in the number and diversity of functioning active sensors.
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Overall, it is likely that spatial resolution, return times, and SAR capabilities will improve over
the 2009-2015 period, with significant new hyperspectral, InSAR, and LIDAR functionality. Despite
the unpredictable nature of government data policies and imagery prices, as well as uncertainties
relating to launch schedules and success, the next six years will likely bring a significant expansion
in the capacity of remote sensing to monitor the Earth’s surface.

Expected Coarse-Resolution Passive Sensors

Approximately 27 coarse-resolution sensors are planned for launch between 2009 and 2015,
but it is unclear if data will be publicly available from nine sensors to be launched by China. Most
launches will continue constellations (e.g., GOES, Fengyun 3[FY-3]), with the AVHRR sensor
continuing on Meteorological Operational Satellite A (MetOp-A) and MetOp-B. The United States
plans to launch a new satellite series, the National Polar-orbiting Operational Environmental
Satellite System (NPOESS), as a replacement to the MODIS and AVHRR satellites, but NPOESS has
lower maximum resolution than MODIS and may be more suitable as an AVHRR follow-up
(Townshend and Justice 2002). Two sensors that may be more suitable successors to MODIS are the
Global Change Observation Mission C1 (GCOM-C1, with 11 bands at 250 m resolution) and the
Sentinel-3 series (with 21 bands at 300 m resolution). Most experts agree that it will be difficult to
match the combination of resolution, revisit time, and free imagery that MODIS currently offers for
global land-cover analysis.

In addition to GCOM-C1 and the Sentinel-3 series, there will be a few technical improvements in
coarse-resolution sensors. Gisat will mount a coarse sensor, a moderate sensor, and a coarse-
resolution hyperspectral sensor. SAC-D will be a coarse-resolution thermal infrared sensor to
measure the temperature and energy release of fires. Most significantly, real-time monitoring of
vegetation and productivity will become possible after 2014, with the launch of visible and near-
infrared (VNIR) geostationary sensors with a resolution of 1 km. These sensors, starting with GOES-
R, offer a significant improvement over current technology.

Expected Moderate-Resolution Passive Sensors

At least fifteen satellites bearing moderate-resolution sensors are planned for launch. These are
Nigeria-Sat-2, Amazonia-1, RASAT, SAC-F, ARGO, CBERS-3, CBERS-4, Kanopus-V, Resourcesat-2,
Resourcesat-3, LDCM (Landsat 8), Gisat, HyspIRI, Sentinel-2A, and Sentinal-2B. The multispectral
ARGO, LDCM, Resourcesat-2, Gisat, and Sentinel-2 sensors are expected to collect global data.
Several hyperspectral moderate-resolution sensors are under development. Of the six planned
hyperspectral sensors (EnMap, HyspIRI, TES-HYS, Gisat, Prisma, and SAC-F), only HyspIRI has a
swath size suited to frequent global coverage. If launching agencies support global data collection,
this increasing diversity will safeguard global coverage against the loss of a single satellite.
Resolution in the SPOT series has improved to the point where SPOT-5 and SPOT-6 are considered
wide-swath, high-resolution sensors. The LDCM will have nine bands and maintain continuity in a
critical imagery series, India’s Resourcesat-3 will have 23 m resolution and an extra-wide swath of
700 km, and the Sentinel-2 series will be an advance in sensor technology, with high-resolution (10
m) capability, 13 bands, a wide swath (240 km), and three dedicated bands for atmospheric
correction. If the LDCM fails to launch or operate properly, an interruption in free access to global
imagery is likely.

£ RFF | FAGAN AND DEFRIES 30



Expected High-Resolution Passive Sensors

Although it is difficult to anticipate commercial launches, the next several years will see an
increase in the number of “standard” (four-band VNIR, resolution 1-10 m) high-resolution sensors
(Appendix). Several countries have taken advantage of the lower cost of microsatellites to create
high-resolution sensors with technical assistance from aerospace companies (e.g., DubaiSat (UAE)
and Malaysia’s RazakSat). Microsatellite technology has led to the high-resolution RapidEye
constellation of six satellites. The constellation will be completed by the addition of the satellite
ARGO in mid-2009. With high revisit times and a larger swath than many high-resolution satellites
(78 km), RapidEye has the potential to develop global coverage quickly (RapidEye 2009).

Some improvements in high-resolution sensor capabilities and lower data costs are expected.
WorldView-2 will have substantial spectral and spatial resolution with eight bands in the VNIR and
1.8 m resolution. The Vegetation and Environment Monitoring New Micro-satellite (VENuS) will
also offer high spectral and spatial resolution, with 12 bands in the VNIR with a resolution of 5.3 m.
Pleiades-1 and Pleiades-2 are extremely pointable (+/- 50°) and will add flexible, high-resolution
capacity to the SPOT series. SPOT-6 will also continue the SPOT series, with a wide swath (60 km)
and higher resolution (8 m, 2 m pan). GeoEye-2 will have the highest spatial resolution (0.25 m) in
the 2009-2015 interval. Prisma will integrate a 2.5 m resolution pan camera with hyperspectral
imagery, and the Sentinel 2 series (discussed above) will have high-resolution imagery (10 m) in
the VNIR with a very wide swath. Finally, CBERS-3 and CBERS-4 will combine high-resolution
imagery with a moderate-resolution imager and a coarse-resolution thermal imager.

Expected Active Sensors

SAR and LIDAR sensors will make up a third of new launches from 2009-2015, with an increase
in the diversity of SAR bands (C, X, S, L, and possibly P), functions (InSAR and dual InSAR/LIDAR),
and number of SAR constellations. The TerraSAR-X (X band) constellation will fly in interferometric
formation to produce a high-resolution digital elevation model for commercial purposes. The
resolution will be 1 m before speckle averaging. The COSMO-SkyMED constellation (X-band) will be
integrated with the planned SAOCOM-1 constellation (L-band) for twice-daily overflights in two
bands. The RADARSAT Constellation (C-band) will continue the long-running RADARSAT series of
imagery and decrease revisit time (eoPortal 2009). The Sentinel-1 constellation (C-band) will have
an interferometric mode and variable swath width. Finally, the launch of ALOS-2 will create a high
quality, L-band constellation.

There are several advances in active sensor technology planned for launch, including a variable
C/X-band sensor (Disaster Management SAR, or DMSAR), interferometric sensors (InSAR, several
satellites), a LIDAR follow-on mission (GLAS), a high-resolution S-band sensor (Huanjing IC [H]-
1C]), a LIDAR-InSAR integrated L-band sensor (U.S. Deformation, Ecosystem Structure and
Dynamics of Ice satellite, or DESDynl), and potentially a P-band interferometric sensor (BIOMASS).
Of these, DESDynlI, GLAS, and BIOMASS merit special mention for their potential to inform forest
measurement and monitoring. DESDynl would be the first integrated InSAR-LIDAR mission, and it
would combine the relative strengths of InSAR and LIDAR to create unparalleled measurement of
ecosystem structure and forest height. GLAS would continue global LIDAR measurement, thus
increasing the accuracy of global DEM estimates. BIOMASS is currently a sensor concept under
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consideration for launch in late 2015 or early 2016 and would consist of a P-band, interferometric
SAR specifically designed to measure forest biomass in real time.

2.4.3 A Cautionary Note on Planning and Satellite Technology

Although planned launches are good indicators of future possibilities for Earth observation,
successful satellite launch and operation are never guaranteed. Satellite launches are usually
delayed by budgetary and construction exigencies. Satellites regularly fail to launch (examples
include the launch failures of Landsat 6, IKONOS-1, and the Orbital Carbon Observatory, in 1993,
1999, and 2009, respectively). Once in orbit and functioning, satellites have expected operating life
spans and often outlive these, but their actual operating lifespan is a matter of chance. An
instrument on Landsat 7 had a major problem four years after launch, while instruments on
Landsat 5 are still functioning 24 years after launch (Powell et al. 2007; Loveland et al. 2008).
Satellite-borne sensors can degrade and shift in quality over time, as well, and their image products
require regular calibration and validation. Processing and distributing the data generated by the
sensors are as important as having the satellite in space; many data are difficult to obtain or process
or are not made widely available. As a result, long-term, global forest monitoring plans cannot rely
on single satellites to carry out the bulk of data collection.
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Chapter 3. Technical Considerations in Global Forest Monitoring

The use of remote sensing to provide accurate, long-term global forest measurements requires
several technical and logistic choices. Agreement is required about what actually constitutes a
forest and which forest quantities to measure. The selection of satellite imagery and image analysis
methods must be guided by the forest measurements of interest and by basic principles of scientific
inquiry, such as accuracy, repeatability, and longevity. To detect changes, it is necessary to create
reference forest maps. A consistent survey method must be selected that balances analysis time,
coverage, and accuracy. Finally, the logistics of image processing, cost, and ground-truthing must be
considered (Sanchez-Azofeifa et al. 2009; Achard et al. 2007; Gibbs et al. 2007; Olander et al. 2008).

3.1 Measuring Forests Globally

Any global effort to monitor the world’s forests must begin with common definitions and
common measurements. Defining a forest is not as simple a task as it might seem, given the wide
variation in forest ecosystems from country to country and the dynamic nature of forest regrowth
after human disturbance. For example, at what tree density should an open ecosystem of short
trees and grass be classified as a forest? Is a clear-cut deforestation? Is an abandoned tree
plantation a forest?

To measure forests effectively, we must be able to compare ground measurements taken by
foresters and forest ecologists to those taken by remote sensing measurements. To do this, we must
be clear about which forest characteristics we are interested in measuring.

3.1.1 Defining Forests

The exact definition of forest versus nonforest has important consequences for the monitoring
of deforestation and forest degradation as well as political efforts to reduce carbon emissions.
Currently, only the FAO uses a single global standard definition of forest. In 2005, the FAO defined a
forest as a minimum cover of 10 percent, height of 5 m, and area of 0.5 m (FAO 2006). Under the
Kyoto Protocol, participating countries define forests within their borders by selecting one value of
minimum area, tree height, and canopy cover from the following range: area of 0.05-1 ha, minimum
tree height of 2-5 m at maturity, and minimum crown cover of 10-30 percent (UNFCCC 2001).>

Deforestation is defined by the United Nations Framework Convention on Climate Change
(UNFCCC) as a semi-permanent conversion of forested land to other uses. This definition assumes
that regrowth will not occur quickly and excludes temporary declines in canopy cover due to
logging (UNFCCC 2001). Remote sensing has difficulty distinguishing areas of deforestation from
intact forest when the intact forest definition includes a very low canopy cover threshold (e.g., 10
percent). The opposite is true for forest degradation, which is defined as a decrease in forest canopy
cover without deforestation; lower canopy cover thresholds increase the likelihood of detecting
degradation (e.g., a decrease from 90 percent to 10 percent cover).

The lack of a global standard definition for forest cover makes it difficult to create forest maps
that can be readily used by all countries, but the FAO standard may be a useful starting point.

2 An updated list of forest definitions by country can be found at http://cdm.unfccc.int/DNA/index.html.
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Ideally, global forest monitoring efforts will create maps, such as a set of processed data known as
the “vegetation continuous fields product” from MODIS (Hansen et al. 2003), that interested
countries can resample to fit their forest definitions,

3.1.2 Forest Measurement and the Forest Identity

Historically, forest measurement has been ground based, as described in Chapter 1. Foresters
and forest ecologists have measured several forest quantities including these:

e Dbiodiversity—species richness and evenness in an area;
e canopy qualities—openness, leaf area index (LAI), leaf water content, and phenology;

e structural variables—tree density, basal area, tree height, and tree diameter at breast height
(DBH);

o forest-floor qualities—litterfall, soil carbon content, and seedling density; and

e ecophysiological characteristics—transpiration rate, tree respiration, water stress, and
nitrogen flux.

An organizing principle, the Forest Identity (Kauppi et al. 2006), is a central theme in the
remainder of this report. The Identity relates four forest attributes (area, volume [density of
growing stock], biomass [the mass of living material], and sequestered carbon) and is summarized
in detail by Waggoner (2009). The Forest Identity attributes are related: forest area (ha) can be
converted into volume (cubic meters, or m3) using stem density (m3/ha); volume (m3) can be
converted to biomass (kilograms, or kg) using wood density (kg/m3); and biomass (kg) can be
converted to carbon (kg C) using carbon density (kg C/kg). As discussed earlier, any successful
global forest-monitoring project will have to integrate remote sensing and ground data. The
simplicity of the Forest Identity makes it straightforward to convert between ground
measurements and remote sensing (Table 4; Kauppi et al. 2006). The components of the Forest
Identity tie together four scientifically and economically important forest characteristics and
provide a useful starting point for global forest monitoring.

3.1.3 Comparing Forest Inventory and Remote Sensing Measurement

The same forest quantities (e.g., biomass) are estimated differently by ground forest inventory
and by remote sensing (Table 4). Forest inventory typically measures tree abundance, diameter,
crown width, species, and height (Song 2007; Chave et al. 2005). Although it is possible to measure
all the quantities of the Forest Identity directly through destructive harvesting, foresters generally
use allometric equations to estimate volume, biomass, and carbon from tree diameter, species-
specific wood density, and/or height, and then extrapolate to the entire forest (Chave et al. 2005;
Gibbs et al. 2007, see Table 4). Allometric equations have been developed for tropical forests
(Chave et al. 2004) and higher-latitude forests (Ter-Mikaelian and Korzukhin 1997) through
exhaustive measurement and selective harvesting and weighing of trees. Some allometric equations
estimate total forest biomass directly from tree diameter, but given large species-to-species
variation in wood density, these equations can be markedly inaccurate (Baker et al. 2004; Chave et
al. 2005). There is significant variation between the biomass estimates of different allometric
equations, and this variation can be a significant source of error in stand biomass estimates (Baker
et al. 2004; Chave et al. 2005). Scaling up from stand-level estimates of biomass to regional
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estimates often has low accuracy due to local variability in forest cover and density (Houghton et al.
2001; Houghton 2005).

In remote sensing, satellite measurements of forest area and structure are used to estimate
volume, biomass, or carbon (Table 4). These estimates can be supplemented by other measures of
forest leaf area, productivity, and flammability and incorporated into a forest model that can yield
improved estimates (van der Werf et al. 2006; Table 4). Satellite-derived forest metrics are taken
across an entire region, making extrapolation unnecessary. Two important considerations
pertaining to remote sensing measurements of forests are the importance of correlation and the
necessity of accurate ground data for overall accuracy.

Table 4. How Forest Inventory and Remote Sensing Estimate the Forest Identity

Forest identity Forest inventory Remote sensing
Area Measured locally, at one time, in Measured regionally and repeatedly,
one to a few forest types. distinguishing forest types and ages
(Optical, SAR).
Volume Estimated using diameter at breast Estimated from measures of forest
height, tree height. height/structure (SAR, LIDAR).
Biomass Estimated from volume and wood Estimated from area and forest
density measurements. Extrapolated | structure. Estimates are improved by
regionally. measures of forest flammability,
productivity, leaf area, phenology, and
gas flux.
Carbon Estimated from biomass and carbon | Same as biomass. Estimates are site
density measurements. Extrapolated | specific, across entire regions.
regionally.

Remote sensing measures reflected spectra; forest area and the horizontal and vertical
structure of forests can be measured directly from these reflected spectra. Fieldwork or higher
resolution imagery can be used to generate ground-truth data to assess the accuracy of these forest
area and structure measurements (Jensen 2007). Remote sensing enables estimates of the other
metrics in the Forest Identity (volume, biomass, and carbon) by:

e obtaining forest inventory measurements,
e correlating spectra with those measurements, and
e extrapolating from these correlations to the rest of the forest.

For example, existing field measurements of biomass are required to create forest-wide
predictions of biomass from satellite imagery; another independent set of field measurements is
required to assess the accuracy of these predictions.

Field estimates of volume, biomass, and carbon are derived from allometric equations. These
equations can be inaccurate or biased (e.g., by not including species-specific wood density; Baker et
al. 2004). Remote sensing can only be as accurate as its ground-truth data. It is possible for remote
sensing to accurately predict biased estimates of biomass from standard allometric equations that,
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for example, do not incorporate species-specific differences in wood density. Thus, it is difficult to
assess the reported accuracy of remote sensing predictions of forest volume, biomass, and carbon.
Because estimating the true value of targets is quite difficult, and only the correlations between
remote sensing and ground-based estimates are reported in the literature, we have chosen to
report the published accuracy of remote sensing estimates. Their accuracy is summarized here as
either correlation coefficients or the percentage of variance explained by regression equations.
Further refinements in ground-based measurement of forest biomass will lead to more accurate,
unbiased estimates of true values from both forest inventory and remote sensing.

3.2 Criteria for a Global Forest Monitoring Program

Several principles guide consideration in designing a forest monitoring program that aims to
measure the world’s forests on a regular basis. One principle is accuracy, discussed more fully
below. Any data generated by a forest monitoring program will have political and scientific
consequences and should meet or exceed standards of accuracy for remote sensing. Another
principle is repeatability, requiring consistency with earlier scientific efforts (e.g., forest
definitions), transparency with scientific methodology, and public availability of source data (e.g.,
imagery). The data and conclusions from a forest monitoring effort will be most useful to scientists,
politicians, and foresters if the data are verifiable, extendable, and relevant. A third principle is
longevity; reliable, long-term data on forests are rare and the creation of a remote sensing-based,
global record of forest change would be a significant scientific accomplishment (Grainger 2009).
This last guiding principle has significant consequences for program design.

Satellite failure is unpredictable, so designing a forest monitoring program that depends on the
successful launch or operation of a single satellite is risky. The best strategy for long-term
continuous monitoring is to use a standard spatial and spectral resolution collected by several
different satellite series launched continuously over decades. For example, the 30 m resolution, six-
band Landsat sensor data format has been collected for a few decades, and it can be approximated
by several satellite series (e.g.,, SPOT, Advanced Visible and Near Infrared Radiometer [Avnir], and
IRS) (Powell et al. 2007). The 1.1 km resolution, multi-band AVHRR sensor data format is also
supported over the long term and can be approximated by a number of satellite constellations,
including SPOT, the geostationary constellations, and the Chinese FY series (see the Appendix). The
SAR C-band has been taken at 30 m resolution by several different satellites over the last two
decades, and C-band sensors are planned for new launches (Appendix). All these data formats
would be good candidates for long-term data series on forest characteristics, and if necessary, they
could be fused with other data to increase their utility (e.g., Hansen et al. 2008a).

These data formats currently have the advantage of being freely available, which facilitates
program financial longevity and increases transparency. Although several commercial satellite
series (SPOT, GeoEye) also have long-term, high-quality imagery archives, the rights to release
these images to the public are limited. The role of these data in a global monitoring program
requires funding and a means of allowing the data to be shared to maximize their usefulness.

3.3 Developing and Evaluating Reference Forest Maps

To detect change in forest characteristics of interest, baseline reference measurements are
required. Biomass estimates derived from remote sensing are rare for many regions and accurate
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historical reference maps of forest structure or biomass currently do not exist (Olander et al. 2008;
Gibbs et al. 2007; and, e.g., Baccini et al. 2008). By contrast, it is possible to develop moderate-
resolution reference maps of forest area dating to 1972 (Olander et al. 2008). For more detail on
this topic, see Chapter 4.

3.3.1 Accuracy in Forest Mapping

Accuracy considerations are paramount in detecting changes in the world’s forests (Grainger
2008; Gibbs et al. 2007). There can be errors of omission (not detecting or locally underestimating
forest quantities) and commission (false-positive detections or local overestimates of forest
quantities). We report here the greater of the two types of error when assessing prediction
accuracy. For forest area, accuracy is defined as the percentage of pixels in the remote sensing
imagery that is correctly identified with respect to land-cover type, so the lowest overall accuracy
(mean omission or commission error across land-cover classes) is used where possible. For forest
volume, biomass, and carbon, we report the match between predictions from remote imagery and
observed ground measurements (i.e., the percentage of variance in ground-truth data explained by
regression equations). In general, remote sensing estimates of forest area have high accuracy,3
while estimates of forest structure and biomass are less accurate (DeFries et al. 2007; Olander et al.
2007; Rosengqvist et al. 2003).

3.3.2 Reference Maps for Carbon

Approximately 50 percent of vegetation biomass is carbon, but great uncertainty exists in
estimates of global biomass stocks (see Section 4.4). The guidelines issued by the
Intergovernmental Panel on Climate Change (IPCC) describe three acceptable tiers of forest
measurement. Each tier is increasingly accurate and precise but also more complex and expensive
in the monitoring requirements (GOFC-GOLD 2008; see Table 5 for an overview). Conservative
principles of estimation can provide useful estimates of forest area and biomass for policymakers
(Achard et al. 2007; Grassi et al. 2008; GOFC-GOLD 2008). Conservative principles dictate that, “a
tier lower than required could be used-or a carbon pool could be ignored-if it can be demonstrated
that the overall estimate of reduced emissions are [sic] likely to be underestimated” (GOFC-GOLD
2008, 12). Where large levels of uncertainty exist in biomass estimates, discounting the estimated
forest carbon would be an appropriate conservative response. For example, if estimates of forest
carbon vary between 60 and 90 tons per ha, 60 could be used as a default regional value (Tier 1) or
could be further discounted to 40 tons per ha to account for uncertainty.

3.3.3 Forest Inventory and Reference Maps

Because forest inventory data can currently estimate local biomass more accurately than
remotely sensed data, reference maps for forest biomass and other quantities could be developed
from ground data by interpolating between measurement plots (Gibbs et al. 2007). This approach

®In this report, the overall accuracy of satellite imagery analysis is designated by five standard adjectives: very high accuracy
(>90 percent), high accuracy (>80 percent), acceptable accuracy (>70 percent), low accuracy (50-70 percent), and poor
accuracy (<50 percent). Where alternative qualifiers (e.g., “mixed”) are used, we provide the actual accuracy is provided (e.g.,
67 percent).
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has many advantages where forest inventory data exist, and it can be readily integrated with
satellite data on forest area (Gibbs et al. 2007).

Table 5. IPCC Tier Description for Country-Level Carbon Reporting
Tiers for emissions factors: Change in C Stocks
1. IPCC default factors.
2. Country-specific data for key factors.

3. Detailed national inventory of key C stocks, repeated measurements of
key stocks through time or modeling.

Note: Tier 3 is the most detailed.
Source: GOFC-GOLD 2008.

Figure 14. Example Forest Type Map That Could Be Used for Stratification of Forest Inventory Plots
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Strict plot-to-plot interpolation across large areas is inaccurate as it ignores spatial variation in
forest types and ages (Houghton et al. 2001; Gibbs et al. 2007). Stratifying forest inventories across
a range of forest types and ages, and then interpolating only within the measured forest types and
ages increases the accuracy of forest inventory reference maps (Gibbs et al. 2007; see Figure 14).
The stratification approach, although more accurate, requires regional maps of forest type and
forest age from remote sensing analyses. Remote sensing provides estimates of forest area quite
well; however, distinguishing (or classifying) different forest types and ages has had variable
accuracy. Image fusions and new image analysis methods may increase the accuracy of forest
classifications. These methods are discussed further in Section 4.1.

3.4 Survey Methods for Determining Forest Area and Type

Three distinct strategies can be employed in using remote sensing to measure forests globally:
grid sampling, change-stratified random sampling, and wall-to-wall sampling (Olander et al. 2008;
Achard et al. 2007; DeFries et al. 2007). In grid sampling, moderate-resolution image “samples” are
analyzed at regular spacing across a large area (see Figure 15). Examples include the FAO’s 2010
FRA, which will sample the globe at one-degree intervals. The advantage of grid sampling is that it
gives representative estimates of land cover over large areas with relatively little image processing.
The main disadvantage is that the approach may undersample deforested areas because such areas
are not randomly distributed and are likely to be concentrated in just a few areas (Achard et al.
2007). Area-stratified sampling is random sampling that is stratified by forest type, forest
characteristics, or land-cover change. In change-stratified sampling, moderate-resolution sampling
is heaviest in areas that coarse-resolution imagery has indicated are changing rapidly. An example
is the NASA Land Cover and Land Use Change program at South Dakota State University. The
program uses frequent MODIS imagery to detect change and then stratifies Landsat samples to
make accurate estimates of land-cover change (Hansen et al. 2008b; see Figure 16a). MODIS cannot
be used directly to estimate land-cover change since most change occurs at subpixel scales (Achard
etal. 2007; Sanchez-Azofeifa et al. 2009). The advantages of change-stratified random sampling are
that it maximizes change detection for a given set of imaging processing resources and yields
unbiased measurements of forest change. This approach is less suited for sampling characteristics
of standing forests.

The third approach, wall-to-wall sampling, completely maps a region with imagery. Examples
include Brazil’'s PRODES program (see Figure 16b) and India’s biennial forest survey as well
ongoing efforts in the United States (National Land Cover Database), Europe (CORINE), Canada,
New Zealand, Australia, and South Africa (DeFries et al. 2007; Herold et al. 2007). Wall-to-wall
sampling is ideal for detecting land-cover change and shifts in deforestation (often referred to as
leakage) between countries, but the method is logistically challenging in the need to acquire,
process, and analyze the number of images required to cover the global land area.
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Figure 15. Grid Sampling with Moderate-Resolution Images
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Note: Moderate-resolution samples are concentrated in areas of change (red) determined from coarser-resolution imagery.
Source: GOFC-GOLD 2008.
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Figure 16b. Example of Wall-to-Wall Sampling with Moderate-Resolution Imagery in Brazil

Note: Notice the difference in illumination and cloud cover between moderate-resolution images.
Source: GOFC-GOLD 2008.

3.5 Price and Logistics

The large quantities of imagery associated with global forest measurement will necessitate
budgetary choices, automated processing chains, and deliberation on selection of re-sampling
intervals (Achard et al. 2007; DeFries et al. 2007; GOFC-GOLD 2008; Olander et al. 2008; Rosenqvist
et al. 2003). Table 3 summarizes the costs of imagery required to do wall-to-wall sampling of global
forests at different resolutions. High-resolution imagery would be very expensive at current prices,
as discussed in-depth in Section 4.2.2 for LIDAR. Automated analysis of imagery is quick and
standardizes results, but the large number of images required to cover the world’s forests at
moderate resolution will require large processing resources for automated classification
(Andersson et al. 2009; DeFries et al. 2007; Mayaux et al. 2005). Although modern computers are
capable of processing this amount of imagery, either significant investment or computing
partnerships are required (GOFC-GOLD 2008). The re-sampling interval can be affected by the
amount of time required to process each year’s imagery; the Brazilian National Institute for Space
Research (INPE), for example, prioritizes high-change areas for early processing to ensure timely
revisits (Achard et al. 2007).

Decisions on how often to sample the world’s forests should take into account processing times
and the availability of cloud-free passive imagery (GOFC-GOLD 2008). Cloud-free, global Landsat
mosaics contain imagery every three to five years but cloud-free MODIS mosaics can be created
seasonally due to their high return time (e.g., Morton et al. 2005). Clouds persist in some areas even
in ostensibly cloud-free images, necessitating fusion with SAR imagery to penetrate clouds in
certain tropical areas (Olander et al. 2008; Lindquist et al. 2008; Rosenqvist et al. 2008). The ALOS
forest mapper program, notably, will produce global, cloud-free forest cover maps annually from
2007 onward (J. Kellndorfer, pers. comm.). With processing and cloud delays, a global forest
monitoring effort may be capable of producing annual or biannual forest maps at coarse-resolution;
without the use of SAR, moderate-resolution, cloud-free maps may take several years to produce.

I
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It is expensive to integrate remote sensing estimates with forest inventory data, LIDAR data,
and high-resolution imagery, yet selective ground-truthing is absolutely critical to evaluate
accuracy (Gibbs et al. 2007; GOFC-GOLD 2008; Olander et al. 2008; Rosenqvist et al. 2003). High-
resolution imagery collections, including Google Earth, can be used as substitutes for ground-
truthing land-cover estimates (e.g., Gibbs et al. 2007; Read et al. 2003; Helmer et al. 2009; Bicheron
et al. 2008), but ground data are required for biomass and carbon estimates (Gibbs et al. 2007).

In contrast to locally accurate analyses, for which conclusions are geographically restricted,
global remote sensing analyses sacrifice local accuracy for greater global accuracy. A global,
dispersed network of ground-truth data is necessary to quantify this accuracy (e.g., Bicheron et al.
2008). Large amounts of ground-truth data already exist in some regions, and foresters and forest
ecologists continue to collect more in many organized forest-sampling programs (Herold 2009).
Collecting and coordinating ground-truth data for global forest measurement would be a useful
scientific undertaking (Herold et al. 2008).

