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Abstract

In this paper, we study existence times of strong solutions of the three-dimensional Navier-Stokes equations
in time-varying analytic Gevrey classes based on Sobolev spaces Hs, s > 1

2 . This complements the seminal
work of Foias and Temam (1989) on H1 based Gevrey classes, thus enabling us to improve estimates of the
analyticity radius of solutions for certain classes of initial data. The main thrust of the paper consists in
showing that the existence times in the much stronger Gevrey norms (i.e. the norms defining the analytic
Gevrey classes which quantify the radius of real-analyticity of solutions) match the best known persistence
times in Sobolev classes. Additionally, as in the case of persistence times in the corresponding Sobolev
classes, our existence times in Gevrey norms are optimal for 1

2 < s < 5
2 .
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1. Introduction

We consider the incompressible Navier–Stokes equations (NSE) in a three-dimensional domain Ω =
[0, L]3, equipped with the space-periodic boundary condition. The NSE, which are the governing equations
of motion of a viscous, incompressible, Newtonian fluid, are given by

∂u

∂t
− ν∆u+ (u · ∇)u+

1

ρ
∇p = 0,

∇ · u = 0,

u(x, 0) = u0(x),

where x = (x1, x2, x3) ∈ Ω, u(x, t) = (u1, u2, u3) is the unknown velocity of the fluid, u0 = (u0
1, u

0
2, u

0
3) is the

initial velocity, ν > 0 is the kinematic viscosity of the fluid, ρ is the density, and p the unknown pressure.
The incompressibility constraint is manifested in the divergence free condition ∇ · u = 0.
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Recently, several authors [2, 16, 18, 19, 44, 49] have obtained “optimal” existence times, and the associated
blow-up rates, assuming they exist, for solutions of the 3D NSE in Sobolev spacesHs, s > 1

2 . In particular, in
[49], by employing a scaling argument, Robinson, Sadowski and Silva established that the optimal existence
time of a (strong) solution of the NSE in the whole space R3, for initial data in Hs, s > 1

2 , is necessarily
given by

T (u0) &
1

‖u0‖
4

2s−1

Hs

. (1.2)

The optimality refers to the fact that if one establishes an existence time which depends solely on ‖u0‖Hs
which is better than (1.2), i.e. has the form T & 1

‖u0‖γHs
with γ < 4

2s−1 , then the NSE is globally well-posed
in Hs. Observe that an existence time of the form (1.2) immediately yields the blow-up rate

‖u(t)‖Hs &
1

(T∗ − t)
2s−1

4

,

where T∗ < ∞ is the putative blow-up time of ‖u(t)‖Hs . It follows from the optimality of the existence
time that this blow-up rate is also optimal [49]. In the same work [49], the authors obtained the following
existence/persistence times in the space Hs, namely,

T (u0) &


1

‖u0‖
4

2s−1
Hs

, 1
2 < s < 5

2 , s 6= 3
2 ,

1

‖u0‖
5
2s
Hs

, s > 5
2 .

(1.3)

Evidently, the existence time is optimal for 1
2 < s < 5

2 , s 6=
3
2 , while the existence time for s > 5

2 , though
not optimal, is the best known to-date. The borderline cases, namely s = 3

2 , s = 5
2 , were subsequently

considered by varying methods in [16, 18, 19, 44], including Littlewodd-Paley decomposition and other
harmonic analysis tools, the upshot being that the optimal existence time T ∼ 1

‖u0‖2Hs
also holds for s = 3

2 ,

while the optimal existence time in H5/2 is still open.
The purpose of our present work is to investigate as to what extent the above mentioned existence/ per-

sistence times (and the associated blow-up rates) hold if one considers the evolution of the NSE in an analytic
Gevrey class, equipped with the much stronger Gevrey norm which characterizes space analyticity, with the
goal of obtaining sharper lower bounds of the space-analyticity radius of the solutions. In fluid-dynamics,
the space analyticity radius has an important physical interpretation: at this length scale, the viscous ef-
fects and the (nonlinear) inertial effects are roughly comparable, and below this length scale, the Fourier
spectrum decays exponentially [8, 21, 25, 34, 35, 39]. In other words, the space analyticity radius yields a
Kolmogorov type dissipation length scale encountered in conventional turbulence theory. The exponential
decay property of high frequencies can be used to show that the finite dimensional Galerkin approximations
converge exponentially fast. For instance, in the case of the complex Ginzburg-Landau equation, analyticity
estimates are used in [20] to rigorously explain numerical observations that the solutions to this equation can
be accurately represented by a very low-dimensional Galerkin approximation, and that the “linear” Galerkin
approximation performs just as well as the nonlinear one. Furthermore, a surprising connection between
possible abrupt change in analyticity radius (which is necessarily shown to be intermittent in [7] if it occurs)
and (inverse) energy cascade in 3D turbulence was found in [7]. Other applications of analyticity radius
occur in establishing sharp temporal decay rates of solutions in higher Sobolev norms [6, 46], establish-
ing geometric regularity criteria for the Navier-Stokes and related equations and in measuring the spatial
complexity of fluid flow [14, 31, 38] and in the nodal parameterization of the attractor [27, 28].

In a seminal work, Foias and Temam [26] pioneered the use of Gevrey norms for estimating space
analyticity radius for the Navier-Stokes equations which was subsequently used by many authors (see [6,
11, 12, 13, 24], and the references there in); closely related approaches can be found in [15, 32, 33]. In this
work, Foias and Temam showed that starting with initial data in H1, one can control the much stronger
Gevrey norm of the solution up a time which is comparable to the optimal existence time of the strong
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solution in H1. The Gevrey class approach enables one to avoid cumbersome recursive estimation of higher
order derivatives and is known to yield optimal estimates of the analyticity radius [47]. Other approaches to
analyticity can be found in [29, 43, 45] for the 3D NSE, [37] for the Navier-Stokes-Voight equation, [22, 23]
for the surface quasi-geostrophic equation, [42] for the Porous medium equation, and [1] for certain nonlinear
analytic semi-flows.

The (analytic) Gevrey norm of u in the Sobolev space Hs, which we refer to as the Sobolev-Gevrey

norm here, is defined by ‖eαA
1
2 u‖Hs , where A is the Stokes operator. We recall that the norms ‖u‖Hs and

‖As/2u‖L2 are equivalent for mean-zero, divergence-free vector fields [17]. In case ‖eαA
1
2 u‖Hs <∞, then u

is space-analytic and the uniform space analyticity radius of u is bounded below by α. We provide below a
brief summary of, and comments on, our results.

1. Assume that the initial data ‖eβ0A
1
2 u0‖Hs < ∞ with β0 ≥ 0; β0 = 0 corresponds to u0 ∈ Hs. In

this case, supt∈[0,T ] ‖e(β0+βt)A
1
2 u‖Hs < ∞ with 0 ≤ β ≤ 1

2 for T ∼ 1

‖eβ0A
1
2 u‖

4
2s−1
Hs

, 1
2 < s < 3

2 and

T ∼ 1

‖eβ0A
1
2 u‖2

Hs

, s > 3
2 (see Theorem 2.1). The quantity βt captures the gain in analyticity due to the

dissipation. If we set β = 0, then this gives a persistence time in the Gevrey class corresponding to β0.
Note that the time of persistence of the solution in the Gevrey class in this result coincides with the
optimal time of existence (1.2) in the range 1

2 < s < 3
2 but is far from optimal in the range 3

2 < s < 5
2

and is also smaller than the best known existence time in Sobolev classes in case s > 5
2 obtained

in [49]. The case s = 1 is precisely the classical result of Foias and Temam [26], while this result
for 1

2 ≤ s < 3
2 was obtained using semigroup methods in [10, 11]. We provide a proof of this result

using energy technique, mainly for completeness, but also to illustrate that one can as a consequence,
adapt a technique from [21] to obtain an improved estimate of the analyticity radius, which is possible
by considering the evolution of Gevrey norm in Hs with s > 1; see Theorem 2.2 and Remark 2.1.
This provides one of our motivations for considering the evolution of the Gevrey norm in higher-order
Sobolev spaces.

2. Subsequently, in Theorem 2.3 and Theorem 2.4, we improve the existence times in the Gevrey classes
given in Theorem 2.1 for s in the range s ≥ 3

2 , s 6=
5
2 . The existence time in Gevrey classes obtained

in Theorem 2.4 for 3
2 ≤ s <

5
2 is optimal, i.e. coincides with (1.2) while the existence time obtained in

Theorem 2.3 for s > 5
2 coincides with the best known existence time in Sobolev classes Hs obtained

in [49]. In order to prove these results, we first obtain refined commutator estimates of the nonlinear
term in Lemma 4.1, Lemma 5.1 and Lemma 5.2 which exploit their respective orthogonality properties.
These estimates are new to the best of our knowledge and are motivated by those in [5, 9] obtained
for the surface quasi-geostrophic equations. Using these estimates, for initial data in Hs, s ≥ 3

2 , s 6=
5
2 ,

we show that supt∈[0,T ] ‖eβtA
1
2 u‖Hs <∞ where T is given as in (1.2) in the said range of s (for large

data). It is worth mentioning that the differential inequalities for the evolution of the Gevrey norms
that one obtains in these cases are non-autonomous; estimates of existence times of these given in
Lemma 4.4 and Lemma 5.3, though elementary, may be new as well. Moreover, in Corollary 2.2, we
give an alternate proof for the persistence in the Sobolev class Hs for the entire range 1

2 < s < 5
2 ,

thus unifying the results in [49] and [16, 19, 44] and showing that the case 3
2 is not a borderline in our

approach. Furthermore, unlike in [16, 44], our method is elementary and avoids any harmonic analysis
machinery such as paraproducts and Littlewood-Paley decomposition.

3. The study of blow up in Gevrey classes is of importance for the NSE as it was shown in [7] that in
certain situations, an abrupt change in analyticity radius (which in turn is measured by a Gevrey
norm) is indicative of a strong inverse energy cascade. The persistence time in Theorem 2.1 (set
β = 0, β0 > 0) readily yields a blow-up rate provided there exists a time T∗ at which the analyticity
radius possibily decreases from β0 (and consequently ‖eβ0A

1
2 u(t)‖Hs blows up as t approcahes T∗).

This is substantially different from the blow-up of a sub-analytic Gevrey norm studied in [3, 4]. As
we show in Corollary 2.1, a blow-up of a sub-analytic Gevrey norm can only occur if the solution
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itself loses regularity; whether or not a solution loses regularity is precisely one of the millennium
problems. In other words, for a globally regular solution, persistence in a sub-analytic Gevrey class
is guaranteed for all times. However, this is not necessarily the case for analytic Gevrey norms. For
instance, it is not difficult to show that for forced NSE, there exists a body-force, and an initial data
u0 in a Gevrey class, such that the solution exists globally in Hs while a Gevrey norm of the form
‖e(β0+βt)A

1
2 u‖Hs <∞ blows up in finite time. This is due to restriction posed on the solution by the

analyticity radius of the driving force. To the best of our knowledge however, an example of such a
phenomenon in the unforced case is unknown. Therefore it is of interest to determine the blow-up rate
in Gevrey classes even for solutions that are globally regular. Although our Theorem 2.1 provides a
blow-up rate, this may not be optimal for s > 3

2 . At the very least, the blow-up rate provided in (2.8)
does not correspond to the best known rate in Sobolev classes e.g. in [49]. We leave it as an open
problem to determine whether these rates can be matched. Although we obtain existence time results
for Gevrey classes that matches the existence times in [49, 16, 44] in Theorem 2.3 and Theorem 2.4,
they are for time-varying Gevrey classes defined by ‖e(βt)A

1
2 u‖Hs , i.e. β0 = 0, and therefore u0 ∈ Hs.

A similar result on existence time for β0 > 0 will yield an improvement of the blow-up rate in Gevrey
classes. This is an open problem as well.

2. Main results

Before describing our main results, we first establish some notation, concepts, and settings. Using the

notation κ0 =
2π

L
, define the dimensionless length, time, velocity, and pressure variables

x̃ = κ0x, t̃ = νκ2
0t, ũ =

u

νκ0
, p̃ =

p

ρν2κ2
0

.

Using this transformation, the NSE transform to

∂ũ

∂t̃
− ∆̃ũ+

(
ũ · ∇̃

)
ũ+ ∇̃p̃ = 0,

∇̃ · ũ = 0,

ũ(x, 0) = ũ0(x).