£ RFF | FAGAN AND DEFRIES 42



Chapter 4. An Overview of Remote Sensing Capabilities for Forest
Measurement: Current and Near-Term Technologies

In the preceding chapters, we noted several key limitations of remote sensing: (a) tradeoffs in
swath and resolution in current sensor technology (Section 3.2), (b) the small number of active
sensors currently in orbit (Section 2.4.1), (c) the relevance of inexpensive imagery for frequent
global coverage (Section 3.5), (d) the wisdom of redundancy in satellite selection (Section 2.4.3),
and (e) the need for ground-truthing to validate the accuracy of conclusions from remote imagery
(Section 3.5). In light of these limitations, we next consider the capability of remote sensing to
measure the global forest—specifically, global forest area, forest structure, and other forest
properties in Table 4.

4.1 Forest Area: Current Measurement Methods

Global forest area is often measured as two classes (forest/nonforest) or binned (that is,
categorized) into homogenous forest types that do not distinguish tree plantations or disturbed
forests (Hansen et al. 2008b; Bicheron et al. 2008). Forests are quite distinct from most nonforest
types of land cover, so forest/nonforest area can be measured with optical and SAR sensors with a
high degree of accuracy (from 80 > 90 percent). Distinguishing more than two land-cover classes,
such as forests of different ages or composition, can still result in high accuracy, but classification
accuracy usually decreases with an increasing number of forest classes (Foody 2002) or when a
larger area is examined (Olander et al. 2008). As a result, remote sensing is ideally suited to detect
forest removal (deforestation or clear-cutting) but less well suited to detect forest thinning or
forest replacement by industrial tree plantations (DeFries et al. 2007; Sanchez-Azofeifa et al. 2009).
Challenges remain in distinguishing primary forests from tree plantations and older secondary
forests (Kimes et al. 1999; Sanchez-Azofeifa et al. 2009; Song et al. 2007; Thenkabail et al. 2004),
and in detecting forest degradation, which is a reduction in forest canopy cover or biomass that
does not result in complete forest clearing (DeFries et al. 2007). We explore these topics further
below.

4.1.1 Sensor Types and Measuring Forest Area

Each sensor type has different strengths and weaknesses for measuring forest area. Coarse-
resolution sensors have the greatest capability for global coverage and high return times (Achard et
al. 2007; Rosengqvist et al. 2003), but their pixel size causes them to miss the majority of
deforestation events (Olander et al. 2008; DeFries et al. 2002; Sanchez-Azofeifa et al. 2009; Morton
et al. 2005). High-resolution sensors enable measurement of tree crown area and fine delineation of
forest composition and disturbance, but their small swaths limit their utility for repeated, cloud-
free global measurement (Andersson et al. 2009). By balancing a large swath size with spatial
resolution that is able to detect the majority of land-use change, moderate passive sensors are
considered the best compromise for regional land-cover monitoring (Achard et al. 2007; Olander et
al. 2008; Andersson et al. 2009). Finally, hyperspectral and polarized SAR sensors have improved
the ability to distinguish among forest types and map forest cover (DeFries 2008; Thenkabail et al.
2004; Hoekman and Quinones 2000). Analyzing their imagery can be technically difficult, however
(Kasischke et al. 1997; Ustin et al. 2004). Future refinements in image fusion techniques and new
satellite technology can be expected to improve measurements of forest area and type.
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4.1.2 Forest Area versus Measuring Change in Forest Area

Measuring forest area is distinct from measuring changes in forest area, for both practical and
quantitative reasons. Practically, increases in forest area often result from land-cover types that are
quite spectrally distinct from the original forest and would not be classified as forest area. In
temperate and tropical areas, woody encroachment into grasslands creates spectrally and
structurally distinct forests in unexpected areas, and forest regrowth on abandoned farms creates
distinct secondary forests (Houghton 2005). Deforestation results in the conversion of forests to a
variety of agricultural land covers, including spectrally similar tree plantations. Tropical forest
regrowth is very rapid, making ten- to twenty-year-old forests difficult to distinguish from primary
forest on a satellite image (see Section 4.1.5).

From a quantitative standpoint, measuring change in forest area is distinct from classifying two
land-cover maps. To illustrate why, consider the most basic land-cover change method, post-
classification; quantifying the changes between two classified land-cover maps. In this method, high
classification accuracy is critical because quantifying land-cover change by comparing two land-
cover maps multiplies their respective errors (Lu et al. 2004). A multitude of other methods of
quantifying land-cover change over time are reviewed at length by Lu et al. (2004). There are
several general methods for global land-cover analysis. Image differencing subtracts two images
and then classifies the areas that have experienced changes in spectral characteristics (e.g.,
greenness). Combined analysis fuses both images in the same dataset and then classifies the
combined dataset, labeling the changes. Hybrid analysis identifies which pixels have changed
between dates and classifies only the changed areas (Lu et al. 2004).

In the discussion of measuring forest area below, we focus primarily on the accuracy of
classified land-cover maps because distinguishing land-cover types is a necessary first step in
accurately classifying changes in forest area.

4.1.3 Coarse Passive Sensors and Forest Area

There have been numerous global and regional efforts to map forests using coarse-resolution
sensors, and others have ably reviewed them (see Table 4 in Herold et al. 2008; Table 1 in Mayaux
etal. 2005; and Table 2 in Achard et al. 2007). Efforts to create global land-cover maps have used
four satellites: AVHRR, MODIS, SPOT Vegetation, and Envisat/MERIS. Two main types of products
have resulted from these mapping programs: land-cover classifications and tree-cover continuous
fields (AVHRR and MODIS only). All these products have historically been freely available for
download, increasing their use in global land-cover analysis.

The tree-cover continuous fields maps are a part of an effort to produce continuous, subpixel
estimates of vegetation traits from AVHRR and MODIS data (Hansen et al. 2003). These efforts use
higher-resolution Landsat and IKONOS data to train an algorithm that calculates percent tree cover
for each coarse-resolution pixel. This coarse-fine fusion method yields estimates of forest cover that
can be adapted for any forest definition and is capable of coarse distinctions of forest cover based
on leaf type and density (Hansen et al. 2003).

Land-cover classifications assign one land-cover class per pixel and have been ongoing since
1992 (AVHRR), 2000 (MODIS, SPOT Vegetation, and 2005 (MODIS, SPOT Vegetation, and
Envisat/MERIS) (Herold et al. 2008). Currently the Envisat/MERIS 300 m resolution GLOBCOVER

& RFF | FAGAN AND DEFRIES 44



product is the highest resolution global land-cover map. Maps of tropical forests have also been
produced at 250 m resolution from MODIS (Bicheron et al. 2008; Hansen et al. 2008b). Even just as
static snapshots, these global maps have been important in climate and carbon modeling (DeFries
2008; Achard et al. 2007).

These coarse-resolution mapping efforts have several limitations. The number of land-cover
classes differs between mapping efforts and land-cover classifications are often difficult to assign in
disturbed, heterogeneous, or transitional ecosystems (Herold et al. 2008; Mayaux et al. 2006).
Simple, coarse-resolution forest/nonforest classifications have between acceptable and high
accuracy (Latifovic and Olthof 2004; Hansen et al. 2003). Coarse-resolution classifications with
multiple land-cover categories have had poor to low accuracy in representing actual land cover
(e.g., GLOBCOVER has 67 percent accuracy) (Bicheron et al. 2008; Latifovic and Olthof 2004;
Mayaux et al. 2006). These land-cover classifications (e.g., Ground Land Cover 2000, or GLC 2000;
GLOBCOVER) do not always agree with each other (Giri et al. 2005). Figure 17 indicates two
different land-cover maps, the GLC 2000 and MODIS continuous fields, which disagree markedly in
Central America. The scientific effort Geowiki.org is trying to use volunteer input and high-
resolution imagery to revise conflicts between global land-cover maps and improve their
classification accuracy (IIASA 2009).

The capacity of coarse-resolution sensors to detect forest clearing and forest fires in almost real
time is particularly important to slowing deforestation in the tropics, where it is difficult to monitor
remote forests. We examine this later in the chapter (Section 4.4.2). The frequent return time of
MODIS permits phenology-based mapping of tropical deforestation with 89 percent accuracy, for
example Morton et al. (2005). With one-day image processing, INPE uses MODIS imagery in a real-
time deforestation prevention program called Detection and Monitoring of Selective Logging
Activities, or DETEX, to prevent large-scale, illegal clearing in the Brazilian Amazon (DeFries 2008;
Herold 2009). Coarse-resolution imagery can only detect complete clearing and only detects a low
percentage of actual deforestation that is greater than10-20 ha in size (Sanchez-Azofeifa et al.
2009; Achard et al. 2007). In Costa Rica, for example, only 10 percent of deforestation was detected
(Sanchez-Azofeifa et al. 2009). Coarse-resolution imagery is best used, therefore, as a detection or
sampling tool to target higher-resolution sensors (i.e., the stratified sampling program mentioned
in Section 3.4) (DeFries et al. 2007).

The availability of frequent, free 250-300 m resolution imagery has improved deforestation
detection and land-cover mapping because the imagery matches the scale (6.25-9 ha) of large-scale
forest clearings for farming and ranching and the approach can detect changes of around 10-20 ha
in size (Figure 18, Achard et al. 2007). The NPOESS satellite series is intended to replace the MODIS
and AVHRR satellites, but NPOESS will have 400 m to 1 km resolution (Townshend and Justice
2002), limiting it to detect only extremely large clearings between 16 ha to 100 ha in size. The
Japanese GCOM-C1 (with 11 bands at 250 m resolution) and the European Sentinel-3 series (with
21 bands at 300 m resolution) may be better suited to continue the MODIS and Envisat/MERIS
record (Appendix). It will be difficult to equal the combination of resolution, revisit time, and free
imagery that the MODIS Terra and Aqua constellation currently offers to global land-cover analysis.

£ RFF | FAGAN AND DEFRIES 45



Figure 17: Coarse-Resolution Classification Disagreements
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The frequent revisit time of coarse-resolution sensors allows for near-daily monitoring of
phenology, important for land-cover classification and detection of future climate change as
described in Chapter One (Morton et al. 2005; Goetz et al. 2005). Repeated passes that capture
seasonal leaf dynamics can improve detection of seasonal tropical forests (e.g.,, Morton et al. 2005)
and coarse-resolution imagery will remain useful for forest measurement well into the future.
Given the usefulness of the vegetation continuous fields and the potential for automated subpixel
detections of deforestation (e.g.,, DETER), coarse-fine imagery fusions are an excellent method to
increase the resolution of coarse-resolution imagery (e.g.,, Hansen et al. 2003). Next-generation
geostationary satellites (GOES-R, FY-4) are expected to improve to 1 km resolution in the VNIR
sometime around 2014. This change would enable real-time monitoring of large-scale
deforestation, fires, and phenology and could provide dramatically improved inputs to carbon and
climate models (Chuvieco 2008; DeFries 2008).

4.1.4 Moderate Passive Sensors and Forest Area

Moderate passive sensors have resolution on a scale appropriate for forest management (Figure
18). The sensors are able to capture forest changes at the scale of one hectare in local analyses and
two to five hectares in regional analyses (Olander et al. 2008; Achard et al. 2007). Forest/nonforest
cover can be distinguished by moderate sensors with greater than 90 percent accuracy in local
areas. Over larger areas accuracy declines to between 85 and 90 percent (Olander et al. 2008).
Several forest mapping efforts use moderate-resolution images; these include subnational and
national wall-to-wall mapping (Achard et al. 2007; Herold et al. 2008) and global sampling efforts
(Mayaux et al. 2005). Herold (2009) reviews national mapping efforts extensively.

Global wall-to-wall collections of moderate-resolution imagery could be constructed at
considerable expense from IRS, SPOT, or DCM data, but the Landsat global mosaics are the only
free, publicly available global imagery (Achard et al. 2007). As of 2009, “cloud-free,” global Landsat
mosaics for 1975, 1990, 2000, and 2005 have been created and efforts are under way to create an
error-free Landsat 7 mosaic for 2010 (Lindquist et al. 2008; Hansen et al. 2008a). The Landsat
mosaics contain date metadata for each component image to allow for correct interpretation—for
example when calculating local deforestation rates. These global Landsat mosaics have been
suggested by several authors as excellent sources for forest area reference maps for REDD (Gibbs et
al. 2007; Olander et al. 2008; Achard et al. 2007).

Although the global Landsat mosaics offer opportunities for mapping global forests, numerous
challenges arise in analyzing them for forest area. Because of obstructions in coverage in cloudy
areas, most nonconstellation moderate sensors (i.e., all except the IRS and DCM series) have de
facto return times of a year or more in tropical areas (Asner 2001; Olander et al. 2008). This limit
can seriously compromise efforts to map seasonal forests, especially in tropical areas, because of
the difficulty in distinguishing leafless forests during dry seasons when most imagery is acquired
(Sanchez-Azofeifa et al. 2009; Asner 2001). To develop the global Landsat mosaics, scientists were
forced to knit together images taken over several years (e.g.,, 1986-1991 for the 1990 mosaic). Even
then, unacceptable levels of cloud cover persisted in about 25-30 percent of the Landsat mosaic
images in Ecuador (Olander et al. 2008) and 16 percent of mosaic images in the Congo Basin
(Lindquist et al. 2008). Aside from the detection of seasonal forests, automated classification of
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Landsat mosaics requires correction for the variety of sun illumination angles (known as
radiometric correction) and the creation of global or regional algorithms to classify different land
covers (Lu et al. 2004; Schroeder et al. 2006; Bicheron et al. 2008). Landsat classification algorithms
developed in one region are unlikely to be accurate in another region even if the regions are similar
(e.g., Foody et al. 2003).

Figure 18. Resolution of Sensors Relative to Ecological Measurements
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Regional wall-to-wall mapping efforts, global sampling efforts, and one global, moderate-
resolution land-cover map (GeoCover LC; Cunningham et al. 2002) indicate that these challenges
could be overcome. The current moderate-resolution GeoCover LC map has mixed global accuracy
(72 percent) and very broad forest classes (Cunningham et al. 2002). An accurate, detailed 30 m
resolution forest map would be a significant, tenfold improvement in global land-cover mapping
(Bicheron et al. 2008). Re-processing the global 30 m Landsat archive (1983-present) to create a
season-appropriate, cloud-free, and radiometrically corrected imagery time-series is feasible with
current technology, although the project would be computationally intensive. Algorithms have been
developed recently to eliminate clouds and cloud shadows as well as to improve the Landsat
mosaics by fusing together, or compositing, time-series of Landsat and MODIS images (Lindquist et
al. 2008; Roy et al. 2008; Hansen et al. 2008a). In addition, automated radiometric correction, which
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is often difficult in all-forest images, has been demonstrated on a series of Landsat images
(Schroeder et al. 2006; Xian et al. 2009).

4.1.5 Moderate-Resolution Imagery and Land-Cover Classification

The literature on land-cover classification with moderate-resolution imagery is extensive
(partially reviewed in Sanchez-Azofeifa et al. 2009; Patenaude et al. 2005; Olander et al. 2008; and
Coppin et al. 2004). Because classification accuracy generally decreases with an increasing number
of classes (Foody 2002), we use the land-cover classification hierarchy of Anderson et al. (1976)
when referring to the accuracy of different classifications. In this hierarchy, a Level I classification
distinguishes basic classes (forest, nonforest vegetation, agricultural, urban) and a Level I
classification distinguishes more land-cover classes, including forest types. As mentioned above,
Level [ accuracy in excess of 85 percent is usually observed with moderate-resolution imagery, with
higher accuracy at higher resolution (Salajanu and Olson 2001; Peterson et al. 2009). Generally,
accuracy decreases with an increasing number of classes. Published Level II classifications have
ranged from 65 to 85 percent accuracy (references in Patenaude et al. 2005). In general, extending
Level II classification algorithms developed in one region to other regions is a technical challenge
that is not always met (Sanchez-Azofeifa et al. 2009; Loveland et al. 2002; Xian et al. 2009; Rogan et
al. 2008; Foody et al. 2003).

Distinguishing among forest types, forest ages, degraded and intact forests, and tree-based
agroecosystems can also be challenging (Sanchez-Azofeifa et al. 2009; Olander et al. 2008;
Patenaude et al. 2005). In temperate forests, Salajanu and Olson (2001) were able to classify a
forested area in Michigan to Level 1 with 89-91 percent accuracy, but accuracy decreased to 77-84
percent for distinguishing 10 forest types. In Siberia’s Baikal region, Peterson et al. (2009) were
able to distinguish four boreal forest classes with 80-98 percent accuracy. In tropical forests,
Thenkabail et al. (2004) found that moderate-resolution, multispectral sensors had poor (40-50
percent) accuracy in distinguishing nine forest types and ages. By contrast, Sesnie et al. (2008)
were able to discriminate 17 forest classes with 93 percent accuracy using a fusion of spectral,
DEM, and climatic GIS layers. Sesnie et al. (2008) had 69 percent accuracy with spectral classes
alone, indicating that detailed Level II classification in tropical areas may require GIS fusion or
hyperspectral data. We explore this further below (Section 4.1.6).

In both tropical and temperate zones, moderate-resolution imagery cannot distinguish forest
regrowth from mature forest after 15-30 years of growth (Steininger 1996, 2000; Nelson et al.
2000; Song et al. 2007; Fiorella and Ripple 1993). Partially logged or cleared forests have long been
difficult to distinguish from intact forests (Sader et al. 2003; Wilson and Sader 2002; Achard et al.
2007), but recently, promising spectral analysis techniques have been developed to map subpixel
forest degradation in the Brazilian Amazon using moderate-resolution imagery (Asner et al. 2005;
Souza et al. 2005b).

In the tropics, distinguishing forests from tree-based agriculture (i.e., agroforestry, tree
plantations) is difficult using moderate-resolution imagery; the plantations often appear similar to
secondary forests (Sanchez-Azofeifa et al. 2009). In Malaysia, Baban and Yosuf (2001) were able to
distinguish rubber plantations with 74 percent accuracy and found that plantations were most
often confused with intact forests. Sesnie et al. (2008) were able to distinguish tree plantations with
approximately 90 percent accuracy in Costa Rica, but accuracy decreased to 55 percent when the
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entire image was examined across diverse plantation types. Kuplich et al. (2000) were able to
distinguish planted Eucalyptus and Pinus forests with 89 percent accuracy in a fragmented
Brazilian agricultural landscape. In eastern Ecuador, Santos and Messina (2008) used Landsat 7 to
do a Level Il classification of an oil palm-secondary forest landscape with 77 percent accuracy.

Despite these challenges in Level II classification of forests, classification of moderate-
resolution imagery has progressed significantly in recent years (Coppin et al. 2004). One promising
approach is the classification of land-cover trajectories over time (rather than static images) made
possible by the recent opening of the Landsat image archive (Kennedy et al. 2007; Masek et al.
2008; Coppin et al. 2004; Song et al. 2007). For example, Helmer et al. (2009) mapped age classes of
tropical forest regrowth with very high accuracy by using the entire, 37-year Landsat archive to age
regrowth on previously cleared pixels. This new trajectory classification method, in addition to the
compositing methods mentioned above (Hansen et al. 2008a), underscores the importance of long,
continuous time-series of moderate-resolution imagery to land-cover analysis (and the critical
nature of the success of the LDCM).

4.1.6 Hyperspectral Sensors: Forest Area and Beyond

Hyperspectral images, although they have limited global coverage, are markedly better (e.g.,
40-70 percent better) than multispectral moderate-resolution images in distinguishing and
mapping diverse forest types and other land covers (Thenkabail et al. 2004; Ustin and Xiao 2001;
Goodenough et al. 2003). Even though the potential is still being explored, hyperspectral images
already have a wide diversity of applications due to the ability to measure the absorption of light by
chemicals. This ability in turn allows direct measurement of leaf chemistry and the quantification of
photosynthetic and non-photosynthetic (woody) cover (Asner and Martin 2009; Chambers et al.
2007; Ustin et al. 2004). Hyperspectral imagery improves measurement of LAI (Lee et al. 2004;
Schlerf et al. 2005), forest productivity (via canopy nitrogen; Smith et al. 2002; Ollinger and Smith
2005), canopy structure (Arroyo-Mora et al. 2009), and drought stress (Asner et al. 2004). The
imagery also makes new measurements of forest diversity possible, including canopy leaf
ecophysiology (Asner et al. 2009) and the discrimination of individual species and species groups
(Goodwin et al. 2005; Asner et al. 2008; Clark et al. 2005). Moderate-resolution hyperspectral
imagery, which will become widespread in the next few years as the EnMap, HyspIRI, and several
other satellites are launched, has the potential to revolutionize forest biodiversity measurements in
a new science of “remote spectranomics” (Asner and Martin 2009). Although many new
hyperspectral sensors will have relatively narrow swaths and may be unsuited for global forest
measurement, the HyspIRI sensor will have a 90 km swath (Appendix) and is likely to markedly
improve the accuracy of land-cover mapping.

4.1.7 High-Resolution Passive Sensors: Forest Area in Focus

Because high-resolution passive sensors have a narrow swath and pointable, interrupted
coverage, there are currently no continuous global land-cover maps or cloud-free image mosaics at
high resolution (Loarie et al. 2007). GeoEye’s constellation will be mapping the entire globe in the
next few years (Mark Brender, pers. comm.), but cloud-free imagery is unlikely to result (Asner
2001; Olander et al. 2008). SPOT-5 has continuous global coverage at 10 m resolution, but the
imagery has not been analyzed. RapidEye, a high-resolution constellation with daily repeat capacity
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(launched in 2008-2009), has the potential to develop cloud-free, continuous global maps
(RapidEye 2009).

Currently, Google Earth has the largest collection of global high-resolution imagery, but the
imagery is from a variety of satellite and airborne sources with differing resolutions and
undisclosed dates (Potere 2008). Google Earth may not yet be useful for strict change detection on a
global scale, but the approach is very useful for land-cover validation and visualization (e.g., [IASA
2009; Bicheron et al. 2008; Helmer et al. 2009; Olander et al. 2006). The same result is true for
high-resolution imagery in general: the imagery is an inefficient way to map global forests due to
irregular spatial sampling (Loarie et al. 2007; Andersson et al. 2009), relatively high cost (Olander
etal. 2008; Andersson et al. 2009), data-sharing restrictions, and radiometric correction challenges
(e.g., variable canopy shadowing) (Goetz et al. 2003; Andersson et al. 2009). Current policies about
access to data restrict the sharing of original data but allow sharing of data products, such as basic
maps, for almost all high-resolution imagery. However, the imagery is useful for identifying local
land covers (Wulder et al. 2004) and forest disturbance (Thompson et al. 2008; Wulder et al. 2008;
Souza and Roberts 2005a), and even following the population dynamics of individual tree species
(Clark et al. 2004a). High-resolution imagery has immense utility for ground-truthing lower
resolution imagery, both as a fine-scale validation tool and as training data for algorithms (e.g.,
Hansen et al. 2003; Wang et al. 2005).

Although high-resolution imagery does not have the spectral resolution of other sensors (most
notably missing the short-wave infrared [SWIR] bands), the imagery contains additional
information on the shape and texture of objects in the landscape that lower-resolution imagery
lacks (Goetz et al. 2003). The accuracy of high-resolution imagery in distinguishing Level I land-
cover classes in forested landscapes is very high—in the range 95 percent and greater (Townsend
etal. 2009). As such, the imagery is often used as a tree-cover validation for lower resolution
imagery either visually (e.g., Kozak et al. 2008; Neigh et al. 2008) or quantitatively (Knorn et al.
2009; Hansen et al. 2003; Wang et al. 2005). Because spectral information is limited (often four
bands) and spatial algorithms are still under development, high-resolution imagery is less accurate
at Level I classifications (~70-90 percent; Ouma et al. 2008; Mallinis et al. 2008; Gergel et al. 2007;
and Morales et al. 2008). The high-resolution sensors are capable of distinguishing small-scale land
covers and disturbances that do not appear in moderate-resolution imagery, such as riparian strips
(Gergel et al. 2007), pest outbreaks (Wulder et al. 2008), and logging (Souza and Roberts 2005a),
and the visual interpretation of the high-resolution imagery is straightforward (Wulder et al. 2004).
Automated crown-delineation techniques have been developed recently (Broadbent et al. 2008;
Palace et al. 2008), and high-resolution imagery shows potential for using crown size to classify
secondary forests that are older than 20 years (Clark et al. 2004a; Kayitakire et al. 2006).

4.1.8 SAR Sensors and Passive-SAR Fusions for Forest Area

SAR has potential for global forest mapping, and SAR capabilities have been extensively
reviewed elsewhere (Patenaude et al. 2005; Rosenqvist et al. 2003; Lu 2006; Balzter 2001; and
Kasischke et al. 1997). Here, we simply summarize the main conclusions of prior research and focus
on recent developments in SAR research. SAR distinguishes land cover based on the strength of
backscatter, the variation in backscatter over space (texture), and, depending on the analysis,
temporal variation in backscatter signatures. Regional maps of forest cover have been derived from
SAR sensors including the Global Rainforest Map (JERS sensor; Rosenqvist et al. 2000) and the
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Central Africa Mosaic project maps (ERS sensors; De Grandi et al. 1999). The ALOS Pathfinder
mission has created the first global L-band SAR forest map at 50 m resolution, and the mission will
continue to do so annually (J. Kellndorfer, pers. comm.).

Scientists fully appreciate the potential of satellite SAR sensors to distinguish land cover; their
capabilities are well known from analysis of data from advanced airborne SAR sensors and the
multi-polar, multiband SAR sensor (C-, X-, and L-band) aboard the 1994 SIR-C/X shuttle mission
(Kasischke et al. 1997; van der Sanden and Hoekman 1999). In general, single-band SAR sensors
with one polarization (e.g., ERS-1, JERS-1) have variable accuracy (low to very high) in Level I
classifications depending on topography, surface moisture, and the structural complexity of the
landscape (Patenaude et al. 2005; Kellndorfer et al. 1998; Podest and Saatchi 2002). As the number
of polarizations or SAR bands increases, Level [ accuracy can be very high (>90 percent), rivaling or
exceeding passive sensors (Dobson et al. 1995a; Kellndorfer et al. 1998; Patenaude et al. 2005).
Level Il accuracy is also very dependent on the number of polarizations and bands employed,
achieving accuracies between 70-90 percent (Kasischke et al. 1997; Kellndorfer et al. 1998).
Dobson et al. (1995a), notably, have very high Level I and Il regional accuracy with polarized,
multiband data in Michigan forests. Saatchi et al. (1997), with multipolar SIR-C/X data, are able to
measure Amazon forests with very high (92 percent) Level | accuracy and acceptable (72 percent)
Level Il accuracy. The L-band JERS-1 and ALOS Phased Array type L-band Synthetic Aperture Radar
(PALSAR) sensors have been shown to have very high Level I accuracy when classifying several
different forested regions (Thiel et al. 2006; Saatchi et al. 2000; Kellndorfer et al. 2008). Because of
the high SAR reflection from water, longer wavelength sensors have created highly accurate maps
of mangroves and floodplain forests (Costa 2004).

The accuracy of SAR sensors is affected by ecosystem structure (Almeida et al. 2007;
Kellndorfer et al. 1998, 2004), variability in soil and vegetation moisture (Kasischke et al. 1997),
and topography (Kellndorfer et al. 1998). High-resolution digital elevation maps are necessary to
correct for topographical distortions; accuracy decreases markedly without effective correction
(Kellndorfer et al. 1998; Ticehurst et al. 2004). Because of its high moisture sensitivity, the C-band
is the least useful for land-cover classifications, although its utility for Level I classification
increases when multiple polarizations are used (Saatchi et al. 1997; van der Sanden and Hoekman
1999; Kasischke et al. 1997).

Recent research in SAR land-cover mapping has investigated the potential of optical-SAR
fusions (Saatchi et al. 2007; Santos et al. 2008) and InSAR for improved landscape classification
(Balzter 2001; Engdahl and Hyyppa 2003; Park and Chi 2008). Interferometric SAR can improve
classifications by adding vegetation height information to other SAR measures like texture and
backscatter (Balzter 2001). Optical-SAR fusions shows promise for synergistic landscape
classification (Kasischke et al. 1997; Kuplich et al. 2000). In Indian dry forests, fusion of moderate-
resolution passive and Envisat ASAR C-band data improved Level II classification (>90 percent)
(Chand and Badarinath 2007). In Amazonia, Kuplich et al. (2000, 2006) found Landsat-SAR fusions
improved Level 2 classifications over Landsat or SAR alone, and Saatchi et al. (2007) used a SAR-
optical fusion to derive vegetation and biomass classes for the entire basin. Santos et al. (2008)
found that a Level II classification of oil palm plantations and forests was improved by a passive-
SAR fusion, to 90 percent from 76 percent (SAR) and 77 percent (Landsat). In central Africa,
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Mayaux et al. (2000) used AVHRR and ERS data fusion to classify forests, savannas, mangroves,
swamp forests, and tree plantations with 75 percent accuracy.

Given the large number of SAR constellations planned for launch in the 2009-2015 period, it is
likely that InSAR, multiband SAR fusions, and optical-SAR fusions will become increasingly
important techniques in land-cover classification.

4.2 Forest Structure: Current Measurement Methods

We next review the use and relative accuracy of different remote sensing methods to measure
vertical and horizontal forest structure, with an emphasis on forest height. Remote sensors are
sensitive to forest structure, which, in conjunction with area (Table 4), is used to estimate forest
volume (Section 4.3), biomass (Section 4.4), and carbon (Section 4.5).

Forests are highly complex three-dimensional structures. Forest height can vary markedly over
a defined area (i.e., a tree, plot, pixel, or stand). In this report, we define the horizontal and vertical
complexity of forest surfaces as forest structure; both active and passive sensors can measure
variation in forest structure. Vertical forest structure can be characterized by forest height, canopy
depth, leaf density profiles, and other measurements. Horizontal forest structure can be
characterized by canopy width, tree density, and tree architecture.

Because of generalities in tree structure from hydraulic constraints (West et al. 2009), forest
height allows for accurate estimation of volume, biomass, and other forest properties (Lefsky et al.
2002Db), all discussed further below. Forest height can either be measured directly by remote
sensing or estimated indirectly from allometric relationships with other remotely sensed
measurements (e.g., canopy width; Song 2007). Exact measurements of forest height must derive
two key parameters for a given area: ground elevation and canopy-top height. There are multiple
approaches to measuring canopy-top height and ground elevation. These approaches include
passive stereo, LIDAR, InSAR-ground differencing, and polarimetric InSAR (Sexton et al. 2009;
Balzter 2001; St-Onge et al. 2008).

4.2.1 Stereo Measurements of Forest Structure

Multi-angle (stereo) passive sensors are used to estimate the three-dimensional structure of
objects from two or more offset observations, much like SAR interferometry (Jensen 2007). Multi-
angle sensors include Multi-angle Imaging SpectroRadiometer (MISR); ASTER; PROBA-CHRIS; any
of the pointable, high-resolution satellites (e.g., GeoEye, SPOT-5); and aerially mounted stereo
digital cameras. High-resolution stereo photography has a long history of measuring object height
from aerial images (Jensen 2007). High-resolution stereo images have been effectively used to
measure canopy-top height in forests with high accuracy (Brown et al. 2005; St-Onge et al. 2008)
and to develop a new global, canopy-top DEM from moderate-resolution ASTER images (ERSDAC
2009). Although the accuracy of stereo imagery in estimating canopy-top height is exceeded by
LIDAR and some InSAR measurements, the approach has been proposed as a means to extend
LIDAR results to landscapes (St. Onge et al. 2008; Diner et al. 2005). High-resolution stereo imagery
is likely to be cheaper than small-footprint LIDAR on a global scale yet it has severe limitations in
terms of costs, data usage rights, and cloud-free coverage (see Section 4.1.6), and could only
provide validation data for monitoring the global forest.
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Coarser resolution multi-angle sensors (e.g., MISR, PROBA-CHRIS, Polarization and
Directionality of the Earth’s Reflectances [POLDER], repeat-pass MODIS) require locally fitted
algorithms to model how reflection and absorption from multiple angles relate to subpixel canopy
height and structure (Diner et al. 2005). Simple metrics of variance in reflection have been used to
successfully estimate tree density and height in open forests (Sedano et al. 2008; Heiskanen 2006),
and MISR estimates of height and roughness have been used to improve Level II classification
accuracies in forests (Galvao et al. 2009; Liu and Kafatos 2007). Chopping et al. (2008) recently
used a complex canopy model to estimate tree height and biomass in Arizona with acceptable to
high accuracy (r2 values of 0.69 and 0.81, respectively) from MISR data, and Kimes et al. (2006)
found that large-footprint LIDAR estimates of forest height were closely related (r2=0.89) to
Airborne MISR (AirMISR) height predictions in New Hampshire. Although coarse-resolution, multi-
angle image analysis is in the experimental stage, the analysis has potential for relatively low cost,
global estimates of forest structure (Chopping et al. 2008; Diner et al. 2005; Kimes et al. 2006).
Possible inaccuracies in closed-canopy forests as well as the need for localized model creation and
extensive validation make it unclear whether coarse-resolution, multi-angle sensors will yield
global forest structure measurements in the next decade (Kimes et al. 2006; Chopping et al. 2008;
Schull et al. 2007).

4.2.2 LIDAR Measurements of Forest Structure

Both small-footprint and large-footprint LIDAR provide excellent measurements of vertical
forest structure that exceed the accuracy of other remote sensing measurements (Sexton et al.
2009; Hyde et al. 2006; Nelson et al. 2006; St-Onge et al. 2008; Balzter et al. 2007; Wolter et al.
2009; Hyyppa et al. 2008). LIDAR measurements meet standards of accuracy for ground-based
measurements for forest canopy-top height (Dean et al. 2009; Naesset et al. 2004), and LIDAR
measurements are distinctive because they also measure ground-elevation at the same time,
allowing accurate calculations of forest height. Large-footprint LIDARs have measured forest
canopy height with greater than 75 percent accuracy across a wide variety of forest types (Lefsky et
al. 2002a, b; Harding 2002; Means et al. 1999; Hyde et al. 2005; Lefsky et al. 2007). Airplane-
mounted, small footprint LIDARs have high accuracy (>80 percent) in measuring canopy height
(Balzter et al. 2007; Clark et al. 2004b) and can measure horizontal canopy structure and other
characteristics due to their high sampling density (Lefsky et al. 2002; Hyyppa et al. 2008). Small
footprint LIDARs make excellent ground-truthing datasets but their small swath makes global
measurement challenging (Dubayah et al. 2000; Balzter et al. 2007). Although large areas could be
surveyed via aerial, small-footprint LIDAR, it would take a fleet of five planes 1,063 cloud-free days
to survey Brazil’s 8.5 million square kilometers (Swanson et al. 2009). Given the cloudiness of the
tropics, real flight time might be six years for complete coverage.

Global, wall-to-wall coverage by LIDAR sensors is probably unlikely in the near future; even
with long-range, UAS, wall-to-wall global LIDAR coverage would be logistically difficult. Obstacles
include the requirement of obtaining permission to fly over countries, the amount of flying needed
for global coverage, and high costs of purchasing and running multiple UAS sensors (roughly $460
million for four sensors over five years [Swanson et al. 2009]). However, three methods of global
sampling by LIDAR are possible. The first is coarse-resolution sampling by LIDAR satellites
described above (Section 2.2.2, Figure 10). The second, which would cost approximately $80
million, could be accomplished by using a single UAS with LIDAR sensors to conduct targeted
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sampling of a diversity of forest types in selected countries. The third is mounting a LIDAR sensor
on a satellite.

The large-footprint ICESat GLAS is the only LIDAR sensor in orbit, and the global, wide-interval
coverage is being used for forest measurement (Figure 19). The wide spacing between LIDAR shots
makes orbital LIDARs like GLAS unsuited for DEM creation or wall-to-wall sampling of forest
height, but GLAS LIDAR footprints are well correlated globally with forest height (r2= 0.83, Lefsky et
al. 2007). These approaches provide an important source of data for validation and fusion with
other imagery (Lefsky et al. 2002; Baccini et al. 2008; Nelson et al. 2009). For example, GLAS data
have been combined with MODIS (Nelson et al. 2009; Boudreau et al. 2008) and Landsat (Helmer et
al. 2009) data to create accurate regional biomass and height estimates.

Figure 19. GLAS Footprint Spacing in Africa
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Notes: Each black dot represents a 65 m-wide LIDAR footprint; only 30 percent of all footprints are represented here.
Source: Baccini et al. 2008.

In the 2009-2015 timeframe, ICESat will reach the end of its operating lifetime and is expected
to be followed by the ICESat-II and DESDynI LIDAR satellites. DESDynl is a satellite mission planned
for launch in 2014 and carrying a large-footprint LIDAR as well as two L-band InSAR systems with
multiple polarimetry. The LIDAR capability will be used in conjunction with InSAR to achieve
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accurate, moderate-resolution forest height measurements on a global scale (Donnellan et al.
2008). Accurate measurements of ground elevation may also result depending on advances in
processing InSAR data (ESA 2009).

4.2.3 InSAR Measurements of Forest Height

Several different methods using SAR interferometry can derive forest height. (Balzter 2001;
Sexton et al. 2009). Canopy-top height from short-wavelength InSAR (e.g., the SRTM mission) can
be subtracted from independent measures of the ground elevation (Kellndorfer et al. 2004; Walker
etal. 2007). Short-wavelength InSAR estimates of canopy-top height can be subtracted from long-
wavelength InSAR estimates of ground elevation (Neeff et al. 2005). Polarimetric interferometric
SAR (POLinSAR) uses interferometric, polarized SAR and multiple measurements to model the
vertical structure and height of forests from SAR scattering models (Treuhaft et al. 2000; Le Toan et
al. 2008). POLinSAR is still under development, although the technique has shown promise for
height estimation across a diversity of forest types (Le Toan et al. 2008; ESA 2009).

Sexton (2009) compares the accuracy of different InSAR measurement techniques. In general,
all InSAR measurements underestimate forest height because they measure to the phase scattering
center, which is usually below crown level. This bias can be corrected (Saatchi et al., in review). In a
forest in North Carolina, Sexton (2009) found that short-long wavelength differencing (X and P)
was more accurate than SRTM-ground differencing but both InSAR methods were less accurate
than LIDAR. He also found that SAR differencing was least accurate in shorter stands (due to
ground return of canopy-top wavelengths) especially for the SRTM-ground method. Regional
calibration would be necessary to correct for this bias in height estimation (Sexton et al. 2009).

Given the number of SAR satellites to be launched in the next six years, InSAR measurement of
canopy-top height will increase in frequency and global coverage (Zink et al. 2007). Current
satellites only have the capacity to do temporal inferometry and several upcoming SAR
constellations and follow-on satellites will continue and extend this capacity (Section 2.4.2). Future
capacity for spatial interferometry will come from an InSAR satellite (DESDynl) and several
formation SAR constellations (e.g., TerraSAR-X; see the Appendix). Ultimately, the utility of
interferometric SAR in measuring global forest height will depend on the creation of a high-
resolution, ground-level global DEM (Walker et al. 2007) or the development of multi-band, multi-
polarized image datasets that allow the estimation of forest height through POLinSAR or short-long
wavelength subtraction algorithms (Neeff et al. 2005; Sexton et al. 2009; ESA 2009). The GLAS and
DESDynl LIDARs will improve global DEMs (but not at a high spatial resolution) and the large
number of SAR satellites to be launched will allow for InSAR synergies between C-, X-, L-, and
possibly P-band sensors (NASA 2009a; ESA 2009; Saatchi et al. in review; Patenaude et al. 2005).

Development of an accurate, high-resolution global DEM would allow for the creation of
references maps of forest height using C-band InSAR from the ERS, RADARSAT, or SRTM missions
(Kellndorfer et al. 2004). A ground-level DEM could be achieved by a long-band (VHF) SAR sensor,
LIDAR saturation of Earth’s surface from satellite and airborne sensors (via the proposed LIST
satellite, or using high-elevation, unmanned drones called UAVs), or a formation InSAR
constellation with a special variable-baseline orbit (Le Toan 2008; ESA 2009; NRC 2007). Each of
these options is in the experimental stages. The Tandem Digital Elevation Mapping satellite
(TanDEM-X) and TerraSAR-X will create a variable baseline InSAR for DEM mapping, but accuracy
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in forested areas is still to be determined (Zink et al. 2007). In addition, a tomography mode for the
proposed P-band BIOMASS sensor and a variable-baseline Tandem-L companion satellite for
DESDynl may be launched in the 2009-2015 period (Le Toan 2008; Oberto et al. 2008; ESA 2009).

4.2.4 Fusions of Remotely Sensed Data on Forest Structure

In any imagery fusion, LIDAR provides outstanding interpolated information on ground
elevation and can be used to increase the accuracy of forest height estimates from stereo optical or
interferometric SAR (Balzter et al. 2007; Hyde et al. 2006). This approach is the main concept
behind DESDynl, the InSAR-LIDAR satellite mission described above. To provide more accurate,
spatially extensive estimates of forest height and structure, LIDAR can be fused with InSAR (Balzter
etal. 2007; Slatton et al. 2001), passive forest-structure estimates (Wolter et al. 2009, Dubayah et
al. 2000; Hyde et al. 2006; Hudak et al. 2002), stereo measurements of height (Hyde et al. 2006), or
forest classifications from passive or active sources (Dubayah et al. 2000; Helmer et al. 2009;
McCombs et al. 2003).

4.2.5 Estimating Forest Structure from Allometric Relationships

Horizontal and vertical forest structure can be derived from three-dimensional stereo imaging
as well as from the texture of high-resolution satellite and aerial passive imagery (Song 2007;
Wolter et al. 2009). Analysis of canopy texture from optical imagery takes advantage of tree
illumination geometries in heterogeneous canopies to estimate canopy width and other structural
variables (Wolter et al. 2009; Kayitakire et al. 2006; Hyyppa et al. 2000; Song 2007). Canopy
structure (e.g., width) can then be used to estimate tree height, basal area, and stem volume via
allometric equations (Song 2007; Lefsky et al. 2002b). Canopy structure has long been derived from
remotely sensed imagery (this is reviewed in more depth by Song [2007]; Wolter et al. [2009]; and
Palace et al. [2008]). In general, high-resolution imagery is more accurate than moderate-resolution
imagery at deriving canopy structure (Hyyppa et al. 2000; Song 2007; but see McRoberts 2008).
Recent efforts have focused on automated delineation of canopy structures using a variety of
different algorithms. Success has been mixed and studies have largely been restricted to small areas
(Song 2007; Wolter et al. 2009; Palace et al. 2008).

Song (2007) achieved acceptable accuracy in canopy-delimitation in conifer forests (72 percent
variation in canopy width), but, like several others, had poor accuracy in deciduous forests with
overlapping canopies. In northern forests with nonoverlapping canopies, Wolter et al. (2009) found
that estimates of canopy width and height rivaled LIDAR accuracies (acceptable to high).
Automated canopy delimitation efforts in the Amazon basin, using extensive ground data, observed
clumping of overlapping trees, underestimation of understory tree crown area, and overestimation
of total forest biomass (Palace et al. 2008; Broadbent et al. 2008). While these efforts have not been
extensively validated, biomass estimates were quite comparable to ground estimates.

In general, texture-derived canopy width and height measurements are less accurate than
LIDAR measurements, but they can be calculated from existing high-resolution imagery over larger
areas (Wolter et al. 2009; Broadbent et al. 2008). Although this technique may be unsuitable for
global forest height measurement because of cost and data volumes (DeFries 2008), the approach
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may be suitable for extending LIDAR estimates and validating coarser-resolution imagery (DeFries
2008; Wolter et al. 2009).

4.3 Estimating Forest Volume and Biomass Using Remote Sensing

Both the volume and the aboveground biomass (AGB) of forests can be estimated from
allometric relationships with canopy width, structure, and/or height, the intensity of SAR
backscatter, correlations with passive spectra, and various fusions of the above (Lu et al. 2006;
Balzter et al. 2007; Rosenqvist et al. 2003). We review this large body of literature briefly, with a
focus on global measurement of forest biomass. A more thorough review of this topic is in Lu
(2006), Pateneude et al. (2005), Rosengvist et al. (2003), and Lefsky et al. 2002b).

4.3.1 Forest Volume and Remote Sensing

Forest volume and geometry directly influence the returns to satellite sensors (Dobson et al.
1995b, Dubayah et al. 2000), but with the exception of several studies in plantations and conifer-
dominated forests that estimate bole volume, many remote sensing studies focus on estimating
forest biomass (g/m2) rather than volume (m3/m?2) (e.g., Drake et al. 2002a; Saatchi et al. 2007). The
same allometric equations that are used to estimate ground-truth biomass could be used to
estimate bole volume (P. Waggoner, pers. comm.), but bole volume is often not reported. As a result,
we will focus in the following sections on estimating biomass, rather than volume, from remote
sensing.

Forest volume estimates from remote sensing have often been made in species-poor systems
with regular, distinct canopies in support of forest inventories. Active sensor systems have been
frequently employed to estimate forest volume. Patenaude et al. (2005) review several studies in
temperate conifer-dominated and boreal forests that estimated stem volume using SAR (53-83
percent accuracy) and LIDAR (46-97 percent accuracy). Hyyppa et al. (2008) review the ability of
small-footprint LIDAR to estimate stem volume from canopy height measurements. Wolter et al.
(2009) review several LIDAR studies that achieved 85-91 percent accuracy for basal area. Means et
al. (1999), in the western United States, predict 96 percent of the variance in basal area using large-
footprint LIDAR. Notably, Anderson et al. (2008) only predict 25 percent of the variance in basal
area with LIDAR in a deciduous forest in the northeastern United States. Maltamo et al. (2006), on
the other hand, predict stem volume from LIDAR with less than 14 percent error in a boreal forest.
Askne and Santoro (2009) are able to estimate boreal forest stem volume with less than 20 percent
error using C-band InSAR.

It is unclear how much the variation in accurately predicting volume is due to differences in
LIDAR or SAR sensor types, processing choices, or variability among regions. Experts have
hypothesized that LIDAR has more difficulty in predicting forest variables in deciduous areas due to
irregular canopy structure (Nelson et al. 2007) but this hypothesis has not been thoroughly tested.

Passive optical sensors, alone and fused with active sensors, have been used to estimate forest
volume with mixed results. For example, nearest-neighbor algorithms (k-NN) have processed
moderate-resolution imagery, often integrated with forest inventory data, to produce estimates of
forest volume and basal area (McRoberts et al. 2008). Franco-Lopez et al. (2001) used nearest-
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neighbor techniques, Landsat imagery, and data from the US Forest Service’s Forest Inventory and
Analysis National Program (FIA) to estimate basal area and volume with approximately 50 percent
accuracy, while McRoberts et al. (2008) estimates basal area with 66 percent accuracy using similar
techniques. Hall et al. (2006) uses moderate-resolution imagery, forest inventory data, and an
allometric forest structure model to predict volume with 69 percent accuracy. These moderate-
resolution data algorithms may be too computer intensive for large-area estimation.

High-resolution imagery has also been used to estimate forest volume, often with greater
success. Hyyppa et al. (2000) find that high-resolution optical sensors outperformed some, but not
all, types of SAR sensors, as well as moderate-resolution passive sensors in predicting basal area
and stem volume, with maximum accuracy of 55-58 percent. Wolter et al. (2009) use high-
resolution SPOT imagery in an open temperate forest to estimate basal area with 71 percent
accuracy. Kayitakire et al. (2006) use texture analysis of 1 m-resolution IKONOS-2 imagery to
estimate basal area of a mixed conifer-deciduous forest with 35 percent accuracy. In an open poplar
plantation, Wang et al. (2007) use allometric relationships between canopy height and diameter to
estimate stem volume with 87-92 percent accuracy. In a boreal forest, Wallerman and Holmgren
(2007) estimate stand volume with less than 20 percent error by fusing small-footprint LIDAR with
texture analysis of SPOT high-resolution geometric (HRG) images. Popescu et al. (2004) fuse small-
footprint LIDAR with high-resolution optical imagery to estimate forest volume with high accuracy
(83 percent of variation) in coniferous forests and poor accuracy in deciduous forests (39 percent).
As with active sensors, the variation in methods and forest types makes it difficult to draw
definitive conclusions, but it is clear that fusions improve estimates (e.g., Popescu et al. 2004) and
that readily distinguishable tree canopies improve allometric estimates of stand volume from
canopy width (Song 2007).

Because of the similarity of allometric equations that calculate biomass and stem volume, the
methods detailed in the following sections could easily be applied to estimation of stem volume.
Popescu et al. (2004) and Means et al. (1999), for example, found very close agreement between
their estimates of stem volume and biomass from remote sensing. Because variation in wood
density is important in global estimation of biomass across regions and forest types (Baker et al.
2004), estimation of volume may be more accurate than biomass in some ecosystems or at regional
scales. More studies are needed on the relative accuracy of volume and biomass estimates across
diverse forest ecosystems to evaluate this possibility.

4.3.2 Forest Height and Biomass: A Strong Positive Correlation

Tree height and/or diameter, because of the unique constraints of plant structure, is positively
correlated with tree biomass within a species (Chave et al. 2005; West et al. 2009; Dubayah et al.
2000). Using well-established allometric relationships, biomass can be calculated from tree
diameter, height, and/or wood density (Chave et al. 2005; Schroeder et al. 1997). Remote sensing
cannot directly measure wood density, but correlative forest inventory data can use species-specific
or region-specific allometric equations to provide accurate estimates of biomass (see Section 3.1.3).
Forest height can be measured from a variety of remotely sensed data (see above) and used to
estimate biomass (Kellndorfer et al. 2004; Palace et al. 2008, Pflugmacher et al. 2008). Although
diameter, height, and wood density are central variables, biomass estimates can be improved by
using additional forest structure variables (e.g., canopy width, canopy volume) (Dubayah et al.
2000; Palace et al. 2008; Popescu et al. 2003).
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4.3.3 Estimating Biomass Using SAR Backscatter

The magnitude and polarity of SAR backscatter is sensitive to forest structure, with shorter
wavelengths (C-, X-bands) interacting primarily with canopy elements, and longer wavelengths
interacting primarily with branch, trunk, and ground elements (L-, P-, VHF-bands). Backscatter
responds to the density of biomass at different heights, and it can be used to estimate biomass.
However, backscatter intensity from C- and X-band SAR tends to saturate at relatively low levels of
forest biomass (25-50 megagrams [Mg] per ha]), Rosenqvist et al. 2003). L-band SAR saturates at
varying levels (60-150 Mg/ha; Patenaude et al. 2005), depending on species composition and
forest structure. P-band SAR saturates at a higher range (100-200 Mg/ha), again dependent on
forest biota and structure (Patenaude et al. 2005), and VHF-band SAR is quite sensitive to forest
biomass and does not have appreciable saturation as biomass increases (Fransson et al. 2000;
Patenaude et al. 2005). P-band SAR and experimental VHF-SAR sensors are mounted in aerial
systems now, but neither band will be represented in orbit in the 2009-2015 window unless the P-
band BIOMASS satellite proposal is approved by the European Space Agency (Le Toan 2008).

Pateneude et al. (2005) reviews 11 studies and finds that accuracy of biomass predictions from
SAR varies between 50 and 96 percent of observed variation, across a variety of forests and bands.
SAR backscatter returns are sensitive to topography, variation in soil and canopy moisture, and
changes in forest structure (Kellndorfer et al. 1998; Kasischke et al. 1997). In hilly areas,
backscatter must be corrected by a high-resolution DEM because of shadowing, layover, and other
angular effects. If a high-resolution DEM is not available, the accuracy of biomass estimates from
SAR decreases (Kellndorfer et al. 1998; Ticehurst et al. 2004).

Polarized SAR and multiband SAR provide more detail about forest structure, and improve
biomass estimates (Dobson et al. 1995b; Rosenqvist et al. 2003). Askne et al. (2003) use short and
long wavelength InSAR to estimate biomass in a boreal forest within 15 percent of ground
estimates, while Balzter et al. (2007), using a similar method, is able to estimate biomass in a
deciduous forest within 36 percent of estimates. Recent research has measured tropical forest
biomass with +/-15 percent accuracy using L-band polarized SAR (up to 150 Mg/ha) and with P-
band polarized SAR (up to 300+ mg/ha) (Saatchi et al. in review).

Polarized backscatter estimates of biomass may be combined with height-based estimates of
biomass from InSAR to increase the range of forest biomass that can be accurately measured from
SAR (Saatchi et al. in review). These estimates are complementary: estimates of biomass from tree
height are more accurate as tree height increases, while backscatter is less accurate with increasing
height (Sexton et al. 2009, Saatchi et al. in review; Le Toan 2008). In Central America, a SAR-InSAR
combination method has been found to increase the saturation point of L-band (to 200 t/ha) and
increase the accuracy of L- and P-band (Saatchi et al. in review). The BIOMASS and DESDynl
missions (P-band and L-band, respectively) will use this combination approach to global biomass
estimation, which may lead to frequent, 100 m resolution estimates of a broad range of forest
biomass (Le Toan 2008; Donnellan et al. 2008).

4.3.4 Indirectly Estimating Biomass from Forest Spectra

A number of studies have correlated passive remote sensing measurements to net primary
productivity and biomass (Lu 2006; DeFries 2008; Goetz et al. 2005; Baccini et al. 2008). Several
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vegetation indices derived from passive remote sensing are well correlated with LAI, fraction of
absorbed photosynthetically active radiation (fAPAR), and other measurements of productivity
(Gao et al. 2000). Net primary productivity is modeled from either LAI or fAPAR estimates; both
approaches have been shown to be relatively accurate (Luus and Kelly 2008) even though LAI
estimates saturate at 2-4 leaves per unit area (Gao et al. 2000). Most passive sensors (MODIS,
Landsat, GeoEye) can estimate fAPAR and LAI, and productivity is linearly correlated with biomass
at low levels of biomass (<200 Mg/ha, Keeling and Phillips 2007; Luus and Kelly 2008). In low-
biomass systems, including many temperate, boreal, and dry tropical forests, passive sensors are
capable of estimating biomass directly from vegetation indices (Lu 2006; Muukkonen and
Heiskanen 2007).

Houghton et al. (2001) compare two biomass maps of the Amazon basin from remote sensing
(MODIS and AVHRR) and find little spatial agreement between them but overall agreement on total
biomass (~10 percent difference). Piao et al. (2009) model productivity and biomass across China
and find good agreement between remotely sensed biomass and productivity estimates and two
other independent estimation methods. Baccini et al. (2008) use a combination of MODIS and
ground data to model Africa’s biomass with 80-90 percent accuracy. Houghton et al. (2007) use
MODIS to map biomass across Russia and are able to predict 60 percent of the variation, although
within-site error was highly variable. Zheng et al. (2004) employs Landsat 7 and data on forest age
and composition to predict AGB with 67 percent accuracy. Blackard et al. (2008) use a combination
of ground data, coarse- and moderate-resolution imagery, and GIS layers to generate a biomass map
of the United States with variable predictability (0.31-0.73 across regions). Foody et al. (2003) use
Landsat spectral data and a neural network algorithm to predict biomass at three tropical forest
sites with 71-84 percent of the variance explained. However, in the study by Foody et al. (2003),
vegetation indices optimized to predict biomass at one site have very poor performance at other
sites, underscoring the difficulty of developing general spectral relationships across moderate-
resolution imagery taken in different seasons, cloud levels, and lighting conditions (Schroeder et al.
2006, but see Woodcock et al. 2001).

The biomass-productivity relationship saturates in tropical and high-biomass temperate forests
(>200 Mg/ha, Keeling and Phillips 2007), so attempts to estimate biomass there often use other
metrics besides spectral response, including image texture and forest age (Lu 2006). As reviewed
above (Section 4.2.5), high-resolution image texture can be used to derive forest structure metrics
(e.g., canopy width, height) (Wolter et al. 2009), which then could be used to estimate biomass
through allometric relationships (Palace et al. 2008; Broadbent et al. 2008). However, Song (2007)
shows that the accuracy of this canopy-delimitation approach is low in forests with overlapping
canopies. In dense tropical forests, Broadbent et al. (2008) also find that biomass estimates had low
accuracy (excluding emergent trees), and emergent trees covered smaller tree canopies from view
and made detailed ground-data correction necessary for any biomass estimates. In more open,
lower-biomass forests, texture metrics can aid spectral estimates of forest structure and biomass
(Lu 2006; Wolter et al. 2009). Although texture metrics based on high-resolution imagery are
limited in areal coverage and dependent on local ground data and radiometric correction, the
metrics could be a valuable adjunct to more accurate, spatially coarse LIDAR measurements of
forest structure (Wolter et al. 2009).
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Forest biomass can be indirectly estimated by using remote sensing to map forest age classes
(Castro et al. 2003; Chambers et al. 2007). If accurate local relationships can be developed between
biomass and detectable forest age classes (e.g., Zheng et al. 2004), the distribution of forest age
classes across the landscape can be used to estimate biomass and model future productivity
(Sanchez-Azofeifa et al. 2009; Castro et al. 2003; Lu 2006; Zheng et al. 2004; Helmer et al. 2009).
However, secondary forests over 15-30 years of age are difficult to distinguish from mature forests
using forest spectra (Steininger 1996; Nelson et al. 2000; Song et al. 2007). Secondary forest also
varies markedly in its growth rate due to a variety of factors, including species composition,
climate, land use history, soil fertility, human disturbance, and regional differences (Nelson et al.
2000; Castro et al. 2003; Sanchez-Azofeifa et al. 2009). Both of these facts present severe challenges
to using forest age classes as a predictor of forest biomass, in addition to the intensive fieldwork
required to establish a relationship between forest age and biomass (Castro et al. 2003; Uhl et al.
1988; Zheng et al. 2004; but see Helmer et al. 2009). Sanchez-Azofeifa et al. (2009) argue that
improving the detection of forest age classes is a critical goal for forest carbon measurement.
However, continuing human disturbance from logging and fires (e.g., Alencar et al. 2006; Asner et
al. 2006; Uhl et al. 1988), as well as the variability in forest regrowth biomass with age (e.g., Helmer
et al. 2009) make forest age a metric of questionable utility in measuring global biomass. Direct
estimation of forest regrowth biomass and productivity is a more parsimonious goal, and it may be
achievable with expected advances in the spectral and spatial resolution of sensors, polarized and
InSAR satellites and constellations, increased LIDAR coverage, and improvements in modeling
forest reflectance.