∆̃ and ∇̃ denote the gradient and Laplacian operators with respect to the primed variables. Henceforth, for
simplicity, we assume that ν = 1, L = 2π, ρ = 1, and κ0 = 2π

L = 1. We have the dimensionless version of
the NSE as

∂u

∂t
−∆u+ (u · ∇)u+∇p = 0, (2.2a)

∇ · u = 0, (2.2b)

u(x, 0) = u0(x), (2.2c)

after dropping the tildes.
Moreover, we will focus on Ω = [0, 2π]3, employ the Galilean invariance of the NSE, take u to be mean

free, i.e.,
∫

Ω

u = 0.

In this paper, we are interested in investigating the existence times of strong solutions of the three-
dimensional Navier-Stokes equations in time-varying analytic Gevrey classes based on Sobolev spacesHs, s >
1
2 . The results vary as the value of s changes.
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2.1. Functional analytic framework
With Ω = [0, 2π]3, we denote by L̇2(Ω) the Hilbert space of all L−periodic functions from R3 to R3 that

are square integrable on Ω with respect to the Lebesgue measure and mean free. The scalar product is taken
to be the usual L2(Ω) inner product

(u, v) =

∫
Ω

u(x) · v(x)dx,

and we denote

‖u‖L2 = (u, u)1/2.

The real separable Hilbert space H is formed by the set of all R3-valued functions u(x), x ∈ R3, which
has the Fourier expansion

u(x) =
∑

k∈Z3\{(0,0,0)}

û(k)eik·x (with û(0) = 0 ),

where the Fourier coefficients û(k) ∈ C3, for all k ∈ Z3 \ {(0, 0, 0)}, satisfy

ûk = û−k, k · û(k) = 0, for all k ∈ Z3 \ {(0, 0, 0)} and ‖u‖2L2 =
∑

k∈Z3\{(0,0,0)}

|û(k)|2 <∞.

For s ≥ 0, the space Ḣs(Ω) is defined by

Ḣs(Ω) =

u ∈ H : u =
∑

k∈Z3\{(0,0,0)}

û(k)eik·x, ‖u‖2Hs(Ω) =
∑
|k|2s|ûk|2 <∞

 .

For simplicity, we denote ‖ · ‖Ḣs(Ω) as ‖ · ‖s. For s < 0, the space Ḣs(Ω) is defined to be the dual of Ḣ |s|(Ω).
The l1−type norm of the Fourier coefficients is given by

‖u‖F s(Ω) =
∑

k∈Z3\{(0,0,0)}

|k|s|ûk|.

We write ‖u‖F for ‖u‖F 0 . It is easy to see that F s(Ω) form an algebra under multiplication and F 0(Ω) is
referred to as the Wiener algebra [8].

2.1.1. Gevrey class of functions
We say that a function u ∈ C∞(Ω) is in Gevrey class Gev(α; θ) if

|∂mu(x)| ≤M
(

m!

α|m|

)θ
∀ x ∈ Ω, (2.3)

where m = (m1, · · · ,mn) ∈ Nn is a multi-index, m! = m1! · · ·mn! and |m| =
∑n
i=1mi. The analytic Gevrey

class corresponds to θ = 1, in which case, the function u is real analytic with uniform analyticity radius α
for all x ∈ Ω. In case 0 < θ < 1, the functions are called sub-anlytic. For a function u ∈ H, its Gevrey norm
is defined by

‖u‖s,α;θ = ‖A s
2 eαA

θ
2 u‖L2 = ‖eαA

θ
2 u‖s =

 ∑
k∈Z3\{(0,0,0)}

|k|2se2α|k|θ |ûk|2
1/2

,
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where α > 0. The connection between Gevrey class and Gevrey norm is given by the fact that (2.3) holds
for all x ∈ Ω if and only if ‖u‖s,α;θ < ∞ [46, 47]. In case θ = 1, this is equivalent to the fact that u is real
analytic with uniform radius of real analyticity α. We will denote

Gv(s, α; θ) = {u ∈ H : ‖u‖s,α;θ <∞} ,

and in case θ = 1, for simplicity, we will write Gv(s, α) instead of Gv(s, α; 1) and we will denote ‖u‖s,α;1 as
‖u‖s,α. Clearly,

Gv(s, α) ( Gv(s, α; θ) ( Ḣm(Ω) for all 0 < θ < 1, s ∈ R,m ∈ R+.

If u ∈ Gv(s, α), then clearly
|û(k)| ≤ e−α|k|‖u‖s,α,

and therefore, the uniform analyticity radius α establishes a length scale below which the Fourier power
spectrum decays exponentially which in turn relates it to the Kolmogorov decay length scale in turbulence
theory [8, 21].

The maximal analyticity radius for a function u ∈ Hs is defined by

λmax(u) = sup{α ≥ 0 : ‖u‖α,s <∞}.

One can check easily that λmax(u) is independent of s.

2.2. The Functional differential equation
Let Π be the orthogonal projection from L2 onto the subset of L2 consisting of those functions whose

weak derivatives are divergence-free in the L2 sense. A is the Stokes operator, defined as

A = −Π∆. (2.4)

B is the bilinear form defined by

B(u, u) = Π [(u · ∇)u] . (2.5)

Then, the functional form of the NSE can be written as

du

dt
+ Au+ B(u, u) = 0. (2.6)

2.3. Main results
We will now present our main results. Here, we denote by c all the dimensionless constants which are

independent of s, while all the dimensionless constants which depend on s are denoted by cs.

Theorem 2.1. Let u be a strong solution of (2.2) with initial condition u0 ∈ Gv(s, β0)(Ω), for some s > 1
2 ,

β0 ≥ 0, and 0 ≤ β ≤ 1
2 . If ‖u0‖s,β0

≤ cs, then supt∈[0,∞) ‖u‖s,β0+βt <∞.
If ‖u0‖s,β0 > cs, define

T ∗ = sup

{
T > 0 | sup

t∈[0,T ]

‖e(β0+βt)A
1
2 u(t)‖s <∞

}
.

We have

T ∗ &


1

‖u0‖
4

2s−1
s,β0

, 1
2 < s < 3

2

1
‖u0‖2s,β0

, s > 3
2 .

(2.7)
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Moreover, if T ∗ <∞, ‖e(β0+βt)A
1
2 u(t)‖s will blow-up at the following rate

‖e(β0+βt)A
1
2 u(t)‖s &


1

(T∗−t)
2s−1

4

, 1
2 < s < 3

2

1

(T∗−t)
1
2
, s > 3

2 .
(2.8)

Proceeding as in [7, 21], we can optimize over the choice of β to obtain a better lower estimate of the
analyticity radius.

Theorem 2.2. Let u be a strong solution of (2.2) with initial condition u0 ∈ Gv(s, β0)(Ω), for some
1
2 < s < 3

2 and β0, β ≥ 0. When t ∈ [0, t∗)

‖u‖s,β0+βt ≤
e
β2

2 t‖u(0)‖s,β0(
1− 2cs

β2 ‖u(0)‖
4

2s−1

s,β0

(
e

2β2

2s−1 t − 1
)) 2s−1

4

,

where

t∗ =
2s− 1

2β2
log

1 +
β2

2cs‖u(0)‖
4

2s−1

s,β0

 .

Moreover, for the optimal choice of β =
√

2cs‖u(0)‖
2

2s−1

s,β0
ς, with ς being the positive solution of − 1

2ς2 log(1 +

ς2) + 1
1+ς2 = 0, a lower estimate of the analyticity radius is given by

λmax(u(t∗)) ≥ β0 + cs
1

‖u(0)‖
2

2s−1

s,β0

.

Remark 2.1. Let u0 =
∑
N≤|k|≤cN û(k)eik·x, 1 ≤ c, with

∑
k |û(k)|2 = 1 and observe that ‖u‖s ∼ Ns.

Then by Theorem 2.2 the lower estimate of the (gain in) analyticity radius is given by
cs

N
2s

2s−1

. The lower

estimate in [21] in this case is
c1
N2

, which corresponds to s = 1. Clearly, this lower estimate improves in our

case if one considers 1 < s < 3
2 . However, one cannot take the limit as s↗ 3

2 in this estimate as cs → 0.

Corollary 2.1. Let u be a strong solution of (2.2) with initial condition u0 ∈ Gv(s, r0; θ), for some s >
1
2 , r0 > 0, and 0 < θ < 1. Let

T ‡ = sup

{
T > 0 | sup

t∈[0,T ]

‖er0A
θ
2 u(t)‖s <∞

}
.

If T ‡ <∞, then as t↗ T ‡, limt↗T ‡ ‖u(t)‖s′ =∞ for any s′ > 1
2 . Moreover, ‖u(t)‖Gv(s,r0;θ) blows up at an

exponential rate at T ‡.

Theorem 2.3. Let u be a strong solution of the Navier–Stokes equations (2.2) with initial condition u0 ∈
Ḣs(Ω), for some s > 5

2 . Let 0 < β ≤ 1
2 , and define

T ∗ = sup
{
T > 0 | sup

t∈[0,T ]

‖eβtA
1
2 u(t)‖s <∞

}
.

(i) If
‖u0‖s
‖u0‖L2

≥ csβ−
4s
5 min

{
1, ‖u0‖−

2s
5

L2

}
,
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then

T ∗ > cs min
{

1, ‖u0‖−1
L2

}( ‖u0‖s
‖u0‖L2

)− 5
2s

.

(ii) If
‖u0‖s
‖u0‖L2

< csβ
− 4s

5 min
{

1, ‖u0‖−
2s
5

L2

}
,

then

T ∗ > min
{
Z̃, Z̃2/5

}
,

where Z̃ = cs min
{

1, ‖u0‖−1
L2

}( ‖u0‖s
‖u0‖L2

)− 5
2s

.

Theorem 2.4. Let u be a strong solution of (2.2) with initial condition u0 ∈ Ḣs(Ω), for some 3
2 ≤ s < 5

2 .
Let 0 < β ≤ 1

2 , and define

T ∗ = sup

{
T > 0 | sup

t∈[0,T ]

‖eβtA
1
2 u(t)‖s <∞

}
.

(i) If
‖u0‖s ≥

cs

(β)
2s−1

2

,

then
T ∗ >

cs

‖u0‖
4

2s−1
s

.

(ii) If
‖u0‖s <

cs

(β)
2s−1

2

,

then
T ∗ > min

{
N ,N 1/2

}
,

where N =
cs

‖u0‖
4

2s−1
s

.

Remark 2.2. The differential inequalities for the evolution of the Gevrey norms leading up to the proofs of
Theorem 2.3 and Theorem 2.4 are non-autonomous and much more complicated than that of Theorem 2.1.
Consequently, finding an optimal β leading to an improved estimate of the analyticity radius as has been
done in Theorem 2.2 is difficult. Thus, it would be of interest to find an improved estimate of the analyticity
radius for s > 3

2 by optimizing over the choice of β.

Remark 2.3. Following the technique presented in Theorem 2.4, we present in the corollary below an
alternate proof (i.e. different from the ones in [16, 18, 19, 44, 49]) of the existence time/blow-up rate in
spaces Hs for the entire range 1

2 < s < 5
2 which in particular shows that the case s = 3

2 , which appears as a
borderline case in [16, 18, 19, 44, 49] is not really a borderline in our approach.

Corollary 2.2. Let u be a strong solution of (2.2) with initial condition u0 ∈ Ḣs(Ω), for some s ∈ ( 1
2 ,

5
2 ).

Define

T ‡ = sup
{
T > 0 | sup

t∈[0,T ]

‖u(t)‖s <∞
}
.
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Then

T ‡ >
cs

‖u0‖
4

2s−1
s

.

Moreover, if T ∗ <∞, then

‖u(t)‖s >
cs

(T ‡ − t) 2s−1
4

. (2.9)

The rest of the paper is organized as follows. Section 3 provides the background and setting for our
analysis. In Section 4, working on the velocity equation, we obtained new commutator estimates of the
nonlinear term in Gevrey spaces. Using these estimates, in subsection 4.1, the existence time and blow-up
rates have been obtained for ‖u‖Gv(s,β0+βt) when s > 1

2 , s 6=
3
2 . We have also obtained an improved estimate

of the analyticity radius for ‖u‖Gv(s,β0+βt) when 1
2 < s < 3

2 . In subsection 4.2, we improve the existence
times in the Gevrey classes when s > 5

2 . In Section 5, working on the vorticity equaiton, we improve the
existence times in the Gevrey classes when 3

2 ≤ s < 5
2 . Section 6 is the Appendix which includes several

proofs of several requisite lemmas& propositions.

3. Preliminaries

We recall the definition of strong solutions from [51].
Let V =

{
u ∈ H1

loc(Ω), u is periodic, and ∇ · u = 0 in Ω
}
and u0 ∈ V , u is a strong solution of NSE if it

solves the variational formulation of (2.2a)-(2.2c) as in [17, 51], and

u ∈ L2(0, T ;D(A)) ∩ L∞(0, T ;V ),

for T > 0. The following lemma will be used in this paper.