4.3.5 LIDAR Estimations of Biomass

LIDAR is considered a promising approach to estimate local forest biomass (Lu 2006) because
direct measurement of forest canopy structure and height can be converted to biomass using
allometric equations (Dubayah et al. 2000; Broadbent et al. 2008; Chave et al. 2005). Earlier in this
report, we reviewed the basic capabilities of LIDAR technology (Section 2.2.2), the high accuracy of
LIDAR in measuring forest height (usually with height errors of less than 1 m, Section 4.2.2), and
the variable but often high accuracy of LIDAR in estimating forest volume (Section 4.3.1). The
accuracy of LIDAR in estimating biomass is also often good, but methods differ among LIDAR
technologies.

Small-footprint LIDAR, taken from aerial sensors, excels at measuring forest height and
delimiting canopy width and overall structure. With this technology, biomass is usually estimated
by its correlation with forest height and/or canopy widths. It is challenging to distinguish ground-
returns in dense forests but algorithms exist for efficient processing of small-footprint data even in
these challenging conditions (e.g., Clark et al. 2004b). Small footprint LIDAR has achieved poor to
very high accuracy in estimating forest biomass with many studies having accuracy in excess of 80
percent (Patenaude et al. 2005). Patenaude et al. (2005) review several temperate forest studies
with predictive accuracies between 45-91 percent, and Popescu et al. (2004) observe predictive
accuracies between 32-81 percent in deciduous and pine forests, respectively. Asner et al. (2009)
are able to use small-footprint LIDAR to predict biomass in tropical Hawaiian forests with 78
percent accuracy, Nelson et al. (2007) estimate biomass in temperate North Carolina pine forests
with 93 percent accuracy, and Naesset and Gobakken (2008) estimate biomass in boreal forests

£ RFF | FAGAN AND DEFRIES )



with 88 percent accuracy. Zhao et al. (2009) use LIDAR height distributions to estimate forest
biomass in east Texas with up to 95 percent accuracy. Similarly, van Aardt et al. (2008) use small-
footprint LIDAR to both distinguish temperate forest types and estimate their biomass with greater
than 95 percent accuracy. As with estimation of forest volume, it is difficult to assess whether the
observed variability in accuracy arises from the methods used, from regional variability among
forests in growth form, or from regional variability in species wood density.

Large-footprint LIDAR, with its full waveform describing three-dimensional canopy structure, is
well correlated with biomass. In temperate and boreal forests, predictive accuracies of biomass
from aerial, large-footprint LIDAR have ranged between a low of 61 percent (northeast United
States, deciduous; Andersen et al. 2006) and a high of 95 percent (Pacific Northwest conifers,
Means et al. 1999). In studying three U.S. biomes, Lefsky et al. (2002a) achieve 84 percent accuracy.
Nilsson (1996) predicts biomass for Scots pine with 78 percent accuracy, and Hyde et al. (2005)
predict 86 percent of mountain conifer biomass in a U.S. study. In northern China, Sun et al. (2007)
predict biomass with 73 percent accuracy and Boudreau et al. (2008) achieve 81 percent accuracy
in boreal Russia. In tropical forests, predictive accuracies of biomass from large-footprint LIDAR
have been between 66 and 93 percent (Drake et al. 2003; Drake et al. 2002a, b). Drake et al.
(2002b) find that one parameter (HOME) from the LIDAR waveform was highly predictive of forest
biomass across sites. Baccini et al. (2008) use that relationship to validate a regional map of African
biomass with ICESat GLAS sampling.

Because of the close correlation with global forest height and biomass (Lefsky et al. 2007;
Helmer et al. 2009), LIDAR pulses from the orbiting ICESat GLAS satellite have provided a wealth of
data for forest biomass mapping and validation (Baccini et al. 2008; Helmer et al. 2009; Boudreau et
al. 2008; Nelson et al. 2008; Pflugmacher et al. 2008). The launch of DESDynl promises to increase
this new source of global biomass data, but both ICESat and DESDynlI will collect data at coarse
spatial resolution: measurement sites will be separated by several kilometers (Oberto et al. 2008;
NASA 2009a). For the near future, all LIDAR satellites are expected to sample only at coarse
resolution.

Overall, LIDAR has the potential for good to high accuracy and can measure both forest canopy
height and ground elevation, thus overcoming a key limitation of current SAR and InSAR
approaches to estimating biomass. The greatest limitation of LIDAR mapping of biomass is the
coarse spatial resolution of satellite LIDAR sensors and the narrow swath of aerial LIDAR sensors.
These limits can potentially be overcome by integrating LIDAR data with other remote datasets that
have greater resolution or swaths (e.g., InSAR, passive; see below for more detail). Fusion of LIDAR
data with other types of imagery will allow accurate estimates of biomass on a global scale (Baccini
etal. 2008; Anderson et al. 2008; Donnellan et al. 2008).

4.3.6 Fusion Approaches to Estimating Forest Biomass

Three main data sources play a role in estimating biomass: GIS data layers, geo-referenced
ground data, and satellite imagery (Gibbs et al. 2007; DeFries et al. 2007). It is possible to fuse all
three. Biomass estimates from remote imagery can be improved by using any number of geo-
referenced data layers: bioclimatic surfaces, roads, general habitat classifications, population layers,
and/or ground data (Baccini et al. 2004; GOFC-GOLD 2008; Saatchi et al. 2007; Herold and Johns
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2007; Blackard et al. 2008). The volume of global GIS data is growing; coarse-resolution, global
analyses of human impact on forests are now possible (Sanderson et al. 2002). It is possible to
discount forest carbon estimates by measures of human impact, including road density and
population (GOFC-GOLD 2008; Gibbs et al. 2007). Saatchi et al. (2007) use elevation data and a
variety of remote sensing data to estimate biomass across the Amazon basin; comparison with
bioclimatic layers indicates that dry season rainfall might be a good additional predictor of biomass.
Baccini et al. (2004) use a combination of land-cover classification from MODIS data, ground
inventory data, and climate and topographic GIS layers to predict biomass in California with 73
percent accuracy. Baccini et al. (2008) use a similar approach with ground data in Africa to
accurately predict biomass but find that GIS layers do not improve the analysis. Walker et al. (2007)
use ground data, national GIS layers, and both passive and active remote sensing data to create an
accurate (r=0.88) map of forest basal area for central Utah.

Fusion with ground data can provide additional attributes and accuracy to mapped forest
classes (Baccini et al. 2004). This approach can also provide continuous data that can be integrated
across regions—tree diameter data, for example, has improved allometric estimates of biomass
from LIDAR (Means et al. 1999). Boudreau et al. (2008) use a combination of ground data, aerial
LIDAR data, satellite LIDAR data, elevation data, and moderate-resolution land-cover classification
to estimate biomass for the boreal forests of Quebec. Similarly, Nelson et al. (2008) use ground data
to parameterize biomass estimates from GLAS, and then extend the GLAS estimates regionally using
MODIS land-cover classifications. Andersen et al. (2006) and Anderson et al. (2008) find that by
including ground data on forest composition, GLAS LIDAR estimates of forest biomass are
significantly improved. The authors also show that this forest composition data could be estimated
accurately by high-resolution hyperspectral data.

The fusion of remote sensing data to predict ground validation datasets is an increasingly
common practice with great potential (Rosenqvist et al. 2003). Saatchi et al. (2007) integrate a
variety of SAR and passive sensors to estimate Amazon biomass in 16 forest classes with 81-91
percent accuracy. Moghaddam et al. (2002) find that a SAR-Landsat fusion is twice as accurate as
Landsat alone in estimating conifer foliage biomass. Treuhaft et al. (2003) use hyperspectral and
InSAR data to estimate forest biomass in Oregon with +/- 16 percent error. Hyde et al. (2006) fuse a
variety of data sources (SAR, InSAR, LIDAR, high- and moderate-resolution passive) and find that a
LIDAR-Landsat fusion predicts biomass the most accurately (80 percent of the variance); an all-
sensor fusion is only slightly more accurate (83 percent). Helmer et al. (2009) use global
relationships between GLAS data and forest biomass to estimate biomass directly in Brazil, then
extend those results to Landsat-derived regional forest age classes. Combining the global GLAS
datasets with existing land-cover maps is one promising new fusion method, out of many, for
improving global forest biomass estimates in the 2009-2015 time period.

4.4 Estimating Forest Carbon Stocks from Remotely Sensed Data

Satellite imaging can tell us much about global carbon stocks, but there are limits to its
accuracy. Dry biomass is approximately 47-55 percent carbon by weight (IPCC 2006), so
aboveground biomass estimates from remote sensing can be simply converted into aboveground
carbon (AGC) stock estimates (Gibbs et al. 2007). Depending on the method used (e.g., SAR versus
spectra), however, remote sensing may not include dead trees in its estimate of AGC stocks. In
addition, satellite and aerial estimates of forest carbon are fundamentally limited to aboveground
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carbon. Remote sensing cannot measure litter, root, and soil carbon stocks, which can be
considerable (GOFC-GOLD 2008; Malhi et al. 1999; Page et al. 2002; but see Foster et al. 2002).
Belowground (root) carbon averages around 20-30 percent of AGC globally (Cairns et al. 1997) but
varies from 9 to 26 percent in forests across the Amazon basin (Houghton et al. 2001). National
estimates of carbon stocks often simply adjust AGC stock estimates by uniform percentages (e.g., 30
percent) to estimate total nonsoil forest carbon stocks (Gibbs et al. 2007; Houghton et al. 2001).
Differing methods of estimating dead and belowground carbon lead to much of the observed
variation in forest carbon stock estimates (Houghton et al. 2001).

Modeling soil carbon emissions is important in forests: the amount of carbon in litter, nontree
vegetation, and soil stocks vary markedly with latitude, forest type, and soil type, but soils alone
make up, on average, 49-84 percent of total forest carbon stocks (Table 1; Malhi et al. 1999; GOFC-
GOLD 2008). Not all of the soil carbon is emitted with deforestation, but emissions from soil carbon
stocks can account for a significant percentage (10 percent or greater) of emissions from
deforestation and degradation, especially in northern forests and peat swamps (Houghton 1999;
Page et al. 2002). For example, one study estimates that that the 1997 burning and deforestation of
Indonesian peat swamps released 253 tons of carbon per ha, which constituted between 13 and 40
percent of total global carbon emissions that year (Page et al. 2002). Although global maps of soil
carbon do exist, the accuracy of the maps is difficult to assess with available data (GOFC-GOLD
2008). In the paragraphs below, we review the different methods of estimating forest AGC stocks on
a global scale.

4.4.1 Aboveground Carbon Stocks Estimates: Inventory and Remote Sensing

Forest inventories are a starting point for estimating forest AGC stocks by providing measures
of tree diameter, tree height, species composition, and density. Applying general allometric
equations then allows estimation of tree volume, biomass, and carbon (Chave et al. 2005; see Table
4). Allometric equations are derived from harvesting, drying, and weighing trees in forest plots and
can be site and species specific if enough sampling is done (Gibbs et al. 2007). General allometric
equations developed across forest types are highly accurate at predicting AGC stocks in local forest
plots (Chave et al. 2005; Schroeder et al. 1997) in combination with species-specific wood-density
data (Baker et al. 2004). In the tropics, cross-species, stand-level estimates of wood density lead to
decreased accuracy in biomass estimation (Baker et al. 2004).

Once aboveground tree carbon is accounted for, carbon in other vegetation, litter and soils can
be inventoried as well to improve estimation accuracy and carbon in tree roots is usually estimated
as a function of tree size (20-30 percent; Gibbs et al. 2007; Cairns et al. 1997; GOFC-GOLD 2008). If
soil information is not included in the forest inventory, the decrease in total carbon estimation
accuracy can be marked (GOFC-GOLD 2008; Malhi et al. 1999), but accurate AGC estimates can be
combined with global soil carbon maps to get estimates from existing forest inventory data (GOFC-
GOLD 2008).

In comparison to remote sensing estimates, forest inventory estimates of total AGC are
considered more accurate, although they, too, have estimation inaccuracies (Gibbs et al. 2007;
Saatchi et al. 2007; Chave et al. 2005; Baker et al. 2004). On the global scale, however, plot-level
measurements of AGC are essentially point measurements. Simple interpolation between plots fails
to capture the full range of spatial variation in biomass across landscapes (Houghton et al. 2001;

£ RFF | FAGAN AND DEFRIES 65



Gibbs et al. 2007). As a result, there is a wide range of methods to estimate AGC stocks; Goetz et al.
(2009) review (and name) several common methods for estimating regional AGC stocks, including:

e “Stratify and Multiply”: assigning inventory-derived biomass values to land-cover classes;

e “Combine and Assign”: using GIS data layers and land-cover classes to modify biomass
estimates within classes (a version of the above); and

o “Direct Remote Sensing” (DRS): using field data to train a rule-based algorithm until it has
an optimal prediction of biomass from remotely sensed data.

All these methods involve both remote sensing and ground inventory data. Inventory data are
necessary to estimate forest carbon stocks, but these data alone are not sufficient. Goetz et al.
(2009) discuss the advantages and disadvantages of each approach and we summarize that analysis
here. Use of discrete land-cover classes and discrete biomass values (one per land-cover class) is a
Stratify and Multiply approach. Combine and Assign generates discrete land-cover classes and
continuous biomass values (varying with GIS layers). The Direct Remote Sensing approach
generates continuous land-cover values and continuous biomass estimates (which starts, in the
training data, from continuous spectral data and discrete local biomass values).

Each approach can be useful (Goetz et al. 2009). For example, existing land-cover maps (e.g.,
GLOBCOVER) could be used in a Stratify and Multiply approach as a Tier I approximation of global
AGC stocks (GOFC-GOLD 2008). To detect forest degradation near roads, road GIS data could be
used to lower biomass estimates in a Combine and Assign approach (GOFC-GOLD 2008). Although it
was not originally conceived as such, the DRS approach in Goetz et al. (2009) could utilize GIS data
and also perform rule-based classification of land covers into biomass categories at the pixel scale.
Where sufficient data are available, DRS is arguably the right approach for two reasons: the
approach uses the original data and yields continuous estimates of biomass.

As Goetz et al. (2009) illustrate, the use of broad land-cover classes to detect change in biomass
over time ignores within-class heterogeneity and compounds classification error between land-
cover maps. Using raw remote sensing data and continuous estimates eliminates errors from the
previous classification and homogenization of complex landscapes. As a result the DRS approach
will have higher resolution and likely higher accuracy when estimating carbon stocks.

Even with the advantages of DRS, discrete land-cover mapping will remain essential.
Continuous maps of biomass and productivity from DRS would be most useful if they were
integrated with detailed land-cover maps for two reasons. First, research into distinguishing land
covers (e.g, Sesnie et al. 2008) identifies techniques and remote sensing data that would improve
the rule-based classification algorithms that produce continuous maps. Second, land-cover
classification is important for land-use planning and global modeling. Current carbon and climate
models require land-cover information to make accurate projections (DeFries 2008). Human land-
use introduces discrete boundaries, distinct land-uses, and legacy effects to forests that vary
continuously in biomass (Asner et al. 2009; Uhl et al. 1988; Uriarte et al. 2004). Discrete land-cover
classification allows evaluation of human land-cover decisions (e.g., determining if biomass is
decreasing due to oil palm plantations replacing intact forest, or due to logging following road
construction). Land-cover information also can alter future projections for biomass recovery; in
Brazil, forest regrowth has similar biomass to intact primary forest on sandy soil, but regrowth has
a very different range of expected growth rates (Castro et al. 2003; Uhl et al. 1988).
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4.4.2 From Stocks to Fluxes: Integrating Carbon Pools and Flows

Models are required to integrate carbon fluxes and stocks on a global scale and to calculate
carbon emissions from forests (van der Werf et al. 2006). As noted in Section 4.4, AGC stocks
represent less than half of total carbon in forests on average (although this varies greatly between
forests; see Table 1). In this report, we have not dealt with dynamic carbon gas fluxes from land-use
change, which can be fast or slow (e.g., tree stump decay in deforested pasture; Crutzen and
Andreae 1990), or with changes in non-AGC stocks (e.g., loss of litter in burned forests). Dynamic
carbon fluxes, especially in belowground carbon, are difficult to measure directly and are usually
modeled (e.g., van der Werf et al. 2006). We have focused instead on how remote sensing can
directly measure two important data inputs to carbon models: AGC stocks (area x biomass), and
changes in those stocks over time (deforestation, reforestation, net growth) (DeFries et al. 2007).
Model estimates of forest carbon fluxes can be also be improved, however, by satellite
measurements of carbon gas uptake and release, vegetation productivity, and the extent and
frequency of forest fires (Palmer 2008; Ramankutty et al. 2007; Rosenqvist et al. 2003; Roy et al.
2005; Alencar et al. 2006; Gibbs et al. 2007; Chuvieco 2008; Heinsch et al. 2006; Liu et al. 2002).

The topic of carbon gas fluxes is reviewed extensively elsewhere (Chuvieco 2008; Palmer 2008)
and is dealt with only briefly here. The worldwide network of eddy covariance towers,
supplemented by bottle data and orbiting carbon-gas measuring satellites, sample carbon gas fluxes
over time from vegetation (Palmer 2008; Baldocchi 2008). For example, the IBUKI satellite
measures carbon dioxide and methane at 10.5 km resolution globally every three days and is
improving our understanding of global carbon sources and sinks (Palmer 2008). This data-
collection network, by measuring carbon gas fluxes, is able to capture carbon stock changes from
forest degradation (as exposed litter and wood decompose to carbon gases) and vegetation
productivity (as vegetation uptakes carbon dioxide to grow). Although the measurements depend
on modeling to separate aboveground fluxes from belowground fluxes, carbon gas flux
measurements provide an independent, ultracoarse-resolution metric by which to evaluate the
higher-resolution estimates of aboveground, net primary productivity derived from passive sensors
like MODIS and AVHRR (Heinsch et al. 2006; Xaio et al. 2008).

Biomass burning, in addition to depleting carbon stocks (Chuvieco 2008), has a number of
effects on regional air quality, hydrological cycles, and even soil fertility (Crutzen and Andreae
1990). Fires are detectable by a number of high-revisit, coarse-resolution passive sensors with
thermal bands (e.g., MODIS, AVHRR, Along Track Scanning Radiometer [ATSR]), by GOES several
other ultracoarse resolution sensors, and by several moderate-resolution sensors (e.g., ASTER,
Landsat) (Chuvieco 2008; Schroeder et al. 2008b). Real-time, global fire mapping is ongoing at 1 km
resolution using MODIS and future satellites will continue this effort (e.g., NPOESS) (Davies et al.
2009). Global fire monitoring has been invaluable in aiding fire detection in wilderness areas and in
contributing to carbon and air quality models (Davies et al. 2009; Chuvieco 2008). Although
modeling can overcome some of the problems in current global fire detection, shortcomings include
lower chances of fire detection in cloudy areas, difficulty in detecting understory fires in dense
forests, and the inability of coarser-resolution sensors to detect the majority of smaller fires
(Schroeder et al. 20083, b). Even when fires cannot be detected using direct means, both passive
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and SAR sensors are able to map burn scars (Giglio et al. 2005; Siegert and Ruecker 2000).
Modeling carbon emissions from fires for carbon emission requires detailed information on
vegetation biomass in either active fire locations or burn scars (Chuvieco 2008). Accurate estimates
of fire radiative power (FRP) are also a good proxy for biomass lost, but they require frequent
measurements by a passive thermal sensor with a large dynamic range to prevent saturation (Giglio
etal. 2006). Giglio et al. (2006) map global patterns in FRP using MODIS, and Roberts et al. (2005)
are able to predict 90 percent of variation in fire biomass emissions in southern Africa with the
geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor. Currently, only
MODIS and some geostationary satellites meet the revisit and sensitivity requirements for
calculating FRP (Giglio et al. 2006), but several fire-detecting coarse- and moderate-resolution fire
sensors are planned for launch in the next six years, including the NPOESS series, the higher-
resolution GOES Advanced Baseline Imager (ABI) sensors, and the SAC-D fire satellite (Appendix).
As global biomass maps and satellite measurements of FRP improve, modeled estimates of biomass
emissions from fire will also continue to improve.

Carbon modeling is critical to any global forest monitoring effort as a method of integrating
aboveground carbon stock measurements with belowground carbon estimates and important
carbon fluxes (e.g., the effect of fires, or soil uptake of carbon) (e.g., van der Werf et al. 2006). Such
modeling can also make possible independent tests of biomass and productivity estimates using
ground data (e.g., eddy covariance measurements of carbon dioxide). Future advances in remote
sensing will help to decrease uncertainty in carbon models by improving the accuracy of
measurements of land cover, standing biomass, vegetation productivity and decomposition, and
emissions from biomass burning.
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Chapter 5. Forests from Space: Unparalleled Measurements,
Timely Moment

With developments in satellite technology and the globalization of GIS layers, we can view the
whole Earth with more detail than ever before. These developments lead to a timely moment for
global forest monitoring, an effort further enhanced by technological innovation and an
accumulation of forest inventory data (Herold 2009). With the tools now at hand, a global forest
monitoring effort can be guided by principles of repeatability, longevity, and accuracy. To be
successful, monitoring will have to reduce the greatest sources of error in measuring forest
characteristics. Currently forest area can be measured quite accurately but only at a coarse, two-
class resolution. Forest biomass and carbon stocks cannot be estimated at high resolution but
conservative estimates are possible by combining forest inventory and LIDAR data with more
spatially extensive satellite imagery. This concluding chapter examines how current satellite data
and expected sensor launches between 2009 and 2015 could be used in a global forest monitoring
effort.

5.1 Improving Forest Biomass and Carbon Estimates

In global forest measurement, estimates of forest biomass and carbon are the most variable
because it is difficult to estimate existing stocks reliably and detect when those stocks have
decreased (Houghton 2005). In general, remote sensing is much better at detecting large, canopy-
level changes in biomass than small (subpixel), below-canopy changes in biomass (Peres et al.
2006; DeFries et al. 2007; Broadbent et al. 2008). Variable conditions of illumination, elevation, and
moisture make detection of temporal change more challenging (Sanchez-Azofeifa et al. 2009; Asner
2001; Kellndorfer et al. 1998; Schroeder et al. 2006). From the standpoint of cost, image
availability, and repeat time, global efforts to map forests will not be able to use large amounts of
high-resolution imagery to detect small-scale forest changes (e.g., logging; Achard et al. 2007;
DeFries et al. 2007; Rosengqvist et al. 2003). As stated in Chapter 4, it is more desirable to use other
types of sensors to detect changes in aboveground forest biomass and structure. Several steps can
be taken to reduce uncertainty in area, biomass, and carbon estimates from satellite sensors.

5.1.1 First-Order Uncertainties: Forest Area

Because even degraded forests contain a large amount of biomass relative to agricultural
ecosystems, measuring intact and degraded forest area is the first step in forest biomass estimation
(DeFries et al. 2007; Ramankutty et al. 2007; Houghton 2007). Forest/nonforest area (a Level I
classification) can be mapped with very high accuracy, but the only global forest maps are at a
coarse-scale and miss the majority of deforestation. Global, moderate-resolution estimates have
been made by subsampling (Achard et al. 2008). Further, it is not possible to distinguish tree
plantations, agroforestry, and forest regrowth from mature forest using current coarse-resolution
forest maps (Sanchez-Azofeifa et al. 2009; Hansen et al. 2008b). Given the increase in tropical forest
regrowth in deforested areas (Asner et al. in press) and the rapid expansion of tree plantations
globally (FAO 2006), these shortcomings have large and growing importance for global biomass
estimates.
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Moderate-resolution optical time series have been used in several national mapping efforts and
have enabled mapping of forest types and deforestation with medium to good accuracy (Section
4.1.5). This approach could be used to map global forest area to Level Il forest types, although
achieving good global accuracy would be challenging. As an added benefit, these series extend back
to before1980.

5.1.2 Forest Area and the Promise of New Technology

Between 2009 and 2015, global high-resolution coverage will likely be achieved by the GeoEye
and RapidEye constellations. This global dataset will be invaluable in validation and algorithm
training for forest monitoring efforts. The geostationary GOES satellite constellation, among others,
should improve to 1 km resolution at nadir and make real-time, coarse-resolution deforestation
detection possible. The launch of several moderate-resolution satellites would continue these
imagery series, increase the number of bands available for multispectral land-cover mapping, and
make possible highly accurate, hyperspectral global land-cover maps. The dramatic increase in the
number of SAR satellites, available bands, and constellations should make SAR-passive fusion a
common technique and allow multi-polar and InSAR mapping of land cover and structure. The
creation of annual forest maps from ALOS is a first effort in this direction (Kellndorfer et al. 2008).
Opening the Landsat archive has enabled several new efforts, including the reanalysis of past
imagery, the use of temporal information in classifying moderate-resolution images (e.g., Helmer et
al. 2009), and the creation of global, moderate-resolution land-cover classifications (e.g.,
Cunningham et al. 2002). All these developments should help to increase the accuracy of land-cover
mapping, both past and future.

5.1.3 Second-Order Uncertainties: Forest Biomass, Degradation, and Global Change

Forest biomass and carbon can be estimated using fusions of passive, sensors, active
sensors, and field data although the accuracy of remote estimates depends on accurate field data
(see Section 3.1.3). The global availability of LIDAR data from ICESat GLAS, when combined with
MODIS imagery, SAR sensors, and large ground-truth datasets, has made regional biomass mapping
and validation feasible (e.g., Saatchi et al. 2007; Baccini et al. 2008; Boudreau et al. 2008). Unlike
forest area however, historical reference maps for global forest biomass do not exist. Conservative
estimates of baseline forest biomass will have to be generated from current remote sensing and
forest inventory data (Gibbs et al. 2007; GOFC-GOLD 2008; Rosenqvist et al. 2003; Olander et al.
2008). The lack of reference biomass maps before 2005-2009 impedes both international policy
and scientific inquiry (Gibbs et al. 2007; Grainger 2008). Temporal change in biomass is important
for carbon modeling, monitoring forest degradation, characterizing forest regrowth, and predicting
forest carbon stocks. Rosenqvist et al. (2003) argue that it may be possible to use the JERS-1 data to
develop reference global biomass maps, but this is may be unlikely given the low biomass
saturation of L-band SAR. Given the number and variety of expected active sensors in the next few
years, a hindcasting approach that uses modern data to create past biomass estimates might be
possible (see below).

Large-scale human and natural disturbances—logging, fires, pest outbreaks, and global
warming—also cause uncertainty in forest biomass estimates. This uncertainty exists because these
disturbances are either difficult to detect (logging, some pest outbreaks, fires in cloudy areas) or
because effects are difficult to predict and pervasive (fires in tropical frontiers, global warming).
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Progress is taking place in detecting logging using moderate-resolution imagery (Asner et al. 2005),
and the increased number of high-resolution and SAR sensors in orbit (e.g., the RapidEye or
Sentinel-1 constellations) are likely to make the global mapping of structural changes in forests
possible (although at larger cost than previously). Determining how global forest biomass will
respond to the effects of tropical fires, deforestation-climate interactions, and increases in forest
respiration rates in a warmer world will require accurate inputs to carbon and climate models from
remotely sensed data, including land cover, fire frequency, carbon gas fluxes, phenology data, and
carbon stocks. To create these estimates, concerted global forest monitoring using both remote
sensing and ground data is required.

5.1.4 Forest Biomass and the Promise of New Technology

With the plethora of SAR bands, polarities, and constellations expected to launch between
2009 and 2015, a number of multi-band fusion possibilities will arise. The accumulation of LIDAR
data by new satellites and aerial sensors will refine biomass maps based on optical and SAR
sensors. It is likely that big steps forward will be taken in measurement of forest height, structure,
biomass, and ground elevation in the next few years because of the ICESat-2 mission, the DESDynl
and BIOMASS missions, and the wealth of SAR data. The development of forest biomass maps is
very likely in the near term particularly with the expected launch of DESDynl in 2015 and the
potential launch of BIOMASS in late 2015 or early 2016. Estimation of biomass from remote sensors
faces two key challenges, however. The first challenge is to collect adequate reference, or ground-
truth, data—we address this issue below. The second challenge is to create accurate reference
biomass maps for 2000 or 1990, like those requested by political agreements and scientists (Gibbs
etal. 2007; Rosenqvist et al. 2003). This challenge can only be solved by conservative estimates
and/or hindcasting.