Lemma 3.1. [50] Let 1 < p <∞, if s1, s2 <
n
p′ , s1 + s2 ≥ 0, and s1 + s2 >

n
p′ −

n
p , then

‖u ∗ v‖s1+s2− n
p′ ,p
≤ Cs1,s2,n,p‖u‖s1,p‖v‖s2,p, (3.1)

for all u ∈ Vs1,p and v ∈ Vs2,p.

In our current setting, we have n = 3, p′ = 2, p = 2. Since we mainly work in the Gevrey spaces, we
will need another version of the above lemma.

Lemma 3.2. In three dimensional spaces, for s1, s2 < 3
2 and s1 + s2 > 0, u = eαA

1
2 u1 ∈ Ḣs1 and

v = eαA
1
2 v1 ∈ Ḣs2 , we have

‖u1 ∗ v1‖s1+s2− 3
2 ,α
≤ ‖u ∗ v‖s1+s2− 3

2
≤ Cs1,s2‖u1‖s1,α‖v1‖s2,α. (3.2)

Lemma 3.3. [44] If Ẋ ≤ cX1+γ and X(t)→∞ as t→ T , then

X(t) ≥
(

1

γc(T − t)

)1/γ

.

Lemma 3.4. [49] If 0 ≤ s1 < 3/2 + r < s2 and u ∈ Ḣs1 ∩ Ḣs2 , then u ∈ F r and

‖u‖F r ≤ c‖u‖(s2−r−3/2)/(s2−s1)
s1 ‖u‖(3/2+r−s1)/(s2−s1)

s2 . (3.3)
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Lemma 3.5. [49] Suppose that the local existence time in Ḣs(R3) depends on the norm in Ḣs(R3), with

Ts(u0) ≥ c′s
‖u0‖Hs(R3)

.

Then

Ts(u0) ≥ cs‖u0‖(5−2s)/2s
L2(R3) ‖u0‖−5/2s

Ḣs(R3)
.

In case the solution blows up at time T <∞ then

‖u(T − t)‖Ḣs(R3) ≥ cs‖u(T − t)‖(5−2s)/5
L2(R3) t−2s/5.

We also need the following nonlinear generalization of the Gronwall inequality, which applies to the case
of a nonlinear but positive vector field. For the proof, see Theorem 2.4 of [36].

Lemma 3.6. [36] Suppose that F (u, t) is a Lipschitz continous and monotonically increasing in u. Suppose

that u(t) is continuously differentiable, and
d

dt
u(t) ≤ F (u(t), t) for all t ∈ [0, T ]. Let v be the solution of

d

dt
v(t) = F (v(t), t), v(0) = u(0), and define

T ∗ = sup

{
t > 0 | sup

[0,t]

v(t) <∞

}
.

Then u(t) ≤ v(t) for all t ∈ [0,min{T, T ∗}].

In addition to the previous lemmas, we will also need to make use of several standard inequalities, which
we present here for convenience.

Young’s inequality for products says that for nonnegative real numbers a and b and positive real numbers

p and q satisfying 1
p+ 1

q = 1, we have: ab ≤ ap

p
+
bq

q
.We will frequently use Young’s inequality with p = q = 2:

ab ≤ a2

2
+
b2

2
. Young’s inequality with ε > 0 will also be used: ab ≤ a2

2ε
+
εb2

2
.

Hölder’s inequality for sequences generalizes the Cauchy–Schwartz inequality. It states that for p, q ∈
[1,∞) satisfying 1

p + 1
q ≤ 1

∞∑
k=1

|xkyk| ≤

( ∞∑
k=1

|xk|p
) 1
p
( ∞∑
k=1

|yk|q
) 1
q

.

The following energy estimate for the incompressible NSE (due to Leray) is essential, and allows us to
bound the L2 norm of any solution of (2.2) by that of its initial data

‖u(t)‖2L2 + 2

∫ t

0

‖∇u(s)‖2L2ds ≤ ‖u0‖2L2 . (3.4)

4. Estimates on the velocity equation

We start from the functional form (2.6) of the NSE

ut +Au+B(u, u) = 0.

We can obtain the following estimates for the nonlinear term. The proofs of the following two lemmas which
provide the main estimates of the nonlinear term are in the Appendix.
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Lemma 4.1. (i) For ∀s > 0, and ∀u ∈ Gv(s+ 1, α) ∩ F 0, we have∣∣∣∣(B(u, u), Ase2αA
1
2 u

)∣∣∣∣ ≤ cs‖eαA 1
2 u‖F 0‖u‖s,α‖u‖s+1,α. (4.1)

(ii) For ∀s ≥ 1, and ∀u ∈ Gv(s+ 1, α) ∩ F 1, we have∣∣∣∣(B(u, u), Ase2αA
1
2 u

)∣∣∣∣ ≤ cs‖eαA 1
2 u‖F 1‖u‖2s,α + csα‖eαA

1
2 u‖F 1‖u‖s+1,α‖u‖s,α, (4.2)

and consequently,∣∣∣∣(B(u, u), Ase2αA
1
2 u

)∣∣∣∣ ≤ cs‖eαA 1
2 u‖F 1‖u‖2s,α + csα

2‖eαA
1
2 u‖2F 1‖u‖2s,α +

1

2
‖u‖2s+1,α. (4.3)

We also obtain the following estimates on ‖eαA
1
2 u‖L2 .

Lemma 4.2. For all s > 0 and for all u ∈ Gv(s, α) ∩ L2,

‖eαA
1
2 u‖L2 ≤

√
e‖u‖L2 + (2α)s‖u‖s,α.

4.1. Existence time for ‖u‖Gv(s,β0+βt) when s > 1
2 , s 6=

3
2

In the proofs below, we follow the customary practice of providing a priori estimates which can be
rigorously justified by first obtaining these estimates for the finite dimensional Galerkin system, the solutions
to which exist for all times, and then passing to the limit.

Lemma 4.3. When s > 0, β0, β ≥ 0, the solution, u, of (2.2) with initial data u0 ∈ Gv(s, β0) satisfies the
following differential inequality

1

2

d

dt
‖u‖2s,β0+βt − β‖A

1
4 e(β0+βt)A

1
2 u‖2s + ‖u‖2s+1,β0+βt (4.4)

≤ cs‖e(β0+βt)A
1
2 u‖F 0‖u‖s,β0+βt‖u‖s+1,β0+βt.

Proof. Starting from the functional form of the NSE

ut +Au+B(u, u) = 0,

and taking inner product with Ase2(β0+βt)A
1
2 u, we have(

du

dt
, Ase2(β0+βt)A

1
2 u

)
+

(
Au,Ase2(β0+βt)A

1
2 u

)
+

(
B(u, u), Ase2(β0+βt)A

1
2 u

)
= 0. (4.5)

We can explore (4.5) term by term. For the first term,(
du

dt
, Ase2(β0+βt)A

1
2 u

)
=

1

2

d

dt
‖A s

2 e(β0+βt)A
1
2 u‖2L2 − β(As+

1
2 e2(β0+βt)A

1
2 u, u)

=
1

2

d

dt
‖A s

2 e(β0+βt)A
1
2 u‖2L2 − β‖A

1
4 e(β0+βt)A

1
2 u‖2s. (4.6)

For the second term of (4.5), we can write it in terms of the Gevrey norm(
Au,Ase2(β0+βt)A

1
2 u

)
=

(
A
s
2A

1
2 e(β0+βt)A

1
2 u,A

s
2A

1
2 e(β0+βt)A

1
2 u

)
= ‖u‖2s+1,β0+βt. (4.7)
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For the third term of (4.5), applying (4.1) with α = β0 + βt, we have∣∣∣∣(B(u, u), Ase2(β0+βt)A
1
2 u

)∣∣∣∣ ≤ cs‖e(β0+βt)A
1
2 u‖F 0‖u‖s,β0+βt‖u‖s+1,β0+βt. (4.8)

Substituting (4.6), (4.7), and (4.8) into (4.5), we have (4.4).

Proof of Theorem 2.1. With 0 ≤ β ≤ 1
2 , we have

β‖A 1
4 e(β0+βt)A

1
2 u‖2s ≤

1

2
‖e(β0+βt)A

1
2 u‖2s+1.

When s > 1
2 , we have

‖e(β0+βt)A
1
2 u‖F 0 ≤ cs‖e(β0+βt)A

1
2 u‖s+1.

Therefore, (4.4) becomes

1

2

d

dt
‖u‖2s,β0+βt +

1

2
‖u‖2s+1,β0+βt ≤ cs‖u‖s,β0+βt‖u‖2s+1,β0+βt.

If ‖u0‖s,β0
≤ 1

2cs
, then d

dt‖u‖
2
s,β0+βt ≤ 0, ‖u‖s,β0+βt remains bounded for all time and ‖u‖s,β0+βt ≤ ‖u‖s,β0

.
Now suppose ‖u0‖s,β0

> 1
2cs

. Then we have the following cases.

(1) 1
2 < s < 3

2 : Applying Lemma 3.4 on e(β0+βt)A
1
2 u with r = 0, s1 = s, and s2 = s+ 1, we obtain

‖e(β0+βt)A
1
2 u‖F 0 ≤ c‖e(β0+βt)A

1
2 u‖s−1/2

s ‖e(β0+βt)A
1
2 u‖3/2−ss+1 . (4.9)

Therefore, (4.4) becomes

1

2

d

dt
‖u‖2s,β0+βt +

1

2
‖u‖2s+1,β0+βt ≤ cs‖u‖

s+1/2
s,β0+βt‖u‖

5/2−s
s+1,β0+βt.

Apply Young’s inequality and after simplification, we have

d

dt
‖u‖s,β0+βt ≤ cs‖u‖

2s+3
2s−1

s,β0+βt.

Considering the blow up time T ∗ of ‖u‖s,β0+βt: if T ∗ <∞, then, as t↗ T ∗, applying Lemma 3.3, we have

‖e(β0+βt)A
1
2 u(t)‖s >

cs

(T ∗ − t) 2s−1
4

.

This is equivalent to

T ∗ >
cs

‖u0‖
4

2s−1

s,β0

.

(2)s > 3
2 : We have

‖e(β0+βt)A
1
2 u‖F 0 ≤ cs‖e(β0+βt)A

1
2 u‖s,

therefore, (4.4) becomes

1

2

d

dt
‖u‖2s,β0+βt +

1

2
‖u‖2s+1,β0+βt ≤ cs‖u‖2s,β0+βt‖u‖s+1,β0+βt.
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Apply Young’s inequality and after simplification, we have

d

dt
‖u‖s,β0+βt ≤ cs‖u‖3s,β0+βt.

Considering the blow up time T ∗ of ‖u‖s,β0+βt: if T ∗ <∞, then, as t↗ T ∗, applying Lemma 3.3, we have

‖e(β0+βt)A
1
2 u(t)‖s >

cs

(T ∗ − t) 1
2

.

This is equivalent to

T ∗ >
cs

‖u0‖2s,β0

.

Proof of Theorem 2.2

Proof. We start from:

1

2

d

dt
‖u‖2s,β0+βt − β‖A

1
4 e(β0+βt)A

1
2 u‖2s + ‖u‖2s+1,β0+βt

≤ cs‖e(β0+βt)A
1
2 u‖F 0‖u‖s,β0+βt‖u‖s+1,β0+βt.

Applying (4.9), we have

1

2

d

dt
‖u‖2s,β0+βt − β‖A

1
4 e(β0+βt)A

1
2 u‖2s + ‖u‖2s+1,β0+βt (4.10)

≤ cs‖u‖s+1/2
s,β0+βt‖u‖

5/2−s
s+1,β0+βt.

Since ‖A 1
4 e(β0+βt)A

1
2 u‖2s ≤ ‖u‖s,β0+βt‖u‖s+1,β0+βt, applying Young’s inequality, we have

β‖A 1
4 e(β0+βt)A

1
2 u‖2s ≤

β2

2
‖u‖2s,β0+βt +

1

2
‖u‖2s+1,β0+βt.

Moreover,

‖u‖s+1/2
s,β0+βt‖u‖

5/2−s
s+1,β0+βt ≤ cs‖u‖

2(2s+1)
2s−1

s,β0+βt +
1

2
‖u‖2s+1,β0+βt.

Therefore, (4.10) becomes

1

2

d

dt
‖u‖2s,β0+βt ≤ cs‖u‖

2(2s+1)
2s−1

s,β0+βt +
β2

2
‖u‖2s,β0+βt,

or equivalently, since ‖u‖s,β0+βt 6= 0 for all t > 0, we have

d

dt
‖u‖s,β0+βt ≤ cs‖u‖

1+ 4
2s−1

s,β0+βt +
β2

2
‖u‖s,β0+βt.

Multiplying both sides by e−
β2

2 t, we have

d

dt
(e−

β2

2 t‖u‖s,β0+βt) ≤ cse
2β2

2s−1 t(e−
β2

2 t‖u‖s,β0+βt)
1+ 4

2s−1 .
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Consequently,

‖u‖s,β0+βt ≤
e
β2

2 t‖u(0)‖s,β0(
1− 2cs

β2 ‖u(0)‖
4

2s−1

s,β0

(
e

2β2

2s−1 t − 1
)) 2s−1

4

. (4.11)

This implies that ‖u‖s,β0+βt is finite on the interval [0, t∗), where

t∗ =
2s− 1

2β2
log

1 +
β2

2cs‖u(0)‖
4

2s−1

s,β0

 .

Choosing t = t∗

2 , then the associated analyticity radius λ is

λ = β0 +
βt∗

2
= β0 +

2s− 1

4β
log

1 +
β2

2cs‖u(0)‖
4

2s−1

s,β0

 .

The value of β that maximizes λ is given by

β =
√

2cs‖u(0)‖
2

2s−1

s,β0
ς,

where ς is the positive solution of the equation

− 1

2ς2
log(1 + ς2) +

1

1 + ς2
= 0.

The corresponding analyticity radius at t = t∗

2 is

λ = β0 + cs(2s− 1)
1

‖u(0)‖
2

2s−1

s,β0

.

Proof of Corollary 2.1.

Proof. Assume that T ‡ <∞. Then clearly

lim sup
t↗T ‡

‖u‖s,r0;θ =∞. (4.12)

Assume that limt↗T ‡ ‖u(t)‖s′ 6= ∞, then, lim inft↗T ‡ ‖u‖s′ < ∞ and there exists a sequence {tj}∞j=1 with
tj ↗ T ‡ and ‖u(tj)‖s′ ≤M <∞. From Theorem 2.1, it follows that there exists TM > 0 such that

sup
t∈(0,TM ]

‖u(tj + t)‖s′,βt = KM <∞. (4.13)

Choose tj0 satisfying tj0 < T ‡ < tj0 + TM . Let 2δ = T ‡ − tj0 . Then, due to (4.13), we have

sup
t∈[tj0+δ,T ‡)

‖u(t)‖s′,α0
≤ KM , (4.14)

where α0 = βδ. Observe now that for any s, s′, r0, α0 > 0 and 0 < θ < 1, ∀v ∈ Gv(s, α0), it’s also in
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Gv(s′, r0; θ). We have
‖v‖s′,r0;θ ≤ Cs′,s,r0,α0‖v‖s,α0 . (4.15)

From inequalities (4.14) and (4.15), we obtain a contradiction to (4.12). Therefore, limt↗T ‡ ‖u(t)‖s′ =∞.
Consequently, due to [4], the subanalytic norm will blow up exponentially.

4.2. Existence time for ‖u‖Gv(s,βt) when s > 5
2

We will need the following two lemmas to proceed.

Lemma 4.4. Consider the differential equation

d

dt
ζ = csγζ

1+ 5
2s + cs(βt)

s− 5
2 ζ2 + cs(βt)

2γ2ζ1+ 5
s + cs(βt)

2s−3ζ3, (4.16)

with initial condition ζ(0), for s > 5
2 , 0 < β ≤ 1

2 , and the local existence time Tζ <∞.

When ζ(0) ≥ csβ−
4s
5 min

{
γ

2s
2s−5 , γ−

2s
5

}
, it holds that

Tζ >
cs min

{
γ

5
2s−5 , γ−1

}
ζ(0)

5
2s

. (4.17)

When ζ(0) < csβ
− 4s

5 min
{
γ

2s
2s−5 , γ−

2s
5

}
, it holds that

Tζ > min
{
Z,Z2/5

}
, (4.18)

where Z =
cs min

{
γ

5
2s−5 , γ−1

}
ζ(0)

5
2s

.

The proof of the above lemma is provided in the appendix. In the next lemma, we establish the crucial
differential inequality associated to the evolution of the Gevrey norm.

Lemma 4.5. When s > 5
2 and 0 ≤ β ≤ 1

2 , the solution, u, of (2.2) with initial data u0 ∈ Ḣs satisfies the
following differential inequality

d

dt
‖u‖s,βt ≤ cs‖u‖

1+ 5
2s

s,βt ‖u‖
1− 5

2s

L2 + cs(βt)
s− 5

2 ‖u‖2s,βt

+ cs(βt)
2‖u‖1+ 5

s

s,βt ‖u‖
2− 5

s

L2 + cs(βt)
2s−3‖u‖3s,βt. (4.19)

Proof. Taking inner product with Ase2βtA
1
2 u of the NSE and applying (4.3) with α = βt, we get

1

2

d

dt
‖u‖2s,βt − β‖A

1
4 eβtA

1
2 u‖2s + ‖u‖2s+1,βt (4.20)

≤ cs‖eβtA
1
2 u‖F 1‖u‖2s,βt + csβ

2t2‖eβtA
1
2 u‖2F 1‖u‖2s,βt +

1

2
‖u‖2s+1,βt.

When β ≤ 1
2 , applying the Poincaré inequality, we have β‖A 1

4 eβtA
1
2 u‖2s ≤

1

2
‖eβtA

1
2 u‖2s+1.

Therefore, (4.20) yields

1

2

d

dt
‖u‖2s,βt ≤ cs‖eβtA

1
2 u‖F 1‖u‖2s,βt + csβ

2t2‖eβtA
1
2 u‖2F 1‖u‖2s,βt. (4.21)
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Applying Lemma 3.4, in (3.3), and taking r = 1, s1 = 0, and s2 = s in (3.3), for 5
2 < s and u ∈ L2 ∩ Ḣs,

we obtain

‖u‖F 1 ≤ c‖u‖
s− 5

2
s

L2 ‖u‖
5
2s
s .

Replacing u by eβtA
1
2 u, it follows that

‖eβtA
1
2 u‖F 1 ≤ c‖eβtA

1
2 u‖1−

5
2s

L2 ‖eβtA
1
2 u‖

5
2s
s . (4.22)

Squaring both sides of (4.22), we have

‖eβtA
1
2 u‖2F 1 ≤ c‖eβtA

1
2 u‖2−

5
s

L2 ‖eβtA
1
2 u‖

5
s
s . (4.23)

Substituting (4.22) and (4.23) into (4.21), we get

1

2

d

dt
‖u‖2s,βt ≤ cs‖eβtA

1
2 u‖1−

5
2s

L2 ‖u‖2+ 5
2s

s,βt + csβ
2t2‖eβtA

1
2 u‖2−

5
s

L2 ‖u‖
2+ 5

s

s,βt . (4.24)

When s > 5
2 , 1 − 5

2s > 0, we have (a + b)1− 5
2s ≤ cs(a

1− 5
2s + b1−

5
2s ) for a, b, c > 0. Therefore, applying

Lemma 4.2, we have

‖eβtA
1
2 u‖1−

5
2s

L2 ≤ cs‖u‖
1− 5

2s

L2 + cs(βt)
s− 5

2 ‖eβtA
1
2 u‖1−

5
2s

s . (4.25)

Similarly, since 2− 5
s > 0, (i.e. s > 5

2 ), we obtain

‖eβtA
1
2 u‖2−

5
s

L2 ≤ cs‖u‖
2− 5

s

L2 + cs(βt)
2s−5‖eβtA

1
2 u‖2−

5
s

s . (4.26)

Substituting (4.25) and (4.26) into (4.24), and after simplification, we have

1

2

d

dt
‖u‖2s,βt ≤ cs‖u‖

2+ 5
2s

s,βt ‖u‖
1− 5

2s

L2 + cs(βt)
s− 5

2 ‖u‖3s,βt

+ cs(βt)
2‖u‖2+ 5

s

s,βt ‖u‖
2− 5

s

L2 + cs(βt)
2s−3‖u‖4s,βt,

which leads to (4.19).

Proof of Theorem 2.3. From Lemma 4.5, we have

d

dt
‖u‖s,βt ≤ cs‖u‖

1+ 5
2s

s,βt ‖u‖
1− 5

2s

L2 + cs(βt)
s− 5

2 ‖u‖2s,βt

+ cs(βt)
2‖u‖1+ 5

s

s,βt ‖u‖
2− 5

s

L2 + cs(βt)
2s−3‖u‖3s,βt.

Let γ = ‖u0‖1−
5
2s

L2 . Using the energy estimate (3.4), i.e., ‖u(t)‖L2 ≤ ‖u0‖L2 , we have

d

dt
‖u‖s,βt ≤ cs‖u‖

1+ 5
2s

s,βt γ + cs(βt)
s− 5

2 ‖u‖2s,βt

+ cs(βt)
2‖u‖1+ 5

s

s,βt γ
2 + cs(βt)

2s−3‖u‖3s,βt.

We will complete the proof using Lemma 3.6. Let ζ(t) solve the differential equation

d

dt
ζ = csγζ

1+ 5
2s + cs(βt)

s− 5
2 ζ2 + cs(βt)

2γ2ζ1+ 5
s + cs(βt)

2s−3ζ3,
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with ζ(0) = ζ0 = ‖u0‖s.
Defining the local existence time of ‖u‖s,βt to be

Tu = sup

{
t > 0 | sup

r∈[0,t]

‖u(r)‖s,βr <∞

}
,

and the local existence time of ζ to be

Tζ = sup

{
t > 0 | sup

r∈[0,t]

|ζ(r)| <∞

}
.

Then, using Lemma 3.6 we can say that ζ(t) ≥ ‖u(t)‖s,βt for all t ∈ [0,min{Tζ , Tu}], and hence conclude
Tu ≥ Tζ . Moreover, we assume Tu < ∞, so Tζ < ∞ (actually, we can see this easily from the differential
equation of ζ). To obtain a lower bound of Tu, we will now analyze Tζ .

From Lemma 4.4, when 0 < β ≤ 1
2 , we have the following.

Case (i): In case

‖u0‖s = ζ(0) ≥ csβ−
4s
5 min

{
γ

2s
2s−5 , γ−

2s
5

}
= csβ

− 4s
5 min

{
‖u0‖L2 , ‖u0‖−

2s−5
5

L2

}
,

i.e., if
‖u0‖s
‖u0‖L2

≥ csβ−
4s
5 min

{
1, ‖u0‖−

2s
5

L2

}
,

it holds that

Tu ≥ Tζ >
cs min

{
γ

5
2s−5 , γ−1

}
ζ(0)

5
2s

=
cs min

{
‖u0‖

5
2s

L2 , ‖u0‖
5
2s−1

L2

}
‖u0‖

5
2s
s

= cs min
{

1, ‖u0‖−1
L2

}( ‖u0‖s
‖u0‖L2

)− 5
2s

.

Denoting the maximal time of existence of ‖eβtA
1
2 u‖s to be T ∗, we have

T ∗ > cs min
{

1, ‖u0‖−1
L2

}( ‖u0‖s
‖u0‖L2

)− 5
2s

.

Case (ii): In case

‖u0‖s = ζ(0) < csβ
− 4s

5 min
{
γ

2s
2s−5 , γ−

2s
5

}
= csβ

− 4s
5 min

{
‖u0‖L2 , ‖u0‖−

2s−5
5

L2

}
,

i.e., if
‖u0‖s
‖u0‖L2

< csβ
− 4s

5 min
{

1, ‖u0‖−
2s
5

L2

}
,

it holds that

T ∗ > min
{
Z̃, Z̃2/5

}
, (4.27)

where Z̃ = cs min
{

1, ‖u0‖−1
L2

}( ‖u0‖s
‖u0‖L2

)− 5
2s

.
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5. Existence time for ‖u‖Gv(s,βt) when 3
2
≤ s < 5

2
.

It will be more convenient here to study the evolution in Gevrey classes using the vorticity equation
instead of the velocity equation. As we will see below, this will enable us to avoid the borderline of the
Sobolev embedding encountered in [16, 18, 19, 44, 49]. The equation for evolution of vorticity ω = ∇× u is
given by

ωt +Aω +B(u, ω)−B(ω, u) = 0, (5.1)

ω0(x) = ω(x, 0) = ∇× u0(x). (5.2)

Here, the operators A and B are defined in (2.4) and (2.5), respectively.
Recall

‖ω‖s̃,α = ‖eαA
1
2 ω‖s̃.