Hindcasting past forest biomass from the current relationship of biomass with remote
sensing data is possible using, for example, either the Direct Remote Sensing approach or the
Stratify and Multiply approach (Section 4.4.1). One possible DRS approach would combine a still-to-
be-developed ground-level DEM with reference InSAR data from the 1994 and 2000 shuttle
missions, creating global forest height maps (e.g.,, Walker et al. 2007; Kellndorfer et al. 2004). These
historic height maps could be converted into biomass estimates using current relationships
between InSAR heights and biomass (LIDAR and ground derived). These biomass estimates could
even be improved by fusing them with spectral information from the Landsat archive. Alternatively,
an Stratify and Multiply approach could use ground, SAR, and LIDAR data to develop relationships
between moderate-resolution, Level I land-cover maps and current, conservative biomass
estimates (e.g., Helmer et al. 2009). Historic, moderate-resolution Level Il land-cover maps would
be used to estimate reference forest biomass.

In the next six years, multi-polar, repeat-pass InSAR and the GLAS and DESDynl footprint
archives will markedly improve DEM and BIOMASS measurements (ESA 2009; NASA 2009a, Saatchi
et al. in review). The eight-year MODIS record of vegetation productivity and its continuation by the
NPOESS, GCOM, and Sentinel-3 series will continue to be useful in monitoring land cover and
vegetation response to climate change. The record of MODIS in daily phenology and fire
measurement could be improved to real time by coarse-resolution geostationary satellites. Global
modeling of carbon stocks and fluxes will be aided by all of these sensors. Global carbon gas
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monitors (e.g., IBUKI) and hyperspectral refinement of global leaf area estimates will also be
beneficial (DeFries 2008; Palmer 2008).

5.1.5 Improved Estimates Require Improved Ground-Truthing

Despite the promise of new technology, high-quality geo-referenced ground-truth data will
continue to be essential in validating and improving estimates from satellite imagery (Gibbs et al.
2007; Goetz et al. 2009). For example, one of the biggest causes of uncertainty in estimating
biomass in the Amazon and Congo basins is the lack of ground-truth forest inventory data over
large areas to train remote sensing algorithms (Saatchi et al. 2007; Baccini et al. 2008). Larger,
higher-quality ground-truth datasets improve estimates from remote sensing imagery (Foody
2002). To achieve accurate estimates, a global forest measurement effort will have to collate a large
number of existing ground-truth datasets and coordinate additional data collection in gap areas
(e.g., central Africa; Herold 2009) and needed measurements (regional wood density patterns;
Baker et al. 2004). [deally, ground-truthing and high-resolution LIDAR and optical imagery
(satellite or airborne) should both be used, but collection of forest inventory data and aerial LIDAR
data has lagged behind satellite data collection in many countries (Herold 2009).

The dependence of accurate remote sensing estimates on large amounts of ground-truth data
has important implications for any global forest measurement effort. As noted in Section 3.5,
ground-truthing is usually the most expensive part of large-scale remote-sensing analysis. Different
types of ground-truthing (e.g., forest inventory, LIDAR, high-resolution optical) would need to be
coordinated in a sampling hierarchy for efficiency (Table 3; Patenaude et al. 2005; DeFries et al.
2007). In a global forest measurement effort, the logistical difficulties of air and ground access are
not trivial, and careful coordination of aerial and ground data with satellite imagery is a practical
necessity (Achard et al. 2007; GOFC-GOLD 2008; Rosenqvist et al. 2003; DeFries et al. 2007).

5.2 In Conclusion: Toward Improved Measures and Monitoring

Accurate global estimates of forest area, forest structure, forest biomass, and carbon are
achievable using remote sensing technologies that are available now or that will come on-line by
2015. Forest biomass and forest carbon stocks cannot be measured directly, but conservative
estimates are possible using fusions of current forest inventory data and satellite imagery. Global
measurement of biomass should be possible with new remote sensing technology especially from
2015 onward.

Any global effort to measure forests using remote sensing technologies will face several
technical challenges. Ground-truth data must be acquired across diverse countries and ecosystems
and shared globally. Creating global forest maps with high, regionally consistent accuracy is
demanding. Choices are necessary in selecting imagery with the appropriate trade-off in cost,
resolution, swath, and repeat time. Challenges also remain to process and fuse large amounts of
imagery in a globally consistent manner and to use new remote sensing technologies to measure
biomass accurately over large areas.

Surmounting these challenges will require planning, global coordination, and understanding of
the advantages and limitations of individual remote sensing technologies. Given the number of
inaccuracies in current global forest measurement by the FAO, country-level censuses, and other
bodies (Waggoner 2009), there is a need for improved monitoring of the world’s forests. Remote
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sensing has a strong track record in global forest measurement and planned sensor launches in the
next few years have even greater potential. Institutional arrangements that implement a systematic
approach, integrating satellite and ground-truth data, would allow us, for the first time in history, to
conduct accurate, global monitoring of the world'’s forests.
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Satellite, Sensor, and Remote Sensing Acronyms and Abbreviations

AirMISR
ABI
ALOS
ASTER
ATSR
AVHRR
Avnir
CBERS
CHRIS
COSMO-SkyMed
DESDynl
DETEX
DMC
DMSAR
EnMAP
Envisat
EO-1
EOS
ERS-1

FY
GCOM
GLAS
GLC 2000
GOES

HJ

Airborne Multi-Angle Imaging SpectroRadiometer

Advanced Baseline Imager

Advanced Land Observing Satellite

Advanced Spaceborne Thermal Emission and Reflection Radiometer
Along Track Scanning Radiometer

Advanced Very High Resolution Radiometer

Advanced Visible and Near Infrared Radiometer

China-Brazil Earth Resources Satellite

Compact High Resolution Imaging Spectrometer

Constellation of Small Satellites for Mediterranean Basin Observation
Deformation, Ecosystem Structure and Dynamics of Ice satellite
Detection and Monitoring of Selective Logging Activities
Disaster Monitoring Constellation

Disaster Management Synthetic Aperature Radar
Environmental Mapping and Analysis Program

Environmental Satellite

Earth Observing One

Earth-observing satellites

European Remote Sensing Satellite

Fengyun

Global Change Observation Mission

Geoscience Laser Altimeter System

Global Land Cover 2000

Geostationary Operational Environmental Satellites

Huanjing

£ RFF | FAGAN AND DEFRIES

74



HRG
HysplIRI
HysSlI
ICESat
IMS
InSAR
IRS
JERS-1
LDCM
LIDAR
MERIS
MetOp
MISR
MODIS
NPOESS
PALSAR
POLDER
POLInSAR
PROBA
SAC
SAOCOM
SAR
SEVIRI
SIR
SPOT
SRTM

SWIR
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High-resolution geometrical

Hyperspectral Infrared Imager

Hyper-Spectral Imager

Ice, Cloud, and land Elevation Satellite

Interactive Multisensor Snow and Ice Mapping System
Interferometric Synthetic Aperture Radar

Indian Remote Sensing

Japanese Earth Resources Satellite

Landsat Data Continuity Mission

Light Detection and Ranging

Medium Resolution Imaging Spectrometer
Meteorological Operational Satellite

Multi-angle Imaging SpectroRadiometer

Moderate Resolution Imaging Spectroradiometer
National Polar-orbiting Operational Environmental Satellite System
Phased Array type L-band Synthetic Aperture Radar
Polarization and Directionality of the Earth's Reflectances
Polarimetric and Interferometric Synthetic Aperture Radar
Project for On-Board Autonomy

Satélite de Aplicaciones Cientificas

Satélite Argentino de Observacién Con Microondas
Synthetic Aperture Radar

Spinning Enhanced Visible and Infrared Imager

Shuttle Imaging Radar

Satellite Pour |I'Observation de la Terre

Shuttle Radar Topography Mission

short-wave infrared
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TanDEM-X Tandem Digital Elevation Mapping Satellite

TerraSAR-X Terra Synthetic Aperture Radar Satellite

TES-HYS Technology Experimental Satellite Hyperspectral

UAS Unmanned Aerial Systems

VENPS Vegetation and Environment Monitoring New Micro-satellite
VNIR visible and near-infrared

General Abbreviations and Acronyms

AGB aboveground biomass

AGC aboveground carbon

DBH tree diameter at breast height

DEM digital elevation model

DRS direct remote sensing

FAO Food and Agriculture Organization of the United Nations
fAPAR fraction of absorbed photosynthetically active radiation
FIA U.S. Forest Service’s Forest Inventory and Analysis Program
FRA Forest Resource Assessments

FRP fire radiative power

Gl global imagery

GIS geographic information systems

ha hectare

INPE Brazilian National Institute for Space Research

IPCC Intergovernmental Panel on Climate Change

kg kilograms

km kilometers

LAI leaf area index
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Mg
NASA
REDD
UAE

pm
UNFCCC

USGS
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meters

cubic meters

megagrams

National Aeronautics and Space Administration

reducing emissions from deforestation and forest degradation
United Arab Emirates

micrometers

United Nations Framework Convention on Climate Change

United States Geologic Survey
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Appendix. Current and Near-Term Earth-Observing Satellite
Technology: An Overview

This guide to current and future (2009 to early 2016) Earth-observing satellites is not an
exhaustive list. The authors attempted to cover all satellites that are likely to create regional to
global coverage but anticipate that some satellites were accidentally missed. Most ultra-coarse (2+
km spatial resolution), military, and non-land imaging satellites were excluded.

The information provided in the section on “Future Satellites” is as current as possible, but
improvements in technology, delays in satellite launching, mission cancellations, and outdated
information sources are inevitable. The authors welcome corrections and updates from readers.

The satellites’ specifications in this appendix come primarily from publicly available
governmental and commercial websites. The following are the main sources used to compile the
appendix.

Committee on Earth Observation Satellites. 2009. Committee on Earth Observation Satellites.
http://www.ceos.org/ (accessed March 28, 2009).

eoPortal (sponsored and run by the European Space Agency). 2009. List of EO and non-EO Satellite
Missions. http://directory.eoportal.org/missions_all_list.php?filter=&view_all&order=start_
date&dir=ASC (accessed July 23, 2009).

GOFC-GOLD. 2008. Reducing Greenhouse Gas Emissions from Deforestation and Degradation in
Developing Countries: A Sourcebook of Methods and Procedures for Monitoring, Measuring,
and Reporting. GOFC-GOLD Report version COP13-2, edited by GOFC-GOLD Project Office.
Alberta, Canada: Natural Resources Canada.

Kramer, H.]. 2002. Observation of the Earth and Its Environment: Survey of Missions and Sensors, 4th
edition. New York: Springer-Verlag.

Powell], S.L., D. Pflugmacher, A.A. Kirschbaum, Y. Kim, and W.B. Cohen. 2007. Moderate resolution
remote sensing alternatives: a review of Landsat-like sensors and their applications. Journal
of Applied Remote Sensing 1.
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Current Moderate-Resolution (200 to 15 m) Optical Sensors Relevant to Forest Mapping

Landsat 5 T™M 1984 USA VTIR, 7 30 m, 16 days 185 km Images every 16 days to any satellite Free. Formerly 600
bands receiving station. Operating beyond USS/scene, 0.02
expected lifetime. Continuous Gl to USS/kma2.
1985, spotty 1985 to present.
Landsat 7 ETM+ 1999 USA VTIR, 8 30 m (15 pan), 185 km On April 2003, the failure of the scan Free. Formerly 600
bands 16 days line corrector resulted in data gaps USS/scene, 0.02
outside of the central portion of USS/km?
images, seriously compromising data
quality. Still operating. Continuous Gl.
Terra ASTER 1999 USA/Japan | VTIR, 14 15-30 m, 16 60 km Data is acquired on request and is not 60 USS/scene, 0.02
bands days routinely collected for all areas. Spotty | USS/km?
Gl, pointable.
EO-1 ALl 2000 USA VSWIR, 10 30 m (10 pan), 37 km An experimental sensor, ALl's lifetime Free
bands 16 days was extended at the request of
researchers. Spotty Gl.
EO-1 Hyperion 2000 USA VSWIR, 220 | 30 m, 16 days 7.5 km As an experimental sensor, Hyperion Free
bands has had issues with signal-to-noise
ratio. Spotty GI.
Resourcesat-1 2003 India VSWIR, 4 23.5 m, 24 days 142 km & | Constellation member, hosts two 860 USS/scene,
LISS-11l & AWIFS bands & 56 m, 5 days 730 km moderate-resolution sensors. 0.05 USS/km, &
Continuous GlI. 1790 USS/scene,
0.004 USS/km
IRS-1C/1D LISS-III 1995, 1997 India VSWIR, 4 23.5 m, 24 days, 142 km & | Constellation twin satellites, each hosts | 860 USS/scene,
& WIFS bands & 2 & 188 m, 5 days 810 km two moderate-resolution sensors. 0.05 USS/km, &
bands Continuous GI? TBD
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CBERS-2, 2B 1999, 2003 China/ VNIR, 5 20 m, 26 days 113 km Experimental; Brazil uses on-demand Free in South
HRCCD Brazil bands images to bolster their coverage. America, China,
Continuous over Brazil, Africa, and and Africa
China only.
CBERS/IR-MSS 1999, 2003 China/ VTIR, 4 80-160 m, 26 120 km Mounted on the same satellites as the | Free in South
Brazil bands days HRCCD sensor, above. Continuous over | America, China,
Brazil, Africa, and China only. and Africa
DMC series 2002-2008 Algeria/ VNIR, 3 22-32 m, daily 160-600 Commercial; Brazil uses alongside 585 €/scene, 0.048
China/ bands possible km Landsat data. Consists of multiple €/km?
Nigeria/ satellites in the same track. Continuous
Turkey/UK Gl.
SPOT-2 HRV 1990 France VNIR, 4 20 m (10 pan), 60-117 Two sensors can expand width of 2000 €/scene, 0.5
bands 2-3 days km image. Pointable, continuous GI. €/km?
SPOT-4 HRVIR 1998 France VSWIR, 5 20 m (10 Pan), 60 km Two sensors can expand width of 2000 €/scene, 0.5
bands 2-3 days image. Pointable, continuous GlI. €/km?
Proba CHRIS 2001 Europe VNIR, 63 34m (17 mfull), | 17 km Experimental hyperspectral sensor Free to
bands (18 TBD with extended lifespan. It has two researchers, TBD
full) modes: full-resolution has fewer
bands. Spotty Gl.
SAC-C HRTC 2000 Argentina | VNIR, 1 35m, TBD 90 km This panchromatic camera has spotty Free
band Gl, with a concentration over South
America.
Monitor-E RDSA 2005 Russia VNIR, 3 20 or40 m, TBD 160 or Two sensing modes, higher or lower TBD
bands 890 km resolution.
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THEQOS MS 2008 Thailand VNIR, 4 15 m, 1-5 days 90 km Pointable, with a pan imager detailed TBD
bands in the high-resolution section.
IMS-1 MxT 2008 India VNIR, 4 37 m, TBD 151 km This mini-satellite's imagery will be Free
bands provided to developing countries. It is
unclear whether this satellite's data is
available to the public.
HJ-1A/1B 2008 China VNIR, 4 30 m, 4 days 360 or Pointable, two sensors. Onboard TBD
bands 720 km hyperspectral imager detailed in the
coarse-resolution section. It is unclear
whether this satellite's data is available
to the public.
WFC (Calipso) 2006 USA visible, 1 125 m, TBD 60 km This cloud imager is combined with a TBD
band LIDAR instrument for analysis of
clouds.
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Current Coarse-Resolution (>200 m pixel) Optical Sensors Relevant to Forest Mapping

Satellite & Launch date Source Spectrum Resolution, Image Notes & global imagery extent (Gl) Cost for data
sensor return interval width acquisition
AVHRR 1978-2005 USA VTIR, 4-6 1.1 km, bi-daily 3,000 km A long-term satellite constellation, the most | Free
bands recent is AVHRR/3. Continuous Gl.
MODIS Terra & 2000, 2002 USA VTIR, 36 250-1,000 m, 2 2,330 km Mounted on two satellites. Vegetation Free
Aqua bands days bands are 250 m resolution. Thermal bands
are used to detect fires. Continuous Gl.
GOES 10-13 1975-2006 USA VTIR, 5 bands | 1 km visible, 5 km | Full Earth GOES is included as an example of Free
Imager IR, real-time disc geostationary meterological imagers and is
ultra-coarse (5 km pixel) outside the single
visible band. India, Russia, China, and Europe
all have geostationary meteorological
constellations as well. It is not included in
Figure 13.
SPOT-4/5- 1998 France VNIR, 4 1.1 km, bi-daily 2,200 km Continuous GlI. TBD
Vegetation bands
MISR 1999 USA VNIR, 4 275 m OR 550—- 360 km Stereo imaging from nine angles. It takes 6 Free
bands 1,100 m (global), | (local) images on Local setting (275 m) each day,
9 days and the rest on Global.
Orbview-2 1997 Comm. VNIR, 8 1.13 km, daily 1500 km This coarse-resolution sensor is optimized TBD
SeaWiFS (USA) bands for ocean remote sensing. Continuous Gl.
ERS-2 ATSR-2 1995 ESA VTIR, 1 km, TBD 500 km This coarse-resolution sensor can monitor TBD
microwave, sea-surface temperature and fires.
10 bands Continuous Gl.
Envisat MERIS 2002 ESA VNIR, 15 260x300m, 3 1150 km Band-programmable, can be selected across | TBD
bands days VNIR range. Continuous Gl.
Envisat AATSR 2002 ESA V-TIR, 7 1 km, TBD 500 km Thermal bands are used to dectect fires. TBD
bands Continuous Gl.
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Satellite & Launch date Source Spectrum Resolution, Image Notes & global imagery extent (Gl) Cost for data
sensor return interval width acquisition
ADEOS-II GLI 2002-2003 Japan VTIR, 36 250-1,000 m, 4 1,600 km This short-lived satellite was very similar to TBD
bands days MODIS, but with 29 bands in the VNIR.
Insat 2E, 3A 1999 India VTIR, 6 bands | 1 km, TBD 6,000 km This satellite has a programmable TBD
orientation within its wide field of view.
HY-1B, 1C, 1D 2007 China VTIR, 10 1 km, TBD 3,083 km These satellites are optimized for ocean TBD
bands observation, with 6 bands in the visible.
COMS-1 GOClI 2009 Korea VNIR, 8 236-360 m, daily | 1,440 km This geostationary ocean color observation TBD
bands satellite will observe a limited area.
SAC-C MMRS, 2000 Argentina | VSWIR, 5 175 m (300 pan), | 360 km This satellite mounts a panchromatic fire TBD
HTSC bands TBD (700 pan) | and lightning imager and a land imaging
sensor.
HJ-1A/1B 2008 China VNIR, 110 100 m, TBD 50 km This hyperspectral satellite's imagery may TBD
bands not be available for public purchase.
IMS-1 HySI 2008 India VNIR, 64 505.6 m 125.5 km This experimental hyperspectral satellite will | TBD
bands be operated over India only.
FY-3 series: 2008 China VSWIR, 20 250 m-1 km & 2,800 km The FY-3 constellation will host the MERSI TBD
MERSI, VIRR bands, & 1.1 km, TBD and VIRR instruments for coarse-resolution
VTIR, 10 Earth observation.
bands
MSU-MR 2008 Russia VTIR, 6 bands | 1 km, TBD 2,800 km This temperature and cloud-mapping TBD
(Meteor-M N1) instrument can also take land-cover data.
[[not listed]]
MVISR (FY-1D) 2002 China VTIR, 10 1.1 km, TBD 2,800 km It is unclear if this land- and ocean-observing | TBD
[[not listed]] bands satellite's imagery is available for purchase.
OoCM 1999, 2008 India VNIR, 8 236-360m, 2 1,440 km These satellites are primarily ocean color TBD
(Oceansat-1/2) bands days monitors and take data primarily around
India.
OLS (DMSP 1997-2009 USA VTIR, 3 bands | 560 m, TBD 3,000 km This cloud- and cloud-temperature TBD
series) monitoring sensor can also detect fires.
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WFI (CBERS-
2/28)

2003, 2007

Brazil/
China

VNIR, 2
bands

258 m, TBD

890 km

This sensor is designed to detect vegetation.

TBD

I
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Current High-Resolution Optical Sensors Relevant to Forest Mapping

SPOT-5 HRG 2002 Comm. VSWIR, 5 bands | 10 m (2.5-5 pan), | 60-120 Commercial; Indonesia & 2700
(France) 2-3 days km Thailand use alongside Landsat €/scene, 0.5
data. Pointable. €/km?
Formosat-2 2004 Comm. VNIR, 5 bands 8 m (2 pan), 1day | 24 km Commercial. Unique orbit: early | TBD
(Taiwan) arrival at equator, Gl is selected
areas in strips
IKONOS 2000 Comm. VNIR, 5 bands 4m(1pan),3 11-14 km | Pointable, stereo capability. TBD
(USA) days Spotty Gl, developing
continuous GI.
Geoeye-1 2008 Comm. VNIR, 5 bands 1.65m (0.41 pan), | 15.2 km Pointable, pan imagery released | 380
(USA) 3 days at 0.5 m. Spotty GI, developing USS$/scene,
continuous GI. 25 USS/km?
Quickbird 2001 Comm. VNIR, 5 bands 2.4m (0.61 pan,3 | 16.5km Pointable. Spotty Gl, developing | TBD
(USA) days continuous Gl.
RapidEye 1-5 2008 Comm. VNIR, 5 bands 5 m, daily 78 km Constellation, allows frequent TBD
(Germany) imaging. Designed for global
crop monitoring.
ALOS Avnir-2 2006 Japan VNIR, 4 bands 10m 70 km This high-resolution sensor TBD
operates with the ALOS PALSAR
sensor, allowing imagery fusion.
Resourcesat-1 2003 India VNIR, 4 bands 5.8 m, 5 days 70 km Pointable and mounted with two | 1070
LISS-4 moderate-resolution sensors. USS/scene,
Two launched? 0.3 USS/km?
Sumbandila Sat 2009 South V-NIR, 6 bands | 6.25 m, TBD 45 km South Africa's first satellite, this TBD
Imager Africa small satellite is not likely to

develop continuous GlI.

I
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Resurs DK-1 2006 Russia VNIR, 5 bands 25-3.5m(1m 30 km This commercial satellite has a TBD
Geoton-L1 (pan) pan), TBD variable orbital distance,
affecting its swath and
resolution.
Kompsat-2 2006 Korea VNIR, 5 bands 4 m (1 pan), 28 15 km Pointable sensor, commercially TBD
days (max) available.
TopSAT 2005 UK visible, 4 bands | 5.6 m (2.8 m pan), | 17 km Experimental, low-cost TBD
Telescope TBD (pan), 12 | microsatellite.
km
Cartosat 1, 2 2005, India VNIR, 1 band 2.5m, TBD 30 km Panchromatic camera. TBD
2007 (pan)
IRS-1C/1D PAN 1995, India VNIR, 1 band 6.5 m, 24 days 70 km Pointable, panchromatic TBD
1997 (pan) (max) camera.
ALOS PRISM 2006 Japan VNIR, 1 band 2.5m,TBD 70 km Panchromatic camera with TBD
(pan) (35 km triple-stereo option.
stereo)
EROS-A 2000 Comm. VNIR, 1 band 19m 14 km Highly pointable, panchromatic TBD
(Israel) (pan) camera.
EROS-B 2000, Comm. VNIR, 1 band 0.7m 7 km Pointable, panchromatic TBD
2006 (Israel) (pan) camera.
Worldview-1 Comm. Comm. VNIR, 1 band 0.5mpan, 2days | 17.5km Pointable, pan imagery released | TBD
(USA), | (USA), 2004 | (pan) (110x 60 | at 0.5 m. Spotty GlI, developing
2004 poss.) continuous Gl.
BJ-1 PAN 2005 China VNIR, 1 band 4 m pan, TBD 24 km Panchromatic camera, unclear if | TBD
(pan) available for public purchase.
Monitor-E PSA 2005 Russia VNIR, 1 band 8 m, TBD 90 km Panchromatic commercial TBD
(pan) camera.
TES PAN 2001 India visible, 1 band 1m,TBD Not This military panchromatic Not available
(pan) available | camerais not included in Figure
13.
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Current Coarse- to Moderate-Resolution Active Sensors Relevant to Forest Mapping

Satellite & Launch Source Spectrum Resolution, Image Notes & global Cost for data
sensor date return interval width imagery (Gl) extent acquisition
SRTM 2000 (one- USA InSAR, C- and 30x30m, N/A 50-225 Result of a 10-day Free DEM and
time) X-band, quad- km shuttle mission. Used data.
polar (C-band to create a 30 m DEM
only) (90 m outside US).
Continuous Gl
between 60° N and
56°S.
SIR-C/X 1994 (one USA InSAR, X, C, L- 30x10-30 m, 15-90 km | Result of a shuttle Free
mision time) band, quad- N/A mission. Continuous
polar Gl.
JERS-1 1992 Japan SAR, L-band, 18x18 m, 44 75 km Continuous Gl, with Free
(launch), HH-polarity days temporal inferometry
1997 (end) in select areas.
ERS-1, 2 1991, 1995 ESA SAR, C-band, 30x26 m, TBD 100 km x Continuous Gl, with Free
VV polar 100 km temporal inferometry
in select areas.
RADARSAT 1995 Canada SAR, C-band, 8-100 m x 8— 50-500 Pointable. Continuous | Free
HH polar 100 m, TBD km x 50— Gl, with temporal
500 km inferometry in select
areas.
RADARSAT- 2006 Canada SAR, C-band, 3-100 m x 2.4— 20-500 Pointable. Continuous | TBD
2 quad-polar 100 m, TBD km x 20— Gl, with temporal
500 km inferometry in select
areas.
Envisat 2002 EU SAR, C-band, 30-1,000 m x 5-150 km | Pointable. Continuous | TBD
ASAR quad-polar 30-1,000 m, x 5-150 Gl, with temporal
TBD km inferometry in select
areas.
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Satellite & Launch Source Spectrum Resolution, Image Notes & global Cost for data
sensor date return interval width imagery (GI) extent acquisition
TerraSAR-X 2007 Comm. SAR, X-band, 1-18 mx 1-18 10-100 Commercial, variable TBD
(Germany) | quad-polar m, 2.5-11 days km x 5— resolution, and first in
150 km a satellite
constellation.
ALOS 2006 Japan SAR, L-band, 7-100 m, TBD 40-350 Resolution and swath 210.04
PALSAR quad-polar km vary depending on USS/scene,
mode. Continuous Gl. | 0.017 USS/km?
COSMO- 2007-2009 Italy SAR, X-band, 3-30m, 26 days | 10-200 Variety of scanning TBD
SkyMed quad-polar km modes. First three
members of SAR
constellation, tandem
orbit for DEM.
ICESAT GLAS 2004 USA LIDAR 70 m footprint, Footprint | Tracks are currently Free
183 days centers spaced at 15 km
170 m (equator) and 2.5 km
apart (80 degrees lat.).
IBUKI 2009 Japan Gas-sampling, 10.5 km, TBD N/A 10.5 km footprint, TBD
(GOSAT) NIR-TIR operates in cloud-free
areas globally. Takes
instantaneous
measurements of CO,
and CH,.
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Expected Sensors Relevant to Forest Mapping (2009-2016)