Since ‖ω‖s̃,α = ‖u‖s̃+1,α, we are taking s = s̃+ 1. We have the following estimates, proofs of which can
be found in the Appendix.

Lemma 5.1. For − 1
2 < s̃ < 3

2 and ω ∈ Gv(s̃+ 1, α), we have∣∣∣∣(B(ω, u), As̃e2αA
1
2 ω

)∣∣∣∣ ≤ cs̃‖ω‖s̃+ 3
2

s̃,α ‖ω‖
3
2−s̃
s̃+1,α. (5.3)

Lemma 5.2. For − 1
2 < s̃ < 3

2 and ω ∈ Gv(s̃+ 1, α), we have∣∣∣∣(B(u, ω), As̃e2αA
1
2 ω

)∣∣∣∣ ≤ cs‖ω‖s̃+ 3
2

s̃,α ‖ω‖
3
2−s̃
s̃+1,α + csα‖ω‖

s̃+ 1
2

s̃,α ‖ω‖
5
2−s̃
s̃+1,α. (5.4)

We will also need the following lemma concerning existence time of a non-autonomous differential equa-
tion to proceed the proof of which is provided in the appendix.

Lemma 5.3. Let X(t) satisfy

d

dt
X(t) = cs̃X

1+ 4
1+2s̃ + cs̃(βt)

4
2s̃−1X1+ 4

2s̃−1 , (5.5)

with initial condition X(0), 1
2 < s̃ < 3

2 , 0 < β ≤ 1
2 , and the local existence time TX <∞.

When X(0) ≥ cs̃

(β)
2s̃+1

2

, we have

TX >
cs̃

X(0)
4

1+2s̃

. (5.6)

When X(0) <
cs̃

(β)
2s̃+1

2

, we have

TX > min
{
Q,Q1/2

}
, (5.7)

where Q =
cs̃

X(0)
4

1+2s̃

.

We can now study the existence time of the solutions of the NSE in the Gevrey spaces when 3
2 ≤ s <

5
2 .

First, we have the following Lemma.
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Lemma 5.4. When − 1
2 < s̃ < 3

2 , β ≥ 0, we have the following differential inequality

1

2

d

dt
‖ω‖2s̃,βt − β‖ω‖2s̃+ 1

2 ,βt
+ ‖ω‖2s̃+1,βt ≤ cs̃‖ω‖

s̃+ 3
2

s̃,βt ‖ω‖
3
2−s̃
s̃+1,βt + cs̃βt‖ω‖

s̃+ 1
2

s̃,βt ‖ω‖
5
2−s̃
s̃+1,βt. (5.8)

Proof. Taking the inner product of (5.1) with As̃e2βtA
1
2 ω, we have(

ωt, A
s̃e2βtA

1
2 ω

)
+

(
Aω,As̃e2βtA

1
2 ω

)
+

(
B(u, ω), As̃e2βtA

1
2 ω

)
−
(
B(ω, u), As̃e2βtA

1
2 ω

)
= 0. (5.9)

Similar to the calculation in Section 4, we have(
ωt, A

s̃e2βtA
1
2 ω

)
=

1

2

d

dt
‖ω‖2s̃,βt − β‖ω‖2s̃+ 1

2 ,βt
, (5.10)

and (
Aω,As̃e2βtA

1
2 ω

)
= ‖ω‖2s̃+1,βt. (5.11)

Applying Lemma 5.2 with α = βt and combining (5.3), (5.4), (5.10), and (5.11), the estimate of (5.9)
becomes

1

2

d

dt
‖ω‖2s̃,βt − β‖ω‖2s̃+ 1

2 ,βt
+ ‖ω‖2s̃+1,βt ≤ cs̃‖ω‖

s̃+ 3
2

s̃,βt ‖ω‖
3
2−s̃
s̃+1,βt + cs̃βt‖ω‖

s̃+ 1
2

s̃,βt ‖ω‖
5
2−s̃
s̃+1,βt.

Proof of Theorem 2.4. For 3
2 ≤ s <

5
2 , i.e.,

1
2 ≤ s̃ <

3
2 , we consider 1

2 < s̃ < 3
2 and s̃ = 1

2 , separately.
Case (1), 1

2 < s̃ < 3
2 : Using Young’s Inequality, we have

cs̃‖ω‖
3+2s̃

2

s̃,βt ‖ω‖
3−2s̃

2

s̃+1,βt ≤ cs̃‖ω‖
2· 3+2s̃

1+2s̃

s̃,βt +
1

4
‖ω‖2s̃+1,βt,

and

cs̃βt‖ω‖
1+2s̃

2

s̃,βt ‖ω‖
5−2s̃

2

s̃+1,βt ≤ cs̃(βt)
4

2s̃−1 ‖ω‖2·
1+2s̃
2s̃−1

s̃,βt +
1

4
‖ω‖2s̃+1,βt.

Taking β ≤ 1
2 , appliying the Poincaré inequality, we have

β‖ω‖2s̃+ 1
2 ,βt
≤ 1

2
‖ω‖2s̃+1,βt.

Therefore, from (5.8) we deduce

d

dt
‖ω‖2s̃,βt ≤ cs̃‖ω‖

2· 3+2s̃
1+2s̃

s̃,βt + cs̃(βt)
4

2s̃−1 ‖ω‖2·
1+2s̃
2s̃−1

s̃,βt .

After simplification, we have

d

dt
‖ω‖s̃,βt ≤ cs̃‖ω‖

1+ 4
1+2s̃

s̃,βt + cs̃(βt)
4

2s̃−1 ‖ω‖1+ 4
2s̃−1

s̃,βt . (5.12)

Let X(t) be the solution of the differential equation

d

dt
X(t) = cs̃X

1+ 4
1+2s̃ + cs̃(βt)

4
2s̃−1X1+ 4

2s̃−1 . (5.13)
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with X0 = X(0) = ‖ω0‖s̃. Then, using Lemma 3.6, we have X(t) ≥ ‖ω(t)‖s,βt for all t ∈ [0,min{TX , Tω}].
Here, TX and Tω are the local existence time of X and ‖ω‖s̃,βt, respectively. Moreover, we can conclude
that Tω ≥ TX , and we assume Tω <∞, also, TX <∞.

From Lemma 5.3, when 0 < β ≤ 1
2 , we get the following.

Case (1a): When
‖u0‖s = ‖ω0‖s̃ = X(0) ≥ cs̃

(β)
2s̃+1

2

=
cs

(β)
2s−1

2

,

it holds that

Tω ≥ TX >
cs̃

X(0)
4

1+2s̃

=
cs̃

‖ω0‖
4

1+2s̃

s̃

. (5.14)

Considering the existence time of ‖ω‖s̃,βt (i.e., ‖u‖s,βt): T ∗, we have

T ∗ ≥ TX >
cs̃

‖ω0‖
4

1+2s̃

s̃

=
cs

‖u0‖
4

2s−1

s,βt

. (5.15)

Case (1b): From Lemma 5.3, when

‖u0‖s = ‖ω0‖s̃ = X(0) <
cs̃

(β)
2s̃+1

2

=
cs

(β)
2s−1

2

,

it follows that

Tω ≥ TX > min

{
cs̃

X(0)
4

1+2s̃

,
cs̃

X(0)
2

1+2s̃

}
= min

 cs̃

‖ω0‖
4

1+2s̃

s̃

,
cs̃

‖ω0‖
2

1+2s̃

s̃

 . (5.16)

In conclusion, for Case (1ii), we have

T ∗ > min

 cs

‖u0‖
4

2s−1

s,βt

,
cs

‖u0‖
2

2s−1

s,βt

 .

Case (2): when s̃ = 1
2 , i.e. s = 3

2 , (5.8) becomes

1

2

d

dt
‖ω‖21

2 ,βt
− β‖ω‖21,βt + ‖ω‖23

2 ,βt
≤ cs̃‖ω‖21

2 ,βt
‖ω‖ 3

2 ,βt
+ cs̃βt‖ω‖ 1

2 ,βt
‖ω‖23

2 ,βt
. (5.17)

Comparing the terms on the right hand side of (5.17), we can expect that there is a region (when t and
‖ω‖ 1

2 ,βt
are both small), the term cs̃βt‖ω‖ 1

2 ,βt
‖ω‖23

2 ,βt
can be absorbed by ‖ω‖23

2 ,βt
.

Let c̆ =
1

4cs̃β
and let t♦ as the solution of ‖ω‖ 1

2 ,βt
=
c̆

t
. (If ‖ω‖ 1

2 ,βt
does not blow up, then the Theorem

holds. Assume ‖ω‖ 1
2 ,βt

blows up, then such t♦ exists.)
When 0 < t < t♦, we have

‖ω‖ 1
2 ,βt

<
c̆

t
⇒ ‖ω‖ 1

2 ,βt
<

1

4cs̃βt
,

and consequently, from (5.17), we obtain

1

2

d

dt
‖ω‖21

2 ,βt
− β‖ω‖21,βt + ‖ω‖23

2 ,βt
≤ cs̃‖ω‖21

2 ,βt
‖ω‖ 3

2 ,βt
+

1

4
‖ω‖23

2 ,βt
.
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When β ≤ 1
2 , apply Young’s inequality to the above inequality and simplify it, we have

d

dt
‖ω‖21

2 ,βt
< cs̃‖ω‖41

2 ,βt
⇒ d

dt
‖ω‖ 1

2 ,βt
< cs̃‖ω‖31

2 ,βt
.

Denoting Y (t) = ‖ω‖ 1
2 ,βt

, then we have

d

dt
Y < cs̃Y

3. (5.18)

The local existence time of Y is: TY = sup

{
t > 0 | sup

r∈[0,t]

|Y (r)| <∞

}
.

We have t♦ < TY <∞, and when 0 < t < t♦, we compare Y (t) with ψ(t), where, ψ(t) is the solution of

d

dt
ψ = cs̃ψ

3, (5.19)

with ψ(0) = Y (0) with local existence time Tψ, also Tψ <∞.

Applying Lemma 3.6 on (5.18) and (5.19), we have

Y (t) ≤ ψ(t), for all t ∈
[
0,min

{
t♦, TX , Tψ

}]
.

Denoting the interception point of ψ(t) with
c̆

t
as tψ, we have: ψ(tψ) =

c̆

tψ
. Moreover, tψ ≤ t♦ < TY .

Solving (5.19), we have

ψ(t) = (ψ(0)−2 − cs̃t)−1/2. (5.20)

Therefore

(ψ(0)−2 − cs̃tψ)−1/2 =
c̆

tψ
.

After simplification, we obtain

ψ(0)−2 − cs̃tψ = c̆−2t2ψ ⇒ c̆−2t2ψ + cs̃tψ = ψ(0)−2.

This is similar to the result in (6.25) with s̃ = 1
2 . We follow similar procedure as in Case (1) and obtain

the results on the existence time.

Proof of the Corollary 2.2. From Lemma 5.4, when − 1
2 < s̃ < 3

2 , we have the following inequality

1

2

d

dt
‖ω‖2s̃,βt − β‖ω‖2s̃+ 1

2 ,βt
+ ‖ω‖2s̃+1,βt ≤ cs̃‖ω‖

s̃+ 3
2

s̃,βt ‖ω‖
3
2−s̃
s̃+1,βt + cs̃βt‖ω‖

s̃+ 1
2

s̃,βt ‖ω‖
5
2−s̃
s̃+1,βt.

When we conside the Sobolev space, we have β = 0. Applying Young’s inequality on the above inequality
and simplify it, we have

1

2

d

dt
‖ω‖2s̃ ≤ cs̃‖ω‖

2· 3+2s̃
1+2s̃

s̃ .
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Applying Lemma 3.3 and considering the existence time T ‡ of ‖ω(t)‖s̃, we have

‖ω(T ‡ − t)‖s̃ ≥ cs̃t−
1+2s̃

4 ⇒ ‖ω(t)‖s̃ ≥ cs̃(T ‡ − t)−
1+2s̃

4 .

If we take s = s̃+ 1, so 1
2 < s < 5

2 , it follows that

‖u(t)‖s = ‖ω(t)‖s̃ ≥ cs̃(T ‡ − t)−
1+2s̃

4 ≥ cs(T ‡ − t)−
2s−1

4 .

This is equivalent to

T ‡ >
cs

‖u0‖
4

2s−1
s

.

6. Appendix

Proof of Lemma 4.1.

Proof. (i) Let us start by observing(
B(u, u), Ase2αA

1
2 u

)
=

(
As/2eαA

1
2B(u, u), As/2eαA

1
2 u

)
.

We just need to estimate the term ‖As/2eαA
1
2B(u, u)‖L2 . So we consider I =

(
As/2eαA

1
2B(u, u), w

)
,

for an arbitrary w ∈ H with ‖w‖L2 = 1. (In fact, we may take w ∈ Gv(s, α), and then pass to the limit in
H. Accordingly, let w ∈ Gv(s, α) with ‖w‖L2 = 1).

(
A
s
2 eαA

1
2B(u, u), w

)
=

(
B(u, u), A

s
2 eαA

1
2 w

)
= i
∑
j,k

(j · ûk−j) (ûj · ŵ−k)|k|seα|k|

= i
∑
j,k

(k · ûk−j) (ûj · ŵ−k)|k|seα|k|,

since ûk−j · (k − j) = 0.
The rest of the proof follows from the proof of the first inequality in Lemma 3.1 in [49]. We also use the

triangle inequality on the exponential function, namely,

eα|k| ≤ eα|k−j|eα|j|.

(ii) Starting from the relation(
B(u, u), Ase2αA

1
2 u

)
=

(
A
s
2 eαA

1
2B(u, u), A

s
2 eαA

1
2 u

)
,

note that since
(
B(u,A

s
2 eαA

1
2 u), A

s
2 eαA

1
2 u
)

= 0, we have(
B(u, u), Ase2αA

1
2 u

)
=

(
A
s
2 eαA

1
2B(u, u)−B(u,A

s
2 eαA

1
2 u), A

s
2 eαA

1
2 u

)
. (6.1)
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We need to estimate
‖A s

2 eαA
1
2B(u, u)−B(u,A

s
2 eαA

1
2 u)‖L2 .

Let us consider
I =

(
A
s
2 eαA

1
2B(u, u)−B(u,A

s
2 eαA

1
2 u), w

)
,

for ‖w‖L2 = 1. (As before, taking w ∈ D(Gv(s, α)) with ‖w‖L2 = 1, and then pass to the limit).
Using the Fourier expansion of u&w are given by

u =
∑

j∈Z3\{(0,0,0)}

ûje
ij·x, w =

∑
k∈Z3\{(0,0,0)}

ŵke
ik·x.

It follows that (
A
s
2 eαA

1
2B(u, u), w

)
=

(
B(u, u), A

s
2 eαA

1
2 w

)
= i
∑
j,k

(j · ûk−j) (ûj · ŵ−k)|k|seα|k|,

and (
B(u,A

s
2 eαA

1
2 u), w

)
= i
∑
j,k

(j · ûk−j)(ûj · ŵ−k)|j|seα|j|.

Combining the above two equations together, we have I = i
∑
j,k

(j · ûk−j)(ûj · ŵ−k)
(
|k|seα|k| − |j|seα|j|

)
.

Using the reality condition ŵ−k = ŵk, we obtain an estimate for I given by

|I| ≤
∑
j,k

|j||ûk−j ||ûj ||ŵk|
∣∣∣|k|seα|k| − |j|seα|j|∣∣∣ . (6.2)

Define f by f(x) = xseαx. Then f ′(x) = sxs−1eαx + xsαeαx. Taking η = a|j| + (1 − a)|k|, where
0 ≤ a ≤ 1, then η is between |j| and |k|. If |k| ≤ |j|, then |η| ≤ |j| ≤ |j| + |(k − j)|; if |j| < |k|, then
|η| ≤ |k| ≤ |j|+ |(k− j)|. Therefore, we have 0 < η ≤ |j|+ |(k− j)|. Also, when s ≥ 1, s− 1 ≥ 0. Therefore,
after applying the mean value theorem and the triangle inequality, it follows that∣∣∣|k|seα|k| − |j|seα|j|∣∣∣ = |f ′(η)| ||k| − |j||

≤ |f ′(η)||(k − j)|
=
∣∣sηs−1eαη + ηsαeαη

∣∣ |(k − j)|
=
∣∣ηs−1eαη(s+ αη)

∣∣ |(k − j)| .
Replacing η by |j|+ |l| with l = k − j, we have∣∣∣|k|seα|k| − |j|seα|j|∣∣∣ (6.3)

≤ (|j|+ |l|)s−1
eα|j|eα|l| (s+ α|j|+ α|l|) |l|.

Substituting (6.3) into (6.2), we can refine our estimate for I

|I| ≤
∑
l,j

|j||ûl‖ûj‖ŵl+j |(|j|+ |l|)s−1eα(|j|+|l|) (s+ α(|j|+ |l|)) |l|
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= s
∑
l,j

|ûl‖ûj‖ŵl+j ||l||j|(|j|+ |l|)s−1eα|j|eα|l|

+ α
∑
l,j

|ûl‖ûj‖ŵl+j ||l||j|(|j|+ |l|)seα|j|eα|l|

≤ cs
∑
l,j

|ûl‖ûj‖ŵl+j ||l||j|(|j|s−1 + |l|s−1)eα|j|eα|l|

+ csα
∑
l,j

|ûl‖ûj‖ŵl+j ||l||j|(|j|s + |l|s)eα|j|eα|l|

≤ cs
∑
l,j

|ûl‖ûj‖ŵl+j ||l|s|j|eα|j|eα|l|

+ csα
∑
l,j

|ûl‖ûj‖ŵl+j‖l|s+1|j|eα|j|eα|l|

≤ cs
∑
j

|j|eα|j||ûj |
∑
l

|l|seα|l||ûl‖ŵl+j |

+ csα
∑
j

|j|eα|j||ûj |
∑
l

|l|s+1eα|l||ûl‖ŵl+j |

≤ cs‖u‖s,α‖w‖L2

∑
j

|j|eα|j||ûj |+ csα‖u‖s+1,α‖w‖L2

∑
j

|j|eα|j||ûj |

≤ cs‖u‖s,α‖w‖L2‖eαA
1
2 u‖F 1 + csα‖u‖s+1,α‖w‖L2‖eαA

1
2 u‖F 1 .

Therefore ∣∣∣∣(B(u, u), Ase2αA
1
2 u

)∣∣∣∣
= ‖A s

2 eαA
1
2B(u, u)−B(u,A

s
2 eαA

1
2 u)‖L2 · ‖A s

2 eαA
1
2 ‖L2

≤ cs‖eαA
1
2 u‖F 1‖u‖2s,α + csα‖eαA

1
2 u‖F 1‖u‖s+1,α‖u‖s,α.

This establishes (4.2). Moreover, after applying Young’s inequality, we obtain

csα‖eαA
1
2 u‖F 1‖u‖s+1,α‖u‖s,α ≤ csα2‖eαA

1
2 u‖2F 1‖u‖2s,α +

1

2
‖u‖2s+1,α.

Therefore,∣∣∣∣(B(u, u), Ase2αA
1
2 u

)∣∣∣∣ ≤ cs‖eαA 1
2 u‖F 1‖u‖2s,α + csα

2‖eαA
1
2 u‖2F 1‖u‖2s,α +

1

2
‖u‖2s+1,α,

which is precisely (4.3).

Proof of Lemma 4.2.

Proof. For ∀m > 0, if 0 ≤ α|k| ≤ 1, then eα|k| ≤ e, and if α|k| ≥ 1, we have eα|k| ≤ (α|k|)meα|k|. Therefore,
for ∀t > 0 and k, we have eα|k| ≤ e+ (α|k|)meα|k| and e2α|k| ≤ e+ (2α|k|)me2α|k|.
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Taking m = 2s, it follows that

‖eαA
1
2 u‖2L2 =

∑
k

e2α|k||ûk|2 ≤
∑
k

(
e+ (2α|k|)2se2α|k|

)
|ûk|2

=
∑
k

e|ûk|2 +
∑
k

(2α|k|)2se2α|k||ûk|2.

Since
√
a+ b ≤

√
a+
√
b, for a, b ≥ 0, we have

‖eαA
1
2 u‖L2 ≤

√∑
k

e|ûk|2 +
∑
k

(2α|k|)2se2α|k||ûk|2

≤
√∑

k

e|ûk|2 +

√∑
k

(2α|k|)2se2α|k||ûk|2

=
√
e‖u‖L2 +

√
(2α)2s

∑
k

|k|2se2α|k||ûk|2

=
√
e‖u‖L2 + (2α)s||A s

2 eαA
1
2 u||L2

=
√
e‖u‖L2 + (2α)s‖u‖s,α.

Proof of Lemma 4.4.

Proof. Comparing the terms on the right hand side of (4.16), we can expect that there is a region (when
t and ζ are both small) where csγζ1+ 5

2s is the dominating term among the four terms on the right hand
side. In order to find this specific region, we compare csγζ1+ 5

2s with the other three terms (note that cs is
positive).

1. Comparing csγζ1+ 5
2s with cs(βt)s−

5
2 ζ2:

if csγζ1+ 5
2s ≥ cs(βt)s−

5
2 ζ2, equivalently, ζ ≤ csγ

2s
2s−5

(βt)s .

2. Comparing csγζ1+ 5
2s with cs(βt)2γ2ζ1+ 5

s :
if csγζ1+ 5

2s ≥ cs(βt)2γ2ζ1+ 5
s , equivalently, ζ ≤ cs

γ
2s
5 (βt)

4s
5

.

3. Comparing csγζ1+ 5
2s with cs(βt)2s−3ζ3:

if csγζ1+ 5
2s ≥ cs(βt)2s−3ζ3, equivalently, ζ ≤ csγ

2s
4s−5

(βt)
2s(2s−3)

4s−5

.

Therefore, if ζ ≤ cs min
{
β−s, β−

4s
5 , β−

2s(2s−3)
4s−5

}
· min

{
γ

2s
2s−5 , γ−

2s
5 , γ

2s
4s−5

}
· min

{
1

ts
,

1

t
4s
5

,
1

t
2s(2s−3)

4s−5

}
,

then the first term (csγζ1+ 5
2s ) is the dominating term among the four terms on the right hand side of (4.16).

When s > 5
2 , we have 4s

5 < 2s·(2s−3)
4s−5 < s. Therefore, when β ≤ 1

2 , β
− 4s

5 = min
{
β−s, β−

4s
5 , β−

2s(2s−3)
4s−5

}
.

Denoting
c̃ = csβ

− 4s
5 min

{
γ

2s
2s−5 , γ−

2s
5 , γ

2s
4s−5

}
= csβ

− 4s
5 min

{
γ

2s
2s−5 , γ−

2s
5

}
.

When 0 < t < 1:
1

t
4s
5

= min

{
1

ts
,

1

t
4s
5

,
1

t
2s(2s−3)

4s−5

}
. When t > 1:

1

ts
= min

{
1

ts
,

1

t
4s
5

,
1

t
2s(2s−3)

4s−5

}
.
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From (4.16), we observe that ζ starts with positve initial data and is an increasing function. Moreover,

since ζ ↗∞ as t↗ Tζ , it will first intersect either the curve
c̃

t
4s
5

or the curve
c̃

ts
for some tζ ∈ (0, Tζ). We

have the following cases.

Case (i): when ζ(0) ≥ c̃, then ζ(1) > c̃. In this case, ζ(t) first intercepts with the curve of
c̃

t
4s
5

. Denoting

the interception point as tζ , we have 0 < tζ ≤ 1.

Therefore, when 0 < t < tζ , we have ζ(t) <
c̃

t
4s
5

. (csγζ1+ 5
2s ) is the dominating term among the four

terms on the right hand side of (4.16). It follows that

dζ

dt
< 4csγζ

1+ 5
2s . (6.4)

Moreover, when 0 < t < tζ , we compare ζ(t) with φ(t), where, φ(t) is the solution of

dφ

dt
= 4csγφ

1+ 5
2s , (6.5)

with φ(0) = ζ(0).
Applying Lemma 3.6 on (6.4) and (6.5), we have: ζ(t) < φ(t), for all t ∈ [0,min {tζ , Tζ , Tφ}] .
It follows that there exists a tφ that

φ(tφ) =
c̃

t
4s
5

φ

. (6.6)

Since ζ(t) < φ(t), we conclude 0 < tφ < tζ ≤ 1. Thus, the following relation holds: tφ < tζ < Tζ .
Solving (6.5), we have

φ(t) = (φ(0)−
5
2s − csγt)−

2s
5 . (6.7)

Combining (6.6) and (6.7), it holds that: (φ(0)−
5
2s − csγtφ)−

2s
5 = c̃t

− 4s
5

φ .

After simplification, we obtain: φ(0)−
5
2s − csγtφ = c̃

−5
2s t2φ.

Therefore

c̃
−5
2s t2φ + csγtφ = φ(0)−

5
2s . (6.8)

Since tφ < 1, i.e., tφ2 < tφ, from (6.8), we have: φ(0)−
5
2s <

(
c̃
−5
2s + csγ

)
tφ.