Satellite & sensor Launch date Source Spectrum Resolution, return Image width Notes
interval
WorldView-2 2009 Comm. (USA) | VNIR, 9 bands 1.8m(0.5m 16.4 km Eight bands (+ pan) in the VNIR, pointable.
pan),1-4 days
ARGO (RapidEye-6) 2009 Taiwan/ VNIR, 5 bands 5 m, daily 78 km Commercial, part of the RapidEye
Germany constellation.
RazakSat 2009 Malaysia VNIR, 5 bands 5m (2.5 pan), TBD 20 km Pointable high-resolution. May not develop
continuous Gl.
DubaiSat 2009 UAE VNIR, 5 bands 5m (2.5 pan), TBD 20 km Pointable high-resolution. May not develop
continuous Gl.
ALSAT-2A, 2B 2009 Algeria VNIR, 5 bands 10 m (2.5 m), TBD 17 km Pointable high-resolution, not likely to
develop continuous GlI.
EROS-C 2009 Israel VNIR, bands TBD (5?) | 2.8 m (0.7 m pan) 11 km Pointable, high-resolution. May not
develop continuous GlI.
TanDEM-X 2009 Comm. SAR, X-band, quad- 1-18 mx 1-18 m, 10-100 km x Commercial, variable resolution. A twin
(Germany) polar 2.5-11 days 5-150 km satellite orbiting in formation with
TerraSAR-X to create a global DEM.
Resourcesat-2 (ISRO) 2009 India VSWIR, 4 bands 23.5 m, 24 days 141 x 141 This satellite will be very similar to
km? Resourcesat-1, with its moderate and high-
resolution imagery capability.
RASAT (Tubitak) 2009 Turkey visible, 4 bands 15 m (7.5 m pan), 30 x 30 km Still under development.
TBD
NigeriaSat-2 2009 Nigeria VNIR, 5 & 4 bands 5m (2.5 pan) & 32 20 km & 300 | This satellite will mount two sensors. The
(NASRDA) m, TBD km high-resolution sensor has a smaller image
size but more bands.
COSMO-SkyMed 4 2009 Italy SAR, X-band, quad- 3-30m, TBD 10-200 km x | Variety of scanning modes, last satellite
(ASI/MiD) polar 10-200 km addition to COSMO SAR constellation.
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Satellite & sensor Launch date Source Spectrum Resolution, Image width Notes
return interval
Meteor-M N1 2009 Russia 1) SAR, X-band, VV 1) 400-1,000 1) 450-600 This innovative satellite will host three
(Roshydromet/ polarized. 2) VTIR, 6 m. 2) 1,000 m. km. 2) 2800 distinct sensors, numbered here. The last
Roscosmos) bands. 3) VNIR, 3-6 3) 60-120 m. km. 3) 960 moderate-resolution will combine three
bands. km. camera images for 60 m resolution in
three bands. The satellite will produce
regional imagery over Russia. First in a
series.
Meteor-M N2 2009 Russia 1) SAR, X-band, VV 1) 400-1000 m, | 1) 450-600 This innovative satellite will host three
(Roshydromet/ polarized. 2) VTIR, 6 2) 1,000 m, 3) km. 2) 2,800 distinct sensors, numbered here. The last
Roscosmos) bands. 3) VNIR, 3-6 60120 m. km. 3) 960 moderate-resolution will combine three
bands. km. camera images for 60 m resolution in
three bands. The satellite will develop a
regional Gl only, over Russia.
Kanopus-V N1 2009 Russia VNIR, TBD 10.5-26 m (2.1 | 250 km Sources conflict on the exact resolution
(Roshydromet/ pan) TBD or bands of this small Russian satellite.
Roscosmos)
Sich-2 2009 Ukraine VNIR, 4 bands 7.8 m (pan 46.6 km Pointable high-resolution sensor.
higher?)
RISAT-1 2009 India SAR, C-band, quad-polar | 3-40 m 30-240 km High-resolution SAR satellite.
HJ-1C (S-band SAR) 2009 China SAR, S-band 20m 100 km
Unusual S-band SAR.
Svea 2010 Sweden TBD, passive high- 1.2-1.5m 8-12 km Under development.
resolution
Pleiades 1 (CNES) 2010 France VNIR, 5 bands 0.7 m, TBD 20 km x 20 Extremely pointable satellite gives +/- 50
km degrees off track.
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Satellite & sensor Launch date Source Spectrum Resolution, Image width Notes
return interval
TES-HYS (ISRO) 2010 India VSWIR, 200 bands 15 m, TBD 30 km x 30 Moderate-resolution hyperspectral
km imager, under
development/experimental.
GISAT (ISRO) 2010 India VTIR, 3, 4, & 150 bands 1.5km,50m, & | TBD Proposed geostationary satellite with
192-320 m, two coarse imagers (one hyperspectral)
TBD and one moderate imager.
SARE-1 (CONAE) 2010 Argentina SAR TBD TBD Proposed satellite with a SAR component
and high-resolution optical cameras.
SAC-D (CONAE/ 2010 Argentina/USA TIR, 3 bands 350 m, TBD 182-1,000 km | A multi-sensor satellite, but the fire
NASA) sensor is summarized here. It will
measure temperature and released
energy of fires and other hot events.
HY-1C (NSOAS/ 2010 China VTIR, 4 & 10 bands 250 m & 1.1 km | 500 km & Two instruments: Coast Region Imager
CAST) 3,083 km and coarser Ocean Color and
Temperature scanner. Constellation.
NPP (NASA/NOAA/ 2010 USA VTIR, 22 bands 400 m-1.6 km, 3,000 km The first in a new NASA series of coarse-
DoD) TBD resolution satellites intended to follow
up the MODIS and AVHRR missions.
VENUS (CNES/ISA) 2010 Israel/France VNIR, 12 bands 5.3 m, TBD 27 km A superspectral camera intended to take
high-resolution, multiple-band images
for land-cover applications.
CBERS-3 (CRESDA/ 2010 Brazil/China 1) NIR, 4 bands. 2) NIR, 4 | 1) 20 m. 2) 10 1) 120 m. 2) This satellite, the first of two, hosts four
INPE) bands. 3) VTIR, 4 bands. | m (5 pan), 3-26 | 60 km. 3) 120 | sensors with regional coverage. The high-
4) VSWIR, 4 bands. days. 3) 40-80 km. 4) 866 and moderate-resolution sensors are
m, 26 days. 4) km. pointable (3-5 day return time). It also
73 m, 5 days. has a moderate-resolution fire imager
and a coarse-resolution sensor.
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Satellite & sensor Launch date Source Spectrum Resolution, Image width Notes
return interval
HY-1D (NSOAS/ 2010 China visible, 4 bands 250 m 500 km Coastal region imager. Constellation.
CAST)
FY-3D (NRSCC/CMA) 2010 China VSWIR, 20 bands; VTIR, 250 m-1 km & 2,800 km As an addition to the FY-3 constellation,
10 bands 1.1 km, TBD it will host the MERSI and VIRR
instruments for coarse-resolution Earth
observation.
Elektro-L N2 2010 Russia VTIR, 10 bands 1 km visible 4 Full Earth disc | Geostationary satellite, second in a
(Roshydromet/ km IR, daily imaged series.
Roscosmos)
Meteor-M N3 2010 Russia 1) SAR, X-band. 2) 1) 400-1,000 1) 450-600 This coarse-resolution satellite is mainly
(Roshydromet/ Visible, 1 band. m. 2) 700— km. 2) 2,600 designed for cloud and ice measurement.
Roscosmos) 1,400 m. km.
SSOT 2010 Chile VNIR, 5 bands 5.8 m(1.45 TBD This high-resolution satellite will have
pan), TBD regional coverage.
Kompsat-3 2010 South Korea VNIR, 5 bands 2.8m(0.7m TBD Commercial high-resolution satellite.
pan)
Kompsat-5 2011 South Korea SAR, X-band TBD TBD This satellite is under development.
GeoEye-2 2011 Comm. (USA) VNIR, TBD 1.65m, (0.25 TBD The highest-resolution satellite to date. It
pan) is still under development.
SAOCOM 1A 2011 Argentina/Italy SAR, L-band 10-100 m, TBD | 40-320 km First in a SAR constellation. Variable
(CONAE/ASI) resolution, still under development. With
COSMO-SkyMed, this joint-constellation
will provide twice daily coverage in two
SAR bands.
ASNARO 2011 Japan passive high resolution 1m,TBD TBD High-resolution passive satellite, under
development.
CARTOSAT-3 (ISRO) 2011 India visible, 1 band (pan) 0.3 m, TBD 6 km High-resolution panchromatic imager.
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return interval

MetOp-B 2011 EU VTIR, 6 bands 1.1 km, twice 3,000 km This is the second in the MetOp

(EUMETSAT) daily constellation, carrying an AVHRR/3
instrument. It will cover the entire globe
twice daily.

Pleiades 2 (CNES) 2011 France VNIR, 5 bands 0.7 m, TBD 20 km The second in a constellation. Pointable
satellite gives +/- 50 degrees off track.

DMSAR (ISRO) 2011 India SAR, C/X-band TBD TBD This proposed satellite is currently an
airborne system with high resolution and
variable modes.

Resourcesat-3 (ISRO) 2011 India VSWIR, 4 bands 23 m, 26 days 700 km This will carry a more advanced sensor
than previous Resourcesats, with an
atmospheric correction instrument.

Prisma (ASI) 2011 Italy VSWIR, 200 bands 30m(2.5pan), | 30km This hyperspectral imager will have a

TBD narrow image swath but high spectral
and spatial resolution.

LDCM 2011 USA VSWIR, 9 bands 30 m (15 pan), 185 km Landsat Data Continuity Mission, free

16 days imagery, global coverage.

Sentinel-1 A (ESA/EC) 2011 EU SAR, C-band, quad-polar | 5-100 m, TBD 8-400 km Variable resolution and swath-width SAR,
first in a constellation.

AMAZONIA-1 (INPE) 2011 Brazil VNIR, 4 bands 40m&12m,5 | 800 km & 110 | This satellite will host the moderate-

days & TBD km resolution AWFI sensor and the higher-
resolution RALCam-3 sensor.
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return interval
SAOCOM 1B 2012 Argentina/ltaly SAR, L-band 10-100 m, TBD | 40-320 km Second in a SAR constellation. Variable
(CONAE/ASI) resolution, still under development.
Astroterra (SPOT-6) 2012 Comm. (France) | V-NIR, 5 bands 8 m(2pan),1-5 | 60 The next in SPOT series has stereo
days capability and highly pointable.
SAC-E/SABIA/mar 2012 Argentina/Brazil | VTIR, 15 bands TBD TBD Under development.
(CONAE/INPE)
Ingenio (SEOSAT) 2012 2012, Spain/EU VNIR, 5 bands 10 m (2.5 pan), | 60 km High-resolution satellite, may not
(CDTI/ESA) TBD develop Gl.
EnMAP (DLR) 2012 Germany VNIR, TBD 30m 30 km Moderate-resolution hyperspectral
imager.
HY-3A (NSOAS/CAST) 2012 2012 SAR, X-band, TBD 1-10 m, TBD 40-150 km High-resolution SAR imager.
SABRINA (ASI) 2012 Italy SAR, X-band, Quad-polar | TBD TBD Under development.
Sentinel-2 A (ESA/EC) 2012 EU VSWIR, 13 bands 10 m (VNIR) 290 km First in a constellation, this high-quality
and 20-60 m moderate-resolution sensor will have
(higher), TBD dedicated atmospheric correction bands
and a wide swath.
Sentinel-1 B (ESA/EC) 2012 EU SAR, C-band, Quad-polar | 5-20 m (extra 80-400 km Second in a constellation, this SAR sensor
wide 25 x 100 has an interferometric mode, a wide-
m), TBD field mode, and an extra-wide mode.
Sentinel-3 A (ESA/EC) 2012 EU VSWIR, 21 bands 300 m, TBD 750-1,675 km | This dual swath instrument will be a
MODIS, AATSR, and MERIS follow-up.
The first in a series.
ALOS-2 2012 Japan SAR, L-band, Quad-polar | TBD TBD ALOS follow-on, under development,
likely to be higher resolution.
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return interval
FY-3E (NRSCC/CMA) 2012 China VSWIR, 20 bands, & 250 m-1 km & 2,800 km As an addition to the FY-3 constellation,
VTIR, 10 bands 1.1 km, TBD it will host the MERSI and VIRR
instruments for coarse-resolution Earth
observation.
FY-4 O/A 2012 China VTIR, 12 bands 1 km visible, 2 Full Earth disc | The first in a new geostationary series,
(NRSCC/CMA) km IR, 4 km TIR, | imaged this sensor will have higher VNIR
daily. resolution than previous geostationary
imagers, and thus be more suitable for
real-time vegetation monitoring.
TerraSAR-X2 (DLR) 2013 Comm. SAR, X-band, Quad-polar | 1-18 m, 2.5-11 | 10-100 km x The last of a three-satellite SAR
(Germany) days 5-150 km constellation for deriving a high-quality
DEM, this satellite may be joined or
replaced by another satellite, Tandem-L.
NPOESS-1 (NOAA) 2013 USA VTIR, 22 bands 400 m-1.6 km, 3,000 km The second in a new NASA series of
TBD coarse-resolution satellites intended to
follow up the MODIS and AVHRR
missions.
CBERS-4 2013 Brazil/China 1) NIR, 4 bands. 2) NIR, 4 | 1) 20 m. 2) 10 1) 120 m. 2) This satellite, the second of two, hosts
(CRESDA/INPE) bands. 3) VTIR, 4 bands. | m (5 pan), 3-26 | 60 km. 3) 120 | four sensors with regional coverage. The
4) VSWIR, 4 bands. days. 3) 40-80 km. 4) 866 high- and moderate-resolution sensors
m, 26 days. 4) km. are pointable (3-5 day return time). It
73 m, 5 days. also has a moderate-resolution fire
imager and a coarse-resolution sensor.
MAPSAR (INPE/DLR) 2013 Brazil/Germany SAR, L-band, quad-polar | 3-20 m, weekly | 30-55 km This high-resolution L-band SAR satellite
revisit. may potentially acquire continuous GI.
RADARSAT 2013 Canada SAR, C-band, quad-polar | 3-100 m, TBD 20-500 km First in a SAR constellation, this satellite
CONSTELLATION-1 has a wide range of resolution modes.
(CSA)
SAC-F (CONAE) 2014 Argentina VSWIR, 5 bands 10 m (5 pan) 60-117 km High-resolution, pointable sensors; still
under development. It may be joined by
a hyperspectral sensor and a thermal
sensor.
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SAOCOM-2A 2014 Argentina SAR, L-band 10-100 m, TBD | 40-320 km Third in a SAR constellation. Variable
(CONAE) resolution, still under development.
COMS-2 2014 Japan VNIR, 8 bands 236 x 360 m 1,440 km Geostationary Ocean Color Imager.
GCOM-C1 (JAXA) 2014 Japan/USA VTIR, 35 bands 250-1,000 m, 1,150-1,400 This MODIS-like sensor will have 11
TBD km bands at 250 m resolution in the VNIR.
Sentinel-2 B (ESA/EC) 2014 EU VSWIR, 13 bands 10 (VNIR) and 290 km Second in a constellation, this high-
20-60 m quality moderate-resolution sensor will
(higher), TBD have dedicated atmospheric correction
bands and a wide swath.
RISAT-L (ISRO) 2014 India SAR, L-band TBD TBD Under development.
RADARSAT 2014 Canada SAR, C-band, quad-polar | 3-100 m, TBD 20-500 km Second in a SAR constellation, this
CONSTELLATION-3 satellite has a wide range of resolution
(CSA) modes.
GOES-S (NOAA) 2014 USA VTIR, 26 bands 0.5 km in the Full Earth disc | The latest in the geostationary GOES
visible, 1 km imaged. constellation, this improved ABI sensor
NIR-SWIR, 2 km has a 0.5—-1 km resolution for real-time
TIR vegetation monitoring.
FY-3F (NRSCC/CMA) 2014 China VSWIR, 20 bands, & 250-1,000 m & | 2,800 km As an addition to the FY-3 constellation,
VTIR, 10 bands 1.1 km, TBD it will host the MERSI and VIRR
instruments for coarse-resolution Earth
observation.
Elektro-L N3 2014 Russia VTIR, 10 bands 1 km visible, 4 Full Earth disc | Geostationary satellite; third in a series.
(Roshydromet/ km IR, daily imaged
Roscosmos)
SAOCOM-2B 2015 Argentina SAR, L-band 10-100 m, TBD | 40-320 km Fourth in a SAR constellation. Variable
(CONAE) resolution, still under development.
ICESat-1l (NASA) 2015 USA LIDAR 70 m footprint, | Footprint A mission follow-on. Racks are currently
183 days centers 170 m | spaced at 15 km (equator) and 2.5 km
apart (80 degrees lat.).
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RADARSAT 2015 Canada SAR, C-band, quad-polar | 3-100 m, TBD 20-500 km Second in a SAR constellation, this
CONSTELLATION-2 satellite has a wide range of resolution
(CSA) modes.
GOES-R (NOAA) 2015 USA VTIR, 26 bands 0.5 km in the Full Earth disc | The latest in the geostationary GOES
visible, 1 km imaged constellation, this improved ABI sensor
NIR-SWIR, 2 km has a 0.5-1 km resolution for real-time
TIR vegetation monitoring.
Sentinel-3 B (ESA/EC) 2015 EU VSWIR, 21 bands 300 m, TBD 750-1,675 km | This dual swath instrument will be a
MODIS, AATSR, and MERIS follow-up.
The second in a series.
MetOp-C 2015 EU VTIR, 4—6 bands 1.1 km, bi-daily | 3,000km This satellite will carry the AVHRR/3
(EUMETSAT) sensor.
FY-4 O/B (NRSCC/ 2015 China VTIR, 12 bands 1 km visible, 2 Full Earth disc | The second in a new geostationary
CMA) km IR, 4 km TIR, | imaged series, this sensor will have higher VNIR
daily resolution than previous geostationary
imagers and thus be more suitable for
real-time vegetation monitoring.
FY-4 O/C (NRSCC/ 2015 China VTIR, 12 bands 1 km visible, 2 Full Earth disc | The third in a new geostationary series,
CMA) km IR, 4 km TIR, | imaged this sensor will have higher VNIR
daily resolution than previous geostationary
imagers and thus be more suitable for
real-time vegetation monitoring.
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HypsIRI (NASA) 2015 USA VTIR, 210 bands & 5 19 m (VSWIR), 90 km (SWIR) | A high quality, moderate-resolution
bands (TIR) 90 m (TIR), 9— & 400 km hyperspectral sensor.
30 days (TIR)
DESDynl (NASA) 2015 USA LIDAR & InSAR, L-Band, 25 m LIDAR >340 km Still under development. This combined
quad-polar footprint, SAR INSAR (2 SAR sensors) and LIDAR sensor
resolution will provide an unparalleled global DEM
variable, 8 days and accurate measurement of ecosystem
3D structure.
NPOESS-2 (NOAA) 2016 USA VTIR, 22 bands 400 m-1.6 km, | 3,000 km The third in a series, this MODIS/AVHRR
TBD follow-on will provide important
continuity for the AVHRR time series.
FY-3G (NRSCC/CMA) 2016 China VSWIR, 20 bands, & 250-1,000 m & | 2,800 km As an addition to the FY-3 constellation,
VTIR, 10 bands 1.1 km, TBD it will host the MERSI and VIRR
instruments for coarse-resolution Earth
observation.
BIOMASS (ESA) 20167 EU InSAR, P-band, quad- 50 m, 27 days 102 km Still in concept competition and under
polar (4 days exptal) development, this mission would be
focused on mapping forest biomass. It
would have InSAR capability and have an
experimental, 50-day tomographic
mode.
£ RFF | 98




Bibliography

Achard, F., R. DeFries, H. Eva, M. Hansen, P. Mayaux, and H.]. Stibig. 2007. Pan-tropical
monitoring of deforestation. Environmental Research Letters 2(4): 045022.

Alencar, A., D. Nepstad, and M.D.V. Diaz. 2006. Forest understory fire in the Brazilian
Amazon in ENSO and non-ENSO years: Area burned and committed carbon
emissions. Earth Interactions 10: Paper 6.

Allan, ].D. 2004. Landscapes and riverscapes: The influence of land use on stream
ecosystems. Annual Review of Ecology Evolution and Systematics 35: 257-284.

Almeida, R., A. Rosenqvist, Y.E. Shimabukuro, and R. Silva-Gomez. 2007. Detecting
deforestation with multitemporal L-band SAR imagery: A case study in western
Brazilian Amazonia. International Journal of Remote Sensing 28(6): 1383-1390.

Andersen, H.E,, S.E. Reutebuch, and R.J. McGaughey. 2006. A rigorous assessment of tree
height measurements obtained using airborne lidar and conventional field methods.
Canadian Journal of Remote Sensing 32(5): 355-366.

Anderson, ].E., L.C. Plourde, M.E. Martin, B.H. Braswell, M.L. Smith, R.0. Dubayah, M.A.
Hofton, and ].B. Blair. 2008. Integrating waveform lidar with hyperspectral imagery

for inventory of a northern temperate forest. Remote Sensing of the Environment
112(4): 1856-1870.

Anderson, J. R, E. E. Hardy, et al. 1976. A land use and land cover classification system for
use with remote sensor data. Geological survey paper 964. Washington, DC: United
States Geological Survey.

Andersson, K., T.P. Evans, and K.R. Richards. 2009. National forest carbon inventories:
Policy needs and assessment capacity. Climatic Change 93(1-2): 69-101.

Arroyo-Mora, |. P., M. Kalacska, et al. 2009. Spectral unmixing of forest canopy recovery in
selectively logged units in a tropical lowland forest, Costa Rica. Anais XIV Simpédsio
Brasileiro de Sensoriamento Remoto, April 25-30. Natal, Brasil, INPE.

Askne, ].I.LH.,, and M. Santoro. 2009. Automatic model-based estimation of boreal forest stem
volume from repeat pass C-band InSAR coherence. IEEE Transactions on Geoscience
and Remote Sensing 47(2): 513-516.

Askne, J., M. Santoro, G. Smith, and ].E.S. Fransson. 2003. Multitemporal repeat-pass SAR

interferometry of boreal forests. IEEE Transactions on Geoscience and Remote
Sensing 41(7): 1540-1550.

Asner, G.P. 2001. Cloud cover in Landsat observations of the Brazilian Amazon.
International Journal of Remote Sensing 22(18): 3855-3862.

Asner, G. P, T. K. Rudel, et al. (in press.). A Contemporary Assessment of Global Humid
Tropical Forest Change. Conservation Biology.

£  RFF | FAGAN AND DEFRIES 99



Asner, G.P., E.N. Broadbent, P.].C. Oliveira, M. Keller, D.E. Knapp, and J.N.M. Silva. 2006.
Condition and fate of logged forests in the Brazilian Amazon. Proceedings of the
National Academy of Sciences of the United States of America 103(34): 12947-12950.

Asner, G.P.,, R.F. Hughes, T.A. Varga, D.E. Knapp, and T. Kennedy-Bowdoin. 2009.
Environmental and biotic controls over aboveground biomass throughout a tropical
rain forest. Ecosystems 12(2): 261-278.

Asner, G.P., M.O. Jones, R.E. Martin, D.E. Knapp, and R.F. Hughes. 2008. Remote sensing of
native and invasive species in Hawaiian forests. Remote Sensing of the Environment
112(5): 1912-1926.

Asner, G.P., D.E. Knapp, E.N. Broadbent, P.].C. Oliveira, M. Keller, and ].N. Silva. 2005.
Selective logging in the Brazilian Amazon. Science 310(5747): 480-482.

Asner, G.P., and R.E. Martin. 2009. Airborne spectranomics: Mapping canopy chemical and
taxonomic diversity in tropical forests. Frontiers in Ecology and the Environment
7(5): 269-276.

Asner, G.P., D. Nepstad, G. Cardinot, and D. Ray. 2004. Drought stress and carbon uptake in
an Amazon forest measured with spaceborne imaging spectroscopy. Proceedings of
the National Academy of Sciences of the United States of America 101(16): 6039-
6044.

Asner, G.P.,, T.K. Rudel, T.M. Aide, R. DeFries, and R. Emerson. 2009. A contemporary
assessment of global humid tropical forest change. Conservation Biology 23(6):
1386-1395.

Baban, S.M.]., and K.W. Yusof. 2001. Mapping land use/cover distribution on a mountainous
tropical island using remote sensing and GIS. International Journal of Remote Sensing
22(10): 1909-1918.

Baccini, A., M.A. Fried], C.E. Woodcock, and R. Warbington. 2004. Forest biomass estimation
over regional scales using multisource data. Geophysical Research Letters 31(10):
L10501.

Baccini, A., N. Laporte, S.J. Goetz, M. Sun, and H. Dong. 2008. A first map of tropical Africa’s
above-ground biomass derived from satellite imagery. Environmental Research
Letters 3: 1-9.

Baker, T.R., O.L. Phillips, Y. Malhi, S. Almeida, L. Arroyo, A. Di Fiore, T. Erwin, et al. 2004.
Variation in wood density determines spatial patterns in Amazonian forest biomass.
Global Change Biology 10(5): 545-562.

Bala, G., K. Caldeira, M. Wickett, T. Phillips, D. Lobell, C. Delire, and A. Mirin. 2007. Combined
climate and carbon-cycle effects of large-scale deforestation. Proceedings of the
National Academy of Sciences of the United States of America 104(16): 6550.

Baldocchi, D.D. 2003. Assessing the eddy covariance technique for evaluating carbon
dioxide exchange rates of ecosystems: past, present and future. Global Change
Biology 9(4): 479-492.

£ RFF | FAGAN AND DEFRIES 100



Balzter, H. 2001. Forest mapping and monitoring with interferometric synthetic aperture
radar (InSAR). Progress in Physical Geography 25(2): 159-177.

Balzter, H., C.S. Rowland, and P. Saich. 2007. Forest canopy height and carbon estimation at
Monks Wood National Nature Reserve, UK, using dual-wavelength SAR
interferometry. Remote Sensing of Environment 108(3): 224-239.

Bicheron, P., P. Defourny, C. Brockmann, L. Schouten, C. Vancutsem, M. Hugc, S. Bontemps, M.
Leroy, F. Achard, M. Herold, F. Ranera, and O. Arino. 2008. GLOBCOVER Products
Description and Validation Report. MEDIAS-France,
ftp://uranus.esrin.esa.int/pub/globcover_v2/global/.

Blackard, J.A., M.V. Finco, E.H. Helmer, G.R. Holden, M.L. Hoppus, D.M. Jacobs, A.]. Lister, et
al. 2008. Mapping US forest biomass using nationwide forest inventory data and

moderate resolution information. Remote Sensing of Environment 112(4): 1658-
1677.

Boudreau, J., R.F. Nelson, H.A. Margolis, A. Beaudoin, L. Guindon, and D.S. Kimes. 2008.
Regional aboveground forest biomass using airborne and spaceborne LiDAR in
Quebec. Remote Sensing of Environment 112(10): 3876-3890.

Bourgine, B., and N. Baghdadi. 2005. Assessment of C-band SRTM DEM in a dense
equatorial forest zone. Comptes Rendus Geoscience 337(14): 1225-1234.

Broadbent, E.N., G.P. Asner, M. Pena-Claros, M. Palace, and M. Soriano. 2008. Spatial
partitioning of biomass and diversity in a lowland Bolivian forest: Linking field and
remote sensing measurements. Forest Ecology and Management 255(7): 2602-2616.

Brown, S., T. Pearson, D. Slaymaker, S. Ambagis, N. Moore, D. Novelo, and W. Sabido. 2005.
Creating a virtual tropical forest from three-dimensional aerial imagery to estimate
carbon stocks. Ecological Applications 15(3): 1083-1095.

Cairns, M.A,, S. Brown, E.H. Helmer, and G.A. Baumgardner. 1997. Root biomass allocation
in the world's upland forests. Oecologia 111(1): 1-11.

Canadell, J.G., C. Le Quere, M.R. Raupach, C.B. Field, E.T. Buitenhuis, P. Ciais, T.]. Conway,
N.P. Gillett, R.A. Houghton, and G. Marland. 2007. Contributions to accelerating
atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of
natural sinks. Proceedings of the National Academy of Sciences of the United States of
America 104(47): 18866-18870.

Castro, K.L., G.A. Sanchez-Azofeifa, and B. Rivard. 2003. Monitoring secondary tropical
forests using space-borne data: Implications for Central America. International
Journal of Remote Sensing 24(9): 1853-1894.

CEOS (Committee on Earth Observation Satellites). 2009. Committee on Earth Observation
Satellites. http: //www.ceos.org/ (accessed March 28, 2009).

Chambers, ].Q., G.P. Asner, D.C. Morton, L.O. Anderson, S.S. Saatch, F.D.B. Espirito-Santo, M.
Palace, and C. Souza. 2007. Regional ecosystem structure and function: Ecological
insights from remote sensing of tropical forests. Trends in Ecology & Evolution 22(8):
414-423.

£ RFF | FAGAN AND DEFRIES 101



Chand, T.R.K,, and K.V.S. Badarinath. 2007. Analysis of ENVISAT ASAR data for forest
parameter retrieval and forest type classification—A case study over deciduous
forests of central India. International Journal of Remote Sensing 28(22): 4985-4999.

Chave, ]., C. Andalo, S. Brown, M.A. Cairns, ].Q. Chambers, D. Eamus, H. Folster, et al. 2005.
Tree allometry and improved estimation of carbon stocks and balance in tropical
forests. Oecologia 145(1): 87-99.

Chazdon, R.L., C.A. Harvey, 0. Komar, D.M. Griffith, B.G. Ferguson, M. Martinez-Ramos, H.
Morales, et al. 2009. Beyond reserves: A research agenda for conserving biodiversity
in human-modified tropical landscapes. Biotropica 41(2): 142-153.

Chopping, M., G.G. Moisen, L.H. Su, A. Laliberte, A. Rango, ].V. Martonchik, and D.P.C. Peters.
2008. Large area mapping of southwestern forest crown cover, canopy height, and

biomass using the NASA Multiangle Imaging Spectro-Radiometer. Remote Sensing of
Environment 112(5): 2051-2063.

Chuvieco, E. 2008. Satellite Observation of Biomass Burning: Implications in Global Change
Research. Dordrecht: Springer Netherlands.

Clark, D.B., ].M. Read, M.L. Clark, A.M. Cruz, M.F. Dotti, and D.A. Clark. 2004a. Application of
1-M and 4-M resolution satellite data to ecological studies of tropical rain forests.
Ecological Applications 14(1): 61-74.