Therefore

φ(0)−
5
2s <

1
˜̃c
tφ, (6.9)

where
1
˜̃c

= 2 max
{
c̃
−5
2s , csγ

}
. Since c̃ = csβ

− 4s
5 min

{
γ

2s
2s−5 , γ−

2s
5

}
, therefore

c̃
−5
2s = csβ

2 max
{
γ−

5
2s−5 , γ

}
.

Since β < 1, we have
1
˜̃c

= cs max
{
γ−

5
2s−5 , γ

}
, i.e., ˜̃c = cs min

{
γ

5
2s−5 , γ−1

}
.
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From (6.9), we have

tφ >
˜̃c

φ(0)
5
2s

=
cs min

{
γ

5
2s−5 , γ−1

}
ζ(0)

5
2s

.

Therefore

Tζ > tφ >
cs min

{
γ

5
2s−5 , γ−1

}
ζ(0)

5
2s

.

Case (ii): when ζ(0) < c̃, if ζ(1) ≥ c̃, same as Case (i), we have Tζ > tφ >
cs min

{
γ

5
2s−5 , γ−1

}
ζ(0)

5
2s

.

If ζ(1) < c̃, in this case, ζ(t) first intercepts with the curve of
c̃

ts
. Denoting the interception point as tζ ,

we have tζ > 1.

Similar to Case (i), we have: when 0 < t < tζ ,
dζ

dt
< 4csγζ

1+ 5
2s , Also, when we consider φ(t) as the

solution of

dφ

dt
= 4csγφ

1+ 5
2s , (6.10)

with φ(0) = ζ(0), we have: ζ(t) < φ(t), for all t ∈ [0,min {tζ , Tζ , Tφ}] .
Moreover, tφ < tζ < Tζ . If 0 < tφ ≤ 1, same as Case (i), we have

Tζ > tφ >
cs min

{
γ

5
2s−5 , γ−1

}
ζ(0)

5
2s

.

If tφ > 1, then

φ(tφ) =
c̃

tsφ
. (6.11)

Solving (6.10), we have

φ(t) = (φ(0)−
5
2s − csγt)−

2s
5 . (6.12)

Combining (6.11) and (6.12), we have: (φ(0)−
5
2s − csγtφ)−

2s
5 = c̃t−sφ .

After simplification, we obtain: φ(0)−
5
2s − csγtφ = c̃

−5
2s t

5/2
φ . Therefore

c̃
−5
2s t

5/2
φ + csγtφ = φ(0)−

5
2s . (6.13)

Since tφ > 1, then tφ5/2 > tφ, from (6.13), we have: φ(0)−
5
2s <

(
c̃
−5
2s + csγ

)
tφ

5/2. Therefore

φ(0)−
5
2s <

1
˜̃c
tφ

5/2. (6.14)
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Following similar analysis as Case (i), we have ˜̃c = cs min
{
γ

5
2s−5 , γ−1

}
and

Tζ > tφ >
˜̃c2/5

φ(0)
1
s

=
cs min

{
γ

2
2s−5 , γ−2/5

}
ζ(0)

1
s

.

Therefore, for Case (ii), we have

Tζ > tφ > min
{
Z,Z2/5

}
,

where Z =
cs min

{
γ

5
2s−5 , γ−1

}
ζ(0)

5
2s

.

Proof of Lemma 5.1.

Proof. ∣∣∣∣(B(ω, u), As̃e2αA
1
2 ω

)∣∣∣∣ =

∣∣∣∣(A s̃
2 eαA

1
2B(ω, u), A

s̃
2 eαA

1
2 ω

)∣∣∣∣ (6.15)

≤ ‖ω · ∇u‖s̃,α‖ω‖s̃,α.

When − 1
2 < s̃ < 3

2 , applying Lemma 3.2 with s1 = 3+2s̃
4 and s2 = 3+2s̃

4 , we have: ‖ω · ∇u‖s̃,α ≤
cs̃‖ω‖23+2s̃

4 ,α
.

Furthermore, ‖ω‖23+2s̃
4 ,α

≤ cs̃‖ω‖
1+2s̃

2

s̃,α ‖ω‖
3−2s̃

2

s̃+1,α. Therefore, (6.15) beomes∣∣∣∣(B(ω, u), As̃e2αA
1
2 ω

)∣∣∣∣ ≤ cs̃‖ω‖ 3+2s̃
2

s̃,α ‖ω‖
3−2s̃

2

s̃+1,α.

Proof of Lemma 5.2.

Proof. Starting from (
B(u, ω), As̃e2αA

1
2 ω

)
=

(
A
s̃
2 eαA

1
2B(u, ω), A

s̃
2 eαA

1
2 ω

)
.

Since
(
B(u,A

s̃
2 eαA

1
2 ω), A

s̃
2 eαA

1
2 ω
)

= 0, it follows that(
B(u, ω), As̃e2αA

1
2 ω

)
=

(
A
s̃
2 eαA

1
2B(u, ω)−B(u,A

s̃
2 eαA

1
2 ω), A

s̃
2 eαA

1
2 ω

)
= P. (6.16)

Futhermore (
A
s̃
2 eαA

1
2B(u, ω), A

s̃
2 eαA

1
2 ω

)
=

(
B(u, ω), As̃e2αA

1
2 ω

)
= i
∑
j,k

(j · ûk−j)(ω̂j · ω̂−k)|k|2s̃e2α|k|,
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and (
B(u,A

s̃
2 eαA

1
2 ω), A

s̃
2 eαA

1
2 ω

)
= i
∑
j,k

(j · ûk−j)(ω̂j · ω̂−k)|j|s̃eα|j||k|s̃eα|k|.

Combining the above two equations together, we have

P = i
∑
j,k

(j · ûk−j)(ω̂j · ω̂−k)|k|s̃eα|k|
(
|k|s̃eα|k| − |j|s̃eα|j|

)
.

Since u is divergence free, we have (k − j) · ûk−j = 0 and

P = i
∑
j,k

(k · ûk−j)(ω̂j · ω̂−k)|k|s̃eα|k|
(
|k|s̃eα|k| − |j|s̃eα|j|

)
.

Since ω̂−k = ω̂k, we obtain the estimate of P

|P | ≤
∑
j,k

|k||ûk−j ||ω̂j ||ω̂k||k|s̃eα|k|
∣∣∣|k|s̃eα|k| − |j|s̃eα|j|∣∣∣ . (6.17)

Defining f(x) = xs̃eαx, then f ′(x) = s̃xs̃−1eαx + xs̃αeαx. Taking η = a|j|+ (1− a)|k|, where 0 ≤ a ≤ 1,
then η is between |j| and |k|. If |k| < |j|, then |η| < |j| < |j|+|(k−j)|; if |j| < |k|, then |η| < |k| ≤ |j|+|(k−j)|.
Therefore, we have 0 < η ≤ |j|+ |(k − j)|. Applying the mean value theorem, it follows that∣∣∣|k|s̃eα|k| − |j|s̃eα|j|∣∣∣ = |f ′(η)| ||k| − |j|| ≤ |f ′(η)||(k − j)|

=
∣∣(s̃ηs̃−1eαη + ηs̃αeαη)

∣∣ |(k − j)| .
Therefore, taking l = k − j, (6.17) becomes

|P | ≤
∑
l+j=k

|k||ûl||ω̂j ||ω̂k||k|s̃eα|k|
∣∣(s̃ηs̃−1eαη + ηs̃αeαη)

∣∣ |l|
≤ |s̃|

∑
l+j=k

|k||ûl||ω̂j ||ω̂k||k|s̃eα|k| |η|s̃−1
eαη|l|

+ α
∑
l+j=k

|k||ûl||ω̂j ||ω̂k||k|s̃eα|k| |η|s̃ eαη|l|

= P1 + P2.

We first analyze P1 = |s̃|
∑
l+j=k

|k||ûl||ω̂j ||ω̂k||k|s̃eα|k| |η|s̃−1
eαη|l|.

Case (i): When − 1
2 < s̃ < 1, since |η| = a|j|+ (1− a)|k|, 0 ≤ a ≤ 1 and we have

Case (ia): if |j| ≤ |k|, then |η| ≥ |j|, we have: |η|s̃−1 ≤ |j|s̃−1.
Moreover, since 0 < η ≤ |j|+ |l|, we have: eαη ≤ eα|j|eα|l|. Taking 0 < δ < 1, it follows that

P1 ≤ |s̃|
∑
l+j=k

|k||ûl||ω̂j ||ω̂k||k|s̃eα|k||j|s̃−1eα|j|eα|l||l|

≤ |s̃|
∑
l+j=k

|k|1−δ(|l||ûl|eα|l|) · (|j|s̃−1|ω̂j |eα|j|) · (|ω̂k||k|s̃+δeα|k|)

≤ |s̃|‖ω1 ∗ ω2‖Ḣ1−δ‖ω‖s̃+δ,α,
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where

‖ω1‖2L2 =
∑
l

|ω̂l|2e2α|l|, ‖ω2‖2L2 =
∑
l

|l|2(s̃−1)|ω̂l|2e2α|l|.

When − 1
2 < s̃ < 1 and max

{
1
2 − s̃, 0

}
< δ < 1, from Lemma 3.2 with s1 = 3−2δ+2s̃

4 and s2 = 7−2δ−2s̃
4 ,

we have

‖ω1 ∗ ω2‖Ḣ1−δ ≤ cs̃‖ω1‖ 3−2δ+2s̃
4
‖ω2‖ 7−2δ−2s̃

4
= c‖ω‖23+2s̃−2δ

4 ,α
.

Therefore

P1 ≤ cs̃‖ω‖23+2s̃−2δ
4 ,α

‖ω‖s̃+δ,α.

When − 1
2 < s̃ < 1 with max

{
1
2 − s̃, 0

}
< δ < min

{
3
2 − s̃, 1

}
, we have

‖ω‖23+2s̃−2δ
4 ,α

≤ cs̃‖ω‖
2δ+2s̃+1

2

s̃,α ‖ω‖
3−2δ−2s̃

2

s̃+1,α and ‖ω‖s̃+δ,α ≤ cs̃‖ω‖1−δs̃,α ‖ω‖
δ
s̃+1,α.

Therefore

P1 ≤ cs̃‖ω‖
2δ+2s̃+1

2

s̃,α ‖ω‖
3−2δ−2s̃

2

s̃+1,α ‖ω‖1−δs̃,α ‖ω‖
δ
s̃+1,α

= cs̃‖ω‖
3+2s̃

2

s̃,α ‖ω‖
3−2s̃

2

s̃+1,α.

Case (ib): if |j| > |k|, then |η| ≥ |k|, we have: |η|s̃−1 ≤ |k|s̃−1.
Therefore

P1 ≤ |s̃|
∑
l+j=k

|k||ûl||ω̂j ||ω̂k||k|s̃eα|k||k|s̃−1eα|j|eα|l||l|

≤ |s̃|
∑
l+j=k

|k|s̃(|l||ûl|eα|l|) · (|ω̂j |eα|j|) · (|ω̂k||k|s̃eα|k|)

≤ |s̃|‖ω1 ∗ ω1‖Ḣ s̃‖ω‖s̃,α.

When − 1
2 < s̃ < 1, from Lemma 3.2 with s1 = 3+2s̃

4 and s2 = 3+2s̃
4 , we have: ‖ω1 ∗ω1‖Ḣ s̃ ≤ cs̃‖ω‖

2
3+2s̃

4 ,α
.

Therefore, P1 ≤ cs̃‖ω‖23+2s̃
4 ,α
‖ω‖s̃,α.

Since

‖ω‖23+2s̃
4 ,α

≤ cs̃‖ω‖
1+2s̃

2

s̃,α ‖ω‖
3−2s̃

2

s̃+1,α, (6.18)

we have: P1 ≤ cs̃‖ω‖
3+2s̃

2

s̃,α ‖ω‖
3−2s̃

2

s̃+1,α.

Case (ii): When 1 ≤ s̃ < 3
2 , since |η| ≤ |j|+ |l|, we have: |η|s̃−1 ≤ (|j|+ |l|)s̃−1.
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Therefore

P1 ≤ s̃
∑
l+j=k

|k||ûl||ω̂j ||ω̂k||k|s̃eα|k|(|j|+ |l|)s̃−1eα|j|eα|l||l|

≤ cs̃s̃
∑
l+j=k

|k|(|l||ûl|eα|l|) · (|j|s̃−1 + |l|s̃−1) · (|ω̂j |eα|j|) · (|ω̂k||k|s̃eα|k|)

≤ cs̃s̃
∑
l+j=k

|k|(|l||ûl|eα|l|) · (|j|s̃−1|ω̂j |eα|j|) · (|ω̂k||k|s̃eα|k|)

≤ cs̃s̃‖ω1 ∗ ω2‖Ḣ1‖ω‖s̃,α.