Clark, M.L., D.B. Clark, and D.A. Roberts. 2004b. Small-footprint lidar estimation of sub-
canopy elevation and tree height in a tropical rain forest landscape. Remote Sensing
of Environment 91(1): 68-89.

Clark, M.L., D.A. Roberts, and D.B. Clark. 2005. Hyperspectral discrimination of tropical rain
forest tree species at leaf to crown scales. Remote Sensing of Environment 96(3-4):
375-398.

Cohen, W.B,, and S.N. Goward. 2004. Landsat's role in ecological applications of remote
sensing. Bioscience 54(6): 535-545.

Coppin, P, I. Jonckheere, K. Nackaerts, B. Muys, and E. Lambin. 2004. Digital change
detection methods in ecosystem monitoring: A review. International Journal of
Remote Sensing 25(9): 1565-1596.

Costa, M.P.F. 2004. Use of SAR satellites for mapping zonation of vegetation communities in
the Amazon floodplain. International Journal of Remote Sensing 25(10): 1817-1835.

Crutzen, P.J.,, and M.0O. Andreae. 1990. Biomass burning in the tropics—impact on
atmospheric chemistry and biogeochemical cycles. Science 250(4988): 1669-1678.

Cunningham, D., ]. Melican, E. Wemmelmann, and T. Jones. 2002. GeoCover LC-A moderate
resolution global land cover database. Paper presented at the ESRI International
User Conference. July 2002, San Diego, CA.

Dalponte, M., L. Bruzzone, and D. Gianelle. 2008. Fusion of hyperspectral and LIDAR remote
sensing data for classification of complex forest areas. IEEE Transactions on
Geoscience and Remote Sensing 46(5): 1416-1427.

£ RFF | FAGAN AND DEFRIES 102



Davies, D.K,, S. [lavajhala, M.M. Wong, and C.O. Justice. 2009. Fire information for resource
management system: Archiving and distributing MODIS active fire data. IEEE
Transactions on Geoscience and Remote Sensing 47(1): 72-79.

De Grandji, G., ].P. Malingreau, and M. Leysen. 1999. The ERS-1 Central Africa mosaic: A new
perspective in radar remote sensing for the global monitoring of vegetation. IEEE
Transactions on Geoscience and Remote Sensing 37(3): 1730-1746.

Dean, T.J.,, Q.V. Cao, S.D. Roberts, and D.L. Evans. 2009. Measuring heights to crown base and
crown median with LiDAR in a mature, even-aged loblolly pine stand. Forest Ecology
and Management 257(1): 126-133.

DeFries, R. 2008. Terrestrial vegetation in the coupled human-earth system: Contributions
of remote sensing. Annual Review of Environment and Resources 33: 369-390.

DeFries, R, F. Achard, S. Brown, M. Herold, D. Murdiyarso, B. Schlamadinger, and C. de
Souza. 2007. Earth observations for estimating greenhouse gas emissions from

deforestation in developing countries. Environmental Science and Policy 10(4): 385-
394.

DeFries, R.S.,, R.A. Houghton, M.C. Hansen, C.B. Field, D. Skole, and . Townshend. 2002.
Carbon emissions from tropical deforestation and regrowth based on satellite
observations for the 1980s and 1990s. Proceedings of the National Academy of
Sciences of the United States of America 99(22): 14256-14261.

DeFries, R.S., and J.R. Townshend. 1994. NDVI-derived land cover classification at global
scales. International Journal of Remote Sensing 15(17): 3567-3586.

Diner, D.J., B.H. Braswell, R. Davies, N. Gobron, J.N. Hu, Y.F. Jin, R.A. Kahn, et al. 2005. The
value of multiangle measurements for retrieving structurally and radiatively

consistent properties of clouds, aerosols, and surfaces. Remote Sensing of
Environment 97(4): 495-518.

Dixon, R.K,, S. Brown, R.A. Houghton, A.M. Solomon, M.C. Trexler, and J. Wisniewski. 1994.
Carbon pools and flux of global forest ecosystems. Science 263: 185-190.

Dobson, M.C,, F.T. Ulaby, and L.E. Pierce. 1995a. Land cover classification and estimation of
terrain attributes using synthetic-aperture radar. Remote Sensing of Environment
51(1): 199-214.

Dobson, M.C,, F.T. Ulaby, L.E. Pierce, T.L. Sharik, K.M. Bergen, . Kellndorfer, ].R. Kendra, et
al. 1995b. Estimation of forest biophysical characteristics in northern Michigan with
SIR-C/X-SAR. IEEE Transactions on Geoscience and Remote Sensing 33(4): 877-895.

Donnellan, A, P. Rosen, |. Graf, A. Loverro, A. Freeman, R. Treuhaft, R. Oberto, et al. 2008.
Deformation, ecosystem structure, and dynamics of ice (DESDynlI). Paper presented
at the ESRI International User Conference. April 2008, Washington, DC.

Drake, ].B.,, R.0. Dubayah, D.B. Clark, R.G. Knox, ].B. Blair, M.A. Hofton, R.L. Chazdon, et al.
2002. Estimation of tropical forest structural characteristics using large-footprint
lidar. Remote Sensing of Environment 79(2-3): 305-3109.

£ RFF | FAGAN AND DEFRIES 103



Drake, ].B., R.0. Dubayah, R.G. Knox, D.B. Clark, and ].B. Blair. 2002. Sensitivity of large-
footprint lidar to canopy structure and biomass in a neotropical rainforest. Remote
Sensing of Environment 81(2-3): 378-392.

Drake, J.B., R.G. Knox, R.0. Dubayah, D.B. Clark, R. Condit, J.B. Blair, and M. Hofton. 2003.
Above-ground biomass estimation in closed canopy neotropical forests using lidar
remote sensing: factors affecting the generality of relationships. Global Ecology and
Biogeography 12(2): 147-159.

Dubayah, R,, R. Knox, M. Hofton, ]. Blair, and ]. Drake (eds.). 2000. Land Surface
Characterization using LIDAR Remote Sensing. London: CRC Press.

Engdahl, M.E,, and ].M. Hyyppa. 2003. Land-cover classification using multitemporal ERS-
1/2 InSAR data. IEEE Transactions on Geoscience and Remote Sensing 41(7): 1620-
1628.

eoPortal. 2009. List of EO and non-EO Satellite Missions. European Space Agency.
http://directory.eoportal.org/missions all list.php?filter=&view all&order=start da
te&dir=ASC (accessed July 23, 2009).

ERSDAC (Earth Remote Sensing Data Analysis Center). 2009. ASTER Global Digital
Elevation Model. http://www.ersdac.or.jp/GDEM/E/4.html (accessed June 22,
2009).

ESA. 2009. Summaries and recommendations of the POLinSAR 2009 Workshop. January
2009, Frascati, Italy.

Fan, S., M. Gloor, J. Mahlman, S. Pacala, ]. Sarmiento, T. Takahashi, and P. Tans. 1998. A large
terrestrial carbon sink in North America implied by atmospheric and oceanic carbon
dioxide data and models. Science 282(5388): 442-446.

FAO (Food and Agriculture Organization). 2006. Global forest resources assessment 2005.
FAO Forestry Paper 147. Rome: Food and Agriculture Organization of the United
Nations.

Field, C.B., D.B. Lobell, H.A. Peters, and N.R. Chiariello. 2007. Feedbacks of terrestrial
ecosystems to climate change. Annual Review of Environment and Resources 32: 1-
29.

Fiorella, M., and W.]. Ripple. 1993. Determining successional stage of temperate coniferous
forests with LANDSAT satellite data. Photogrammetric Engineering and Remote
Sensing 59(2): 239-246.

Foody, G.M. 2002. Status of land cover classification accuracy assessment. Remote Sensing
of Environment 80(1): 185-201.

Foody, G.M,, D.S. Boyd, and M.E.]. Cutler. 2003. Predictive relations of tropical forest
biomass from Landsat TM data and their transferability between regions. Remote
Sensing of Environment 85(4): 463-474.

Foster, ], C. Kingdon, and P. Townsend. 2002. Predicting tropical forest carbon from EO-1
hyperspectral imagery in Noel Kempff Mercado National Park, Bolivia. Paper

£ RFF | FAGAN AND DEFRIES 104



presented at [EEE International Geoscience and Remote Sensing Symposium. July
2008, Boston, MA.

Franco-Lopez, H., A. Ek, and M. Bauer. 2001. Estimation and mapping of forest stand
density, volume, and cover type using the k-nearest neighbors method. Remote
Sensing of Environment 77(3): 251-274.

Fransson, ].E.S., F. Walter, and L.M.H. Ulander. 2000. Estimation of forest parameters using
CARABAS-II VHFSAR data. IEEE Transactions on Geoscience and Remote Sensing
38(2): 720-727.

Galvao, L.S., F.]. Ponzoni, V. Liesenberg, and J.R. dos Santos. 2009. Possibilities of
discriminating tropical secondary succession in Amazonia using hyperspectral and
multiangular CHRIS/PROBA data. International Journal of Applied Earth Observation
and Geoinformation 11: 8-14.

Gao, X., A.R. Huete, W.G. Ni, and T. Miura. 2000. Optical-biophysical relationships of
vegetation spectra without background contamination. Remote Sensing of
Environment 74(3): 609-620.

Gardner, T. A., J. Barlow, et al. 2007. Predicting the uncertain future of tropical forest
species in a data vacuum. BIOTROPICA 39(1): 25-30.

Gardner, T.A., J. Barlow, L.W. Parry, and C.A. Peres. 2007. Predicting the uncertain future of
tropical forest species in a data vacuum. Biotropica 39(1): 25-30.

Gergel, S.E., Y. Stange, N.C. Coops, K. Johansen, and K.R. Kirby. 2007. What is the value of a
good map? An example using high spatial resolution imagery to aid riparian
restoration. Ecosystems 10(5): 688-702.

Gibbs, H.K,, S. Brown, J.O. Niles, and J.A. Foley. 2007. Monitoring and estimating tropical
forest carbon stocks: Making REDD a reality. Environmental Research Letters 2(4):
045023.

Giglio, L., I. Csiszar, and C.O. Justice. 2006. Global distribution and seasonality of active fires
as observed with the Terra and Aqua Moderate Resolution Imaging
Spectroradiometer (MODIS) sensors. Journal of Geophysical Research-Biogeosciences
111:G02016.

Giglio, L., G.R. van der Werf, ].T. Randerson, G.J. Collatz, and P. Kasibhatla. 2005. Global
estimation of burned area using MODIS active fire observations. Atmospheric
Chemistry and Physics 5: 11091-11141.

Giri, C., Z.L. Zhu, and B. Reed. 2005. A comparative analysis of the Global Land Cover 2000
and MODIS land cover data sets. Remote Sensing of Environment 94(1): 123-132.

Goetz, S.J., A. Baccini, N.T. Laporte, T. Johns, W. Walker, J. Kellndorfer, R.A. Houghton, and M.
Sun. 2009. Mapping and monitoring carbon stocks with satellite observations: A
comparison of methods. Carbon Balance and Management 4(2).

Goetz, S.J., A.G. Bunn, G.J. Fiske, and R.A. Houghton. 2005. Satellite-observed photosynthetic
trends across boreal North America associated with climate and fire disturbance.

£ RFF | FAGAN AND DEFRIES 105



Proceedings of the National Academy of Sciences of the United States of America
102(38): 13521-13525.

Goetz, S.J.,, RK. Wright, A.]. Smith, E. Zinecker, and E. Schaub. 2003. IKONOS imagery for
resource management: Tree cover, impervious surfaces, and riparian buffer
analyses in the mid-Atlantic region. Remote Sensing and Environment 88(1-2): 195-
208.

GOFC-GOLD (Global Observation of Forest and Land Cover Dynamics). 2008. Reducing
Greenhouse Gas Emissions from Deforestation and Degradation in Developing
Countries: A Sourcebook of Methods and Procedures for Monitoring, Measuring, and
Reporting. GOFC-GOLD Report version COP13-2. Alberta, Canada: Natural Resources
Canada.

Goodenough, D.G., A. Dyk, O. Niemann, ].S. Pearlman, H. Chen, T. Han, M. Murdoch, and C.
West. 2003. Processing Hyperion and ALI for forest classification. IEEE Transactions
on Geoscience and Remote Sensing 41(6): 1321-1331.

Goodwin, N., R. Turner, and R. Merton. 2005. Classifying Eucalyptus forests with high
spatial and spectral resolution imagery: An investigation of individual species and
vegetation communities. Australian Journal of Botany 53(4): 337-345.

Grainger, A. 2008. Difficulties in tracking the long-term global trend in tropical forest area
Proceedings of the National Academy of Sciences of the United States of America
105(2): 818-823.

Grassi, G., S. Monni, S. Federici, F. Achard, and D. Mollicone. 2008. Applying the

conservativeness principle to REDD to deal with the uncertainties of the estimates.
Environmental Research Letters 3(3): 035005.

Hall, R.J,, R.S. Skakun, E.J. Arsenault, and B.S. Case. 2006. Modeling forest stand structure
attributes using Landsat ETM+ data: Application to mapping of aboveground
biomass and stand volume. Forest Ecology and Management 225(1-3): 378-390.

Hansen, M.C,, R.S. DeFries, ].R.G. Townshend, M. Carroll, C. Dimiceli, and R.A. Sohlberg.
2003. Global percent tree cover at a spatial resolution of 500 meters: First results of
the MODIS vegetation continuous fields algorithm. Earth Interactions 7(10): 1-15.

Hansen, M.C,, D.P. Roy, E. Lindquist, B. Adusei, C.O. Justice, and A. Altstatt. 2008a. A method
for integrating MODIS and Landsat data for systematic monitoring of forest cover
and change in the Congo Basin. Remote Sensing of Environment 112(5): 2495-2513.

Hansen, M.C,, S.V. Stehman, P.V. Potapov, T.R. Loveland, J.R.G. Townshend, R.S. DeFries, KW.
Pittman, et al. 2008b. Humid tropical forest clearing from 2000 to 2005 quantified
by using multitemporal and multiresolution remotely sensed data. Proceedings of
the National Academy of Sciences of the United States of America 105(27): 9439-
9444.

Heinsch, F.A., M.S. Zhao, S.W. Running, |.S. Kimball, R.R. Nemani, K.]. Davis, P.V. Bolstad, et
al. 2006. Evaluation of remote sensing based terrestrial productivity from MODIS

£ RFF | FAGAN AND DEFRIES 106



using regional tower eddy flux network observations. IEEE Transactions on
Geoscience and Remote Sensing 44(7): 1908-1925.

Heiskanen, ]. 2006. Tree cover and height estimation in the Fennoscandian tundra-taiga
transition zone using multiangular MISR data. Remote Sensing of Environment
103(1): 97-114.

Helmer, E. H., M. A. Lefsky, et al. 2009. Biomass accumulation rates of Amazonian secondary
forest and biomass of old-growth forests from Landsat time series and the
Geoscience Laser Altimeter System. Journal of Applied Remote Sensing 3(1): 033505

Herold, M. 2009. An Assessment of National Forest Monitoring Capabilities in Tropical Non-
Annex I Countries: Recommendations for Capacity Building. Report prepared for The
Prince's Rainforests Project and The Government of Norway. Thuringia, Germany:
Friedrich Schiller University Jena and GOFC-GOLD.
http://unfccc.int/files/methods_science/redd/country_specific_information/applic
ation/pdf/redd_nat_capacity_report_herold_july09_publ.pdf.

Herold, M., and T. Johns. 2007. Linking requirements with capabilities for deforestation
monitoring in the context of the UNFCCC-REDD process. Environmental Research
Letters 2(4): 045025.

Herold, M., P. Mayaux, et al. 2008. Some challenges in global land cover mapping: An
assessment of agreement and accuracy in existing 1 km datasets. Remote Sensing of
Environment 112(5): 2538-2556.

Hoekman, D.H., and M.]. Quinones. 2000. Land cover type and biomass classification using
AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon. I[EEE
Transactions on Geoscience and Remote Sensing 38(2): 685-696.

Houghton, R.A. 1999. The annual net flux of carbon to the atmosphere from changes in land
use 1850-1990. Tellus Series B-Chemical and Physical Meteorology 51(2): 298-313.

Houghton, R.A. 2005. Aboveground forest biomass and the global carbon balance. Global
Change Biology 11(6): 945-958.

Houghton, R.A. 2007. Balancing the global carbon budget. Annual Review of Earth and
Planetary Sciences 35: 313-347.

Houghton, R.A.,, D. Butman, A.G. Bunn, O.N. Krankina, P. Schlesinger, and T.A. Stone. 2007.
Mapping Russian forest biomass with data from satellites and forest inventories.
Environmental Research Letters 2(4): 045032.

Houghton, R.A., K.T. Lawrence, ].L. Hackler, and S. Brown. 2001. The spatial distribution of
forest biomass in the Brazilian Amazon: A comparison of estimates. Global Change
Biology 7(7): 731-746.

House, J.I,, I.C. Prentice, N. Ramankutty, R.A. Houghton, and M. Heimann. 2003. Reconciling
apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus
Series B-Chemical and Physical Meteorology 55(2): 345-363.

£ RFF | FAGAN AND DEFRIES 107



Hudak, A.T., M.A. Lefsky, W.B. Cohen, and M. Berterretche. 2002. Integration of lidar and
Landsat ETM plus data for estimating and mapping forest canopy height. Remote
Sensing of Environment 82(2-3): 397-416.

Hyde, P., R. Dubayah, B. Peterson, ]J.B. Blair, M. Hofton, C. Hunsaker, R. Knox, and W. Walker.
2005. Mapping forest structure for wildlife habitat analysis using waveform lidar:
Validation of montane ecosystems. Remote Sensing of Environment 96(3-4): 427-
437.

Hyde, P., R. Dubayah, W. Walker, ].B. Blair, M. Hofton, and C. Hunsaker. 2006. Mapping
forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR,
ETM plus, Quickbird) synergy. Remote Sensing of Environment 102(1-2): 63-73.

Hyyppa, J., H. Hyyppa, M. Inkinen, M. Engdahl, S. Linko, and Y.H. Zhu. 2000. Accuracy
comparison of various remote sensing data sources in the retrieval of forest stand
attributes. Forest Ecology and Management 128(1-2): 109-120.

Hyyppa, J., H. Hyyppa, D. Leckie, F. Gougeon, X. Yu, and M. Maltamo. 2008. Review of
methods of small-footprint airborne laser scanning for extracting forest inventory
data in boreal forests. International Journal of Remote Sensing 29(5): 1339-1366.

[IASA (International Institute for Applied Systems Analysis). 2009. GeoWiki Project: Help
Improve Global Land Cover. International Institute for Applied Systems Analysis.
http://geo-wiki.org/ (accessed July 23, 2009).

IPCC (Intergovernmental Panel on Climate Change). 2006. IPCC Guidelines for National
Greenhouse Gas Inventories, ed. by Intergovernmental Panel on Climate Change,
Japan, Hayama. http://www.ipcc-nggip.iges.or.jp/public/2006gl /index.html.

——— 2007. Climate Change 2007: The Physical Basis. Working Group I Contribution to the
Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New
York, NY: Cambridge University Press.

Jensen, J.R. 2007. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd
Edition. Upper Saddle River, NJ: Prentice Hall.

Kasischke, E. S. and N. H. F. French. 1997. Constraints on using AVHRR composite index
imagery to study patterns of vegetation cover in boreal forests. International Journal
of Remote Sensing 18(11): 2403-2426.

Kasischke, E.S., ].M. Melack, and M.C. Dobson. 1997. The use of imaging radars for ecological
applications—A review. Remote Sensing of Environment 59(2): 141-156.

Kauppi, P.E,, ].H. Ausubel, ].Y. Fang, A.S. Mather, R.A. Sedjo, and P.E. Waggoner. 2006.
Returning forests analyzed with the forest identity. Proceedings of the National
Academy of Sciences of the United States 103(46): 17574-17579.

Kayitakire, F., C. Hamel, and P. Defourny. 2006. Retrieving forest structure variables based
on image texture analysis and IKONOS-2 imagery. Remote Sensing of Environment
102(3-4): 390-401.

£ RFF | FAGAN AND DEFRIES 108



Keeling, H.C., and O.L. Phillips. 2007. The global relationship between forest productivity
and biomass. Global Ecology and Biogeography 16(5): 618-631.

Kellndorfer, .M., L.E. Pierce, M.C. Dobson, and F.T. Ulaby. 1998. Toward consistent regional-
to-global-scale vegetation characterization using orbital SAR systems. I[EEE
Transactions on Geoscience and Remote Sensing 36(5): 1396-1411.

Kellndorfer, J., W. Walker, D. Nepstad, C. Stickler, P. Brando, P. Lefebvre, A. Rosenqvist, and
M. Shimada. 2008. Implementing REDD: The potential of ALOS/PALSAR for forest
mapping and monitoring. Paper presented at the Second GEOSS Asia-Pacific
Symposium. April 2008, Tokyo, Japan.

Kellndorfer, ]., W. Walker, L. Pierce, C. Dobson, ]J.A. Fites, C. Hunsaker, J. Vona, and M.
Clutter. 2004. Vegetation height estimation from shuttle radar topography mission
and national elevation datasets. Remote Sensing of Environment 93(3): 339-358.

Kennedy, R.E., W.B. Cohen, and T.A. Schroeder. 2007. Trajectory-based change detection for
automated characterization of forest disturbance dynamics. Remote Sensing of
Environment 110(3): 370-386.

Kimes, D.S., R.F. Nelson, W.A. Salas, and D.L. Skole. 1999. Mapping secondary tropical forest
and forest age from SPOT HRV data. International Journal of Remote Sensing 20(18):
3625-3640.

Kimes, D.S., KJ. Ranson, G. Sun, and ].B. Blair. 2006. Predicting lidar measured forest

vertical structure from multi-angle spectral data. Remote Sensing of Environment
100(4): 503-511.

Knorn, J., A. Rabe, V.C. Radeloff, T. Kuemmerle, ]. Kozak, and P. Hostert. 2009. Land cover
mapping of large areas using chain classification of neighboring Landsat satellite
images. Remote Sensing of Environment 113(5): 957-964.

Kozak, ]., C. Estreguil, and K. Ostapowicz. 2008. European forest cover mapping with high
resolution satellite data: The Carpathians case study. International Journal of Applied
Earth Observation and Geoinformation 10(1): 44-55.

Kramer, H.J., and A.P. Cracknell. 2008. An overview of small satellites in remote sensing.
International Journal of Remote Sensing 29(15): 4285-4337.

Kuplich, T.M. 2006. Classifying regenerating forest stages in Amazonia using remotely
sensed images and a neural network. Forest Ecology and Management 234(1-3): 1-
0.

Kuplich, T.M., C.C. Freitas, and ].V. Soares. 2000. The study of ERS-1 SAR and Landsat TM
synergism for land use classification. International Journal of Remote Sensing
21(10): 2101-2111.

Latifovic, R., and I. Olthof. 2004. Accuracy assessment using sub-pixel fractional error
matrices of global land cover products derived from satellite data. Remote Sensing of
Environment 90(2): 153-165.

£ RFF | FAGAN AND DEFRIES 109



Laurance, W.F. 2007. Environmental science: Forests and floods. Nature 449(7161): 409-
410.

Le Toan, T., H. Baltzer, P. Paillou, K.P. Papathanassiou, S. Plummer, S. Quegan, F. Rocca, and
L. Ulander. 2008. BIOMASS: To Observe Global Forest Biomass for a Better
Understanding of the Carbon Cycle. Report for Asssessment 2. Noordwijk, The
Netherlands: European Space Agency. http://esamultimedia.esa.int/docs/SP1313-
2_BIOMASS.pdf.

Le Toan, T., S. Quegan, I. Woodward, M. Lomas, N. Delbart, and G. Picard. 2004. Relating
radar remote sensing of biomass to modelling of forest carbon budgets. Climatic
Change 67(2-3): 379-402.

Lee, K.S., W.B. Cohen, R.E. Kennedy, T.K. Maiersperger, and S.T. Gower. 2004. Hyperspectral
versus multispectral data for estimating leaf area index in four different biomes.
Remote Sensing of Environment 91(3-4): 508-520.

Lefsky, M.A., W.B. Cohen, D.]J. Harding, G.G. Parker, S.A. Acker, and S.T. Gower. 2002a. Lidar
remote sensing of above-ground biomass in three biomes. Global Ecology and
Biogeography 11(5): 393-399.

Lefsky, M.A., W.B. Cohen, G.G. Parker, and D.]. Harding. 2002b. Lidar remote sensing for
ecosystem studies. Bioscience 52(1): 19-30.

Lefsky, M.A,, M. Keller, Y. Pang, P.B. de Camargo, and M.O. Hunter. 2007. Revised method for
forest canopy height estimation from Geoscience Laser Altimeter System
waveforms. Journal of Applied Remote Sensing 1: 013537.

Lindquist, E.J., M.C. Hansen, D.P. Roy, and C.O. Justice. 2008. The suitability of decadal image
data sets for mapping tropical forest cover change in the Democratic Republic of

Congo: Implications for the global land survey. International Journal of Remote
Sensing 29(24): 7269-7275.

Liy, J., ].M. Chen, ]. Cihlar, and W. Chen. 2002. Net primary productivity mapped for Canada
at 1-km resolution. Global Ecology and Biogeography 11(2): 115-129.

Liu, X., and M. Kafatos. 2007. MISR multi-angular spectral remote sensing for temperate
forest mapping at 1.1-km resolution. International Journal of Remote Sensing 28(1-
2): 459-464.

Loarie, S.R,, L.N. Joppa, and S.L. Pimm. 2007. Satellites miss environmental priorities.
Trends in Ecology and Evolution 22(12): 630-632.

Loehle, C. 2000. Forest ecotone response to climate change: Sensitivity to temperature
response functional forms. Canadian Journal of Forest Research-Revue Canadienne
De Recherche Forestiere 30(10): 1632-1645.

Loveland, T.R., M.A. Cochrane, and G.M. Henebry. 2008. Landsat still contributing to
environmental research—Response. Trends in Ecology and Evolution 23(4): 182-
183.

£ RFF | FAGAN AND DEFRIES 110



Loveland, T.R., T.L. Sohl, S.V. Stehman, A.L. Gallant, K.L. Sayler, and D.E. Napton. 2002. A
strategy for estimating the rates of recent United States land-cover changes.
Photogrammetric Engineering and Remote Sensing 68(10): 1091-1099.

Loveland, T.R., Z.L. Zhu, D.O. Ohlen, ].F. Brown, B.C. Reed, and L.M. Yang. 1999. An analysis
of the IGBP global land-cover characterization process. Photogrammetric
Engineering and Remote Sensing 65(9): 1021-1032.

Lu, D., P. Mausel, E. Brondizio, and E. Moran. 2004. Change detection techniques.
International Journal of Remote Sensing 25(12): 2365-2407.

Lu, D.S. 2006. The potential and challenge of remote sensing-based biomass estimation.
International Journal of Remote Sensing 27(7): 1,297-1,328.

Luus, KA, and R.E.]. Kelly. 2008. Assessing productivity of vegetation in the Amazon using
remote sensing and modeling. Progress in Physical Geography 32(4): 363-377.

MacDonald, G.M., K.V. Kremenetski, and D.W. Beilman. 2008. Climate change and the
northern Russian treeline zone. Philosophical Transactions of the Royal Society B-
Biological Sciences 363(1501): 2285-2299.

Malhi, Y., L. Aragdo, D. Galbraith, C. Huntingford, R. Fisher, P. Zelazowski, S. Sitch, et al.
2009. Exploring the likelihood and mechanism of a climate-change-induced dieback
of the Amazon rainforest. Proceedings of the National Academy of Sciences of the
United States of America. Early Edition. February 13, 2009 [doi:
10.1073/pnas.0804619106],
http://www.pnas.org/content/early/2009/02/12/0804619106.full.pdf+html.

Malhi, Y., D.D. Baldocchi, and P.G. Jarvis. 1999. The carbon balance of tropical, temperate
and boreal forests. Plant Cell and Environment 22(6): 715-740.

Mallinis, G., N. Koutsias, M. Tsakiri-Strati, and M. Karteris. 2008. Object-based classification
using Quickbird imagery for delineating forest vegetation polygons in a
Mediterranean test site. ISPRS Journal of Photogrammetry and Remote Sensing 63(2):
237-250.

Maltamo, M., K. Eerikainen, P. Packalen, and J. Hyyppa. 2006. Estimation of stem volume
using laser scanning-based canopy height metrics. Forestry 79(2): 217-229.

Marsh, G.P. 1878. The Earth as Modified by Human Action: A New Edition of Man and Nature.
Project Gutenberg Release #6019. July 2004.

Masek, ].G., C.Q. Huang, R. Wolfe, W. Cohen, F. Hall, . Kutler, and P. Nelson. 2008. North
American forest disturbance mapped from a decadal Landsat record. Remote
Sensing of Environment 112(6): 2914-2926.