When 1 ≤ s̃ < 3
2 , from Lemma 3.2 with s1 = 3+2s̃

4 and s2 = 7−2s̃
4 , we have

‖ω1 ∗ ω2‖Ḣ1 ≤ cs̃‖ω1‖ 3+2s̃
4
‖ω2‖ 7−2s̃

4
= cs̃‖ω‖23+2s̃

4 ,α
.

Therefore, P1 ≤ cs̃‖ω‖23+2s̃
4 ,α
‖ω‖s̃,α.

From (6.18), we have: P1 ≤ cs̃‖ω‖
3+2s̃

2

s̃,α ‖ω‖
3−2s̃

2

s̃+1,α.

Combining case (i) and (ii), when − 1
2 < s̃ < 3

2 , we always have

P1 ≤ cs̃‖ω‖
3+2s̃

2

s̃,α ‖ω‖
3−2s̃

2

s̃+1,α. (6.19)

Next, we can analyze the estimate for

P2 = α
∑
l+j=k

|k||ûl||ω̂j ||ω̂k||k|s̃eα|k| |η|s̃ eαη|l|.

Case (a): 0 ≤ s̃ < 3
2 , we have: |η|s̃ ≤ (|j|+ |l|)s̃. Therefore,

P2 ≤ α
∑
l+j=k

|k||ûl||ω̂j ||ω̂k||k|s̃eα|k|(|j|+ |l|)s̃eα|j|eα|l||l|

≤ cs̃α
∑
l+j=k

|k||ûl||ω̂j ||ω̂k||k|s̃eα|k|(|j|s̃ + |l|s̃)eα|j|eα|l||l|

≤ cs̃α
∑
l+j=k

|k||ûl||ω̂j ||ω̂k||k|s̃eα|k||l|s̃eα|j|eα|l||l|

≤ cs̃α
∑
l+j=k

|k|1−δ|l|s̃(|l||ûl|eα|l|) · (|ω̂j |eα|j|) · (|ω̂k||k|s̃+δeα|k|)

≤ cs̃α‖ω1 ∗ ω3‖Ḣ1−δ‖ω‖s̃+δ,α,

where ‖ω3‖2L2 =
∑
l

|l|2s̃|ω̂l|2e2α|l|. When 0 ≤ s̃ < 3
2 with max

{
s̃− 1

2 , 0
}
< δ < 1, from Lemma 3.2 with

s1 =
5 + 2s̃− 2δ

4
, and s2 =

5− 2δ − 2s̃

4
. We have

‖ω1 ∗ ω3‖Ḣ1−δ ≤ cs̃‖ω1‖ 5+2s̃−2δ
4
‖ω3‖ 5−2δ−2s̃

4
= cs̃‖ω‖25+2s̃−2δ

4 ,α
.

Therefore, P2 ≤ cs̃α‖ω‖25+2s̃−2δ
4 ,α

‖ω‖s̃+δ,α.
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When 0 ≤ s̃ < 3
2 with max

{
s̃− 1

2 ,
1
2 − s̃, 0

}
< δ < 1, we have

‖ω‖25+2s̃−2δ
4 ,α

≤ cs̃‖ω‖
2δ+2s̃−1

2

s̃,α ‖ω‖
5−2δ−2s̃

2

s̃+1,α and ‖ω‖s̃+δ,α ≤ cs̃‖ω‖1−δs̃,α ‖ω‖
δ
s̃+1,α.

Thus

P2 ≤ cs̃α‖ω‖
2δ+2s̃−1

2

s̃,α ‖ω‖
5−2δ−2s̃

2

s̃+1,α ‖ω‖1−δs̃,α ‖ω‖
δ
s̃+1,α

= cs̃α‖ω‖
s̃+ 1

2

s̃,α ‖ω‖
5
2−s
s̃+1,α.

Case (b): − 1
2 < s̃ < 0.

Case (b1): if |j| ≤ |k|, then |η| ≥ |j|, we have: |η|s̃ ≤ |j|s̃. Therefore,

P2 ≤ α
∑
l+j=k

|k||ûl||ω̂j ||ω̂k||k|s̃eα|k||j|s̃eα|j|eα|l||l|

≤ α
∑
l+j=k

|k|1−δ|j|s̃(|l||ûl|eα|l|) · (|ω̂j |eα|j|) · (|ω̂k||k|s̃+δeα|k|)

≤ α‖ω1 ∗ ω3‖Ḣ1−δ‖ω‖s̃+δ,α.

When − 1
2 < s̃ < 0 with 0 < δ < 1, from Lemma 3.2 with s1 = 5+2s̃−2δ

4 and s2 = 5−2δ−2s̃
4 , we have

‖ω1 ∗ ω3‖Ḣ1−δ ≤ cs̃‖ω1‖ 5+2s̃−2δ
4
‖ω3‖ 5−2δ−2s̃

4
= c‖ω‖25+2s̃−2δ

4 ,α
.

Therefore, P2 ≤ cs̃α‖ω‖25+2s̃−2δ
4 ,α

‖ω‖s̃+δ,α.
When − 1

2 < s̃ < 0 with 1
2 − s̃ < δ < 1, we have

‖ω‖25+2s̃−2δ
4 ,α

≤ cs̃‖ω‖
2δ+2s̃−1

2

s̃,α ‖ω‖
5−2δ−2s̃

2

s̃+1,α and ‖ω‖s̃+δ,α ≤ cs̃‖ω‖1−δs̃,α ‖ω‖
δ
s̃+1,α,

we have

P2 ≤ cs̃α‖ω‖
2δ+2s̃−1

2

s̃,α ‖ω‖
5−2δ−2s̃

2

s̃+1,α ‖ω‖1−δs̃,α ‖ω‖
δ
s̃+1,α

= cs̃α‖ω‖
s̃+ 1

2

s̃,α ‖ω‖
5
2−s
s̃+1,α.

Case (b2): if |j| > |k|, then |η| ≥ |k|, we have: |η|s̃ ≤ |k|s̃.
Therefore

P2 ≤ α
∑
l+j=k

|k||ûl||ω̂j ||ω̂k||k|s̃eα|k||k|s̃eα|j|eα|l||l|

≤ α
∑
l+j=k

|k|s̃+1−δ(|l||ûl|eα|l|) · (|ω̂j |eα|j|) · (|ω̂k||k|s̃+δeα|k|)

≤ α‖ω1 ∗ ω1‖Ḣ s̃+1−δ‖ω‖s̃+δ,α.

When − 1
2 < s̃ < 0 with 0 < δ < 1, from Lemma 3.2 with s1 = s2 = 5+2s̃−2δ

4 , we have

‖ω1 ∗ ω2‖Ḣ s̃+1−δ ≤ cs̃‖ω‖25+2s̃−2δ
4 ,α

.

Therefore, P2 ≤ cs̃α‖ω‖25+2s̃−2δ
4 ,α

‖ω‖s̃+δ,α.
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When − 1
2 < s̃ < 0 with 1

2 − s̃ < δ < 1, we have

‖ω‖25+2s̃−2δ
4 ,α

≤ cs̃‖ω‖
2δ+2s̃−1

2

s̃,α ‖ω‖
5−2δ−2s̃

2

s̃+1,α and ‖ω‖s̃+δ,α ≤ cs̃‖ω‖1−δs̃,α ‖ω‖
δ
s̃+1,α.

Therefore

P2 ≤ cs̃α‖ω‖
2δ+2s̃−1

2

s̃,α ‖ω‖
5−2δ−2s̃

2

s̃+1,α ‖ω‖1−δs̃,α ‖ω‖
δ
s̃+1,α

= cs̃α‖ω‖
s̃+ 1

2

s̃,α ‖ω‖
5
2−s
s̃+1,α.

Combing Case (a) and Case (b), we have

P2 ≤ cs̃α‖ω‖
s̃+ 1

2

s̃,α ‖ω‖
5
2−s
s̃+1,α. (6.20)

Combing (6.19) and (6.20), when − 1
2 < s̃ < 3

2 , it yields that∣∣∣∣(B(u, ω), As̃e2αA
1
2 ω

)∣∣∣∣ = P = P1 + P2 ≤ cs̃‖ω‖
s̃+ 3

2

s̃,α ‖ω‖
3
2−s̃
s̃+1,α + cs̃α‖ω‖

s̃+ 1
2

s̃,α ‖ω‖
5
2−s̃
s̃+1,α.

Proof of Lemma 5.3.

Proof. Comparing the terms on the right hand side of (5.5), we can expect that there is a region (when t
and X are both small), cs̃X1+ 4

1+2s̃ is the dominating term among the two terms on the right hand side.
In order to find this specific region, we compare cs̃X1+ 4

1+2s̃ with cs̃(βt)
4

2s̃−1X1+ 4
2s̃−1 .

If cs̃X1+ 4
1+2s̃ ≥ cs̃(βt)

4
2s̃−1X1+ 4

2s̃−1 , then X ≤ cs̃

(βt)
2s̃+1

2

.

Considering the function

K(t) = X(t)− cs̃

(βt)
2s̃+1

2

.

From (5.5), we observe that X starts with positve initial data and is an increasing function. Moreover,
since X ↗ ∞ as t ↗ TX , it will intersect the curve

cs̃

(βt)
2s̃+1

2

. Therefore, there exists a tX such that

K(tX) = 0 and K(t) < 0 when t < tX . Therefore, when 0 < t < tX and we have

dX

dt
< 2cs̃X

1+ 4
1+2s̃ := cs̃X

1+ 4
1+2s̃ . (6.21)

When 0 < t < tX , we compare X(t) with ϕ(t), where, ϕ(t) is the solution of

dϕ

dt
= cs̃ϕ

1+ 4
1+2s̃ , (6.22)

with ϕ(0) = X(0) and Tϕ is the local existence time of ϕ.

Applying Lemma 3.6 on (6.21) and (6.22), we have

X(t) < ϕ(t), for all t ∈ [0,min {tX , TX , Tϕ}] .

From (6.22), ϕ(t) will also intercepts with the curve
cs̃

(βt)
2s̃+1

2

. Denote the interception point as tϕ, then
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tϕ < tX < TX . To calculate tϕ, we have

ϕ(tϕ) =
cs̃

(βtϕ)
2s̃+1

2

. (6.23)

Solving (6.22), we have

ϕ(t) = (ϕ(0)−
4

1+2s̃ − cs̃t)−
1+2s̃

4 . (6.24)

Therefore: (ϕ(0)−
4

1+2s̃ − cs̃tϕ)−
1+2s̃

4 =
cs̃

(βtϕ)
2s̃+1

2

.

After simplification, we obtain: ϕ(0)−
4

1+2s̃ − cs̃tϕ = cs̃β
2t2ϕ. Therefore

cs̃β
2t2ϕ + cs̃tϕ = ϕ(0)−

4
1+2s̃ . (6.25)

Case (i): when X(0) ≥ cs̃

(β)
2s̃+1

2

, then, ϕ(0) ≥ cs̃

(β)
2s̃+1

2

⇒ ϕ(1) >
cs̃

(β)
2s̃+1

2

. This implies tϕ < 1, then

t2ϕ < tϕ, since β < 1
2 , we have

ϕ(0)−
4

1+2s̃ ≤ cs̃tϕ, (6.26)

this implies: tϕ ≥
cs̃

ϕ(0)
4

1+2s̃

. Therefore

TX > tϕ ≥
cs̃

ϕ(0)
4

1+2s̃

=
cs̃

X(0)
4

1+2s̃

. (6.27)

Case (ii): when X(0) <
cs̃

(β)
2s̃+1

2

, then, ϕ(0) <
cs̃

(β)
2s̃+1

2

. If ϕ(1) > cs̃

(β)
2s̃+1

2

. This implies tϕ < 1, same as

Case (i), we have: TX >
cs̃

X(0)
4

1+2s̃

.

If ϕ(1) ≤ cs̃

(β)
2s̃+1

2

. This implies tϕ ≥ 1, then t2ϕ ≥ tϕ, then (6.25) becomes

ϕ(0)−
4

1+2s̃ ≤ cs̃t2ϕ, (6.28)

this implies tϕ ≥
cs̃

ϕ(0)
2

1+2s̃

. Therefore

TX > tϕ ≥
cs̃

ϕ(0)
2

1+2s̃

=
cs̃

X(0)
2

1+2s̃

. (6.29)

Therefore, in Case (ii), we have

TX > min
{
Q,Q1/2

}
,

where Q =
cs̃

X(0)
4

1+2s̃

.
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