Mayaux, P., H. Eva, |. Gallego, A.H. Strahler, M. Herold, S. Agrawal, S. Naumov, et al. 2006.
Validation of the global land cover 2000 map. IEEE Transactions on Geoscience and
Remote Sensing 44(7): 1728-1739.

Mayaux, P., G. De Grandi, and J.P. Malingreau. 2000. Central African forest cover revisited: A
multisatellite analysis. Remote Sensing of Environment 71(2): 183-196.

£ RFF | FAGAN AND DEFRIES 111



Mayaux, P., P. Holmgren, F. Achard, H. Eva, H. Stibig and A. Branthomme. 2005. Tropical
forest cover change in the 1990s and options for future monitoring. Philosophical
Transactions of the Royal Society B-Biological Sciences 360(1454): 373-384.

McCombs, ].W.,, S.D. Roberts, and D.L. Evans. 2003. Influence of fusing lidar and
multispectral imagery on remotely sensed estimates of stand density and mean tree
height in a managed loblolly pine plantation. Forest Science 49(3): 457-466.

McRoberts, R.E. 2008. Using satellite imagery and the k-nearest neighbors technique as a
bridge between strategic and management forest inventories. Remote Sensing of
Environment 112(5): 2212-2221.

Means, J.E., S.A. Acker, D.J. Harding, ].B. Blair, M.A. Lefsky, W.B. Cohen, M.E. Harmon, and
W.A. McKee. 1999. Use of large-footprint scanning airborne lidar to estimate forest

stand characteristics in the Western Cascades of Oregon. Remote Sensing of
Environment 67(3): 298-308.

Moghaddam, M., ].L. Dungan, and S. Acker. 2002. Forest variable estimation from fusion of
SAR and multispectral optical data. IEEE Transactions on Geoscience and Remote
Sensing 40(10): 2176-2187.

Morales, R.M., T. Miura, and T. Idol. 2008. An assessment of Hawaiian dry forest condition
with fine resolution remote sensing. Forest Ecology and Management 255(7): 2524~
2532.

Morton, D.C., R.S. DeFries, Y.E. Shimabukuro, L.O. Anderson, F.D.B. Espirito-Santo, M.
Hansen, and M. Carroll. 2005. Rapid assessment of annual deforestation in the
Brazilian Amazon using MODIS data. Earth Interactions 9(8): 1-22.

Muukkonen, P., and ]. Heiskanen. 2007. Biomass estimation over a large area based on
standwise forest inventory data and ASTER and MODIS satellite data: A possibility
to verify carbon inventories. Remote Sensing of Environment 107(4): 617-624.

Myneni, R.B., W.Z. Yang, R.R. Nemani, A.R. Huete, R.E. Dickinson, Y. Knyazikhin, K. Didan, et
al. 2007. Large seasonal swings in leaf area of Amazon rainforests. Proceedings of the
National Academy of Sciences of the United States of America 104(12): 4820-4823.

Naesset, E., and T. Gobakken. 2008. Estimation of above- and below-ground biomass across
regions of the boreal forest zone using airborne laser. Remote Sensing of
Environment 112(6): 3079-3090.

Naesset, E., T. Gobakken, ]. Holmgren, H. Hyyppa, ]. Hyyppa, M. Maltamo, M. Nilsson, et al.
2004. Laser scanning of forest resources: The Nordic experience. Scandinavian
Journal of Forest Research 19(6): 482-499.

NASA (National Aeronautics and Space Administration). 2009a. IceSat Homepage.
http://icesat.gsfc.nasa.gov/index.php (accessed July 21, 2009).

———. 2009b. The Earth Sensing Legacy. Earth Observatory.
http://earthobservatory.nasa.gov/Features/EO1/eo1_2.php.

£ RFF | FAGAN AND DEFRIES 112



Natural Resources Canada. 2005. Horizontal transmit—Vertical receive polarization.
Glossary of remote sensing terms. Canada Centre for Remote Sensing.
http://www.cct.nrcan.gc.ca/glossary/index_e.php?id=1560.

Neeff, T., L.V. Dutra, J.R. dos Santos, C.D. Freitas, and L.S. Araujo. 2005. Tropical forest
measurement by interferometric height modeling and P-band radar backscatter.
Forest Science 51(6): 585-594.

Neigh, C.S.R,, C.J. Tucker, and J.R.G. Townshend. 2008. North American vegetation dynamics
observed with multi-resolution satellite data. Remote Sensing of Environment
112(4): 1749-1772.

Nelson, R,, KJ. Ranson, G. Sun, D.S. Kimes, V. Kharuk, and P. Montesano. 2009. Estimating
Siberian timber volume using MODIS and ICESat/GLAS. Remote Sensing of
Environment 113(3): 691-701.

Nelson, R.F,, P. Hyde, P. Johnson, B. Emessiene, M.L. Imhoff, R. Campbell, and W. Edwards.
2007. Investigating RaDAR-LiDAR synergy in a North Carolina pine forest. Remote
Sensing of Environment 110(1): 98-108.

Nelson, R.F,, D.S. Kimes, W.A. Salas, and M. Routhier. 2000. Secondary forest age and

tropical forest biomass estimation using thematic mapper imagery. Bioscience
50(5): 419-431.

Nilsson, M. 1996. Estimation of tree weights and stand volume using an airborne lidar
system. Remote Sensing of Environment 56(1): 1-7.

NRC (National Research Council). 2007. Earth Science and Applications from Space: National
Imperatives for the Next Decade and Beyond. Washington, DC: National Research
Council, The National Academies Press.

Oberto, B., A. Loverro, S. Hu, and B. Blair. 2008. Mission and Spacecraft Configuration
Studies (Priority Tasks 1, 2, & 4). DESDynl Science Study Group Meeting. June 2008,
Greenbelt, MD.

Olander, L.P., H.K. Gibbs, M. Steininger, ].J. Swenson, and B.C. Murray. 2008. Reference
scenarios for deforestation and forest degradation in support of REDD: A review of
data and methods. Environmental Research Letters 3(2): 025011.

Ollinger, S.V., and M.L. Smith. 2005. Net primary production and canopy nitrogen in a
temperate forest landscape: An analysis using imaging spectroscopy, modeling and
field data. Ecosystems 8(7): 760-778.

Ouma, Y.0,, J. Tetuko, and R. Tateishi. 2008. Analysis of co-occurrence and discrete wavelet
transform textures for differentiation of forest and non-forest vegetation in very-
high-resolution optical-sensor imagery. International Journal of Remote Sensing
29(12): 3417-3456.

Page, S.E., F. Siegert, ].0. Rieley, H.D.V. Boehm, A. Jaya, and S. Limin. 2002. The amount of
carbon released from peat and forest fires in Indonesia during 1997. Nature
420(6911): 61-65.

£ RFF | FAGAN AND DEFRIES 113



Palace, M., M. Keller, G.P. Asner, S. Hagen, and B. Braswell. 2008. Amazon forest structure
from IKONOS satellite data and the automated characterization of forest canopy
properties. Biotropica 40(2): 141-150.

Palmer, P.I. 2008. Quantifying sources and sinks of trace gases using space-borne
measurements: Current and future science. Philosophical Transactions of the Royal
Society A-Mathematical Physical and Engineering Sciences 366(1885): 4509-4528.

Park, N.W,, and K.H. Chi. 2008. Integration of multitemporal/polarization C-band SAR data
sets for land-cover classification. International Journal of Remote Sensing 29(16):
4667-4688.

Patenaude, G., R. Milne, and T.P. Dawson. 2005. Synthesis of remote sensing approaches for
forest carbon estimation: Reporting to the Kyoto Protocol. Environmental Science
and Policy 8(2): 161-178.

[[Add Peres et al. 2006, cited on page 71.]]

Peterson, L.K,, K.M. Bergen, D.G. Brown, L. Vashchuk, and Y. Blam. 2009. Forested land-
cover patterns and trends over changing forest management eras in the Siberian
Baikal region. Forest Ecology and Management 257(3): 911-922.

Pflugmacher, D., W. Cohen, R. Kennedy, and M. Lefsky. 2008. Regional applicability of forest
height and aboveground biomass models for the geoscience laser altimeter system.
Forest Science 54(6): 647-657.

Phillips, O.L., L. Aragao, S.L. Lewis, ].B. Fisher, ]. Lloyd, G. Lopez-Gonzalez, Y. Malhi, et al.
2009. Drought sensitivity of the Amazon rainforest. Science 323(5919): 1344-1347.

Piao, S.L., ].Y. Fang, P. Ciais, P. Peylin, Y. Huang, S. Sitch, and T. Wang. 2009. The carbon
balance of terrestrial ecosystems in China. Nature 458(7241): 1009-1082.

Podest, E., and S. Saatchi. 2002. Application of multiscale texture in classifying JERS-1 radar
data over tropical vegetation. International Journal of Remote Sensing 23(7): 1487-
1506.

Popescuy, S.C., R.H. Wynne, and R.F. Nelson. 2003. Measuring individual tree crown diameter
with lidar and assessing its influence on estimating forest volume and biomass.
Canadian Journal of Remote Sensing 29(5): 564-577.

Popescu, S.C., R.H. Wynne, and J.A. Scrivani. 2004. Fusion of small-footprint lidar and
multispectral data to estimate plot-level volume and biomass in deciduous and pine
forests in Virginia, USA. Forest Science 50(4): 551-565.

Potere, D. 2008. Horizontal positional accuracy of Google Earth's high-resolution imagery
archive. Sensors 8(12): 7973-7981.

Powell, S.L., D. Pflugmacher, A.A. Kirschbaum, Y. Kim, and W.B. Cohen. 2007. Moderate
resolution remote sensing alternatives: A review of Landsat-like sensors and their
applications. Journal of Applied Remote Sensing 1: 012506.

£ RFF | FAGAN AND DEFRIES 114



Qian, D., N.H. Younan, R. King, and V.P. Shah. 2007. On the performance evaluation of pan-
sharpening techniques. IEEE Geoscience and Remote Sensing Letters 4(4): 518-522.

Ramankutty, N., H.K. Gibbs, F. Achard, R. DeFries, ].A. Foley, and R.A. Houghton. 2007.
Challenges to estimating carbon emissions from tropical deforestation. Global
Change Biology 13(1): 51-66.

Ramos Da Silva, R, D. Silva, and R. Avissar. 2008. Regional impacts of future land-cover
changes on the Amazon basin wet-season climate. Journal of Climate 21: 1153-1170.

RapidEye, A. 2009. RapidEye: Geofacts Turned Into Knowledge. http://www.rapideye.de/
(accessed July 23, 2009).

Read, ].M,, D.B. Clark, E.M. Venticinque, and M.P. Moreira. 2003. Application of merged 1-m
and 4-m resolution satellite data to research and management in tropical forests.
Journal of Applied Ecology 40(3): 592-600.

Roberts, G., M.J. Wooster, G.L.W. Perry, N. Drake, L.M. Rebelo, and F. Dipotso. 2005.
Retrieval of biomass combustion rates and totals from fire radiative power
observations: Application to southern Africa using geostationary SEVIRI imagery.
Journal of Geophysical Research-Atmospheres 110: D21111.

Rogan, |., ]J. Franklin, D. Stow, ]. Miller, C. Woodcock, and D. Roberts. 2008. Mapping land-
cover modifications over large areas: A comparison of machine learning algorithms.
Remote Sensing of Environment 112(5): 2272-2283.

Rosengvist, A., A. Milne, R. Lucas, M. Imhoff, and C. Dobson. 2003. A review of remote
sensing technology in support of the Kyoto Protocol. Environmental Science and
Policy 6(5): 441-455.

Rosengqvist, A., M. Shimada, B. Chapman, A. Freeman, G. De Grandj, S. Saatchi, and Y. Rauste.
2000. The Global Rain Forest Mapping project—A review. International Journal of
Remote Sensing 21(6-7): 1375-1387.

Roy, D.P., Y. Jin, P.E. Lewis, and C.O. Justice. 2005. Prototyping a global algorithm for
systematic fire-affected area mapping using MODIS time series data. Remote Sensing
of Environment 97(2): 137-162.

Roy, D.P,, ]. Ju, P. Lewis, C. Schaaf, F. Gao, M. Hansen, and E. Lindquist. 2008. Multi-temporal
MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and
prediction of Landsat data. Remote Sensing of Environment 112(6): 3112-3130.

Rudel, T.K., O.T. Coomes, E. Moran, F. Achard, A. Angelsen, ].C. Xu, and E. Lambin. 2005.
Forest transitions: Towards a global understanding of land use change. Global
Environmental Change-Human and Policy Dimensions 15(1): 23-31.

Saatchi, S.S., R.A. Houghton, R. Alvala, ].V. Soares, and Y. Yu. 2007. Distribution of
aboveground live biomass in the Amazon basin. Global Change Biology 13(4): 816-
837.

£ RFF | FAGAN AND DEFRIES 115



Saatchi, S.S., M. Marlier, R.L. Chazdon, D.B. Clark, and A.E. Russell, in review. Impact of
Spatial Variability of forest structure on Radar Estimation of Aboveground Biomass
inTropical Forests. Remote Sensing of Environment.

Saatchi, S.S., B. Nelson, E. Podest, and ]. Holt. 2000. Mapping land cover types in the Amazon
Basin using 1 km JERS-1 mosaic. International Journal of Remote Sensing 21(6-7):
1201-1234.

Saatchi, S.S., J.V. Soares, and D.S. Alves. 1997. Mapping deforestation and land use in
Amazon rainforest by using SIR-C imagery. Remote Sensing of Environment 59(2):
191-202.

Sader, S.A., M. Bertrand, and E.H. Wilson. 2003. Satellite change detection of forest harvest
patterns on an industrial forest landscape. Forest Science 49(3): 341-353.

Salajanu, D., and C.E. Olson. 2001. The significance of spatial resolution—Identifying forest
cover from satellite data. Journal of Forestry 99(6): 32-38.

Salati, E., and P.B. Vose. 1984. Amazon basin: A system in equilibrium. Science 225(4658):
129.

Sanchez-Azofeifa, G.A., K.L. Castro-Esau, W.A. Kurz, and A. Joyce. 2009. Monitoring carbon
stocks in the tropics and the remote sensing operational limitations: From local to
regional projects. Ecological Applications 19(2): 480-494.

Sanderson, E.W., M. Jaiteh, M.A. Levy, K.H. Redford, A.V. Wannebo, and G. Woolmer. 2002.
The human footprint and the last of the wild. Bioscience 52(10): 891-904.

Santos, C., and ].P. Messina. 2008. Multi-sensor data fusion for modeling African palm in the
Ecuadorian Amazon. Photogrammetric Engineering and Remote Sensing 74(6): 711-
723.

Schlerf, M., C. Atzberger, and ]. Hill. 2005. Remote sensing of forest biophysical variables
using HyMap imaging spectrometer data. Remote Sensing of Environment 95(2):
177-194.

Schroeder, P., S. Brown, ].M. Mo, R. Birdsey, and C. Cieszewski. 1997. Biomass estimation for
temperate broadleaf forests of the United States using inventory data. Forest Science
43(3): 424-434.

Schroeder, T.A., W.B. Cohen, C.H. Song, M.]. Canty, and Z.Q. Yang. 2006. Radiometric
correction of multi-temporal Landsat data for characterization of early successional
forest patterns in western Oregon. Remote Sensing of Environment 103(1): 16-26.

Schroeder, W., I. Csiszar, and ]. Morisette. 2008. Quantifying the impact of cloud
obscuration on remote sensing of active fires in the Brazilian Amazon. Remote
Sensing of Environment 112(2): 456-470.

Schroeder, W., E. Prins, L. Giglio, I. Csiszar, C. Schmidt, J. Morisette and D. Morton. 2008.
Validation of GOES and MODIS active fire detection products using ASTER and ETM
plus data. Remote Sensing of Environment 112(5): 2711-2726.

£ RFF | FAGAN AND DEFRIES 116



Schull, M.A,, S. Ganguly, A. Samanta, D. Huang, N.V. Shabanov, ].P. Jenkins, ].C. Chiu, et al.
2007. Physical interpretation of the correlation between multi-angle spectral data
and canopy height. Geophysical Research Letters 34: L18405.

Sedano, F., D. Gomez, P. Gong, and G.S. Biging. 2008. Tree density estimation in a tropical
woodland ecosystem with multiangular MISR and MODIS data. Remote Sensing of
Environment 112(5): 2523-2537.

Sesnie, S.E., P.E. Gessler, B. Finegan, and S. Thessler. 2008. Integrating Landsat TM and
SRTM-DEM derived variables with decision trees for habitat classification and

change detection in complex neotropical environments. Remote Sensing of
Environment 112(5): 2145-2159.

Sexton, ].0., T. Bax, P. Siqueira, ].J. Swenson, and S. Hensley. 2009. A comparison of lidar,
radar, and field measurements of canopy height in pine and hardwood forests of
southeastern North America. Forest Ecology and Management 257(3): 1136-1147.

Siegert, F., and G. Ruecker. 2000. Use of multitemporal ERS-2 SAR images for identification
of burned scars in south-east Asian tropical rainforest. International Journal of
Remote Sensing 21(4): 831-837.

Short, N.M. 2009. The Remote Sensing Tutorial. http://rst.gsfc.nasa.gov. Accessed August
2009.

Slatton, K.C., M.M. Crawford, and B.L. Evans. 2001. Fusing interferometric radar and laser
altimeter data to estimate surface topography and vegetation heights. IEEE
Transactions on Geoscience and Remote Sensing 39(11): 2470-2482.

Smith, M.L,, S.V. Ollinger, M.E. Martin, ].D. Aber, R.A. Hallett, and C.L. Goodale. 2002. Direct
estimation of aboveground forest productivity through hyperspectral remote
sensing of canopy nitrogen. Ecological Applications 12(5): 1286-1302.

Song, C. 2007. Estimating tree crown size with spatial information of high resolution optical
remotely sensed imagery. International Journal of Remote Sensing 28(15): 3305-
3322.

Song, C., T.A. Schroeder, and W.B. Cohen. 2007. Predicting temperate conifer forest
successional stage distributions with multitemporal Landsat Thematic Mapper
imagery. Remote Sensing of Environment 106(2): 228-237.

Soudani, K., G. le Maire, E. Dufrene, C. Francois, N. Delpierre, E. Ulrich, and S. Cecchini. 2008.
Evaluation of the onset of green-up in temperate deciduous broadleaf forests
derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data.
Remote Sensing of Environment 112(5): 2643-2655.

Souza, C.M,, and D. Roberts. 2005a. Mapping forest degradation in the Amazon region with
Ikonos images. International Journal of Remote Sensing 26(3): 425-429.

Souza, C.M., D.A. Roberts, and M.A. Cochrane. 2005b. Combining spectral and spatial

information to map canopy damage from selective logging and forest fires. Remote
Sensing of Environment 98(2-3): 329-343.

£ RFF | FAGAN AND DEFRIES 117



Steininger, M.K. 1996. Tropical secondary forest regrowth in the Amazon: Age, area and
change estimation with Thematic Mapper data. International Journal of Remote
Sensing 17(1): 9-27.

Steininger, M.K. 2000. Satellite estimation of tropical secondary forest above-ground
biomass: Data from Brazil and Bolivia. International Journal of Remote Sensing 21(6-
7): 1139-1157.

St-Onge, B., Y. Hu, and C. Vega. 2008. Mapping the height and above-ground biomass of a
mixed forest using lidar and stereo Ikonos images. International Journal of Remote
Sensing 29(5): 1277-1294.

Sun, G., K. Ranson, J. Masek, A. Fu, and D. Wang. 2007. Predicting tree height and biomass
from GLAS data. Paper presented at the 10th International Symposium on Physical
Measurements and Signatures in Remote Sensing. March 2007, Davos, Switzerland.

Swanson, A., L. Abelson, T. Manning, and L. Newhart. 2009. Remote Sensing Assessment of
Forest Carbon Content. Washington, DC: Northrop Grumman Aerospace Systems,
Northrop Grummond Corporation.

Ter-Mikaelian, M.T., and M.D. Korzukhin. 1997. Biomass equations for sixty-five North
American tree species. Forest Ecology and Management 97(1): 1-24.

Thenkabail, P.S., E.A. Enclona, M.S. Ashton, C. Legg, and M.]. De Dieu. 2004. Hyperion,
IKONOS, AL, and ETM plus sensors in the study of African rainforests. Remote
Sensing of Environment 90(1): 23-43.

Thiel, C., P. Drezet, C. Weise, S. Quegan, and C. Schmullius. 2006. Radar remote sensing for
the delineation of forest cover maps and the detection of deforestation. Forestry
79(5): 589-597.

Thompson, S.D., S.E. Gergel, and N.C. Coops. 2008. Classification of late seral coastal
temperate rainforests with high spatial resolution QuickBird imagery. Canadian
Journal of Remote Sensing 34: S460-S470.

Tian, H., ].M. Melillo, D.W. Kicklighter, A.D. McGuire, ].V.K. Helfrich, B. Moore, and C.J.
Vorosmarty. 1998. Effect of interannual climate variability on carbon storage in
Amazonian ecosystems. Nature 396(6712): 664-667.

Ticehurst, C., A. Held, and S. Phinn. 2004. Integrating JERS-1 imaging radar and elevation
models for mapping tropical vegetation communities in Far North Queensland,
Australia. Photogrammetric Engineering and Remote Sensing 70(11): 1259-1266.

Townsend, P.A., T.R. Lookingbill, C.C. Kingdon, and R.H. Gardner. 2009. Spatial pattern
analysis for monitoring protected areas. Remote Sensing of Environment 113(7):
1410-1420.

Townshend, J. R. G. and C. O. Justice. 2002. Towards operational monitoring of terrestrial
systems by moderate-resolution remote sensing. Remote Sensing of Environment
83(1-2): 351-359.

£ RFF | FAGAN AND DEFRIES 118



Townshend, J.R., C.O. Justice, and V.T. Kalb. 1987. Characterization and classification of
South American land cover types using satellite data. International Journal of Remote
Sensing 8: 1189-1207.

Treuhaft, R.N., G.P. Asner, and B.E. Law. 2003. Structure-based forest biomass from fusion
of radar and hyperspectral observations. Geophysical Research Letters 30(9): 1472-
1476.

Treuhaft, R.N., and P.R. Siqueira. 2000. Vertical structure of vegetated land surfaces from
interferometric and polarimetric radar. Radio Science 35(1): 141-177.

Tucker, C.J., ].R. Townshend, and T.E. Goff. 1985. African land-cover classification using
satellite data. Science 227: 369-375.

Tucker, C.J., and ]J.R.G. Townshend. 2000. Strategies for monitoring tropical deforestation
using satellite data. International Journal of Remote Sensing 21(6-7): 1,461-1,471.

UCS (Union of Concerned Scientists). 2009. UCS Satellite Database.
http://www.ucusa.org/nuclear weapons and global security/space weapons/tech

nical issues/ucs-satellite-database.html (accessed July 23, 2009).

Uhl, C,, R. Buschbacher, and E.A.S. Serrao. 1988. Abandoned pastures in eastern Amazonia.
[. Patterns of plant succession. Journal of Ecology 76(3): 663-681.

UNFCCC (United Nations Framework Convention on Climate Change). 2001. COP-7: The
Marrakech Accords. Bonn, Germany.

UNOOSA (United Nations Office for Outer Space Affairs). 2009. General Assembly
Resolution 41/65: Principles Relating to Remote Sensing of the Earth from Outer
Space.
http://www.oosa.unvienna.org/oosa/en/SpacelLaw/gares/html/gares 41 0065.ht
ml (accessed July 23, 2009).

Uriarte, M., L.W. Rivera, ].K. Zimmerman, T.M. Aide, A.G. Power, and A.S. Flecker. 2004.
Effects of land use history on hurricane damage and recovery in a neotropical forest.
Plant Ecology 174(1): 49-58.

Ustin, S.L., D.A. Roberts, J.A. Gamon, G.P. Asner, and R.O. Green. 2004. Using imaging
spectroscopy to study ecosystem processes and properties. Bioscience 54(6): 523-
534.

Ustin, S.L., and Q.F. Xiao. 2001. Mapping successional boreal forests in interior central
Alaska. International Journal of Remote Sensing 22(9): 1779-1797.

van Aardt, ].A.N., R.H. Wynne, and J.A. Scrivani. 2008. Lidar-based mapping of forest volume
and biomass by taxonomic group using structurally homogenous segments.
Photogrammetric Engineering and Remote Sensing 74(8): 1033-1044.

van der Sanden, ].J., and D.H. Hoekman. 1999. Potential of airborne radar to support the
assessment of land cover in a tropical rain forest environment. Remote Sensing of
Environment 68(1): 26-40.

£ RFF | FAGAN AND DEFRIES 119



van der Werf, G.R,, ].T. Randerson, L. Giglio, G.J. Collatz, P.S. Kasibhatla, and A.F. Arellano.
2006. Interannual variability in global biomass burning emissions from 1997 to
2004. Atmospheric Chemistry and Physics 6: 3423-3441.

Waggoner, P.E. (ed.). 2009. Forest inventories: Discrepancies and uncertainties. Discussion
paper 09-29. Washington, DC: Resources for the Future.

Walker, W.S,, .M. Kellndorfer, E. LaPoint, M. Hoppus, and ]J. Westfall. 2007. An empirical
InSAR-optical fusion approach to mapping vegetation canopy height. Remote Sensing
of Environment 109(4): 482-499.

Wallerman, ., and J. Holmgren. 2007. Estimating field-plot data of forest stands using
airborne laser scanning and SPOT HRG data. Remote Sensing of Environment 110(4):
501-508.

Wang, C.Z.,, ].G. Qi, and M. Cochrane. 2005. Assessment of tropical forest degradation with
canopy fractional cover from landsat ETM plus and IKONOS imagery. Earth
Interactions 9: 1-18.

Wang, X.Q., Z.Y. Li, X.E. Liu, G. Deng, and Z.H. Jiang. 2007. Estimating stem volume using
QuickBird imagery and allometric relationships for open Populus xiaohei
plantations. Journal of Integrative Plant Biology 49(9): 1304-1312.

West, G.B., B.J. Enquist, and J.H. Brown. 2009. A general quantitative theory of forest
structure and dynamics. Proceedings of the National Academy of Sciences of the
United States of America 106(17): 7040-7045.

Williams, M. 2008. A new look at global forest histories of land clearing. Annual Review of
Environmental Resources 33: 345-367.

Wilson, E.H., and S.A. Sader. 2002. Detection of forest harvest type using multiple dates of
Landsat TM imagery. Remote Sensing of Environment 80(3): 385-396.

Wolter, P., P. Townsend, and B. Sturtevant. 2009. Estimation of forest structural parameters
using 5 and 10 meter SPOT-5 satellite data. Remote Sensing of Environment 113:
2019-2036.

Woodcock, C.E., S.A. Macomber, M. Pax-Lenney, and W.B. Cohen. 2001. Monitoring large
areas for forest change using Landsat: Generalization across space, time and Landsat
sensors. Remote Sensing of Environment 78(1-2): 194-203.

Wulder, M.A., R.J. Hall, N.C. Coops, and S.E. Franklin. 2004. High spatial resolution remotely
sensed data for ecosystem characterization. Bioscience 54(6): 511-521.

Wulder, M.A.,, J.C. White, N.C. Coops, and C.R. Butson. 2008. Multi-temporal analysis of high
spatial resolution imagery for disturbance monitoring. Remote Sensing of
Environment 112(6): 2729-2740.

Xian, G., C. Homer, and ]. Fry. 2009. Updating the 2001 National Land Cover Database land
cover classification to 2006 by using Landsat imagery change detection methods.
Remote Sensing of Environment 113(6): 1133-1147.

£ RFF | FAGAN AND DEFRIES 120



Xiao, ]J.F., Q.L. Zhuang, D.D. Baldocchi, B.E. Law, A.D. Richardson, ].Q. Chen, R. Oren, et al.
2008. Estimation of net ecosystem carbon exchange for the conterminous United

States by combining MODIS and AmeriFlux data. Agricultural and Forest Meteorology
148(11): 1827-1847.

Zhao, K.G., S. Popescu, and R. Nelson. 2009. Lidar remote sensing of forest biomass: A scale-
invariant estimation approach using airborne lasers. Remote Sensing of Environment
113(1): 182-196.

Zheng, D.L,, ]. Rademacher, J.Q. Chen, T. Crow, M. Bresee, ]. le Moine, and S.R. Ryu. 2004.
Estimating aboveground biomass using Landsat 7 ETM+ data across a managed
landscape in northern Wisconsin, USA. Remote Sensing of Environment 93(3): 402-
411.

Zink, M., G. Krieger, H. Fiedler, and A. Moreira. 2007. The TanDEM-X mission: Overview and
status. Paper presented at the IEEE International Geoscience and Remote Sensing
Symposium. July 2007, Barcelona, Spain.

£ RFF | FAGAN AND DEFRIES 121



	sheet4
	RFF-Rpt-Measurement20and20Monitoring_Final



